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We study the asymptotic distributions of the spiked eigenvalues and the
largest nonspiked eigenvalue of the sample covariance matrix under a general
covariance model with divergent spiked eigenvalues, while the other eigen-
values are bounded but otherwise arbitrary. The limiting normal distribution
for the spiked sample eigenvalues is established. It has distinct features that
the asymptotic mean relies on not only the population spikes but also the
nonspikes and that the asymptotic variance in general depends on the popula-
tion eigenvectors. In addition, the limiting Tracy–Widom law for the largest
nonspiked sample eigenvalue is obtained.

Estimation of the number of spikes and the convergence of the leading
eigenvectors are also considered. The results hold even when the number of
the spikes diverges. As a key technical tool, we develop a central limit the-
orem for a type of random quadratic forms where the random vectors and
random matrices involved are dependent. This result can be of independent
interest.

1. Introduction. Covariance matrix plays a fundamental role in multivariate analysis
and high-dimensional statistics. There has been significant recent interest in studying the
properties of the leading eigenvalues and their corresponding eigenvectors of the sample co-
variance matrix, especially in the high-dimensional setting; see, for example, [9, 12, 14, 16,
23, 25–27, 29, 33]. These problems are not only of interest in their own right they also have
close connections to other important statistical problems such as principal component analy-
sis and testing for the covariance structure of high-dimensional data.

Principal component analysis (PCA) is a widely used technique for a range of purposes,
including dimension reduction, data visualization, clustering and feature extraction [1, 22].
PCA is particularly well suited for the settings where the signal of interest lies in a much
lower dimensional subspace and it has been applied in a broad range of fields such as ge-
nomics, image recognition, data compression and financial econometrics. For example, the
widely used factor models in financial econometrics typically assume that a small number
of unknown common factors drive the asset returns [17]. In PCA, the leading eigenvalues
and eigenvectors of the population covariance matrix need to be estimated from data and are
conventionally estimated by their empirical counterparts. It is thus important to understand
the spectral properties of the sample covariance matrix.

1.1. The problem. To be concrete, consider the data matrix Y = �X where X =
(x1, . . . ,xn) is a (p + l) × n random matrix whose entries are independent with zero mean
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and unit variance and � is a p × (p + l) deterministic matrix with l/p → 0. Let � = ��ᵀ be
the population covariance matrix. The sample covariance matrix is defined as

(1.1) Sn = 1

n
YYᵀ = 1

n
�XXᵀ�ᵀ.

Denote the singular value decomposition (SVD) of � by

(1.2) � = V�
1
2 U,

where V and U are p × p and p × (p + l) orthogonal matrices, respectively (VVᵀ = UUᵀ =
I), and � is a diagonal matrix consisting in descending order of the eigenvalues μ1 ≥ · · · ≥
μp of �.

In statistical applications such as PCA, one is most interested in the setting where there is
a clear separation between a few leading eigenvalues and the rest. In this case, the leading
principal components account for a large proportion of the total variability of the data. We
consider in the present paper the setting where there are K spiked eigenvalues that are sepa-
rated from the rest. More specifically, we assume that μ1 ≥ · · · ≥ μK tend to infinity, while
the other eigenvalues μK+1 ≥ · · · ≥ μp are bounded but otherwise arbitrary. Write

(1.3) � =
(
�S 0
0 �P

)
,

where �S = diag(μ1, . . . ,μK) and �P = diag(μK+1, . . . ,μp).
A typical example of (1.3) is the factor model

(1.4) Y = �1F + TZ = (�1 T)

(
F
Z

)
,

where �1 is p × K-dimensional factor loading, F is the corresponding K × n factor, T is
p × p matrix and Z is the idiosyncratic noise matrix. A common assumption is that the
singular values of the factor component �1F are significantly larger than those of the noise
component (otherwise the signals are overwhelmed by noise). Indeed, [30] considered the
weak factor model to test the number of factors, where the leading eigenvalues contributed
by the factor component are of order pθ for some θ ∈ (0,1). Bai and Ng [3] and Fan et al.
[21] assume that the leading eigenvalues of the pervasive factor model are of order p. Here,
� = (�1 T) is not a square matrix, and thus it is necessary to consider the setting where �
is rectangular.

A second example is the covariance matrix � used in the intraclass correlation model,
where the covariance matrix is of the form

� = (1 − ρ)Ip + ρeeᵀ.

Here, Ip is a p × p identity matrix, e = (1,1, . . . ,1)ᵀ and 0 < ρ < 1. It is easy to see that the
leading eigenvalue of � is pρ + (1 − ρ), while the other eigenvalues are equal to (1 − ρ),
that is, K = 1, �S = pρ + (1 − ρ) and �P = (1 − ρ)Ip−1 in (1.3). One can refer to [27] for
more discussions about this model.

We study in the present paper the asymptotic distributions of the leading eigenvalues and
the largest nonspiked eigenvalue of the sample covariance matrix Sn, under the general spiked
covariance matrix model given in (1.2) and (1.3) with divergent spiked eigenvalues μ1 ≥
· · · ≥ μK . In many statistical applications, determining the number of principal components
is an important problem. In addition, properties of the eigenvectors associated with the spiked
eigenvalues are of significant interest. In this paper, we also consider estimation of the number
of spikes as well as the convergence of the leading eigenvectors.
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The model defined through (1.2) and (1.3) belongs to the class of spiked covariance matrix
models. Johnstone [25] was the first to introduce a specific spiked covariance matrix model,
where the population covariance matrix is diagonal and is of the form

(1.5) � = diag
(
μ2

1, . . . ,μ
2
K,1, . . . ,1

)
with μ1 > μ2 · · · ≥ μK > 1. Johnstone [25] established the limiting Tracy–Widom distribu-
tion for the maximum eigenvalue of the real Wishart matrices when p and n are comparable.
The spiked covariance matrix model (1.5) has been extended in various directions. So far, the
focus has mostly been on the settings of bounded spiked eigenvalues with all the nonspiked
eigenvalues being equal to 1. See more discussion in Section 1.3.

1.2. Our contributions. In this paper, we first establish the limiting normal distribution
for the spiked eigenvalues of the sample covariance matrix Sn. The limiting distribution has
a distinct feature. Unlike in the more conventional settings, the asymptotic variance in gen-
eral depends on the population eigenvectors. More precisely, the variance of a spiked sample
eigenvalue depends on the right singular vector matrix U defined in the SVD (1.2) (but not
the left singular vector matrix V). The limiting distribution of the spiked sample eigenvalues
also precisely characterizes the dependence on the corresponding spiked population eigen-
values as well as the nonspiked ones. New technical tools are needed to establish the result.
In particular, we develop a central limit theorem (CLT) for a type of random quadratic forms
where the random vectors and random matrices involved are dependent. This result can be of
independent interest. In addition, we establish the limiting Tracy–Widom law for the largest
nonspiked eigenvalue of Sn. We also consider the properties of the leading principal compo-
nents and show that they are consistent estimators of their population counterparts under the
L2 loss. An important improvement of our paper over many known results in the literature
is that our results hold even when the number of the spikes diverges as n,p → ∞, and we
allow the nonspiked eigenvalues to be unequal.

The limiting distributions for the spiked eigenvalues and the largest nonspiked eigenvalue
have important applications. In particular, based on our theoretical results, we propose an
algorithm for estimating the number of the spikes, which is of interest in many statistical
applications.

1.3. Background and related work. Since the seminal work of Johnstone [25], the special
spiked covariance matrix model (1.5) has been studied much further and the model has been
extended in several directions; see, for example, [6, 8, 9, 13, 14, 16, 26, 27, 33, 34, 36]. We
discuss briefly here some of these results. This review is by no means exhaustive.

Paul [33] showed that if p/n → γ ∈ (0,1) as n → ∞, and the largest eigenvalue μ1 of
� satisfies μ1 ≤ 1 + √

γ , then the leading sample principal eigenvector v̂1 is asymptotically
almost surely orthogonal to the leading population eigenvector v1, that is, |v′

1v̂1| → 0 almost
surely. Thus, in this case, v̂1 is not useful at all as an estimate of v1. Even when μ1 > 1+√

γ ,
the angle between v1 and v̂1 still does not converge to zero unless μ1 → ∞.

Baik and Silverstein [9] considered a case where the covariance matrix

(1.6) � = V
(
�S 0
0 I

)
Vᵀ

with �S being a diagonal matrix of fixed rank and V a unitary matrix. It is shown that the
spiked eigenvalues tend to some limits in probability, assuming that the spectral norm of �S

is bounded and limn→∞ p
n

= γ ∈ (0,∞). Bai and Yao [6] further showed that the spiked
eigenvalues converge in distribution to Gaussian distribution or the eigenvalues of a finite
dimensional matrix with i.i.d. Gaussian entries. Baik, Ben Arous and Péché [8] investigated
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the asymptotic behavior of the largest eigenvalue when the entries of X follow the standard
complex Gaussian distribution and observed a phase transition phenomenon that the asymp-
totic distribution depends on the scale of the spiked population eigenvalues. El Karoui [20]
proved that the largest eigenvalue tends to Type-2 Tracy–Widom distribution for the general
� without the spiked part, that is, �S = 0. Shi [19] discussed asymptotics of the components
of the sample eigenvectors corresponding to the sample spiked eigenvalues for � = ( �S 0

0 I

)
under some moment conditions on X. Recently, Bloemendal et al. [13] obtained the precise
large deviation of the spiked eigenvalues and nonspiked eigenvalues under a more general
model than (1.6). We should note that the above results except [20] are only for the case of
bounded spiked eigenvalues with the nonspiked eigenvalues all being equal to 1.

Jung and Marron [27] and Shen et al. [34] considered the model

(1.7) Y = V�
1
2 X,

where the entries of X are i.i.d. standard normal random variables, and � = diag(μ1, . . . ,μK,

μK+1, . . . ,μp) is the diagonal matrix consisting of the population eigenvalues, and V is
an orthogonal matrix. Jung and Marron [27] and Shen et al. [34] showed the almost sure
convergence of the spiked eigenvalues when the spiked population eigenvalues satisfy that
p/(μjn), j = 1, . . . ,K , tend to nonnegative constants and μK+1, . . . ,μp are approximately
equal to one. The almost sure convergence of the eigenvectors associated with the spikes is
also studied.

Wang and Fan [36] further developed the asymptotic distribution for each λj (j =
1, . . . ,K) of the model (1.7) under a more general setting, which allows μK+1, . . . ,μp

to be any bounded number, p/(μjn) to be bounded, μj

μj+1
≥ c for some constant c > 1,

j = 1, . . . ,K and the entries of X to be i.i.d. sub-Gaussian random variables. The asymptotic
behaviors of the corresponding eigenvectors are also discussed in [36]. Here, we would like to

point out that [36] did not provide the limits in probability of the spikes unless
√

p√
nμj

= o(1)

and the joint distribution of {λj }, j = 1, . . . ,K . To the best of our knowledge, the asymptotic
behavior of the spiked eigenvalues for general μK+1, . . . ,μp when p/(μjn), j = 1, . . . ,K ,
converge to positive constants is still open for the model (1.1). More recently, [37] considered
a similar spiked model with the population eigenvalues μj = αjd

αj , j = 1, . . . ,K . They pro-
posed a bias corrected estimator of eigenvalues when either p → ∞, n → ∞ and αj > 1/2
or p2−4αj /n → 0 and 0 < αj ≤ 1/2.

Note that [27, 34] and [36] swapped the roles of the sample size n and the dimension p so
that they essentially studied the matrix Xᵀ�X. This is equivalent to assuming that the popu-
lation covariance matrix is diagonal. Indeed, as will be seen later, in general the asymptotic
variance of the spiked eigenvalues depends on the population eigenvectors. This phenomenon
does not occur under the previously studied model.

As we mentioned before, an important application of (1.1) is a high-dimensional factor
model (1.4). There is a significant interest in the estimation of �1 and F; see, for example, [2,
4, 32, 35] and [36]. The asymptotic properties of their respective estimators have been inves-
tigated in these papers under different conditions. Another important problem is to determine
the number of factors K in (1.4). There are several popular procedures available to estimate
K , including PCp and ICp ([3] and [4]), AIC and BIC ([7]) and the spectral method ([30]
and [31]).

1.4. Organization of the paper. The rest of the paper is organized as follows. Section 2
establishes the limiting normal distribution for the spiked eigenvalues and the limiting Tracy–
Widom distribution for the largest nonspiked eigenvalue of the sample covariance matrix Sn.
An algorithm for identifying the number of spikes is developed in Section 3. Section 4 con-
siders the properties of the principal components and shows that the sample eigenvectors
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corresponding to the spiked eigenvalues are consistent estimators of the population eigenvec-
tors in terms of the L2 norm. Most of the results developed for Sn also hold for the centralized
sample covariance matrices and this is discussed in Section 5. Section 6 investigates the nu-
merical performance through simulations and an application of a factor model. The proof
of Theorem 2.4 is given in Section 7 and the proof of the other results, including Theorems
2.1–2.3, 2.5 and 4.1, and other technical results, are provided in the Supplementary Material
[15].

2. Asymptotics for spiked eigenvalues and largest nonspiked eigenvalue of Sn. We
investigate in this section the limiting laws for the leading eigenvalues and the largest non-
spiked eigenvalue of the sample covariance matrix Sn under the general spiked covariance
matrix model (1.2) and (1.3) with divergent spiked eigenvalues μ1 ≥ · · · ≥ μK , while the
other eigenvalues are bounded but otherwise arbitrary. We begin with the notation that will
be used throughout the rest of the paper.

For two sequences of positive numbers an and bn, we write an � bn when an ≥ cbn for
some absolute constant c > 0, and an � bn when bn � an. Alternatively, we denote an � bn

by an = �(bn). We write an ∼ bn when both an � bn and an � bn hold. Moreover, we write
an 
 bn when an/bn → 0. Then we say an = O(bn) or bn = �(an). For a sequence of

random variables An, if An converges to b in probability, then we write An
i.p.→ b. We say an

event An holds with high probability if P(An) ≥ 1−O(n−l) for some constant l > 0. Denote
the j th largest eigenvalue of a symmetric matrix M by λj (M) and the largest singular value
by ‖M‖. Set ‖M‖F = √

tr(MMᵀ). For simplicity, denote by λ1 ≥ λ2 ≥ · · · ≥ λK ≥ · · · ≥ λp

the ordered eigenvalues of the sample covariance matrix Sn, and denote by μ1 ≥ μ2 ≥ · · · ≥
μK ≥ · · · ≥ μp the ordered eigenvalues of the population covariance matrix �. Throughout
this paper, c and C are constants that may vary from place to place.

To investigate the sample covariance matrix Sn = 1
n
�XXᵀ�ᵀ with the population covari-

ance matrix � specified in (1.2) and (1.3), we make the following assumptions.

ASSUMPTION 1. {xj = (x1j , . . . ,xp+l,j )
ᵀ, j = 1, . . . , n} are i.i.d. random vectors. {xij :

i = 1, . . . , p + l, j = 1, . . . , n} are independent random variables such that Exij = 0,
E|xij |2 = 1, E|xij |4 = γ4i and supi γ4i ≤ C.

ASSUMPTION 2. p � n and the K largest population eigenvalues μi are such that di ≡
p

nμi
→ 0, i = 1,2, . . . ,K . And for i = K +1, . . . , p, μi are bounded by C. Moreover, K

n1/6 →
0 and K2dK → 0.

ASSUMPTION 2′ . p
n

→ 0, μi  1, i = 1, . . . ,K and K 
 min{p,n1/6}.
That is to say, we focus on the matrix Sn with the population covariance matrix � = ��ᵀ

satisfying Assumption 2 or 2′.

REMARK 1. Here, the requirement about the order of K comes from the fact that the
study of the spiked eigenvalues essentially boils down to a K × K matrix. In order to allow
K to tend to infinity, we have to analyze the convergence rate of each entry of the matrix.
One can see (10.15) in [15] for more details.

Note that we do not assume that p and n are of the same order. The following theorems
hold either under Assumption 2 or Assumption 2′ except Theorem 2.5. We only give the
proofs under Assumption 2. The proofs under Assumption 2′ are similar, and thus we omit
them.
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ASSUMPTION 3. There exists a positive constant c not depending on n such that μi−1
μi

≥
c > 1, i = 1,2, . . . ,K .

2.1. Asymptotic behavior of the spiked sample eigenvalues. Our first result gives the lim-
its in probability for the spiked eigenvalues of Sn, λ1 ≥ · · · ≥ λK .

THEOREM 2.1. Suppose that Assumption 1 holds. Moreover, either Assumption 2 or
Assumption 2′ holds. Then

(2.1)
λi

μi

− 1 = Op

(
di + K4

n
+ 1

μi

)
,

uniformly for all i = 1, . . . ,K .

REMARK 2. As mentioned in the Introduction, PCA is an important statistical tool for
analyzing high-dimensional data. Several recent results on high-dimensional PCA are quite
relevant to Theorem 2.1. Recently, [7] considered AIC and BIC criteria for selecting the
number of significant components in high-dimensional PCA when p and n are comparable.
Comparing to the paper [7], Theorem 2.1 here covers Lemma 2.2(i) of [7] and we allow
K to tend to infinity. Their assumption μK+1 = · · · = μp = 1 is also relaxed to bounded
eigenvalues here. In addition, checking the proof of Theorems 3.3 and 3.4 of [7], we find
that for general population covariance matrices, their criteria Ãj and B̃j for estimating the
number of spikes may not work since the proof highly depends on the assumption μK+1 =
· · · = μp = 1, as demonstrated in Table 4 given in Section 6. In addition, Theorem 2.1 also
covers part of Theorem 3.1 in [34] where it assumes normality for the data.

Note that λi

μi

i.p.→ 1 does not imply that λi is a good estimator of μi due to the fact that μi

tends to infinity. Moreover, Theorem 2.1 does not precisely characterize how the nonspiked
population eigenvalues affect the spiked sample eigenvalues. To see this, it is helpful to make
a comparison with the conventional setting studied in [9]. Consider the model (1.6) and recall
the assumptions of [9] that 1 +√

γ < μi = O(1) and γ = limn→∞ p
n

∈ (0,∞). It was shown
in [9] that

(2.2) λi
a.s.→ μi + γμi

μi − 1
.

So the effect of the population eigenvalues on the corresponding sample eigenvalues can be
precisely characterized in the setting considered in [9]. On the other hand, one cannot see
the effect of the nonspiked population eigenvalues on the spiked sample eigenvalues from
(2.2). Note that if there are no spikes, then all the sample eigenvalues are not bigger than
(1 + √

γ )2 + c for any positive constant c with probability one. When there are sufficiently
large spikes, the sample spikes are pulled outside of the boundary (1 + √

γ )2 due to the
population spikes with probability one. Moreover, (2.2) precisely quantifies the effect of the
population spike. In view of this, one would ask whether there is a similar phenomenon for
unbounded spikes. Indeed, it is natural to imagine that for the case μi → ∞, the term γμi

μi−1
will not disappear, and thus one needs to subtract it from λi in order to obtain the CLT.
Surprisingly, a more precise limit of λi turns out to be determined not only by μi but also the
nonspiked eigenvalues. This is very different from (2.2) and can be seen clearly from (2.9)
below.

We now characterize how the population eigenvalues including spiked eigenvalues and
nonspiked eigenvalues affect the sample spiked eigenvalues. To this end, corresponding to
(1.3), partition U as U = ( U1

U2

)
, where U1 is the K × (p + l) submatrix of U, and define

(2.3) �1 = Uᵀ
2�P U2.
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For any distribution function H , its Stieltjes transform is defined by

mH(z) =
∫ 1

λ − z
dH(λ) for all z ∈C

+.

For any θ �= 0, let m̃θ (z) be the unique solution to the following equation:

(2.4) m̃θ (z) = −
(
z − 1

n
tr

[(
I + m̃θ (z)

�1

θ

)−1 �1

θ

])−1
, z ∈ C

+,

where C
+ denotes the complex upper half-plane and �1 is defined in (2.3). Indeed, as will

be seen, for θ  p
n

,

m̃θ (z) + 1

n
E tr

(
zI − 1

nθ
Xᵀ�1X

)−1
→ 0,

for z ∈ C
+ by a slight modification of the proof of Section 7.2. One can also refer to (1.6) of

[11] or (6.12)–(6.15) of [5] for (2.4). One may see below that m̃θ (z) describes the collective
contribution of the nonspiked eigenvalues of � to the spiked sample eigenvalues.

By (2.4), we set θi to be the solution to

(2.5) m̃θi
(1) + θi

μi

= 0,

where m̃θi
(1) = limz∈C+→1 m̃θi

(z). It turns out that θi instead of μi is the more precise limit
of the spiked sample eigenvalues λi . From (2.5), one can see that θi depends on μi as well
as the nonspiked part �1. Indeed, this point can be seen more clearly from (2.9) below.
A similar dependence of θi on μi as well as the nonspiked part �1 has appeared in [32],
where a different factor model is considered.

ASSUMPTION 4. Assume that the following limits exist:

σi = lim
p→∞

√√√√√p+l∑
s=1

(γ4s − 3)u4
is + 2,

σij = lim
p→∞

p+l∑
s=1

(γ4s − 3)u2
isu

2
js, i, j ≤ K.

REMARK 3. If max1≤t≤K,1≤s≤p+l |uts | → 0, then σi = √
2 and σij = 0. Further-

more, if U1 is a random unitary matrix independent of X with the condition

max1≤t≤K,1≤s≤p+l |uts | i.p.−→ 0, then∣∣∣∣∣
p+l∑
s=1

(γ4s − 3)u2
isu

2
js

∣∣∣∣∣ ≤ max
s

|γ4s − 3| max
1≤t≤K,1≤s≤p+l

|uts |2
p+l∑
s=1

|ujs |2 i.p.−→ 0,

p+l∑
s=1

(γ4s − 3)u4
is

i.p.−→ 0.

Therefore, σi
i.p.−→ √

2 and σij
i.p.−→ 0. In addition, when U is haar distributed, then σi

i.p.−→ √
2

and σij
i.p.−→ 0 (e.g., see [24]).

We are ready to state the asymptotic distribution of the spiked eigenvalues of Sn. Let uᵀ
i

be the ith row of U with uij being the (i, j)th entry of U.
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THEOREM 2.2. Suppose that Assumptions 1, 3 and 4 hold. Moreover, either Assump-
tion 2 or Assumption 2′ hold. Then for all i = 1,2, . . . ,K ,

(2.6)
√

n
λi − θi

θi

D−→ N
(
0, σ 2

i

)
.

Moreover, for any fixed r ≥ 2

(2.7)
(√

n
λ1 − θ1

θ1
, . . . ,

√
n
λr − θr

θr

)
D−→ N

(
0,�(r)),

where �(r) = (�
(r)
ij ) with

�
(r)
ij =

{
σ 2

i , i = j,

σij , i �= j.

It follows from (2.4) and (2.5) that m̃θi
(1) → −1. Therefore, θi

μi
→ 1. However, we can

not replace θi by μi in (2.7) directly because the convergence rate of θi

μi
to 1 is unknown.

Indeed, by (2.4), we have

(2.8) θ = − θ

m̃θ (1)
+ p − K

n

∫
tdF�P

(t)

1 + tm̃θ (1)θ−1 ,

where F�P
is the empirical spectral distribution of �P . Here, for any n×n symmetric matrix

A with real eigenvalues, the empirical spectral distribution (ESD) of A is defined as

FA(x) = 1

n

n∑
i=1

I{λi(A)≤x}.

Together with (2.5), we conclude that

(2.9) θi = μi

(
1 + p − K

n

∫
t

μi − t
dF�P

(t)

)
.

By the Taylor’s expansion, we have

(2.10)
θi

μi

= 1 + ffi + O

(
p

nμ2
i

)
,

where

f = 1

p − K

p∑
j=K+1

μj and fi = p − K

nμi

.

In particular, for the special case μK+1 = · · · = μp = 1, (2.9) yields that

(2.11) θi = μi

(
1 + p − K

n(μi − 1)

)
.

It is interesting to note that, although here the spiked eigenvalues μ1, . . . ,μK are divergent,
this is consistent with the right-hand side of (2.2), which is for the conventional setting of
bounded spiked eigenvalues. It then follows from (2.10) that

(2.12)
√

n

(
λi

μi

− 1 − ffi + O

(
p

nμ2
i

))
D→ N

(
0, σ 2

i

)
.
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REMARK 4. We note that Assumption 4 is not needed if we consider the individual
asymptotic distribution of the spiked sample eigenvalues. To see this, it suffices to normalize

(λi − θi)/θi by σi =
√∑p+l

j=1(γ4j − 3)u4
ij + 2. Moreover, the joint distribution of λi−θi

σiθi
, i =

1, . . . , r tends to the normal distribution with the covariance matrix being the correlation
matrix corresponding to �(r).

REMARK 5. It is helpful to compare the above theorem with Theorem 3.1 of [36]. Be-
sides the difference between the models in (1.2) and (1.7), one of the key differences is that σ 2

i

in (2.12) depends on the entries of the eigenvector matrix U while the variance in Theorem 3.1
of [36] does not depend on it. This is due to the fact that [36] assumes that U = I. Second,

Theorem 3.1 of [36] involves Op(
√

p√
nμi

) which reduces to O(
p

nμ2
i

) (essentially O( 1
μi

)) in

(2.12) by dropping the additional
√

p√
n

. Third, we also allow K to diverge. Fourth, [36] as-
sumes xij to be sub-Gaussian random variables while Theorem 2.2 holds under the bounded
fourth moment assumption.

REMARK 6. We would compare the above theorem with Theorem 2 in [2] which deals
with the factor model (1.4). Recall the estimator of �1 in [2], that is, the estimator �̃1 is such
that �̃T

1 �̃1 = diag(λ1, . . . , λr) essentially. Hence, we have proved the central limit theorem
for �̃T

1 �̃1 (when r is fixed). While Theorem 2 of [2] shows the CLT of (�̃1)i , where (�̃1)i

is the ith row of �̃1. Checking the dimension condition in Theorem 2 of [2], the CLT holds
for di → 0 and μi ∼ n, which is a special case of Assumption 2.

In view of (2.10), we need to estimate f and fi in practice. A natural estimator of fi is
p−K
nλi

by Theorem 2.1. For f , one can use

(2.13) f̂ =
1
n

tr(
XXᵀ
) − ∑K
i=1 λi

p − K − pK/n

which was proposed in [36]. When p ∼ n, by Proposition 1 in the next section, K can be
estimated accurately.

Moreover, Theorem 2.2 can be extended to the case when the population eigenvalues μi

have multiplicity more than one.

ASSUMPTION 5. Suppose that K 
 n1/6, αL = μK = · · · = μK−nL < αL−1 =
μK−nL+1 < · · · < α1 = μn1 = · · · = μ1, and there exists a constant c such that αi−1

αi
≥ c > 1,

i = 1,2, . . . ,L. Moreover, n1, . . . , nL are finite.

ASSUMPTION 6. Suppose that the following limits exist:

G(ri, k1, k2, l1, l2) = lim
n→∞n2 × Cov

(
uᵀ

ri+k1
x1uᵀ

ri+l1
x1,uᵀ

ri+k2
x1uᵀ

ri+l2
x1

)
.

If either the fourth moments γ4s = 3, s = 1, . . . , p + l or the entries of the population
eigenvectors satisfy minr∈{k1,k2,l1,l2} maxj |uri+r,j | = o(1), then

g(ri, k1, k2, l1, l2) =
{

1 if k1 = k2 and l1 = l2 or k1 = l2 and l1 = k2,

0 otherwise.

Then we have the following result.
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THEOREM 2.3. Suppose that Assumptions 1, 5 and 6 hold. Moreover, either Assump-
tion 2 or Assumption 2′ holds. Let

θi = αi

(
1 + p − K

n

∫
t

αi − t
dF�P

(t)

)
.

Let ri = ∑i−1
j=0 nj , for i = 1,2, . . . ,L. Then

(2.14)

√
n

θi

(λri+1 − θi, λri+2 − θi, . . . , λri+ni
− θi)

D→ Ri ,

where Ri are the eigenvalues of ni ×ni Gaussian matrix Si with ESi = 0 and the covariance
of the (Si )k1,l1 and (Si )k2,l2 being G(ri, k1, k2, l1, l2).

The proof of Theorem 2.2 requires new technical tools. The following CLT for a type
of random quadratic forms, where the random vectors and random matrices involved are
dependent, and plays a key role in the proof. This result can be of independent interest.

THEOREM 2.4. Suppose that Assumption 1 holds and the spectral norm of �1 is
bounded. In addition, suppose that there exists an orthogonal unit vector w1 such that
wᵀ

1Uᵀ
2 = 0. If θ

p+l
n

→ ∞ and θ → ∞, then

(2.15)

√
n

σ̃1

(
wᵀ

1X
(
nI − Xᵀ�1

θ
X

)−1
Xᵀw1 + m̃θ (1)

)
D→ N(0,1).

Moreover, if there exists another unit vector w2 such that wᵀ
2Uᵀ

2 = 0 and wᵀ
1w2 = 0, we have

(2.16)

√
n

σ̃12
wᵀ

1X
(
nI − Xᵀ�1

θ
X

)−1
Xᵀw2

D→ N(0,1),

where σ̃ 2
1 = ∑p+l

j=1[(γ4j − 3)w4
1j ] + 2, σ̃ 2

12 = ∑p+l
s=1[(γ4s − 3)w2

1sw
2
2s] + 1 and wij is the j th

element of wi , i = 1,2.

2.2. Tracy–Widom law for the largest nonspiked eigenvalue of Sn. We now turn to the
limiting distribution of the largest nonspiked eigenvalue of the sample covariance matrix Sn.
The limiting law is of interest in its own right and it is also important for the estimation of
the number of the spikes. To this end, we introduce additional assumptions.

ASSUMPTION 7. There exist constants ck such that E|xij |k ≤ ck for all k ∈ N
+.

ASSUMPTION 8. Let m�1(z) be the solution to

(2.17) m�1(z) = − 1

z − 1
n

tr(I + m�1(z)�1)−1�1
, z ∈ C

+,

and define

γ+ = inf
{
x ∈ R,F0(x) = 1

}
,

where F0(x) is the c.d.f. determined by m�1(z) (one can also refer to page 4 of [11]). Suppose
that

(2.18) lim sup
n

μK+1d < 1,

where d = − limz∈C+→γ+ m�1(z).
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Intuitively, (2.18) restricts the upper bound of μK+1 to ensure λK+1 to be a nonspiked
eigenvalue. Denote the ith largest eigenvalue of 1

n
Xᵀ�1X by νi . Note that the limiting law

of ν1 is the Type-1 Tracy–Widom distribution. Recall the definition of l above (1.1). that is,

 is a p × (p + l) matrix and l is the dimensional difference of columns and rows of 
. By
contrast, K is the number of spiked eigenvalues.

THEOREM 2.5. Suppose Assumptions 1, 7 and 8 hold. In addition, either Assumption 2
or 5 holds. l 
 n1/6 and p ∼ n. For any i satisfying 1 ≤ i − K ≤ logn, we have with high
probability,

|λi − νi−K | ≤ n−2/3−ε.

In particular, λK+1 has limiting Type-1 Tracy–Widom distribution.

REMARK 7. Theorem 2.5 shows that the nonspiked sample eigenvalues λK+1, λK+2,

. . . , λK+r share the same asymptotic distribution as ν1, ν2, . . . , νr since the fluctuation of
ν1, ν2, . . . , νr are n−2/3  n−2/3−ε . Here, r is a fixed integer; see [10] and [28] for more
details.

3. Estimating the number of spiked eigenvalues. Identifying the number of spikes is
an important problem for a range of statistical applications. For example, a critical step in
PCA is the determination of the number of the significant principal components. This issue
arises in virtually all practical applications where PCA is used. Choosing the number of
principal components is often subjective and based on heuristic methods. As an application
of the main theorems discussed in the last section, we propose in this section a procedure to
identify the number of the spiked eigenvalues.

Suppose that the conditions of Theorem 2.5 hold. Define the asymptotic variance of ν1 by
(see also (3) of [20])

(3.1) σ 3
n = 1

d3

(
1 + p − K

n

∫ (
λd

1 − λd

)3
dF�P

(λ)

)
.

By Theorem 2.5, λK+1 has the same asymptotic distribution as ν1. Together with Theorem 1
of [20], we have

(3.2) n2/3 λK+1 − γ+
σn

D−→ TW1,

where TW1 is the Type-1 Tracy–Widom distribution. Onatski [30] also established such a
result for the complex case, but Theorem 1 of [30] requires that the spiked eigenvalues are
much bigger than n2/3 and p/n = o(1). Moreover, the statistics used in [30] does not estimate
γ+ and σn, while our approach estimates them.

From (3.2), one can see that the confidence interval of γ+ is [λK+1 − w∗σnn
−2/3, λK+1 +

w∗σnn
−2/3], where w∗ is a suitable critical value from the Type-1 Tracy–Widom distribution.

This, together with Theorem 2.2, implies that it suffices to count the number of the eigenval-
ues of Sn that lie beyond (γ+ + w∗σnn

−2/3 logn) to estimate the number of spikes K where
logn can be replaced by any number tending to infinity. However, in practice γ+ and σn are
unknown and need to be estimated.

We first consider estimation of σn. It turns out that

(3.3) σn =
(
− lim

z→γ ++

∫ dF0(x)

(x−z)3

(
∫ dF0(x)

(x−z)2 )
3

)1/3
.



1266 T. T. CAI, X. HAN AND G. PAN

Algorithm 1
1: Define the initial value p̂0 in (3.5).
2: Suppose that we have p̂m−1. If there is at least one eigenvalue of Sn belonging to

[p̂m−1, p̂m−1 + 2.02(logn)σnn
−2/3], where 2.02 is the 99% quantile of Type-1 Tracy–

Widom distribution, we renew p̂n = p̂n−1 + 2.02 lognσnn
−2/3. Here, logn can be re-

placed by the other number tending to infinity too. Otherwise the iteration stops.
3: After getting p̂n, we return to Step 2 until the iteration stops.
4: Denote the final value of the above iteration by p̂end. We define K̂ to be the number of

eigenvalues larger than p̂end.

Moreover, one can verify that with high probability

(3.4) λK+1 ≤ λnα + logn × n− 2(1−α)
3 ,

where α is a constant such that α ∈ [1/6,1) (see Section 8 in the Supplementary Material).
In view of (3.4), we estimate F0(x) by its empirical version λnα , λnα+1, . . . , λn in (3.3), that
is, we exclude the first nα eigenvalues of Sn. Moreover, for γ+ in (3.3), we use λnα + n−4/9

to replace it. The reason for using λnα + n−4/9 to estimate γ+ instead of λnα is to avoid
singularity in

∫ dF0(x)

(x−γ+)3 . The estimator of σn is then given by

σ̂n =
(
−

1
n−nα

∑n
i=nα

1
(λi−z0)

3

( 1
n−nα

∑n
i=nα

1
(λi−z0)

2 )3

)1/3
where z0 = λnα + n−4/9.

We next consider estimation of γ+ defined below (2.17). By the assumption that K 
 n1/6,
it follows from Theorems 2.2 and 2.5 that λn1/6 is not a spiked eigenvalue. Based on this, an
upper bound of λK+1 is given in (3.4). Hence we use the following p̂0 as an initial upper
bound of λK+1:

(3.5) p̂0 = λnα + logn × n− 2(1−α)
3 .

Although p̂0 is a good upper bound for λK+1 theoretically, it does not depend on σn, and
hence in practice p̂0 may not work well. Based on (3.2), we propose the following iteration
approach to update p̂0. The idea behind the iteration is that even if p̂0 is not larger than λK+1

in practice, p̂0 is still close to λK+1. Thus by (3.2), there is at least one eigenvalue in the
interval [p̂0, p̂0 + w∗mnσnn

−2/3], where mn → ∞.
Theorem 2.5 implies that K̂ is a good estimator of the number of significant components

K .

PROPOSITION 1. Under the conditions of Theorem 2.5, we have K̂ = K with high prob-
ability.

Identifying the number of factors. A closely related problem is the estimation of the num-
ber of factors under a factor model, which is widely used in financial econometrics. Consider
the factor model

(3.6) yt = �1ft + Tεt , t = 1,2, . . . , n,

where �1 is p×K-dimensional factor loading, ft is the corresponding K-dimensional factor,
{εit : i = 1,2, . . . , p; t = 1,2, . . . , n} are the independent idiosyncratic components.
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In many applications, the number of factors K is unknown. An important step in fac-
tor analysis is to determine the value of K . Let F = (f1, . . . , fn), Z = (ε1, . . . , εn) and
Y = (y1, . . . ,yn). Then (3.6) can be rewritten as

(3.7) Y = �1F + TZ = (�1 T)

(
F
Z

)
.

Suppose that
( F

Z

)
satisfies Assumptions 1 and 7 and (�1 T) satisfies Assumptions 2 and

8. It is easy to conclude that the (K + 1)st largest eigenvalue of 1
n

YYᵀ follows the Type-1
Tracy–Widom distribution asymptotically. The following result is a direct consequence of
Proposition 1.

COROLLARY 1. For the model (3.6), if
( F

Z

)
satisfies Assumptions 1 and 7 and (�1 T)

satisfies Assumptions 2 and 8, K 
 n1/6 and p ∼ n, then we have K̂ = K with high proba-
bility.

Comparing to the approaches in [3] and [30], here we allow the number of factors K to
diverge with n. Moreover, we only assume that the spiked population eigenvalues diverge to
infinity, while [3] and [30] assume that they are much larger than n2/3 or grow linearly with
n.

4. Estimating the eigenvectors. As mentioned in the Introduction, the leading eigen-
vectors of the population covariance matrix are of significant interest in PCA and many other
statistical applications. They are conventionally estimated by their empirical counterparts.

We consider in this section estimation of the population eigenvectors associated with the
spiked population eigenvalues μ1, . . . ,μK , involved in σ 2

i in (2.7). To this end, we first char-
acterize the relationship between the sample eigenvectors and the corresponding population
eigenvectors. Write the population eigenvectors matrix V as V = (v1, . . . ,vp).

THEOREM 4.1. Suppose that the conditions of Theorem 2.2 hold. Let ξi be the eigenvec-
tor of Sn corresponding to the eigenvalue λi . Then for 1 ≤ i ≤ K , we have

(4.1) vᵀi ξiξ
ᵀ
i vi

i.p.−→ 1.

Theorem 4.1 also implies that for i = 1, . . . ,K , j = 1, . . . , p, i �= j , we have

vᵀj ξiξ
ᵀ
i vj

i.p.−→ 0.

One should notice that the convergence is uniformly for j = 1, . . . , p since 1 = ξ
ᵀ
i ξi =∑p

j=1 vᵀj ξiξ
ᵀ
i vj .

Theorem 4.1 shows that the sample eigenvector ξi is a good estimator of vi up to a sign
difference. An immediate application of Theorem 4.1 is to estimate σ 2

i for the case when
V = Uᵀ and γ41 = · · · = γ4p = γ4 by Corollary 2. This corollary shows that the empirical
eigenvector plays an important role in statistical inference of the spiked eigenvalue.

COROLLARY 2. Under the conditions of Theorem 4.1, we have

p∑
j=1

v4
ij −

p∑
j=1

ξ4
ij

i.p.−→ 0.
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We now consider the extension to the case when the multiplicity of the population eigen-
values μi is more than one. Correspondingly, the following corollary holds and its proof is
the same as that of Theorem 4.1.

COROLLARY 3. Recall the definition of ri above (2.14). Under the conditions of Theo-
rem 2.3, the angle between vk , k ∈ {ri−1 + 1, . . . , ri} and the subspace spanned by {ξj , j =
ri−1 + 1, . . . , ri} tends to 0 in probability. In other words, we have

vᵀk

(
ri∑

j=ri−1+1

ξj ξ
ᵀ
j

)
vk

i.p.−→ 1, k ∈ {ri−1 + 1, . . . , ri}.

Corollary 3 shows that the sample eigenvectors {ξj , j = ri−1 + 1, . . . , rj } are close to the
space spanned by {vj , j = ri−1 + 1, . . . , rj }.

5. Centralized sample covariance matrices. So far, we have focused on the noncen-
tralized sample covariance matrix Sn. We now turn to its centralized version

S̃n = 1

n

n∑
i=1

�(xi − x̄)(xi − x̄)ᵀ�ᵀ = 
X
(

I − 1

n
11ᵀ

)
Xᵀ�ᵀ,

where 1 is the n× 1 vector with all elements being 1. Denote (I − 1
n

11ᵀ) by ϒ . First we have
the following lemma.

LEMMA 1. Under the conditions of Theorem 1, we have

(5.1)

√
n

σ̃1

(
wᵀ

1Xϒ

(
nI − ϒXᵀ�1

θ
Xϒ

)−1
Xᵀw1 + m̃θ (1)

)
D→ N(0,1)

and

(5.2)

√
n

σ̃12
wᵀ

1Xϒ

(
nI − ϒXᵀ�1

θ
Xϒ

)−1
ϒXᵀw2

D→ N(0,1),

where σ̃ 2
1 = ∑p+l

j=1[(γ4j − 3)w4
1j ] + 2, σ̃ 2

12 = ∑p+l
s=1[(γ4s − 3)w2

1sw2
2s] + 1 and wij is the j th

element of wi , i = 1,2.

By Lemma 1 and checking carefully the proofs of the main results, it can be seen that
all arguments remain valid if X is replaced by Xϒ (note that ϒ2 = ϒ). So Theorem 2.1–
Corollary 3 hold for 1

n

XϒXᵀ
ᵀ as well.

6. Numerical results. In this section, we illustrate some of the theoretical results ob-
tained earlier through numerical experiments. We first use simulation to confirm that the
asymptotic behavior of the spiked eigenvalues is indeed affected by the population eigenvec-
tors.

Let K = 2 and �P = diag(μ3, . . . ,μp). Suppose that {μi, i = 3, . . . , p} are i.i.d. copies
of the uniform random variable U(1,2). Define v1 = ( 1√

2
, 1√

2
)ᵀ, v2 = ( 1√

2
,− 1√

2
)ᵀ, V̆ =

(v1,v2) and �S = diag(800,200). We now define two different population matrices:

�2 =
(
�S 0
0 �P

)
, �3 =

(
V̆�SV̆ᵀ 0

0 �P

)
.

Then the eigenvalues of �2 and �3 are the same but the eigenvectors corresponding to the
first two largest eigenvalues are different. Consider the case p = n and X = (xij ) are i.i.d.
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TABLE 1
The variances of the rescaled largest eigenvalues

p 200 400 600 800 1000

�2 0.8111 0.7965 0.8287 0.7574 0.7874
�3 1.2507 1.4051 1.2800 1.5012 1.3911

U(−√
3,

√
3). Denote by λ̌1 and λ̆1, respectively, the largest eigenvalues of the sample co-

variance matrices 1
n
�

1/2
2 XXᵀ�1/2

2 and 1
n
�

1/2
3 XXᵀ�1/2

3 . Table 1 reports the sample variance

of the rescaled eigenvalues
√

nλ̌1
800 and

√
nλ̆1

800 . It can be seen that the behavior of the spiked
sample eigenvalues is indeed affected by the population eigenvectors.

We now consider estimating the number of factors under the factor model (3.7):

Y = �1F + TZ.

In the simulation, the entries of F and Z follow the standard Gaussian distribution. Consider
two choices: T = T1 or T2, where

T1 = I, T2 = diag
(

1,1, . . . ,1︸ ︷︷ ︸
p/2

,
1√
2
, . . . ,

1√
2︸ ︷︷ ︸

p/2

)
.

Let �1 be a p × K matrix with nonzero entries being (�11, . . . ,�KK) = (
√

b2
1 − 1, . . . ,√

b2
K − 1) where K = 5�n1/7� + 1, and (b1, . . . , bK) = √

(6, . . . ,6 + K − 1) ∗ r + 1, 0 ≤
r ≤ 1.

We compare the accuracy of three methods for estimating the number of factors K : our
procedure proposed in Section 3, the method introduced in [31], and the approach given in
[7], which are denoted by CHP, Ons and BYK, respectively. Here, we omit the simulation
results of BIC used in [7] for reasons of space. The initial value of p̂0 is given in (3.5) and
note that K 
 n1/6. However, this requirement may be violated in practice when the sample
size n is not sufficiently large. For example, when n = 100 in our simulation setting n1/6

is as small as three while K = 5�n1/7� + 1 = 11. Therefore, one has to replace the initial
value of p̂0 by λc1�n1/6� + logn × n−5/9 where c1 is a constant such that K = 5�n1/7� + 1 

c1�n1/6�. Here, we set c1 = 15 according to our extensive simulations in order to reduce the
number of updating iteration (such a replacement does not change the conclusions of the
theoretical results developed in Section 3). In contrast to the size of n, such an initial value of
p̂0 is essentially a conservative choice. One can see that λ15�n1/6� is a nonspiked eigenvalue.
The approach in Section IV of [31] uses an iteration approach to estimate K , which also
requires the rough information of the number of nonspiked eigenvalues. In addition, we also
set 15�n1/6� as the initial value for the algorithm in [31] when running the algorithm there.
Bai, Yasunori and Kwok [7] uses AIC based on sample eigenvalues to estimate K .

Different combinations of n and p are considered. The following tables report the propor-
tion of times the number of factors is correctly identified, that is, K̂ = K , where for each
(n,p) we repeat 500 times. Different choices of r (ranging from 0.3 to 1) are also consid-
ered. From Tables 2 and 3, one can see that the accuracy of our approach increases as (n,p)

become larger. Our approach works better in comparison to [31]. This is likely due to the fact
that our method allows the number of factors K to be increasing with n, while [31] requires
K to be fixed. Tables 2 and 3 show that the method based on the AIC criterion and our proce-
dure have similar performance. But as mentioned earlier in Remark 2, the model in [7] only
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TABLE 2
Ratio of Identifying The Correct Number of Factors with T1

(50,50) (50,100) (50,150)

r\(n,p) CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.608 0.000 0.610 0.192 0.000 0.330 0.068 0.002 0.122
0.4 0.816 0.020 0.706 0.442 0.000 0.618 0.184 0.000 0.368
0.5 0.904 0.008 0.662 0.676 0.012 0.788 0.450 0.002 0.606
0.6 0.892 0.044 0.612 0.832 0.012 0.880 0.638 0.006 0.800
0.7 0.906 0.040 0.636 0.880 0.014 0.870 0.756 0.002 0.866
0.8 0.914 0.040 0.638 0.918 0.022 0.886 0.868 0.010 0.880
0.9 0.908 0.030 0.648 0.948 0.022 0.866 0.916 0.016 0.910
1.0 0.914 0.042 0.616 0.946 0.014 0.872 0.912 0.020 0.896

allows that μK+1 = · · · = μp = 1, which is a special case of what we consider in the present
paper. Indeed, Table 4 also confirms that for the nonidentity matrix T2, the method based
on the AIC criterion performs much worse than our approach. Therefore, our procedure is
preferred for the case where μK+1, . . . ,μp are unknown.

7. Proofs. In this section, we prove only one of the main results, Theorem 2.4. The proof
of Theorem 2.2 is involved and is given in the Supplementary Material [15]. The proofs of
the other results and additional technical lemmas are also provided in the Supplementary
Material [15].

7.1. Proof of Theorem 2.4. The main idea of this proof is to first express wᵀ
1X(nI −

Xᵀ�1
θ

X)−1Xᵀw1 as a sum of martingale differences and then apply the central limit theorem
for the martingale difference.

We below consider the case p � n and prove (2.15) only because the case p
n

→ 0 and
(2.16) can be proved similarly. First of all, we need to do truncation and centralization on xij

as in the first paragraph of Section 12 in the Supplementary Material [15]. In fact, by (12.2)–
(12.6) in [15], we conclude that the truncation and centralization do not affect the CLT, that
is, we can get the following inequality similar to (12.7) in [15]:

wᵀ
1X

(
nI − Xᵀ�1

θ
X

)−1
Xᵀw1 = wᵀ

1X̃
(
nI − X̃ᵀ�1

θ
X̃

)−1
X̃ᵀw1 + op

(
1√
n

)
,

TABLE 3
Ratio of Identifying The Correct Number of Factors with T1

(100,100) (100,200) (100,300)

r\(n,p) CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.954 0.130 0.974 0.772 0.056 0.854 0.392 0.006 0.482
0.4 0.980 0.234 0.982 0.942 0.088 0.984 0.782 0.005 0.908
0.5 0.956 0.272 0.974 0.964 0.148 0.990 0.938 0.068 0.976
0.6 0.972 0.330 0.976 0.980 0.162 0.994 0.966 0.124 0.990
0.7 0.970 0.396 0.974 0.978 0.234 0.986 0.972 0.158 0.996
0.8 0.954 0.412 0.974 0.972 0.272 0.998 0.984 0.178 0.980
0.9 0.954 0.446 0.980 0.970 0.316 0.986 0.980 0.240 0.984
1.0 0.950 0.444 0.972 0.958 0.326 0.984 0.982 0.290 0.988
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TABLE 4
Ratio of Identifying The Correct Number of Factors with T2

(100,100) (100,200) (100,300)

r\(n,p) CHP Ons BYK CHP Ons BYK CHP Ons BYK

0.3 0.946 0.264 0.490 0.938 0.088 0.658 0.792 0.042 0.716
0.4 0.928 0.296 0.454 0.974 0.178 0.624 0.968 0.070 0.710
0.5 0.944 0.360 0.424 0.968 0.236 0.682 0.986 0.148 0.704
0.6 0.926 0.400 0.440 0.966 0.276 0.672 0.978 0.206 0.654
0.7 0.926 0.466 0.434 0.970 0.336 0.662 0.972 0.262 0.670
0.8 0.918 0.512 0.450 0.978 0.390 0.650 0.986 0.270 0.660
0.9 0.928 0.510 0.434 0.978 0.402 0.608 0.980 0.310 0.670
1.0 0.930 0.544 0.410 0.980 0.418 0.614 0.976 0.386 0.658

where X̃ is the truncated and centralized version of X. The argument is standard and we omit
the details here. Therefore, for simplicity we below assume that

Exij = 0, |xij | ≤ δn
4
√

np.

CLT of the random part. Define the following events:

Fd =
{∥∥∥∥1

n
Xᵀ�1X

∥∥∥∥ ≤ 4‖�1‖
(

1 + p

n

)}
,

F
(k)
d =

{∥∥∥∥1

n
Xᵀ

k�1Xk

∥∥∥∥ ≤ 4‖�1‖
(

1 + p

n

)}
, k = 1, . . . , n,

where Xk = X − xkeᵀk , xk is the kth column of X and ek = (0, . . . ,0,1,0, . . . ,0)ᵀ is a M-
dimensional vector with only kth element being 1. By Theorem 2 of [18], we have

(7.1) I (Fd) = 1 and I
(
F

(k)
d

) = 1, k = 1, . . . , n

with high probability.
We define �1

θ
= �̃1, A = I− 1

n
Xᵀ�̃1X, Ak = I− 1

n
Xᵀ

k �̃1Xk and A(k) = Ak − 1
n

Xᵀ
k �̃1xkeᵀk .

Then A = Ak − 1
n
(ekxᵀk �̃1Xk + Xᵀ

k �̃1xkeᵀk + ekxᵀk �̃1xkeᵀk ). Therefore,

(7.2) wᵀ
1X

(
nI − Xᵀ�1

θ
X

)−1
Xᵀw1 = 1

n
wᵀ

1XA−1Xᵀw1.

By the definition of Xk and Ak , we observe that the kth row and kth column of Ak are 0
except for the diagonal entry. Hence it is not hard to conclude the following important facts:

eᵀkA−1
k ek = 1,(7.3)

eᵀi A−1
k ek = 0, i �= k(7.4)

and

(7.5) XkA−1
k ek = Xkek = 0.

In the sequel, we prove the central limit theorem for 1
n

wᵀ
1XA−1Xᵀw1I (Fd) instead of

1
n

wᵀ
1XA−1Xᵀw1. In fact, it follows from (7.1) that I (Fd) = 1 with high probability. There-

fore, 1
n

wᵀ
1XA−1Xᵀw1 and 1

n
wᵀ

1XA−1Xᵀw1I (Fd) have the same central limit theorem. Let
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Ek = E(·|x1, . . . ,xk), E = E(·) and write

wᵀ
1XA−1Xᵀw1I (Fd) −Ewᵀ

1XA−1Xᵀw1I (Fd)

=
n∑

k=1

(Ek −Ek−1)w
ᵀ
1XA−1Xᵀw1I (Fd)

=
n∑

k=1

(Ek −Ek−1)
(
wᵀ

1XA−1Xᵀw1I (Fd) − wᵀ
1XkA−1

k Xᵀ
kw1I

(
F

(k)
d

))

=
n∑

k=1

(Ek −Ek−1)
(
wᵀ

1XA−1Xᵀw1 − wᵀ
1XkA−1

k Xᵀ
kw1

)
I (Fd) + op

(
n−2)

=
n∑

k=1

(Ek −Ek−1)
(
I1 + 2I2 + I3 − wᵀ

1XkA−1
k Xᵀ

kw1
)
I (Fd) + op

(
n−2)

,(7.6)

where the third equality follows from (7.1), I1 = (wᵀ
1xk)

2eᵀkA−1ek , I2 = ∑
i �=k wᵀ

1xkwᵀ
1 ×

xie
ᵀ
i A−1ek , and I3 = ∑

i,j �=k wᵀ
1xiw

ᵀ
1xj eᵀi A−1ej . We define

(7.7) ak = 1 − 1

n

(
xᵀk �̃1XkA−1

(k)ek + xᵀk �̃1xkeᵀkA−1
(k)ek

)
and

(7.8) bk = 1 − 1

n
eᵀkA−1

k Xᵀ
k �̃1xk.

We next simplify the formula. Noting that wᵀ
1X = wᵀ

1Xk + wᵀ
1xkeᵀk , by the formulas

(7.9) W−1 = Q−1 − Q−1(W − Q)Q−1

1 + tr(Q−1(W − Q))
,

where rank(W − Q) = 1 and

(7.10)

(
Q +

m∑
j=1

ab
ᵀ
j

)−1

a = Q−1a

1 + ∑m
j=1 b

ᵀ
j Q−1a

,

we have

A−1 = A−1
(k) + A−1

(k)(ekxᵀk �̃1Xk + ekxᵀk �̃1xkeᵀk )A
−1
(k)

nak

= A−1
k + A−1

k Xᵀ
k �̃1xkeᵀkA−1

k

nbk

+ A−1
(k)(ekxᵀk �̃1Xk + ekxᵀk �̃1xkeᵀk )A

−1
(k)

nak

(7.11)

and

I1 = (
wᵀ

1xk

)2eᵀkA−1ek

= (w1xk)
2eᵀkA−1

(k)ek

ak

= (w1xk)
2eᵀkA−1

k ek

ak(1 − 1
n

eᵀkA−1
k Xᵀ

k �̃1xk)

= (w1xk)
2eᵀkA−1

k ek

akbk

= (w1xk)
2

akbk

.(7.12)
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Moreover, it follows from (7.3), (7.4) and (7.9) that

(7.13) bk = 1 − 1

n
eᵀkA−1

k Xᵀ
k �̃1xk = 1

and

ak = 1 − 1

n
xᵀk �̃1XkA−1

(k)ek

= 1 − 1

n2 eᵀkA−1
k ekxᵀk �̃1XkA−1

k Xᵀ
k �̃1xk

= 1 − 1

n2 xᵀk �̃1XkA−1
k Xᵀ

k �̃1xk.(7.14)

By the Cauchy interlacing property, we know

1

n2 xᵀk �̃1XkA−1
k Xᵀ

k �̃1xkI (Fd)

≤ 1

n2 xᵀk �̃1xk

∥∥�̃1/2
1 XkA−1

k Xᵀ
k �̃

1/2
1

∥∥I (Fd)

= 1

n2 xᵀk �̃1xk

∥∥A−1
k Xᵀ

k �̃1Xk

∥∥I (Fd)

≤ 1

n2 xᵀk �̃1xk

∥∥A−1
k

∥∥∥∥Xᵀ
k �̃1Xk

∥∥I (Fd)

= O

((
p

nθ

)2)
.(7.15)

This implies that

(7.16) akI (Fd) = 1 + O

((
p

nθ

)2)
.

As for the term i �= k, by (7.4), (7.5), (7.9) and (7.10), we have

(7.17) A−1ek = A−1
(k)ek

ak

= A−1
k ek

ak

+ A−1
k Xᵀ

k �̃1xk

akbk

= A−1
k ek

ak

+ A−1
k Xᵀ

k �̃1xk

ak

.

We then conclude that

(7.18) I2 = ∑
i �=k

wᵀ
1xkwᵀ

1xie
ᵀ
i A−1ek = wᵀ

1XkA−1
k Xᵀ

k �̃1xkxᵀkw1

nak

.

It follows from (7.4), (7.5) and (7.11) that for i, j �= k,

I3 = ∑
i,j �=k

wᵀ
1xiw

ᵀ
1xj eᵀi A−1ej

= ∑
i,j �=k

wᵀ
1xiw

ᵀ
1xj eᵀi A−1

k ej

+ ∑
i,j �=k

wᵀ
1xiw

ᵀ
1xj eᵀi

A−1
(k)(ekxᵀk �̃1xkeᵀk + ekxᵀk �̃1Xk)A

−1
(k)

nak

ej

= wᵀ
1XkA−1

k Xᵀ
kw1

+ wᵀ
1XkA−1

(k)(ekxᵀk �̃1xkeᵀk + ekxᵀk �̃1Xk)A
−1
(k)X

ᵀ
kw1

nak

.(7.19)
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Consider (Ek −Ek−1)(I3 − wᵀ
1XkA−1

k Xᵀ
kw1)I (Fd) next.

We claim that

(7.20)
wᵀ

1XkA−1
(k)(ekxᵀk �̃1xkeᵀk + ekxᵀk �̃1Xk)A

−1
(k)X

ᵀ
kw1

nak

is negligible. Let Bk = �̃1XkA−1
k Xᵀ

kw1wᵀ
1XkA−1

k Xᵀ
k �̃1. Indeed, by (7.9) and (7.3)–(7.5), we

have A−1
(k) = A−1

k + 1
n

A−1
k Xᵀ

k �̃1xkeᵀkA−1
k . This, together with (7.3), (7.4) and (7.5) implies

that

(7.20) = wᵀ
1XkA−1

k Xᵀ
k �̃1xkeᵀkA−1

k ekxᵀk �̃1XkA−1
k Xᵀ

kw1

n2ak

= xᵀkBkxk

n2ak

.

It follows from (7.19) and (7.3)–(7.5) that
n∑

k=1

(Ek −Ek−1)
(
I3 − wᵀ

1XkA−1
k Xᵀ

kw1
)
I (Fd)

=
n∑

k=1

(Ek −Ek−1)
xᵀkBkxk

n2ak

I
(
F

(k)
d

) + op

(
n−2)

.

Considering the second moment of the above equation, by Lemma 8.10 of [5] we have
n∑

k=1

E

∣∣∣∣(Ek −Ek−1)
xᵀkBkxk

n2ak

∣∣∣∣2I (
F

(k)
d

)

≤ 4

n4

n∑
k=1

E
∣∣xᵀkBkxk

∣∣2I (
F

(k)
d

)

≤ 8

n4

n∑
k=1

E
∣∣xᵀkBkxk − tr Bk

∣∣2I (
F

(k)
d

) + 8

n4

n∑
k=1

E| tr Bk|2I (
F

(k)
d

)

≤ Cp2

nθ2 
 N,(7.21)

where we used the inequality

tr Bk ≤ XkA−1
k Xᵀ

k �̃
2
1XkA−1

k Xᵀ
k I

(
F

(k)
d

) = O

(
p2

θ2

)
.

We conclude that

1

n

n∑
k=1

(Ek −Ek−1)
(
I3 − wᵀ

1XkA−1
k Xᵀ

kw1
)
I (Fd) = op

(
1√
n

)
,

which is negligible.
Next, we consider I1 and I2. It follows from (7.12) and (7.18) that

1√
n

n∑
k=1

(Ek −Ek−1)(I1 + 2I2)I (Fd)

= 2√
n

n∑
k=1

(Ek −Ek−1)

(
(w1xk)

2

2ak

+ wᵀ
1XkA−1

k Xᵀ
k �̃1xkxᵀkw1

nak

)
I (Fd).(7.22)

We claim that the second term of (7.22) is negligible. Actually, similar to (7.21), it is easy to
show that

n∑
k=1

(Ek −Ek−1)
wᵀ

1XkA−1
k Xᵀ

k �̃1xkxᵀkw1

nak

I (Fd) = op(
√

n).
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Therefore, the leading term of (7.22) is

1√
n

n∑
k=1

(Ek −Ek−1)
(wᵀ

1xk)
2

ak

I (Fd)

= 1√
n

n∑
k=1

(Ek −Ek−1)
(1 − ak)(w

ᵀ
1xk)

2

ak

I (Fd)

+ 1√
n

n∑
k=1

(Ek −Ek−1)
(
wᵀ

1xk

)2
I (Fd).

Similar to (7.21), by (7.16) we can show that

1√
n

n∑
k=1

(Ek −Ek−1)
(1 − ak)(w

ᵀ
1xk)

2

ak

I (Fd) = op(1).

It suffices to show CLT for

(7.23)
1√
n

n∑
k=1

(Ek −Ek−1)
(
wᵀ

1xk

)2 = 1√
n

n∑
k=1

[(
wᵀ

1xk

)2 − 1
]
.

By the CLT for the sum of i.i.d. variables, we conclude that

1√
nσ

n∑
k=1

(Ek −Ek−1)
(
wᵀ

1xk

)2 D→ N
(
0, σ 2)

,

where

σ 2 = 1

n
E

[(
wᵀ

1xk

)2 − 1
]2

=
∑p+l

i=1 γ4iw4
1i + 3

∑p+l
i �=j w2

1iw
2
1j − 1

n

=
p+l∑
i=1

(γ4i − 3)w4
1i + 2.(7.24)

7.2. Calculation of the mean. This section is to calculate the expectation of 1
n

wᵀ
1XA−1 ×

Xᵀw1I (Fd). The strategy is to prove that

(7.25)
√

nE

[
1

n
wᵀ

1X0A−1(
X0)ᵀw1I (Fd) + m̃θ (1)

]
→ 0

and

(7.26)
1√
n
E

[
wᵀ

1XA−1Xᵀw1I (Fd) − wᵀ
1X0A−1(

X0)ᵀw1I (Fd)
] → 0,

where X0 = (x0
1, . . . ,x0

n) is (p+ l)×n matrix with i.i.d. standard Gaussian random variables.
As before, we omit I (Fd) in the following proof.

We prove (7.26) first by the Lindeberg’s strategy. Define

Z1
k =

k∑
i=1

xie
ᵀ
i +

n∑
i=k+1

x0
i eᵀi , Z0

k =
k−1∑
i=1

xie
ᵀ
i +

n∑
i=k

x0
i eᵀi ,
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Zk =
k−1∑
i=1

xie
ᵀ
i +

N∑
i=k+1

x0
i eᵀi , Â1

k = I − 1

n

(
Z1

k

)ᵀ
�̃1Z1

k,

Â0
k = I − 1

n

(
Z0

k

)ᵀ
�̃1Z0

k and Âk = I − 1

n
Zᵀ

k �̃1Zk.

Then we have X = Z1
N , X0 = Z0

1, Z0
k+1 = Z1

k . It follows that

1√
n
E

[
wᵀ

1XA−1Xᵀw1 − wᵀ
1X0A−1(

X0)ᵀw1
]

= 1√
n

n∑
k=1

E
[
wᵀ

1Z1
k

(
Â1

k

)−1(
Z1

k

)ᵀw1 − wᵀ
1Z0

k

(
Â0

k

)−1(
Z0

k

)ᵀw1
]

= 1√
n

n∑
k=1

E
[
wᵀ

1Z1
k

(
Â1

k

)−1(
Z1

k

)ᵀw1 − wᵀ
1ZkÂ−1

k Zᵀ
kw1

]

+ 1√
n

n∑
k=1

E
[
wᵀ

1ZkÂ−1
k Zᵀ

kw1 − wᵀ
1Z0

k

(
Â0

k

)−1(
Z0

k

)ᵀw1
]
.(7.27)

For any k, similar to the expansions from (7.11)–(7.20), we can get

E
[
wᵀ

1Z1
k

(
Â1

k

)−1(
Z1

k

)ᵀw1 − wᵀ
1ZkÂ−1

k Zᵀ
kw1

]
= E

[
(w1xk)

2

âk

+ 2wᵀ
1ZkÂ−1

k Zᵀ
k �̃1xkxᵀkw1

nâk

+ xᵀk B̂kxk

n2âk

]
,(7.28)

where B̂k = �̃1ZkÂ−1
k Zᵀ

kw1wᵀ
1ZkÂ−1

k Zᵀ
k �̃1 and âk = 1 − 1

n2 xᵀk �̃1ZkÂ−1
k Zᵀ

k �̃1xk . Let āk =
1 − 1

n2 tr �̃1ZkÂ−1
k Zᵀ

k �̃1, τk = âk − āk . Then we have

(7.29)
1

âk

= 1

āk

− τk

âkāk

.

By Lemma 8.10 of [5], we conclude that

E|τk|2 = E

∣∣∣∣ 1

n2 xᵀk �̃1ZkÂ−1
k Zᵀ

k �̃1xk − 1

n2 tr �̃1ZkÂ−1
k Zᵀ

k �̃1

∣∣∣∣2
≤ C

n4 tr
(
�̃1ZkÂ−1

k Zᵀ
k �̃1

)2 = O

(
d2

p

)
.(7.30)

Consider the first term at the right-hand side of (7.28). It follows from (7.29), (7.30) and
Hölder’s inequality that∣∣∣∣E(

(w1xk)
2

âk

− (w1xk)
2

āk

)∣∣∣∣ =
∣∣∣∣E(w1xk)

2τk

âkāk

∣∣∣∣
≤ C

√
E(w1xk)4

√
Eτ 2

k

= O

(
d√
p

)
.(7.31)

Thus we conclude that

E
(w1xk)

2

âk

= E
(w1xk)

2

āk

+ O

(
d√
p

)
= E

1

āk

+ o

(
1√
n

)
.
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Moreover, a similar approach can be applied to the other terms at the right-hand side of (7.28),
and thus we have

1√
n

n∑
k=1

E
[
wᵀ

1Z1
k

(
Â1

k

)−1(
Z1

k

)ᵀw1 − wᵀ
1ZkÂ−1

k Zᵀ
kw1

]

= 1√
n

n∑
k=1

E

[
1

āk

+ 2wᵀ
1ZkÂ−1

k Zᵀ
k �̃1w1

nāk

+ tr B̂k

n2āk

]
+ o(1).(7.32)

By the same arguments above, we can also get

1√
n

n∑
k=1

E
[
wᵀ

1ZkÂ−1
k Zᵀ

kw1 − wᵀ
1Z0

k

(
Â0

k

)−1(
Z0

k

)ᵀw1
]

= − 1√
n

n∑
k=1

E

[
1

āk

+ 2wᵀ
1ZkÂ−1

k Zᵀ
k �̃1w1

nāk

+ tr B̂k

n2āk

]
+ o(1).(7.33)

Combining (7.27), (7.32) and (7.33), the equation (7.26) holds.
We next prove (7.25). To simplify notation, we use X for X0, and hence assume that X

follows standard normal distribution. By wᵀ
1Uᵀ

2 = 0, we conclude that wᵀ
1X is independent of

A, and hence 1
n
Ewᵀ

1XA−1Xᵀw1 = 1
n
E tr A−1. By (6.2.4) of [5] (or Lemma 3.1 of [11]), we

have

1

n
E tr A−1 = E

1

1 + rᵀ1A−1
1 r1

,

where we denote A = �̃
1/2
1 XXᵀ�̃1/2

1 − I, ri = 1√
N

�̃
1/2
1 xi and Aj = ∑

i �=j rir
ᵀ
i − I. By

Lemma 8.10 of [5], we have

(7.34) E

∣∣∣∣rᵀ1A−1
1 r1 − 1

θN
tr A−1

1 �1

∣∣∣∣ ≤ C

n2 tr �̃2
1 = o

(
M−1)

,

which concludes that E 1
1+rᵀ1 A−1

1 r1
= E

1
1+ 1

θN
tr A−1

1 �1
+ o(n−1/2). Moreover,

E

∣∣∣∣ 1

1 + 1
θN

tr A−1
1 �1

− 1

1 + 1
θN

E tr A−1
1 �1

∣∣∣∣2

≤ C

n2E
∣∣tr A−1

1 �1 −E tr A−1
1 �1

∣∣2
≤ C

n
E

∣∣β12rᵀ2A−2
12 r2

∣∣2 = o
(
n−1)

.(7.35)

Hence E
1

1+ 1
θN

tr A−1
1 �1

= 1
1+ 1

θN
E tr A−1

1 �1
+ o(n−1/2). Define βi = 1

1+rᵀi A−1
i ri

, bi =
1

1+ 1
nθ

E tr�1A−1
i

, and αi = rᵀi A−1
i ri − 1

nθ
tr�1A−1

i . By the equality that

A1 + I − b(θ)�̃1 = ∑
i �=1

rir
ᵀ
i − b(θ)�̃1,

we have

(7.36) A−1
1 = −(

I − b1(θ)�̃1
)−1 + b1(z)A(θ) + B(θ) + C(θ),
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where

A(θ) = ∑
i �=1

(
I − b1(θ)�̃1

)−1
(

rir
ᵀ
i − 1

nθ
�1

)
A−1

i ,

B(θ) = ∑
i �=1

(βi − b1)
(
I − b1(θ)�̃1

)−1rir
ᵀ
i A−1

i ,

C(θ) = n−1b1
(
I − b1(θ)�1

)−1
�̃1

∑
i �=1

(
A−1

1 − A−1
1i

)
.

For A(θ), similar to (7.34) we have

1

n
E

∣∣trA(θ)�̃1
∣∣ ≤ 1

n

∑
i �=2

E

∣∣∣∣rᵀi A−1
i �̃1

(
I − b1(θ)�̃1

)−1ri

− 1

nθ
tr

(
�1A−1

i �̃1
(
I − b1(θ)�̃1

)−1)∣∣∣∣
= o

(
M−1)

.(7.37)

Similar to the previous inequalities (7.34)–(7.35) or as in Chapter 9 of [5], we can also show
that B(θ) and C(θ) are negligible. Hence we get

(7.38)
1

n
E tr A−1

1 �̃1 = −1

n
tr

(
I − b1(θ)�̃1

)−1
�̃1 + o

(
n−1/2)

,

which implies that

(7.39)
1

n
E tr A−1 = 1

1 − 1
n

tr(I − 1
n
(E tr A−1)�̃1)−1�̃1

+ o
(
n−1/2)

.

By the Steiltjes transform of the limit of the ESD of any sample covariance matrix, there
exists only one m̃θ (z) such that (one can also refer to (1.6) of [11] or (6.12)–(6.15) of [5])

(7.40) m̃θ (z) = − 1

z − 1
n

tr(I + m̃θ (z)�̃1)−1�̃1
, z ∈ C

+.

Consider the difference between (7.39)–(7.40) and denote δ = 1
n
E tr A−1 + m̃θ (1). It is easy

to conclude that

δ

(
1 +

1
n

tr[(I − 1
n
(E tr A−1)�̃1)

−1�̃1(I + m̃θ (1)�̃1)
−1�̃1]

(1 − 1
n

tr(I − 1
n
(E tr A−1)�̃1)−1�̃1)(1 − 1

n
tr(I + m̃θ (1)�̃1)−1�̃1)

)
= o

(
n−1/2)

.

Together with the fact that ‖�̃1‖ = O(θ−1), it follows that δ = o(1/
√

n). Therefore, we have
shown that

(7.41)
√

n

(
1

n
E tr A−1 + m̃θ (1)

)
→ 0.
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SUPPLEMENTARY MATERIAL

Supplement to “Limiting laws for divergent spiked eigenvalues and largest nonspiked
eigenvalue of sample covariance matrices” (DOI: 10.1214/18-AOS1798SUPP; .pdf). In the
Supplementary Material, we provide the proof of Theorem 2.4 and the proof of the other
results, including Theorems 2.1-2.3, 2.5 and 4.1 and other technical results.
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