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We study polynomial time algorithms for estimating the mean of a heavy-
tailed multivariate random vector. We assume only that the random vector
X has finite mean and covariance. In this setting, the radius of confidence
intervals achieved by the empirical mean are large compared to the case that
X is Gaussian or sub-Gaussian.

We offer the first polynomial time algorithm to estimate the mean with
sub-Gaussian-size confidence intervals under such mild assumptions. Our al-
gorithm is based on a new semidefinite programming relaxation of a high-
dimensional median. Previous estimators which assumed only existence of
finitely many moments of X either sacrifice sub-Gaussian performance or
are only known to be computable via brute-force search procedures requiring
time exponential in the dimension.

1. Introduction. This paper studies estimation of the mean of a heavy-tailed multivari-
ate random vector from independent samples. In particular, we address the question: Are sta-
tistically optimal confidence intervals for heavy-tailed multivariate mean estimation achiev-
able by polynomial-time computable estimators? Our main result answers this question affir-
matively, up to some explicit constants.

Estimating the mean of a distribution from independent samples is among the oldest prob-
lems in statistics. From the asymptotic viewpoint (i.e., when the number of samples n tends
to infinity) it is well understood. If X1, . . . ,Xn are n independent copies of a random variable
X on R

d , the empirical mean μn = 1
n

∑
i≤n Xi converges in probability to the mean μ = EX.

If X has finite variance, the limiting distribution of μn is Gaussian.
Aiming for finer-grained (finite-sample) guarantees, this paper takes a nonasymptotic view.

For every δ > 0 and n ∈N we ask for an estimator μ̂n,δ which comes with a tail bound of the
form

P
X1,...,Xn

{∥∥μ̂n,δ(X1, . . . ,Xn) − μ
∥∥ > rδ

} ≤ δ

for as small a radius rδ (which may depend on n and the distribution of X) as possible. That
is, we are interested in estimators with the smallest-possible confidence intervals.

When X is Gaussian or sub-Gaussian, strong nonasymptotic guarantees are available on
confidence intervals of the sample mean μn. Applying Gaussian concentration, if X has co-
variance �, then in the Gaussian setting,

P

{∥∥μn(X1, . . . ,Xn) − μ
∥∥ >

√
Tr�

n
+

√
2‖�‖ log(1/δ)

n

}
≤ δ,(1.1)

where ‖�‖ = λmax(�) is the operator norm/maximum eigenvalue of �.
However, if one tries to replace the assumption that X is Gaussian with something weaker,

equation (1.1) breaks down for the sample mean μn. For instance, consider a much weaker
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assumption: X has finite covariance �. Then the best possible tail inequality for the sample
mean becomes

P

{∥∥μn(X1, . . . ,Xn) − μ
∥∥ >

√
Tr�

δn

}
≤ δ(1.2)

(see, e.g., [14], Section 6). By comparison with equation (1.1), the tail bound equation (1.2)
has degraded in two ways: first, the log(1/δ) term has become 1/δ, and second, that term
multiplies Tr� rather than ‖�‖; note that Tr� may be as large as d‖�‖, as in the case of
isotropically distributed data.

This paper focuses on finding estimators μ̂ which can match (1.1) under milder assump-
tions than sub-Gaussianity, such as the existence of finitely many moments. Weak assump-
tions like this allow for the presence of heavy tails. A d-dimensional random vector X is
heavy-tailed if for some unit u ∈ R

d , the tail of 〈X,u〉 outgrows any exponential distribution;
that is, for all s > 0 one has limt→∞ ets

P{〈X − μ,u〉 > t} = ∞.
There are many situations in which one may wish to avoid a Gaussian or sub-Gaussian as-

sumption. One may simply wish to be conservative, or there may reason to believe a Gaussian
assumption is unjustified—heavy-tailed and high-dimensional data are not unusual. Many
distibutions in big-data settings have heavy tails: for example, power law distributions con-
sistently emerge from statistics of large networks (the internet graph, social network graphs,
etc.) [21, 37]. And no matter how nice the underlying distribution, corruptions and noise in
collected data often result in an empirical distribution with many outliers [51]. As a result,
such X may have only a few finite moments; that is, EXp may not exist for large-enough
p ∈ N.

This suggests the question of whether an estimator with a guarantee matching equation
(1.1) (up to universal constants) exists under only the assumption that X has finite mean and
covariance. (These assumptions are necessary to obtain the 1/

√
n rate in both equations (1.1)

and (1.2).) One may show this is impossible if a single estimator is desired to satisfy an
inequality like equation (1.1) [19].

Quite remarkably, the story changes if the estimator may additionally depend on the de-
sired confidence level 1 − δ. Indeed, by now in the classical case d = 1, many such δ-
dependent estimators are known which achieve equation (1.1) up to explicit constants for
δ ≥ 2−O(n), even when X has only finite mean and variance [14, 19]. Since the δ-dependence
is a necessary concession to achieve concentration like equation (1.1) with only two finite mo-
ments, for this paper our estimators are all allowed to depend on δ: it is an interesting future
direction to explore what fraction of the theory may be reproduced without the δ-dependence
[19, 42]. The lower bound δ ≥ 2−O(n) is also information-theoretically necessary [19].

The high-dimensional case is much more difficult, and has been resolved only recently:
the culmination of a series of works [28, 36, 38, 41] is the following theorem of Lugosi and
Mendelson, who gave the family of estimators matching equation (1.1) (up to constants) for
any d under only the assumption of finite second moments. (In fact, their result also holds in
the infinite-dimensional Banach space setting.)

THEOREM 1.1 (Lugosi–Mendelson estimator, [38]). There is a universal constant C

such that for every n, d , and δ ≥ 2−n/C there is an estimator μ̂δ,n : Rdn → R
d such that

for every random variable X on R
d with finite mean and covariance,

P

{∥∥μ̂n,δ(X1, . . . ,Xn) − μ
∥∥ > C

(√
Tr�

n
+

√
‖�‖ log(1/δ)

n

)}
≤ δ,

where X1, . . . ,Xn are i.i.d. copies of X and μ = EX and � = E(X − μ)(X − μ)�.
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In high-dimensional estimation, especially with large data sets, it is important to study
estimators with guarantees both on statistical accuracy and algorithmic tractability. Indeed,
there is growing evidence that some basic high-dimensional estimation tasks which appear
possible from a purely information-theoretic perspective altogether lack computationally effi-
cient algorithms. There are many examples of such information-computation gaps, including
the problem of finding sparse principal components of high-dimensional data sets (the sparse
PCA problem) and optimal detection of hidden communities in random graphs with latent
community structure (the k-community stochastic block model) [5, 9, 18, 25, 27, 40].

From this perspective, a major question left open by Theorem 1.1 is whether there exists an
estimator matching Theorem 1.1 but which is efficiently computable. In this paper, efficiently
computable means computable by an algorithm running in time (nd log(1/δ))O(1)—that is,
polynomial in both the number of samples and the ambient dimension, as well as the number
of bits needed to describe the input δ > 0. Indeed, the median-of-means estimator used by
Lugosi and Mendelson lacks any obvious algorithm running in time less than exp(cd), for
some fixed c > 0, which is the time required for brute-force search over every direction in a
d-dimensional ε-net. More worringly, the key idea of Lugosi and Mendelson is a combina-
torial notion of a multivariate median, which appears to place the problem dangerously near
those high-dimensional combinatorial statistics problems which lack efficient algorithms al-
together.

The main result of this paper shows that there is a family of estimators matching Theo-
rem 1.1 and computable by polynomial-time algorithms.

THEOREM 1.2 (Main theorem). There are universal constants C0, C1, C2 such that
for every n,d ∈ N and δ > 2−n/C2 there is an algorithm which runs in time O(nd) +
(d log(1/δ))C0 such that for every random variable X on R

d , given i.i.d. copies X1, . . . ,Xn

of X the algorithm outputs a vector μ̂δ(X1, . . . ,Xn) such that

P

{
‖μ − μ̂δ‖ > C1

(√
Tr�

n
+

√
‖�‖ log(1/δ)

n

)}
≤ δ,

where EX = μ and E(X − μ)(X − μ)� = �.

On constants and running times. No effort has been made to optimize the constants C0, C1,
C2. By careful analysis they may certainly be made less than 1000, but we expect substantial
improvements beyond this are possible.

Because of the large polynomial running time, we regard Theorem 1.2 as mainly a (con-
structive) proof of the existence of a polynomial-time algorithm: of course, we do not suggest
anyone attempt to run an (nd)1000-time algorithm in practice! Polynomial-time algorithms
are qualitatively different from exponential-time brute-force searches, however, and very of-
ten the insights from a slow polynomial-time algorithm can be leveraged to design a fast
one, while the same cannot be said of a brute-force search procedure. Thus, when addressing
challenging algorithmic questions in high-dimensional statistics, the first question is whether
there is a polynomial-time algorithm at all: Theorem 1.2 answers this affirmatively.

Indeed, Theorem 1.2 and the algorithm behind it have already inspired further investigation
into the (rather distinct) question of just how fast an algorithm is possible. After the present
work was initially circulated, Cherapanamjeri, Flammarion and Bartlett combined the ideas
in our Section 2 with a nonconvex gradient descent procedure to obtain an algorithm with the
statistical same guarantees as Theorem 1.2 but with running time O(n3.5 +n2d) · (lognd)O(1)

[15]. It is more than plausible that further developments will lead to a truly practical algorithm
(with running time, say, nd · log(nd)O(1)—note that input vectors consist of nd real numbers,
so this running time would correspond to reading the data log(nd)O(1) times).
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Semidefinite programming, proofs to algorithms and the sum of squares method. Our algo-
rithm is based on semidefinite programming (SDP). It is not an attempt to directly compute
the estimator proposed by Lugosi and Mendelson. Instead, inspired by that estimator, we in-
troduce MEDIAN-SDP, a new semidefinite programming approach to computation of a high-
dimensional median. We hope that the ideas behind it will find further uses in algorithms for
high-dimensional statistics.

Our SDP arises from the sum of squares (SoS) method, which is a powerful and flexible
approach to SDP design and analysis. Rather than design an SDP from scratch and invent a
new analysis, guided by the SoS method we construct an SDP whose variables and constraints
allow for the proof of Lugosi and Mendelson’s Theorem 1.1 to translate directly to an analysis
of the SDP, proving our Theorem 1.2. (More prosaically: Lugosi and Mendelson’s proof
inspires the construction of a family of dual solutions to our SDP, which then we use to argue
that it recovers a good estimate for the mean.)

This technique, which turns sufficiently simple proofs of identifiability like the proof
of Theorem 1.1 into algorithms as in Theorem 1.2, has recently been employed in algo-
rithm design for several computationally challenging statistics problems. For instance, recent
works offer the best available polynomial-time guarantees for parameter estimation of high-
dimensional mixture models and for estimation in Huber’s contamination model [26, 29, 31,
32]. SoS has also been key to progress in computationally challenging tensor problems with
statistical applications, such as tensor decomposition (a key primitive for moment-method al-
gorithms in high dimensions) and tensor completion [6, 39, 48]. For further discussion see the
survey [49]. We expect many further basic statistical problems for which efficient algorithms
are presently unknown to be successfully attackable with the SoS method.

Organization. In the remainder of this introduction we discuss the median of means esti-
mation paradigm which underlies both Lugosi and Mendelson’s estimator (Theorem 1.1) and
our own (Theorem 1.2) and briefly introduce the SoS method, as well as offer some com-
parisons of the SDP used in this paper to some common SDPs employed in statistics. Before
turning to technical material, in Section 1.3 we give a brief overview of our estimator.

In Section 2, we describe an algorithm for a twist on the mean estimation problem, called
the certification problem. The main lemma analyzes an SDP whose solutions capture infor-
mation about quantiles of a set of high-dimensional vectors. It is the key tool in the design of
our algorithm to estimate the mean. This section requires no background on SoS.

Then, in Section 3 we give some formal definitions and standard theorems about SoS. In
Section 4 we prove our main theorem from technical lemmas, whose proofs can be found in
the Supplementary Material [24].

1.1. The median of means paradigm. The median of means is an approach to mean es-
timation for heavy-tailed distributions which combines the reduction in variance offered by
averaging independent samples (thus achieving 1/

√
n convergence rates) with the outlier-

robustness of the median (thus achieving
√

log(1/δ) tail behavior) [2, 30, 44]. Consider the
d = 1 case first. Suppose X1, . . . ,Xn are i.i.d. copies of a real-valued random variable X with
mean μ ∈ R and variance σ 2. Let k = �(log 1/δ) be an integer, and for i ≤ k let Zi be the
average of samples Xi·n/k to X(i+1)·n/k .1 Then it is an exercise to show that the median (or
indeed any fixed quantile) of the Zi’s satisfies

P

{∣∣median(Z1, . . . ,Zk) − μ
∣∣ > Cσ

√
log(1/δ)

n

}
≤ δ

1Throughout the paper we will assume that n is divisible by C log(1/δ) for an appropriate constant C. One

may achieve this from general n, k and δ ≥ 2−O(n) by throwing out samples to reach the nearest multiple of
C log(1/δ); the effect on the error rates is only a constant.
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for some universal constant C (given the correct choice of k). There are estimators achieving
this

√
log(1/δ) rate using ideas other than the median of means in the case d = 1 [14, 19],

but we focus here on median of means since it is the only approach known to prove a theorem
like Theorem 1.1 in the high dimensional case.

Correctly extending this median of means idea to higher dimensions d is not simple. Sup-
pose that X is d-dimensional, with mean μ and covariance �. Replacing X1, . . . ,Xn ∈ R

d

with grouped averages Z1, . . . ,Zk ∈ R
d remains possible, but the sticking point is to choose

an appropriate notion of median or quantile in d dimensions.
A first attempt would be to use as a median of Z1, . . . ,Zk any point in R

d which has at
most some distance r to at least ck of Z1, . . . ,Zk for some c > 1/2. Let us call such a point
a simple r-median. It is straightforward to prove, by the same ideas as in the d = 1 case, that

P

{
‖μ − Zi‖ > C

√
Tr� log(1/δ)

n
for at least ck vectors Zi

}
≤ δ

for some universal constant C = C(c). It follows that with probability at least 1 − δ the
mean μ is a simple r-median for r = C

√
Tr� log(1/δ)/n. When c > 1/2, any two simple

r-medians must each have distance at most r to some Zi , so by the triangle inequality,

(1.3) P

{∥∥simple 2r-median(Z1, . . . ,Zk) − μ
∥∥ > 2C

√
Tr� log(1/δ)

n

}
≤ δ,

where simple 2r-median(Z1, . . . ,Zk) is any simple 2r-median of Z1, . . . ,Zk . At the cost
of replacing 2r by 4r , a simple r-median can be found easily in polynomial time (in fact
in quadratic time) because if there is any simple 2r-median of Z1, . . . ,Zk then by triangle
inequality some Zi must be a simple 4r-median.

In prior work, Minsker shows that the geometric median of Z1, . . . ,Zk achieves the same
guarantee equation (1.3) as the simple median (perhaps with a different universal constant C)
[41]. Geometric median is computable in nearly linear time (i.e., time dk · (logdk)O(1)) [16].

The guarantee equation (1.3) represents the smallest confidence intervals previously
known to be achievable by polynomial-time computable mean estimators under the assump-
tion that X has finite mean and covariance. This tail bound is an intermediate between the√

Tr�/δn-style tail bound achieved by the empirical mean equation (1.2) and the Gaussian-
style guarantee of Lugosi and Mendelson from Theorem 1.1. It fails to match Theorem 1.1
because the log(1/δ) term multiplies Tr� rather than ‖�‖—this introduces an unnecessary
dimension-dependence. That is, if X has covariance identity, then informally speaking the
rate of tail decay has a dimension-dependent factor when it should be dimension-independent:
it decays as exp(−ct2/d) rather than exp(−ct2) (where c is some fixed constant).2 This is
not a failure of the analysis: if the approach is to draw a ball around the population mean μ

which contains at least a constant fraction of Z1, . . . ,Zk with probability 1 − δ, the ball must
have radius of order

√
Tr� log(1/δ)/n, which grows with the dimension of X.

To prove Theorem 1.1, Lugosi and Mendelson introduce a new notion of high-dimensional
median, which arises from what they call a median of means tournament. This tournament
median of Z1, . . . ,Zk is

(1.4) arg min
x∈Rd

max
y∈Rd

‖x − y‖ such that ‖Zi − x‖ ≥ ‖Zi − y‖ for at least
k

2
Zi’s.

Rephrased, the tournament median is the point x ∈ R
d minimizing the number r such that

for every unit u ∈ R
d , the projection 〈x,u〉 is at distance at most r from a median of the

projections {〈Zi,u〉}.3

2Of course, formally we are talking about one estimator μ̂δ for every δ, so it is not correct to speak of tail decay
with respect to δ.

3Thanks to Jerry Li for pointing out this reinterpretation of the tournament median to me.
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In fact, Lugosi and Mendelson’s arguments apply to any x which r-central in the following
sense: for every unit u, there are at least 0.51k vectors among Z1, . . . ,Zk such that |〈Zi,u〉−
〈x,u〉| ≤ r . Their proof shows that an estimator which outputs any r-central point will achieve
the guarantee in Theorem 1.1. This interpretation shows that their estimator is related to a
weak notion of Tukey median: a Tukey median (at least in the typical case that it has constant
Tukey depth) should be between a 49th and 51st percentile in every direction u, while an
r-central point has distance at most r to such a percentile in every direction u [53]. Thus
our result Theorem 1.2 adds to several in the literature which demonstrate that although the
Tukey median of vectors v1, . . . , vk ∈ R

d is NP-hard to compute if v1, . . . , vk are chosen
adversarially, under reasonable assumptions (in this case that Z1, . . . ,Zk are i.i.d. from a
distribution with bounded covariance) one may find some kind of approximate Tukey median
in polynomial time [8, 20, 34].

The heart of the proof of Theorem 1.1 shows that with probability at least 1 − δ, the mean
μ is r-central for r = C(

√
Tr�/n+√‖�‖ log(1/δ)/n). The difficulty in computing the tour-

nament median—or finding some r-central point—comes from the fact that in each direction
u it may be different collection of 0.51k vectors which satisfy |〈Zi,u〉 − 〈x,u〉| ≤ r . Thus
even if an algorithm is given Z1, . . . ,Zk and μ, to efficiently check that μ is a tournament
median or is r-central seems naively to require brute-force search over exp(cd) directions
in R

d , for some fixed c > 0. The heart of our algorithm is a semidefinite program which
(with high probability) can efficiently certify that μ is r-central: this algorithm is described
in Section 2.

1.2. Semidefinite programming and the SoS method in statistics. One of the main tools
in our algorithm is semidefinite programming, and in particular the sum of squares method.
Recall that a semidefinite program (SDP) is a convex optimization problem of the following
form:

min
X

〈X,C〉 such that 〈A1,X〉 ≥ 0, . . . , 〈Am,X〉 ≥ 0 and X � 0,(1.5)

where X ranges over symmetric n × n real matrices and 〈M,N〉 = TrMN�. Subject to mild
conditions on C and A1, . . . ,Am, semidefinite programs are solvable to arbitrary accuracy in
polynomial time [11].

Semidefinite programming as a tool for algorithm design has by now seen numerous uses
across both theoretical computer science and statistics. Familiar SDPs in statistics include the
nuclear-norm minimization SDP, used for matrix sensing and matrix completion [12, 13], the
Goemans–Williamson cut SDP, variants of which are used for community detection in sparse
graphs [1, 23, 43], SDPs for finding sparse principal components [4, 17, 33], SDPs used for
high-dimensional change-point detection [55], SDPs used for optimal experiment design [54]
and more.

While much work has focused on detailed analyses of a small number of canonical
semidefinite programs—the nuclear-norm SDP, the Goemans–Williamson SDP, etc.—the
SoS method offers a rich variety of semidefinite programs suited to many purposes [35,
45, 47, 52]. For every polynomial optimization problem with semialgebraic constraints, SoS
offers a hierarchy of SDP relaxations. That is, for every collection of multivariate polyno-
mials p,q1, . . . , qm ∈ R[x1, . . . , xn] and every even r ≥ max(degp,degq1, . . . ,degqm), SoS
offers a relaxation of the problem

minp(x) such that q1(x) ≥ 0, . . . , qm(x) ≥ 0.

As r increases, the relaxations become stronger, more closely approximating the true opti-
mum value of the optimization problem, but the complexity of the relaxations also increases.
Typically, the r th relaxation is solvable in time (nm)O(r). In many applications, such as when
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q1, . . . , qm include the constraints x2
i − x ≥ 0, x2

i − x ≤ 0 which imply x ∈ {0,1}n, when
r = n the SoS SDP exactly captures the optimum of the underlying polynomial optimization
problem. However, the resulting SDP has at least 2n variables, so is not generally solvable in
polynomial time. This paper focuses on SoS SDPs with r = O(1) (in fact r = 8), leading to
polynomial-time algorithms.

SoS carries at least two advantages relevant to this paper over more classical approaches
to semidefinite programming. First is the flexibility which comes from the possibility of be-
ginning with any set of polynomials p,q1, . . . , qm; we choose polynomials which capture the
idea of r-centrality. Second is ease of analysis: SoS SDPs in statistical settings are amenable
to an analysis strategy which converts proofs of statistical identifiability into analysis of an
SDP-based algorithm by phrasing the identifiability proof as a dual solution to the SDP. This
style of analysis is feasible in our case because the SoS SDP has enough constraints that
many properties of r-centrality carry over to the relaxed version: it is not clear whether a
more elementary SDP would share this property.

1.3. Algorithm overview. Recall where we left off in Section 1.1. Having taken sam-
ples X1, . . . ,Xn from a distribution with mean μ and covariance � and averaged groups
of n/k of them to form vectors Z1, . . . ,Zk , the goal is to find a median of Z1, . . . ,Zk . As
we discussed, the appropriate notion of a median is any point x ∈ R

d which is r-central
for r = O(

√
Tr�/n + √‖�‖ log(1/δ)/n), meaning that for every 1-dimensional projection

〈x,u〉, 〈Z1, u〉, . . ., 〈Zk,u〉, the point 〈x,u〉 has distance at most r to a 0.51-quantile of of
{〈Zi,u〉}

Let us change the problem temporarily with a thought experiment: imagine being given
Z1, . . . ,Zk and the population mean μ and being asked to verify (or in computer science
jargon, certify) that indeed μ is r-central. Even for this apparently simpler task there is no
obvious polynomial-time algorithm: a brute-force inspection of {〈Zi,u〉} for, say, all u in an
ε-net of the unit ball in R

d will require time (1/ε)d .
Our first technical contribution is to show that with high probability over Z1, . . . ,Zk there

is a short certificate, or witness, to the fact that the population mean μ has distance at most r to
a median in every direction. This certificate takes the form of a dual solution to a semidefinite
relaxation of the following combinatorial optimization problem: given Z1, . . . ,Zk,μ and
r > 0, maximize over all directions u the number of i ∈ [k] such that 〈Zi −μ,u〉 ≥ r . Solving
this SDP gives an algorithm for the certification problem: we show that with probability at
least 1− δ the maximum value is at most k/3 for the choice of r above. We note that this SDP
and its analysis do not rely on the SoS technology, so all of Section 2 can be read without this
background.

Returning to the problem of estimating μ given Z1, . . . ,Zk , the task is made simpler by the
existence of the certificate that μ is r-central. In particular, it gives a concrete object which
our estimation algorithm can search for: we know it will suffice to find any point in the set:

CERTIFIABLE-CENTERS(Z1, . . . ,Zk)

= {
(x,M) : x ∈ R

d,M ∈ R
(d+k+1)×(d+k+1) certifies x is r-central

}
,

which is nonempty because it in particular contains (μ,Mμ), where Mμ is the aforemen-
tioned SDP dual solution. (It is not yet obvious why (d+k+1)×(d+k+1) is the appropriate
dimension for M ; we will see this in the next section.) Our second technical contribution is
an algorithm which we call MEDIAN-SDP, based on the SoS method, which takes Z1, . . . ,Zk

and finds x′ ∈R
d such that ‖x − x′‖ = O(r) for every x ∈ CERTIFIABLE-CENTERS.

The algorithm is based on an SDP relaxation of the set CERTIFIABLE-CENTERS, this time
based on the SoS method. The relaxation is designed to accommodate the following kind of
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analysis: we turn the following simple argument about r-central points into a dual solution
to the SDP (in the SoS context this object is called an SoS proof ), then use the latter to show
that the SDP finds a good estimator x.

The argument which we must turn into an SoS proof is the following: if x, x′ are r-
central then consider in particular the direction v = (x − x′)/‖x − x′‖. There exists some
Zi such that 〈x, v〉 ≤ r + 〈Zi, v〉 and 〈x′,−v〉 ≤ r + 〈Zi,−v〉. Adding the inequalities gives
〈x − x′, v〉 = ‖x − x′‖ ≤ 2r . When we make this argument into an SoS proof, it will imply
(roughly speaking) not just when x is r-central but also when x is in our relaxation of the set
CERTIFIABLE-CENTERS.

This strategy will rely crucially on both the existence of the certificate μ (needed to turn the
above argument into an SoS proof) and the SoS strategy for designing SDPs (to accommodate
the complexity of the resulting dual solution). For more discussion, see Section 2 of the
Supplementary Material [24].

2. Certifying centrality. In this section we describe and analyze one of the key compo-
nents of our algorithm: a semidefinite program to certify the main property of the population
mean our algorithm exploits—(r,p)-centrality.

DEFINITION 2.1 (Centrality). Let Z1, . . . ,Zk ∈ R
d , r > 0, and p ∈ [0,1]. We say that

x ∈ R
d is (r,p)-central (with respect to Z1, . . . ,Zk) if for every unit u ∈R

d there are at most
pk vectors Z1, . . . ,Zk such that 〈Zi − x,u〉 ≥ r .

At the heart of Lugosi and Mendelson’s mean estimator is the following remarkable
lemma, characterizing centrality of the population mean.

LEMMA 2.2 ([38], rephrased). Let Z be a d-dimensional random vector with mean
μ = EZ and covariance �. Let Z1, . . . ,Zk be i.i.d. copies of Z. With probability at least
1 − 2−�(k), the population mean μ is (r,1/3)-central with respect to Z1, . . . ,Zk , for
r = O(

√
Tr�/k + √‖�‖).4

The main difficulty in proving Lemma 2.2 (and our later algorithmic versions of it) is to
simultaneously obtain the tight quantitative bound r = O(

√
Tr�/k + √‖�‖) and the high

probability 1 − 2−�(k). Without both, one does not get an estimator matching Theorem 1.1.
Suppose, as in the median of means paradigm, Z is taken as the empirical average of n/k

i.i.d. copies X1, . . . ,Xn/k of another random vector X having covariance �′. Then � = k
n
�′.

One may see that if k = �(log(1/δ)) the mean μ is (r,1/3)-central for r = O(
√

Tr�′/n +√‖�′‖ log(1/δ)/n) with probability at least 1 − δ. Any two (r,1/3) central points x, y also
have ‖x − y‖ ≤ 2r (see Section 1.3), and thus it follows that to obtain the guarantees of
Theorem 1.1, given Z1, . . . ,Zk one only needs to output any (r,1/3)-central point.

2.1. Certification and the failure of empirical moments. A natural avenue to designing
an efficient algorithm matching Theorem 1.1 is to try to compute an (r,1/3)-central point
given Z1, . . . ,Zk . A first roadblock is that there is not an obvious efficient algorithm for
the following apparently simpler problem: given x ∈ R

d , decide whether x is an (r,1/3)-
central point—brute-force search over 2d one-dimensional projections must be avoided. In
this section we give an efficient algorithm for a slight twist of this problem, which we call the
certification problem.

4We write f (n) = O(g(n)) if there is a constant C such that for all large-enough n one has f (n) ≤ Cg(n).
Similarly, we write f = �(g(n)) if there is c such that f (n) ≥ cg(n) for large-enough n. We write f = �(g(n))

if both f = O(g(n)) and f = �(g(n)).
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PROBLEM 2.3 (Certification). Given Z1, . . . ,Zk, x ∈ R
d and r > 0 and p ∈ [0,1], a

certification algorithm may output YES or DO NOT KNOW. If the output is YES, then x must
be (r,p)-central with respect to Z1, . . . ,Zk . If the output is DO NOT KNOW, then x may or
may not be (r,p)-central.

Our goal is to design a certification algorithm with parameters matching Lemma 2.2. That
is, we would like a certification algorithm which outputs YES with probability at least 1 −
2−�(k) over Z1, . . . ,Zk when given x = μ and r = O(

√
Tr�/k + √‖�‖) and p a small

constant. This is an easier task than deciding (r,p)-centrality exactly, since we care only
about those configurations of Z1, . . . ,Zk which may arise as i.i.d. copies of a random vector
Z with covariance �, and even when μ is (r,p)-central we allow the algorithm to output
DO NOT KNOW, so long as this does not happen too often. We prove the following theorem,
which we view as an algorithmic version of Lemma 2.2.

THEOREM 2.4. There is an algorithm for the certification problem with running time
(kd)O(1) and the guarantee that if Z1, . . . ,Zk are i.i.d. copies of a random variable Z with
mean μ and covariance � then the algorithm outputs YES with probability at least 1−2−�(k)

given p = 1/1005 and r = O(
√

Tr�/k + √‖�‖).
Our algorithm for the certification problem will be based on semidefinite programming.

While our final algorithm to estimate μ (Theorem 1.2) will not directly employ this certifi-
cation algorithm as a subroutine, the semidefinite program we analyze for the latter is at the
heart of the former.

On the failure of empirical moments. Before we describe our certification algorithm and
prove Theorem 2.4, we offer some intuition as to why a powerful tool such as semidefinite
programming is necessary, by assessing simpler potential approaches to certification. A nat-
ural approach would involve the maximum eigenvalue λ = ‖�‖ of the empirical covariance
� = 1

k

∑k
i=1(Zi − μ)(Zi − μ)�. If a unit vector u has 〈Zi − μ,u〉 ≥ r for more than k/3

vectors Zi (thus violating (r,1/3)-centrality), then 1
k

∑〈Zi − μ,u〉2 ≥ r2/3. Thus the maxi-
mum eigenvalue λ (which is of course computable in polynomial time) would certify that μ

is (O(
√

λ),1/3)-central.
Unfortunately, because of our weak assumptions on Z—again, we only assume the second

moment � exists—the maximum eigenvalue of the empirical covariance is poorly concen-
trated: for instance, with probability about 2−k some vector Zi may have norm as large as√

Tr� · 2k , resulting in
√

λ ≥ √
Tr� · 2k/2. (Indeed, even the typical value of

√
λ could

be much larger than
√

Tr�/k + √‖�‖.) Straightforward approaches to address this—for
example, discarding a constant fraction of the samples Z1, . . . ,Zk of largest norm, or replac-
ing the second moment 1

k

∑k
i=1〈Zi − μ,u〉2 with the first moment 1

k

∑k
i=1 |〈Zi − μ,u〉|—

offer some quantiative improvement over the empirical covariance, but still do not match the√
Tr�/k +√‖�‖ bound with probability 1−2−�(k) which we are aiming for. Our semidef-

inite programming-based algorithm for certification can be viewed as a more sophisticated
approach to improve the outlier-robustness of the maximum eigenvalue of the empirical co-
variance.

2.2. The centrality SDP. We turn to our certification algorithm and the proof of Theo-
rem 2.4. To start, we design a convex relaxation of the following (nonconvex) optimization
problem, which captures centrality: given Z1, . . . ,Zk, x and r ≥ 0, find the minimum p such
that x is (r,p)-central. Or, rephrased, find the maximum over directions u of the number of
Zi such that 〈Zi − x,u〉 ≥ r . The latter we capture as the following quadratic program.

5The constant 1/100 differs from the 1/3 in Lemma 2.2 only for technical convenience later in this paper.
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FACT 2.5. The minimum p such that x is (r,p)-central with respect to Z1, . . . ,Zk ∈
R

d is given by the optimum of the following quadratic program in variables b1, . . . , bk and
u1, . . . , ud :

(2.1)

max
u,b

1

k

k∑
i=1

bi such that

b1, . . . , bk ∈ {0,1},
‖u‖2 ≤ 1,

bi〈Zi − x,u〉 ≥ bir for i = 1, . . . , k.

We relax the quadratic program (2.1) to a semidefinite program in standard fashion.

DEFINITION 2.6 (Centrality SDP). Given Z1, . . . ,Zk, x ∈ R
d and r ≥ 0, we define a

semidefinite program over (d + k + 1) × (d + k + 1) positive semidefinite matrices with the
following block structure:

Y(B,W,U,b,u) =
⎛
⎜⎝1 b� u�

b B W

u W� U

⎞
⎟⎠ ,

where B ∈ R
k×k , U ∈ R

d×d , b ∈ R
k , u ∈ R

d . As usual, the intended solutions of the SDP are
rank-one matrices (1, b, u)(1, b, u)� where (b, u) ∈ R

d+k is a solution to (2.1). The SDP is

max
Y (B,W,U,b,u)

1

k

k∑
i=1

bi such that

Bii ≤ 1 for i = 1, . . . , k,

TrU ≤ 1,

〈Zi − x,Wi〉 ≥ r · bi for i = 1, . . . , k,

Y (B,W,U,b,u) � 0.

Here Wi is the ith row of the k × d matrix W . It stands in for the vector bi · u in (2.1).6

The centrality SDP is a relaxation of centrality proper: there is no a priori reason to believe
that it faithfully captures the quadratic program (2.1). For instance, it could be that for most
Z1, . . . ,Zk the r-centrality SDP value is 1, even though Lemma 2.2 says that with high
probability the value of (2.1) is at most 1/3 in the median of means setting (for appropriate
choice of r).

Remarkably, the opposite is true: at least in our median of means setting, the centrality
SDP is a good approximation to the quadratic program it relaxes.7 This is captured by the
following key technical lemma, from which Theorem 2.4 follows immediately (because the
SDP can be solved in polynomial time [11]).

6We remark that a more traditional SDP relaxation might only involve the large (d + k) × (d + k) block of Y ,
replacing bi with Bii in all constraints. However, the extra row and column (1, b,u) will be of some technical use
later in this paper; it is possible with some technical modifications to other proofs they could be removed.

7Here we do not mean approximation in the sense the word is used in approximation algorithms, since we are
studying only the behavior of the SDP for Z1, . . . ,Zk being a collection of random vectors, and we prove only
high probability guarantees, rather than probability-1 guarantees.
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DEFINITION 2.7 (Certifiable Centrality). Let Z1, . . . ,Zk ∈ R
d , r > 0 and p ∈ [0,1]. We

say that x ∈ R
d is certifiably (r,p)-central (with respect to Z1, . . . ,Zk) if the value of the

centrality SDP with parameters Z1, . . . ,Zk, x, r is at most p.

LEMMA 2.8. Let Z be a d-dimensional random vector with mean μ = EZ and covari-
ance �. Let Z1, . . . ,Zk be i.i.d. copies of Z. With probability at least 1 − 2−�(k), μ is certi-
fiably (O(

√
Tr�/k + √‖�‖),1/100)-central.

Since the centrality SDP can be solved in polynomial time, Lemma 2.8 comprises an anal-
ysis of the following algorithm for the certification problem: given Z1, . . . ,Zk, x, solve the
centrality SDP, and output YES if the optimum value is at most 1/100 (otherwise output DO

NOT KNOW).
In the rest of this section we prove Lemma 2.8. The proof follows a similar strategy to

that used by Lugosi and Mendelson to prove Lemma 2.2. We find it surprising that this is
possible, given that Lugosi and Mendelson’s argument only needs to address the quadratic
program (2.1) (almost equivalently, it would only address rank-one solutions to the centrality
SDP), while we need to argue about all relaxed solutions.

We will be able to establish, however, that the properties of (2.1) used by (an adaptation
of) Lugosi and Mendelson’s proof also hold for the centrality SDP. In particular, we will
use a bounded-differences property of the centrality SDP to establish concentration. While
bounded-differences arguments are standard, using bounded differences to show exponential
concentration of the optimum value of a convex program appears to be novel.

2.3. Proof of Lemma 2.8. We need to assemble a few tools for the proof of Lemma 2.8.
The first concern the 2 → 1 norm of a matrix—in particular, we will be interested in the
matrix M with rows Z1, . . . ,Zk .

For our purposes, the 2 → 1 norm of M serves as a moderately outlier-robust modification
of the spectral norm (a.k.a. 2 → 2 norm) of the empirical covariance of Z1, . . . ,Zk . This
robustness is achieved by replacing an 	2 norm with an 	1 norm. We say “moderately” outlier
robust because under our 2nd moment assumption on Z1, . . . ,Zk we will only be able to
establish bounds in expectation on the 2 → 1 norm of M , rather than high-probability bounds.

DEFINITION 2.9. Let A ∈ R
n×m be a matrix with rows A1, . . . ,An. The 2-to-1 norm of

A is defined as

‖A‖2→1 = max‖u‖=1
‖Au‖1 = max‖u‖=1,σ∈{±1}n

∑
i≤n

σi〈Ai,u〉.

Computing the 2 → 1-norm of a matrix A exactly is computationally intractable [10].
Nonetheless, we will profitably use a convex program—again, an SDP – whose optimal val-
ues can be related to the 2 → 1 norm. Eventually we will relate the centrality SDP to the
following slightly different SDP. It is one of a well-studied family of SDPs for p → q-norm
problems, the most famous of which is the ∞ → 1-norm SDP appearing in Grothendieck’s
inequality and used to approximate the cut norm of a matrix [3].

DEFINITION 2.10. For n,m ∈ N, let S2→1
n,m be the following subset of R

(n+m)×(n+m),
treated as the set of block matrices

X(S,R,U) =
(

S R

R� U

)
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with S ∈ R
n×n and U ∈ R

m×m:

S2→1
n,m = {

X(S,R,U) : Sii = 1 for i = 1, . . . , n,TrU ≤ 1, and X � 0
}
.

Here we think of S as a relaxation of rank-one matrices σσ�, where σ ∈ {±1} is as in Defi-
nition 2.9, and U as a relaxation of uu� where u is a unit vector as in Definition 2.9.

The following theorem is due to Nesterov. It will allow us to control the optimum value
of an SDP relaxation of the 2 → 1 norm in terms of the 2 → 1 norm itself. It follows fairly
easily from the observation that ‖A‖2

2→1 = maxσ∈{±1}n σ�A�Aσ and the fact (also due to
Nesterov) that semidefinite programming yields a 2

π
-approximation algorithm for the maxi-

mization of a positive semidefinite quadratic form over {±1}n (see, e.g., [56], Section 6.3 for
a simple proof).

THEOREM 2.11 ([46]). There is a constant K2→1 = √
π/2 < 2 such that for every n×m

matrix A, one has the following inequality:

max
X(S,R,U)∈S2→1

n,m

〈R,A〉 ≤ K2→1‖A‖2→1.

The following lemma affords control over E‖M‖2→1, where M has rows Z1, . . . ,Zk . The
proof uses standard tools from empirical process theory; a similar argument appears in [38].
We provide the proof in Section 1 of the Supplementary Material [24].

LEMMA 2.12. Let Z be an R
d -valued random variable with mean EZ = 0 and covari-

ance EZZ� = �. Let Z1, . . . ,Zk be i.i.d. copies of Z, and let M ∈R
k×d be the matrix whose

rows are Z1, . . . ,Zk . Then

E‖M‖2→1 ≤ 2
√

k Tr� + k
√‖�‖,

where ‖�‖ denotes the operator norm, or maximum eigenvalue, of �.

Finally, the last lemma on the way to Lemma 2.8 shows that the centrality SDP satisfies
a bounded differences property: this is crucial to establishing the high-probability bound in
Lemma 2.8. The proof is in [24], Section 1.

LEMMA 2.13. Let r ≥ 0 and x ∈ R
d . Let Z1, . . . ,Zk ∈ R

d , i ∈ [k] and Z′
i ∈ R

d .
Let SDP(Z1, . . . ,Zk, x, r) be the optimum value of the centrality SDP with parameters
Z1, . . . ,Zk, x, r . Then

∣∣SDP(Z1, . . . ,Zk, x, r) − SDP
(
Z1, . . . ,Zi−1,Z

′
i ,Zi+1, . . . ,Zk, x, r

)∣∣ ≤ 1

k
.

Now we are ready to prove Lemma 2.8.

PROOF OF LEMMA 2.8. The proof has an expectation step and a concentration step.
Let SDP(Z1, . . . ,Zk,μ, r) be the optimum value of the centrality SDP. Since Z1, . . . ,Zk are
independent, by the bounded differences inequality together with Lemma 2.13,

P
(
SDP(Z1, . . . ,Zk,μ, r) −ESDP(Z1, . . . ,Zk,μ, r) > 1/200

)
< 2−�(k).

Thus, it will suffice to show that ESDP(Z1, . . . ,Zk,μ, r) ≤ 1/200 for some r = O(
√

Tr�/k+√‖�‖).
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By definition of the centrality SDP, using the constraints 〈Zi − x,Wi〉 ≥ r · bi , we have

E max
B,W,U,b,u

1

k

∑
i≤k

bi ≤ 1

kr
E max

B,W,U,b,u

∑
i≤k

〈Wi,Zi − μ〉.

Let S ′ be the set S2→1
k,d with the modified constraint Sii ≤ 1 rather than Sii = 1. Then we

have S ′ ⊇ {Y(B,W,U)} where the latter is the set of feasible solutions to the centrality SDP
(restricted to the large (d + k) × (d + k) block), and hence

1

kr
E max

B,W,U,b,u

∑
i≤k

〈Wi,Zi − μ〉 ≤ 1

kr
E max

X(S,R,U)∈S ′
∑
i≤k

〈Ri,Zi − μ〉,

where R has rows R1, . . . ,Rk , since the left-hand side maximizes over a larger set of PSD
matrices.

We would like to replace S ′ with S2→1
k,d . For this we need to argue that the constraints

Sii = 1 are satisfied by the optimal X(S,R,U). First of all, note that the maximum on the
right-hand side is obtained at X(S,R,U) where 〈Ri,Zi −μ〉 ≥ 0, otherwise we may replace
X with 1

2X + 1
2(−Eii)X(−Eii) and remain inside S ′ while only increasing 〈Ri,Zi − μ〉—

here Eii is the matrix with exactly one nonzero entry, at the (i, i)th position, with value 1.
Hence also the maximum is obtained at X(S,R,U) with Sii = 1, otherwise we may

rescale the ith row and column by 1/
√

Sii and remain in S ′ while only increasing 〈Ri,Zi −μ〉
(here we used that 〈Ri,Zi − μ〉 ≥ 0, so 〈Ri,Zi − μ〉/√Sii ≥ 〈Ri,Zi − μ〉). Ultimately, we
can conclude that

1

kr
E max

X(S,R,U)∈S ′
∑
i≤k

〈Ri,Zi − μ〉 = 1

kr
E max

X(S,R,U)∈S2→1
k,d

∑
i≤k

〈Ri,Zi − μ〉.

The right-hand side is exactly the 2 → 1-norm SDP relaxation from Definition 2.10. So if M

is the matrix with rows Zi − μ, we get

ESDP(Z1, . . . ,Zk,μ, r) ≤ K2→1

kr
·E‖M‖2→1

≤ K2→1

r
· (

2
√

Tr�/k + √‖�‖)
,

where we have used Theorem 2.11 and K2→1 is the constant from that theorem. By choosing
r = 1000(

√
Tr�/k + √‖�‖) the lemma follows. �

3. SoS preliminaries. Now that we have established certifiable centrality of the mean,
we can turn back to our main goal: design an algorithm to estimate the mean μ in order
to prove Theorem 1.2. While in Section 2 we employed a traditional style of semidefinite
program (arising as a relaxation of a quadratic program), to prove Theorem 1.2 we will need a
larger semidefinite program (i.e., having more variables and constraints). The sum of squares
method offers a principled way to exploit the addition of extra variables and constraints to
semidefinite programs.

Treating SoS-style semidefinite programs with the traditional language and notation of
semidefinite programming is often cumbersome. Recent work in theoretical computer science
has pioneered an alternative point of view, involving pseudoexpectations, which correspond
to SDP primal solutions, and SoS proofs, which correspond to SDP dual solutions. Analyzing
a complex semidefinite program can often be reduced to the construction of an appropriate
dual solution. The pseudoexpectation/SoS proof point of view is designed to make this con-
struction possible in a modular fashion, building a complicated dual solutions out of many
simpler ones.
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In this section we get set up to use the SoS approach for our main algorithm. We review
the preliminaries we need and refer the reader to other resources for a full exposition—see,
for example, [7].

DEFINITION 3.1 (SoS Polynomials). Let x = x1, . . . xn be some indeterminates, and let
p ∈ R[x]. We say that p is SoS if it is expressible as p = ∑m

i=1 qi(x)2 for some other poly-
nomials qi . We write p � 0, and if p − q � 0 we write p � q .

DEFINITION 3.2 (SoS Proof). Let A = {p1(x) ≥ 0, . . . , pm(x) ≥ 0} be a set of polyno-
mial inequalities. We sometimes include polynomial equations pi(x) = 0, by which we mean
that A contains both pi(x) ≥ 0 and −pi(x) ≥ 0. We say that A SoS-proves that q(x) ≥ 0 if
there are SoS polynomials qS(x) for every S ⊆ [m] such that

q(x) = ∑
S⊆[m]

qS(x)
∏
i∈S

pi(x).

The polynomials qS(x) form an SoS proof that q(x) ≥ 0 for every x such that pi(x) ≥ 0. If
degqS(x) · ∏

i∈S pi(x) ≤ d for every S, then we say that the proof has degree d , and write

A �d q(x) ≥ 0.

SoS proofs obey many natural inference rules, which we will freely use in this paper—see,
for example, [7].

Critically, the set of SoS proofs of q(x) ≥ 0 using axioms A form a convex set (in fact, a
semidefinite program). Their convex duals are called pseudodistributions or pseudoexpecta-
tions (we use the terms interchangeably).

DEFINITION 3.3 (Pseudoexpectation). A degree-d pseudoexpectation in variables x =
x1, . . . , xn is a linear operator Ẽ : R[x]≤d → R, where R[x]≤d are the polynomials in x with
real coefficients and degree at most d . A pseudoexpectation is:

1. Normalized: Ẽ1 = 1, where 1 ∈ R[x]≤d on the left side is the constant polynomial.
2. Nonnegative: Ẽp(x)2 ≥ 0 for every p of degree at most d/2.

DEFINITION 3.4 (Satisfying constraints). A pseudoexpectation of degree d satisfies a
polynomial equation p(x) = 0 if for every q(x) such that p(x)q(x) has degree at most d

it holds that Ẽp(x)q(x) = 0. The pseudodistribution satisfies an inequality p(x) ≥ 0 if for
every q(x)2 such that degq(x)2p(x) ≤ d it holds that Ẽp(x)q(x)2 ≥ 0.

EXAMPLE 3.5. To demystify pseudoexpectations slightly, consider the classic semidef-
inite relaxation of the set {±1}n to the set {X ∈ R

n×n : X � 0,Xii = 1}. (This is exactly
the set of PSD matrices employed in the SDP-based MAX-CUT algorithm of Goemans and
Williamson [22].)

Each such X defines a degree-2 pseudoexpectation, by setting Ẽxixj = Xij for 1 ≤ i ≤ n,
Ẽxi = 0, and finally Ẽ1 = 1. Since X � 0, it also follows that for every polynomial
p ∈ R[x1, . . . , xn]≤2, one has Ẽp(x)2 = p�

1 Xp1 + p̂(∅)2 ≥ 0, where p1 is the vector of
coefficients of the homogeneous linear part of p and p̂(∅) is the constant term in p. Last,
since Ẽx2

i = Xii = 1, the pseudoexpectation satisfies x2
i − 1 = 0 for each i; these equations

exactly characterize {±1}n as a variety in R
n.8

8In this case, Ẽ is defined by a few more parameters than X—namely the values Ẽxi , which we set to zero.

For most algorithms involving degree-2 pseudoexpectations the main focus is on the n2 variables Ẽxixj , so this
is not too surprising. However, as we will see in the algorithm in Section 2 of the Supplementary Material [24],
pseudoexpectations of degree higher than 2 can contain useful information about polynomials of various degrees.
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As in this simple example, it is always possible to write an explicit semidefinite program
whose solutions are pseudoexpectations satisfying some chosen set of polynomial inequali-
ties. However, as the degrees and complexity of the of polynomials grow, these SDPs become
notationally unwieldy. In this regard, the pseudoexpectation approach carries significant ad-
vantages.

The most elementary fact relating pseudodistributions and SoS proofs is the following:

FACT 3.6. Suppose A �d p(x) ≥ 0. Then any degree-d pseudodistribution Ẽ which sat-
isfies A also has Ẽp(x) ≥ 0.

We will make use of the following theorem, which can be proved via semidefinite pro-
gramming.

THEOREM 3.7 (Adapted from [7]). For every d ∈ N there exists an (mn)O(d)-time algo-
rithm which given a set of m n-variate polynomial inequalities A which:

• has coefficients with bit complexity at most (mn)O(d),
• contains a constraint of the form ‖x‖2 ≤ M for a positive constant M and
• is satisfied by some x ∈R

n

finds a degree-d pseudodistribution which satisfies A up to an additive error of 2−(mn)d in
each inequality.

In general, the additive 2−(mn)d errors will not bother us, because the magnitudes of coef-
ficients in the SoS proofs we construct will be bounded by poly(n,m). See [7, 50] for more
discussion of such numerical considerations.

We will use the following simple fact about pseudodistributions.

FACT 3.8. Let Ẽ be a pseudodistribution of degree 2 in variables x1, . . . , xn and let
μ ∈ R

n. Then ‖Ẽx − μ‖2 ≤ Ẽ‖x − μ‖2.

PROOF. Follows from Ẽ(xi −μi)
2 ≥ (Ẽxi −μi)

2 for every i ≤ n, which follows from the
more general fact Ẽp(x)2 ≥ (Ẽp(x))2 for every degree-1 polynomial p. The latter follows
by Ẽ(p(x) − Ẽp(x))2 ≥ 0. �

4. Main algorithm and analysis. Our main lemma for this section gives an algorithm
which recovers a central point given vectors Z1, . . . ,Zk , provided that a certifiably central
point exists (and some minor additional regularity conditions on Z1, . . . ,Zk are met).

LEMMA 4.1. For every d, k ∈ N and C, r > 0 there is an algorithm MEDIAN-SDP which
runs in time (dk logC)O(1) and has the following guarantees. Let Z1, . . . ,Zk ∈ R

d . Suppose
that μ ∈ R

d is certifiably (r,1/100)-central with respect to Z1, . . . ,Zk . And, suppose that at
most k/100 of the vectors Z1, . . . ,Zk have ‖Zi −μ‖ > Cr . Then given Z1, . . . ,Zk , MEDIAN-
SDP returns a point μ̂ with ‖μ − μ̂‖ = O(r).

Together Lemmas 2.8 and 4.1 suffice to prove Theorem 1.2, with the small modification
that the algorithm is given access to r , C in addition to the samples X1, . . . ,Xn. We discuss
in Section 5 of the Supplementary Material [24] how to use standard ideas to avoid this
dependence.
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PROOF OF THEOREM 1.2. Let k = c log(1/δ) for a big-enough constant c. Given sam-
ples X1, . . . ,Xn, for i ≤ k let Zi be the average of samples Xi·(n/k), . . . ,X(i+1)·n/k−1 (throw-
ing out samples as necessary so that n is divisible by k). Then Z1, . . . ,Zk are i.i.d. copies
of a random variable Z with EZ = μ and E(Z − μ)(Z − μ)� = k

n
�. By Lemma 2.8, μ is

certifiably (r,1/100)-central with respect to Z1, . . . ,Zk for r = O(
√

Tr�/n + √‖�‖k/n)

with probability at least 1 − exp(−�(k)). We can choose c so that this probability is at least
1 − δ and

√‖�‖k/n = O(
√‖�‖ log(1/δ)/n).

Furthermore, by Chebyshev’s inequality and a binomial tail bound, with probability at least
1 − exp(−�(k)) we have that ‖Zi − μ‖ ≤ O(

√
Trk�/n) ≤ O(kr) for all but k/100 vectors

Zi . Hence, except with probability 2−�(k), calling MEDIAN-SDP with C = O(k) yields a
vector x with ‖μ − x‖ ≤ O(r). �

In the remainder of this section we prove Lemma 4.1 from technical lemmas which are
proved in the Supplementary Material [24]. We will make use of the SoS method, which
will require some setup and technical arguments, so we describe the main idea first. Given
Z1, . . . ,Zk , we will define a system of polynomial equations A whose feasible solutions are
the certifiably (r,1/10)-central points. (For technical convenience actually A has feasible
solutions which are the certifiably (r,1/10)-central points satisfying an additional mild reg-
ularity condition, as we discuss below.) Our main algorithm will find a pseudodistribution
which satisfies A and extract from it an estimator μ̂ ∈ R

d .
To argue about ‖μ̂ − μ‖, we will construct SoS proofs (using A as axioms) of several

inequalilties concerning certifiable (r,1/10)-central points. Together these inequalities will
capture the fact that any two (r,1/10)-central points x, y have ‖x − y‖ ≤ 2r ; we will use
the SoS proofs of these inequalities as duals to the set of pseudodistributions satisfying A,
ultimately showing that ‖μ̂ − μ‖ = O(r).

Before we can construct A, we need to observe a consequence of SDP duality—certifiable
centrality of μ implies the existence of a witness to its centrality. (Here it may help to recall
the set CERTIFIABLE-CENTERS from Section 1.) Our construction of A will exploit these
witnesses.

LEMMA 4.2. Let Z1, . . . ,Zk, x ∈ R
d and suppose x is certifiably (r,p)-central with

respect to Z1, . . . ,Zk . Then there are nonnegative numbers α1, . . . , αk, β1, . . . , βk, γ and a
degree-2 SoS polynomial σ ∈ R[b1, . . . , bk, v1, . . . , vd ]≤2 such that the following polynomial
identity holds in variables b1, . . . , bk, v1, . . . , vd :

(4.1)
pk −

k∑
i=1

bi =
k∑

i=1

αibi

(〈Zi − x, v〉 − r
) +

k∑
i=1

βi

(
1 − b2

i

)

+ γ
(
1 − ‖v‖2) + σ(b, v).

The proof is a direct application of SDP duality—see, for example, [11]. (The polynomial
identity is obtained by evaluating the quadratic form of an optimal dual solution to the central-
ity SDP at the vector of indeterminates (1, b, u).) The numbers α, β , γ and SoS polynomial
σ are an SoS proof that x is (r,p)-central: they witness

⋃
i≤k

{
b2
i ≤ 1,‖v‖2 ≤ 1, bi〈Zi − x, v〉 − bir ≥ 0

} �2

k∑
i=1

bi ≤ pk.

Indeed one may check that if v is any unit vector and b is the 0/1 indicator for those i ∈ [k]
such that 〈Zi − x, v〉 ≥ r , then the right-hand side of equation (4.1) is nonnegative when
evaluated at b, v. Hence the left-hand side must be as well, which means that

∑
i∈k bi ≤ pk.
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The last step before constructing the polynomial system A is to observe a consequence
of the regularity condition from Lemma 4.1 that ‖Zi − μ‖ ≤ Cr for at least 99k/100
Zi’s. Namely, it affords some control over the magnitudes of the numbers α1, . . . , αk, γ

from Lemma 4.2, ensuring that the witness α1, . . . , αk, β1, . . . , βk, γ has a certain well-
conditioned-ness property. We will capture the well-conditioned-ness property in A and make
use of it in our SoS proofs. The proof of the following lemma involves elementary manipula-
tions on equations like equation (4.1); we defer it to the Supplementary Material [24].

LEMMA 4.3. Let Z1, . . . ,Zk, x ∈ R
d and suppose x is (r,p)-central with respect to

Z1, . . . ,Zk . Suppose also that ‖Zi − x‖ ≤ Cr for all but qk vectors Zi , where C ≥ 1. Then
there are nonnegative numbers α1, . . . , αk, β1, . . . , βk, γ and a degree-2 SoS polynomial σ ∈
R[b1, . . . , bk, v1, . . . , vd ]≤2 such that the following polynomial identity holds in variables
b1, . . . , bk, v1, . . . , vd :

(4.2)
(p + q + 1/20)k −

k∑
i=1

bi =
k∑

i=1

αibi

(〈Zi − x, v〉 − r
) +

k∑
i=1

βi

(
1 − b2

i

)

+ γ
(
1 − ‖v‖2) + σ(b, v).

Furthermore, γ is in the finite set {0,1/100,2/100, . . . , k}, and α1, . . . , αk are in the set
{0} ∪ [1/100Cr,4k/r].

Now we are able to construct our main polynomial system A, whose solutions correspond
to x, α, β , γ , σ such that α, β , γ , σ form a witness that x is a certifiably (r,1/10)-central.
For technical convenience, we take γ to be a parameter of this system rather than one of its
indeterminates. Part of our algorithm will involve a brute-force search for a good choice of
γ —by Lemma 4.3 there will only be O(k) possibilities to search over.

DEFINITION 4.4 (The polynomial system A(Z1, . . . ,Zk, r,C, c, γ )). For vectors Z1,

. . . ,Zk ∈ R
d , r > 0, and c,C > 0 we define a system of equations in the following variables:

α1, . . . , αk, β1, . . . , βk, σij for i, j ∈ [d + k + 1],
x1, . . . , xd, and ai,t for i ∈ [k] and t ∈ [logC/c + 1].

Let Asos be the set of linear equations among α1, . . . , αk, β1, . . . , βk, σij , x which ensure that
the polynomial identity

k

10
−

k∑
i=1

bi = ∑
i∈S

αibi

(〈Zi − μ,v〉 − r
) +

k∑
i=1

βi

(
1 − b2

i

)

+ γ
(
1 − ‖v‖2) + ∑

i∈[d+k+1]

〈
σi, (1, b, v)

〉2
holds in variables b1, . . . , bk, v1, . . . , vd , where σi is the vector with j th entry σij and (1, b, v)

is the (d + k + 1)-dimensional concatenation 1, b1, . . . , bk, v1, . . . , vd . We often abuse nota-
tion and write σ(b, v) for the expression

∑
i∈[d+k+1]〈σi, (1, b, v)〉2. Let Anonneg be the in-

equalities

αi ≥ 0 for i ∈ [k] and βi ≥ 0 for i ∈ [k].
Let Aa be the equations and inequalities

a2
i,t = ai,t for t ∈ [logC/c + 1],

ai,t · 2t−1 · c ≤ ai,t · αi for t ∈ [1, logC/c + 1],
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Algorithm 1 MEDIAN-SDP

Given: Z1, . . . ,Zk ∈ R
d, r,C > 0

1. For each γ ∈ {0,1/100,2/100, . . . , k}, try to find a degree-8 pseudodistribution satisfying
A(Z1, . . . ,Zk, r,1/100Cr,4k/r, γ ). If none exists for any γ , output REJECT. Otherwise,
let Ẽ be the pseudodistribution obtained for any γ for which one exists.

2. Output Ẽx.

ai,t · αi ≤ ai,t · 2t · c for t ∈ [1, logC/c + 1],
ai,0 · αi = 0,∑

t≤logC/c+1

ai,t = 1 for all i ≤ k,

ai,t ai,t ′ = 0 for all i ≤ k and t �= t ′.

The inequalities Aa ensure that ai,t ∈ {0,1} and ai,t = 1 if and only if α ∈ [2t−1c,2t c]
(or αi = 0 in the case of ai,0). We will use the variables ai,t to approximate some func-
tions of αi which are not polynomials. For instance, if α, a satisfy Aa and αi > 0 then∑

1≤t≤logC/c+1 ai,t /(c · 2t ) ∈ [1/2αi,1/αi].
Finally, let A =Asos ∪Anonneg ∪Aa.

Now we can describe the algorithm MEDIAN-SDP (Algorithm 1) and its main analysis.

LEMMA 4.5 (Main lemma for MEDIAN-SDP). Let Z1, . . . ,Zk ∈ R
d . Let μ be certifiably

(r,1/10)-central. Then for every c, C, γ , any degree-8 pseudodistribution Ẽ satisfying A has
Ẽ‖x − μ‖2 = O(r2).

We will prove Lemma 4.5 in [24], Section 2. We wrap up this section by proving
Lemma 4.1 from Lemmas 4.2, 4.3 and 4.5.

PROOF OF LEMMA 4.1. Since at most k/100 of of Z1, . . . ,Zk have ‖Zi − μ‖ > Cr ,
and because μ is (r,1/100)-certifiable, together Lemmas 4.2 and 4.3 show that there exist
nonnegative α1, . . . , αk, β1, . . . , βk, γ and a degree-2 SoS polynomial σ such that

0.07k − ∑
i≤k

bi =
k∑

i=1

αibi

(〈Zi − x, v〉 − r
) +

k∑
i=1

βi

(
1 − b2

i

)

+ γ
(
1 − ‖v‖2) + σ(b, v)

holds as a polynomial identity in b, v. Furthermore, αi ∈ {0} ∪ [1/100Cr,4k/r] and γ ∈
{1/100,2/100, . . . , k}. So, A(Z1, . . . ,Zk, r,1/100Cr,4k/r, γ ) is feasible. Thus, MEDIAN-
SDP with parameters r , C eventually finds a pseudodistribution Ẽ satisfying A for some γ ′.
So by Lemma 4.5 we have Ẽ‖x − μ‖2 ≤ O(r2). Then the main conclusion of Lemma 4.1
follows by Fact 3.8.

The running time bound follows by observation that A has (dk logC)O(1) variables and
inequalities with this choice of parameters, then application of Theorem 3.7. �
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5. Conclusion. We have described the first polynomial-time algorithm capable of esti-
mating the mean of a distribution with confidence intervals asymptotically matching those of
the empirical mean in the Gaussian setting, under only the assumption that the distribution
has finite mean and covariance. Previous estimators with matching rates under such weak
assumptions required exponential computation time. Our algorithm uses semidefinite pro-
gramming, and in particular the SoS method. The SDP we employ is sufficiently powerful
that Lugosi and Mendelson’s analysis of their tournament-based estimator can be transformed
to an analysis of the SoS SDP.

Our algorithm runs in polynomial time, but it is not close to practical for any substantially
high-dimensional data set. Work building on the present paper has already reduced the run-
ning time to O(n3.5 + n2d) · (lognd)O(1) [15]. It remains an interesting direction for future
study whether there is a practical algorithm whose empirical performance improves on that
of fast, practical algorithms (like geometric median) which achieve a

√
Tr� log(1/δ)/n-style

confidence interval.
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SUPPLEMENTARY MATERIAL

Supplement to “Mean estimation with sub-Gaussian rates in polynomial time” (DOI:
10.1214/19-AOS1843SUPP; .pdf). We provide deferred proofs of technical results.
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