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We study trend filtering, a relatively recent method for univariate non-
parametric regression. For a given integer r ≥ 1, the rth order trend filtering
estimator is defined as the minimizer of the sum of squared errors when we
constrain (or penalize) the sum of the absolute rth order discrete derivatives
of the fitted function at the design points. For r = 1, the estimator reduces to
total variation regularization which has received much attention in the statis-
tics and image processing literature. In this paper, we study the performance
of the trend filtering estimator for every r ≥ 1, both in the constrained and pe-
nalized forms. Our main results show that in the strong sparsity setting when
the underlying function is a (discrete) spline with few “knots,” the risk (under
the global squared error loss) of the trend filtering estimator (with an appro-
priate choice of the tuning parameter) achieves the parametric n−1-rate, up
to a logarithmic (multiplicative) factor. Our results therefore provide support
for the use of trend filtering, for every r ≥ 1, in the strong sparsity setting.

1. Introduction. Consider the nonparametric regression problem where we observe data
generated according to the model:

(1) Yi = f ∗(i/n) + ξi, i = 1, . . . , n,

where f ∗ : [0,1] → R is the unknown regression function, and ξ1, . . . , ξn are unobserved
independent errors having the normal distribution with mean zero and variance σ 2. The goal
is to recover the underlying function f ∗ from the measurements Y1, . . . , Yn. Alternatively, in
the Gaussian sequence formulation, (1) can be expressed as

(2) Y = θ∗ + ξ,

where ξ ∼ Nn(0, σ 2In), and θ∗ := (f ∗(1/n), f ∗(2/n), . . . , f ∗(1)) is unknown. Here
Nn(0, σ 2In) denotes the multivariate normal distribution with mean vector zero and covari-
ance matrix σ 2In.

In this paper, we study the performance of trend filtering, a relatively new method for
nonparametric regression with special emphasis on its risk properties. For a given integer
r ≥ 1, the r th order trend filtering estimator is defined as the minimizer of the sum of squared
errors when we constrain or penalize the sum of the absolute r th order discrete derivatives
of the fitted function at the design points. Formally, given a fixed integer r ≥ 1 and a tuning
parameter V ≥ 0, the r th order trend filtering estimator for θ∗ in the constrained form is given
by

(3) θ̂
(r)
V := arg min

θ∈Rn

{
1

2
‖Y − θ‖2 : ∥∥D(r)θ

∥∥
1 ≤ V n1−r

}
,
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where V > 0 is a tuning parameter (the multiplicative factor n1−r is just for normaliza-
tion), D(0)θ := θ , D(1)θ := (θ2 − θ1, . . . , θn − θn−1) and D(r)θ , for r ≥ 2, is recursively
defined as D(r)θ := D(1)(D(r−1)θ). Also ‖ · ‖1 denotes the usual L1 norm defined by
‖x‖1 := ∑k

i=1 |xi | for x = (x1, . . . , xk) ∈ R
k . Note that ‖D(r)θ‖1 also equals V (D(r−1)θ)

where V (α) := ∑k
i=2 |αi − αi−1| denotes the variation of a vector α = (α1, . . . , αk) ∈ R

k .
For simplicity, we denote the operator D(1) by simply D.

Alternatively, the trend filtering estimator in the penalized form is

(4) θ̂
(r)
λ := arg min

θ∈Rn

(
1

2
‖Y − θ‖2 + σnr−1λ

∥∥D(r)θ
∥∥

1

)

for r ≥ 1 and tuning parameter λ ≥ 0. There is an abuse of notation here in that we are using
the same notation for both the constrained and the penalized estimators. It may be noted,
however, that when the subscript of θ̂ (r) is V , we are referring to the constrained estimator
(3) while when the subscript is λ, we are referring to the penalized estimator (4).

For r = 1, (4) reduces to the one-dimensional discrete version of total variation regulariza-
tion or total variation denoising which was first proposed by Rudin, Osher and Fatemi [33]
and has since been heavily used in the image processing community. The penalized estimator
(4), for general r ≥ 1, was first proposed by Steidl, Didas and Neumann [34] in the image
processing literature who termed it higher order total variation regularization. The same es-
timator was later rediscovered by Kim et al. [19] who coined the name trend filtering for
it. Many properties of the estimator have been studied in Tibshirani [36] and Wang, Smola
and Tibshirani [39]. It should also be mentioned here that a continuous version of (4), where
the discrete differences are replaced by continuous derivatives, was proposed much earlier in
the statistics literature by Mammen and van de Geer [24] under the name locally adaptive
regression splines.

The presence of the L1 norm in the constraint in (3) (resp., penalty in (4)) promotes spar-
sity of the vector D(r)θ̂

(r)
V (resp., D(r)θ̂

(r)
λ ). Now for every vector θ ∈ R

n, ‖D(r)θ‖0 = k if
and only if θ equals (f (1/n), . . . , f (n/n)) for a discrete spline function f that is made of
k + 1 polynomials each of degree (r − 1) (here ‖x‖0 denotes the number of entries of the
vector x that are nonzero). Discrete splines are piecewise polynomials with regularity at the
knots. They differ from the usual (continuous) splines in the form of the regularity condition
at the knots: for splines, the regularity condition translates to (higher order) derivatives of
adjacent polynomials agreeing at the knots, while for discrete splines it translates to discrete
differences of adjacent polynomials agreeing at the knots; see Mangasarian and Schumaker
[25] for details. This fact about the connection between ‖D(r)θ‖0 and discrete splines is stan-
dard (see, e.g., Steidl, Didas and Neumann [34]) but we included a proof in Subsection D.3
of the supplementary file [15] for the convenience of the reader.

Thus the presence of the L1 norm in (3) (resp., (4)) implies that θ̂
(r)
V (resp., θ̂

(r)
λ ) can be

written as (f̂ (1/n), . . . , f̂ (n/n)) for a discrete spline f̂ of degree (r − 1) made up of not
too many polynomial pieces. Trend filtering thus presents a way of fitting (discrete) splines
to the data. Note that the knots of the discrete splines are automatically chosen by the opti-
mization algorithms underlying (3) and (4) without any input from the user (except for the
value of the tuning parameter V or λ). Because of this automatic selection of the knots, trend
filtering can be regarded as a spatially adaptive method (in the terminology of Donoho and
Johnstone [7]). Note that such spatial adaptation is not exhibited by classical nonparamet-
ric regression methods such as local polynomials, kernels and splines, with a fixed tuning
parameter. On the other hand, methods such as CART (Breiman et al. [3]), MARS (Fried-
man [11]), variable-bandwidth kernel/spline methods (see, e.g., Müller and Stadtmüller [26],
Brockmann, Gasser and Herrmann [4], Pintore, Speckman and Holmes [29] and Zhou and
Shen [41]) and wavelets (Donoho and Johnstone [7]) are also spatially adaptive.
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The present paper studies the performance of the estimators θ̂
(r)
V and θ̂

(r)
λ as estimators

of θ∗ under the multivariate Gaussian model (2). We shall use the squared error loss under
which the risk of an estimator θ̂ is defined as

(5) R
(
θ̂ , θ∗) := 1

n
Eθ∗

∥∥θ̂ − θ∗∥∥2
.

Under natural sparsity assumptions on θ∗, we provide upper bounds on the risks R(θ̂
(r)
V , θ∗)

and R(θ̂
(r)
λ , θ∗) as well as high probability upper bounds on the random loss functions ‖θ̂ (r)

V −
θ∗‖2/n and ‖θ̂ (r)

λ − θ∗‖2/n.
It is natural to study the risk properties of (3) and (4) under the following two kinds of

assumptions on θ∗: (a) nr−1‖D(r)θ∗‖1 ≤ V for some V > 0 (possibly dependent on n), and
(b) ‖D(r)θ∗‖0 ≤ k for some k that is much smaller than n. We shall refer to these two regimes
as weak sparsity and strong sparsity, respectively. This breakdown into weak and strong
sparsity settings is inspired by corresponding terminology in the study of risk properties
of thresholding based estimators in Gaussian sequence models [18] and the prediction risk
properties of the LASSO estimators in regression [5]. Indeed, as demonstrated in Tibshirani
[36], there is a close connection between the trend filtering estimators and LASSO (more
details are provided in Section 5.4).

A thorough study on the performance of the penalized trend filtering estimator (4) under
weak sparsity has been done by Tibshirani [36] and Wang, Smola and Tibshirani [39] building
on earlier results of Mammen and van de Geer [24]. It is proved there that, when the tuning
parameter λ is appropriately chosen, the penalized estimator (4) is minimax optimal in the
weak sparsity setting. Actually, the weak sparsity results of [36, 39] are broader and hold
under more general settings (see Remark 2.1 for more details).

The present paper focuses on the strong sparsity setting. Compared to available results in
the weak sparsity setting, relatively little is known about the performance of the trend filtering
estimators in the strong sparsity setting. In fact, all existing results [6, 17, 22, 23, 27, 37] for
strong sparsity deal with the case r = 1 (where trend filtering is the same as total variation
denoising). To the best of our knowledge, the present paper is the first to prove risk bounds for
trend filtering under strong sparsity for arbitrary r ≥ 1. We also improve, in certain aspects,
existing results for r = 1.

In order to motivate our results, let us consider the strong sparsity setting where it is
assumed that D(r)θ∗ is sparse. If ‖D(r)θ∗‖0 = k, then, as mentioned previously, θ∗ =
(f (1/n), . . . , f ((n − 1)/n), f (1)) for a discrete spline function f that is made of k + 1
polynomials each of degree (r − 1). Given data Y ∼ Nn(θ

∗, σ 2In), an oracle piecewise poly-
nomial estimator (having access to locations of the knots of θ∗) would put knots correspond-
ing to θ∗ and then fit a polynomial of degree (r − 1) in each of the partitions given by the
knots. This would be a linear estimator with at most (k + 1)r degrees of freedom and its risk
(defined as in (5)) will be bounded by rσ 2(k + 1)/n. This motivates the following question
which is the focus of this paper: When ‖D(r)θ∗‖0 = k, how do the risks of properly tuned
trend filtering estimators (3) and (4) compare with the oracle risk of rσ 2(k + 1)/n?

The main results of this paper for constrained trend filtering (Theorem 2.2 and Corol-
lary 2.3) imply that when ‖D(r)θ∗‖0 = k, the risk of θ̂

(r)
V satisfies

(6) R
(
θ̂

(r)
V , θ∗) ≤ Cr(c)σ

2 k + 1

n
log

en

k + 1
,

provided:

(i) the tuning parameter V is nonrandom and close to V ∗ := nr−1‖D(r)θ∗‖1, and
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(ii) (minimum length condition) each of the polynomial pieces of θ∗ have length bounded
below by cn/(k + 1) for a constant c > 0 (in fact, our result requires a weaker version of this
condition; see (13) and Remark 2.4).

Here Cr(c) is a positive constant that depends only on r and the constant c from the second
assumption above.

We also prove results for the penalized estimators. For r = 1, our main result (Corol-
lary 2.8) states that the risk of θ̂

(1)
λ is also bounded by the right-hand side of (6) under the

minimum length condition provided λ is close to a theoretical choice λ∗ and λ ≥ λ∗. This
choice λ∗ depends on θ∗ and is defined in (27). We provide an explicit upper bound for λ∗
in Lemma 2.9 which gives risk bounds for θ̂

(1)
λ under more explicit choices of λ (see Corol-

lary 2.10). A comparison of these results to existing results is given in Remarks 2.6 and 2.7.
For r ≥ 2, we prove, in Corollary 2.11, that the penalized estimator satisfies

(7) R
(
θ̂

(r)
λ , θ∗) ≤ Cr(c)σ

2
(

k + 1

n
log

en

k + 1
+ (k + 1)2r

n

)

under the minimum length condition provided that λ is close to λ∗ (defined in (27)) and
λ ≥ λ∗. Explicit upper bounds for λ∗ are in Lemma 2.12 and risk bounds for θ̂

(r)
λ with explicit

penalty choices are in Corollary 2.13. Note that (7) is weaker compared to (6) in terms of the
dependence on k.

The implication of our results is the following. As mentioned earlier, the trend filtering
estimators are given by discrete spline functions of degree r − 1. The knots of these splines
are chosen automatically by the algorithm (the user only needs to specify the tuning parameter
V or λ). Our results indicate that under the assumption ‖D(r)θ∗‖0 = k (i.e., θ∗ is a discrete
spline of degree r − 1 with k + 1 polynomial pieces) with a minimum length condition on
the polynomial pieces of θ∗, the automatic selection of knots by the trend filtering estimators
(when appropriate choices of V or λ) happens in a way that the overall risk is comparable to
the oracle risk of rσ 2(k + 1)/n. In fact, when k = O(1), the risks of the ideally tuned trend
filtering estimators is only off compared to the oracle risk by a factor that is logarithmic in
n (we also prove in Lemma 2.4 that this logarithmic factor cannot be completely removed in
general). The automatic knot selection of trend filtering can therefore be interpreted as being
done adaptively depending on the structure of the unknown θ∗ in order to approximate the
oracle risk. This is the reason why we refer to our results as adaptive risk bounds. It should be
mentioned here that a similar adaptation story can also be used to describe the weak sparsity
results [36, 39] where the knots are adaptively chosen to attain the minimax rate under the L1

constraint on D(r)θ∗. Therefore, our results (together with those of [36, 39]) provide support
for the use of the trend filtering estimators in both weak and strong sparsity settings.

We would like to mention here that theoretical analysis of spatially adaptive nonpara-
metric regression methods under strong sparsity is nontrivial. Indeed, among various such
methods including CART, MARS, variable-bandwidth kernel/spline methods and wavelets,
rigorous theoretical risk results under strong sparsity only exist for wavelets [7] and variable-
bandwidth kernel methods [13, 21]. The analysis of trend filtering estimators is more involved
compared to estimators based on wavelets and variable-bandwidth kernels because the trend
filtering estimators are given by the output of an optimization algorithm and have no closed
form expressions.

The rest of this paper is organized as follows. Our main results are described in Section 2:
Section 2.1 deals with the constrained estimator where we provide risk bounds under both
weak sparsity (which was not known previously) and strong sparsity. Section 2.2 deals with
the penalized estimator and here we separate our presentation into two parts: results for r = 1
and results for r ≥ 2; our results for r ≥ 2 are weaker (there is an additional (k + 1)2r/n term
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in the risk) than the results for r = 1. Throughout, we focus on nonasymptotic upper bounds
for the risk (expected loss) although all our results can be converted into high probability
upper bounds on the loss (see Remark 2.3). Because of space constraints, all proofs are given
in the supplementary file [15]. However, a high level overview of the proofs is provided in
Section 3. Section 4 contains some simulation studies supporting some of our theoretical
results. Finally, several interesting issues related to our results are described in Section 5.

2. Main results. Throughout Cr will denote a positive constant that depends on r alone
although its precise value will change from equation to equation. We shall assume that n ≥ 2r

throughout the paper (many of our results also hold under the weaker condition n ≥ r + 1).

2.1. Results for the constrained estimator. We start with the bound of n−2r/(2r+1) for
risk of θ̂

(r)
V under the condition that the tuning parameter V satisfies ‖D(r)θ∗‖1 ≤ V n1−r .

This result is similar to results in Mammen and van de Geer [24], Tibshirani [36] and Wang,
Smola and Tibshirani [39] who focussed on the penalized estimator (4) (see Remark 2.1 for
details). We also explicitly state the dependence of the bound on V and σ .

THEOREM 2.1. Fix r ≥ 1. Suppose that the tuning parameter V is chosen so that
nr−1‖D(r)θ∗‖1 ≤ V . Then there exists a positive constant Cr depending on r alone such
that

(8) R
(
θ̂

(r)
V , θ∗) ≤ Cr max

((
σ 2V 1/r

n

)2r/(2r+1)

,
σ 2

n
log(en)

)
.

Also for every x > 0, we have

(9)
1

n

∥∥θ̂ (r)
V − θ∗∥∥2 ≤ Cr max

((
σ 2V 1/r

n

)2r/(2r+1)

,
σ 2

n
log(en)

)
+ 4σ 2x

n

with probability at least 1 − e−x .

REMARK 2.1. As mentioned earlier, bounds similar to (8) and (9) have been proved
in Mammen and van de Geer [24], Tibshirani [36] and Wang, Smola and Tibshirani [39]
for the penalized trend filtering estimator. Actually, the bounds in these earlier papers hold
under more general assumptions than the assumptions of the current paper. For example,
their analyses also hold under the assumption that the (continuous) variation norm of the
function (f ∗)(r−1) (this is the (r − 1)th derivative of f ∗) is at most V , where f ∗ is the
true function with θ∗ = (f ∗(1/n), . . . , f ∗(1)). Note that there is subtle difference between
this and our assumption of an upper bound on ‖D(r)θ∗‖1 in the sequence model (2). An
assumption on the variation norm of (f ∗)(r−1) does not directly lead to a bound on ‖D(r)θ∗‖1
which makes the analysis difficult (see Wang, Smola and Tibshirani [39] for more details on
the relation between the two variation norms). Also, the results in these earlier papers studied
the general setting with θ∗ := (f ∗(x1), . . . , f

∗(xn)) where x1, . . . , xn are design points that
are not necessarily equally spaced. We restrict ourselves to the equally spaced design setting
in this paper (see Section 5.1).

REMARK 2.2. n−2r/(2r+1) is the minimax rate of estimation over the class of θ ∈ R
n

with ‖D(r)θ‖1 ≤ V n1−r (see, e.g., Donoho and Johnstone [8]). This means that the con-
strained trend filtering estimator with tuning parameter V is minimax optimal over {θ ∈ R

n :
‖D(r)θ‖1 ≤ V n1−r}. This result was known previously for the penalized estimator; see Tib-
shirani [36]. Note also that V here can change with n as well and inequality (8) implies that
θ̂

(r)
V is minimax optimal even in terms of the dependence of the rate on V .
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Before we state results for strong sparsity, we need some notation. Fix an integer r ≥ 1
and let n ≥ r + 1. For a vector θ ∈ R

n and an index 2 ≤ j ≤ n − r + 1, we say that j is
an r th order knot (or knot of order r) of θ provided (D(r−1)θ)j−1 	= (D(r−1)θ)j . Note that
first-order knots are just jumps and second-order knots are points of change of slope. We
also say that an r th order knot j has sign +1 if (D(r−1)θ)j−1 < (D(r−1)θ)j and sign −1 if
(D(r−1)θ)j−1 > (D(r−1)θ)j . For θ ∈R

n, we let

(10) kr (θ) := ∥∥D(r)θ
∥∥

0 and V (r)(θ) := nr−1∥∥D(r)θ
∥∥

1.

When r = 1, note that V (1)(θ) = ‖Dθ‖1 = |θ2 − θ1| + · · · + |θn − θn−1| which is simply
the variation of θ . We therefore simply denote V (1)(θ) by V (θ). It also follows then that
V (r)(θ) = nr−1V (D(r−1)θ).

It may be observed that kr (θ) equals precisely the number of r th order knots of θ . When
the value of r and θ ∈ R

n are clear from the context, we simply denote kr (θ) by k. Also, note
that as D(r)θ is a vector of length n − r , we necessarily have kr (θ) = ‖D(r)θ‖0 ≤ n − r ≤
n − 1.

Suppose kr (θ) = k and let 2 ≤ j1 < · · · < jk ≤ n − r + 1 denote all the r th order knots
of θ with associated signs r1, . . . , rk ∈ {−1,1}. Also let r0 = rk+1 = 0. Further, let n0 :=
j1 + r − 2, ni := ji+1 − ji , for 1 ≤ i ≤ k − 1, and nk := n − r + 2 − jk , and observe that∑k

i=0 ni = n. Finally, let

ni∗ := min
(
ni,

n

k + 1

)
for i = 0,1, . . . , k.

We now define two quantities δr(θ) and �r(θ) in the following way:

(11) δr(θ) :=
(
n1−2r

0∗ + n1−2r
k∗ +

k−1∑
i=1

n1−2r
i∗ I {ri 	= ri+1}

)1/2

and

(12) �r(θ) := k + 1

n
log

en

k + 1
+ δ2

r (θ)

n

(
n

k + 1

)2r−1
log

en

k + 1
+

(
δr(θ)√

n

)1/r

,

where, in the definition of δr(θ), the quantity I {ri 	= ri+1} denotes the indicator variable that
equals 1 if ri 	= ri+1 and 0 if ri = ri+1. Note that trivially �r(θ) ≥ (k + 1)/n ≥ 1/n.

Our results will show that the risk of the estimator θ̂
(r)
V for θ∗ will essentially be controlled

by �r(θ
∗). The key point to note about �r(θ) is the fact (easy to check) that when

(13) min
0≤i≤k:ri 	=ri+1

ni ≥ cn

k + 1

for a positive constant c ≤ 1 (here r1, . . . , rk ∈ {−1,1} are the signs of the r th order knots of
θ while r0 and rk+1 are taken to be zero), then

δ2
r (θ) ≤

(
cn

k + 1

)1−2r

(k + 1)

and consequently

�r(θ) ≤ {
1 + c1−2r}k + 1

n
log

en

k + 1
+ c(1−2r)/(2r) k + 1

n

≤ {
1 + c1−2r + c(1−2r)/(2r)}k + 1

n
log

en

k + 1
.(14)

We say that θ satisfies the minimum length condition with constant c if condition (13) holds.
We have just observed that when θ satisfies the minimum length condition with constant c

then �r(θ) ≤ Cr(c)
k+1
n

log en
k+1 for a constant Cr(c) depending only on c and r .

The following is our main result for the constrained trend filtering estimator.
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THEOREM 2.2. Fix r ≥ 1 and n ≥ 2r . Consider the estimator θ̂
(r)
V defined in (3) with

tuning parameter V ≥ 0. Then for every θ∗ ∈R
n, we have

(15) R
(
θ̂

(r)
V , θ∗) ≤ inf

θ∈Rn:V (r)(θ)=V

(
1

n

∥∥θ∗ − θ
∥∥2 + Crσ

2�r(θ)

)

for a positive constant Cr , depending only on r .

REMARK 2.3 (High-probability bound). Note that Theorem 2.2 gives an upper bound for
R(θ̂

(r)
V , θ∗) which is the expectation of 1

n
‖θ̂ (r)

V − θ∗‖2. Similarly, as in Theorem 2.1, the risk
bound (15) can be supplemented by the following high probability bound: for every x > 0,
we have

(16)
1

n

∥∥θ̂ (r)
V − θ∗∥∥2 ≤ inf

θ∈Rn:V (r)(θ)=V

(
1

n

∥∥θ∗ − θ
∥∥2 + Crσ

2�r(θ)

)
+ 4σ 2x

n

with probability at least 1 − e−x . This will be true in all the results of this paper (namely
that the bound on R(θ̂, θ∗) plus 4σ 2x/n will dominate 1

n
‖θ̂ − θ∗‖2 with probability at least

1 − e−x ). Thus, for ease of presentation, we shall omit high probability statements and only
report risk results (i.e., bounds on R(θ̂, θ∗)) in the rest of the paper.

Theorem 2.2 applies to every θ∗ ∈ R
n and is stated in the sharp oracle form. It implies that

the risk of θ̂
(r)
V is small provided there exists some θ ∈ R

n with V (r)(θ) = V such that (a)
‖θ − θ∗‖ is small, and (b) �r(θ) is small.

Theorem 2.2 yields the following corollary which is a nonoracle inequality and is more
readily interpretable. Recall from (14) that �r(θ) is bounded from above by a constant mul-
tiple of k+1

n
log en

k+1 with kr (θ) = k provided θ satisfies (13).

COROLLARY 2.3. Consider the estimator θ̂
(r)
V with tuning parameter V . Suppose θ∗

satisfies the minimum length condition (13) with constant c, then

(17) R
(
θ̂

(r)
V , θ∗) ≤ (

V − V (r)(θ∗))2 + Cr(c)
σ 2(kr (θ

∗) + 1)

n
log

en

kr (θ∗) + 1
,

where Cr(c) is a positive constant that depends on r and c alone. Further, if V is chosen so
that

(
V − V (r)(θ∗))2 ≤ C

σ 2(kr (θ
∗) + 1)

n
log

en

kr (θ∗) + 1

for a positive constant C, then we have

(18) R
(
θ̂

(r)
V , θ∗) ≤ Cr(c,C)

σ 2(kr (θ
∗) + 1)

n
log

en

kr (θ∗) + 1

for a positive constant Cr(c,C) that depends on r , c and C alone.

Note that Theorem 2.2 and Corollary 2.3 both apply to every r ≥ 1. On the other hand,
existing adaptation results for trend filtering all deal with the case r = 1 (which corresponds
to total variation regularization). Even for r = 1, our results are stronger, in some respects,
compared to the existing results in the literature (see Remark 2.6 for a precise comparison).
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FIG. 1. A piecewise linear function f ∗ on [0,1] together with the vector θ∗ := (f ∗(1/n), . . . , f ∗(1)) for n = 15
plotted in red. Note that f ∗ has three knots while θ∗ has six first-order knots.

REMARK 2.4 (On the minimum length condition). The minimum length condition (13)
required for Corollary 2.3 is weaker than existing minimum length conditions in the literature
(this comparison is only for r = 1 because no results exist for r ≥ 2) which are all of the form

(19) min
0≤i≤k

ni ≥ cn

k + 1
where k = k1

(
θ∗)

.

Indeed our condition (13) requires that ni ≥ cn/(k + 1) be true only for those i for which
ri 	= ri+1 while (19) requires this for all i. To see why our condition can be substantially
weaker, consider, for example, the situation when D(r−1)θ∗ is a monotonic vector (for r = 1,
this means that θ∗ is itself monotone while for r = 2, this means that θ∗ is convex/concave).
In this case, condition (13) is equivalent to requiring that ni ≥ cn/(k + 1) only for i = 0 and
i = k which is much weaker than requiring it for all 0 ≤ i ≤ k.

The fact that our minimum length condition involves only those i for which ri 	= ri+1 as
opposed to involving all i ∈ {0,1, . . . , k} is especially crucial for r ≥ 2. To see this, con-
sider the piecewise linear function f ∗ on [0,1] shown in Figure 1. This function clearly
has three knots (points of change of slope) in (0,1). However, the vector θ∗ obtained as
(f ∗(1/n), . . . , f ∗(n/n)) (with n = 15) has six second-order knots. The reason for the ad-
ditional knots is due to the fact that the original knots of f ∗ are not at the design points
1/n, . . . , n/n. Note however that because of these additional knots, the minimum length con-
dition will not be satisfied over all i = 0,1, . . . , k. On the other hand, it should be clear
that (13) will still be satisfied because the additional linear pieces satisfy the property that
ri = ri+1.

REMARK 2.5 (The minimum length condition cannot be removed). We shall argue here
via simulations that the minimum length condition in Corollary 2.3 cannot be removed. Sup-
pose that θ∗ is given by

(20) θ∗
1 = · · · = θ∗

n−1 = 0 and θ∗
n = 5

and consider estimating θ∗ from an observation Y ∼ Nn(θ
∗, In) (i.e., σ = 1) by θ̂

(1)
V (i.e.,

r = 1) with tuning parameter V = V (1)(θ∗) = 5. It is clear here that k1(θ
∗) = 1. The mini-

mum length condition (13) is not satisfied because n0 = n−1 and n1 = 1. The risk R(θ̂
(1)
V , θ∗)
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FIG. 2. Left: plot of logR(θ̂
(1)
V , θ∗) against logn for θ∗ as in (20). The least squares slope is close to −2/3

which suggests that the risk decays as n−2/3 instead of the faster rate given by Corollary 2.3. Right: plot of

logR(θ̂
(2)
V , θ∗) against logn for θ∗ defined in (21). The slope is close to −2/5 which suggests that the risk decays

as n−2/5 instead of the faster rate given by Corollary 2.3.

can be computed via simulation. In Figure 2 (left panel), we have plotted logR(θ̂
(1)
V , θ∗)

against logn for values of n between 1000 and 5000 (chosen to be equally spaced on the
log-scale). For each value of n, we calculated the risk using 100 Monte Carlo replications.
The slope of the least squares line through these points turned out to be close to −2/3 which
indicates that the risk R(θ̂

(1)
V , θ∗) decays at the rate n−2/3. This rate is slower than the rate

given by Corollary 2.3 indicating that inequality (17) is not true for this θ∗. On the other
hand, the n−2/3 rate here makes sense in light of Theorem 2.1. Therefore, even though the
vector Dθ∗ is sparse (with ‖Dθ∗‖0 = 1), the rate of convergence of θ̂ (1) is equal to the n−2/3

and not the faster rate given by Corollary 2.3. This points to the necessity of the minimum
length condition (13).

Another counterexample for the necessity of (13) for Corollary 2.3 is

(21) θ∗
1 = · · · = θ∗�n/2� = 0 and θ∗�n/2�+1 = θ∗�n/2�+2 = · · · = θ∗

n = 5.

Here consider the problem of estimating θ∗ by the estimator θ̂
(2)
V (i.e., r = 2) with tuning

parameter V = V (2)(θ∗) = 10n. It is clear that k2(θ
∗) = 2, n0 = �n/2�, n1 = 1 and n2 =

n − �n/2� − 1. The minimum length condition (13) is not satisfied as n1 is too small. The
risk logR(θ̂

(2)
V , θ∗) is plotted against logn in the right panel of Figure 2 (the values of n are

chosen as before). The slope of the least squares line here is close to −2/5 which suggests
that the risk decays slowly than what is given by Corollary 2.3. Note that n−2/5 is exactly the
rate given by Theorem 2.1 (take r = 2 and V = 10n in (8)).

It is natural to ask if the bound given by inequality (18) can be improved further by drop-
ping the log en

kr (θ∗)+1 term. The following simple result shows that this cannot be done in
general.

LEMMA 2.4. Suppose θ∗ := (0, . . . ,0,1, . . . ,1) with jump at j = n/2�. Let θ̂
(1)
V =1 de-

note the estimator (3) with V = 1. Then

lim
σ↓0

1

σ 2 R
(
θ̂

(1)
V =1, θ

∗) ≥ log(n/2)

2n
.
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2.2. Results for the penalized estimator. In this section, we present risk results for the
penalized estimator defined in (4). An important role in these results will be played by the
subdifferential of the convex function f (θ) := ‖D(r)θ‖1 at the true parameter value θ∗. Re-
call that the subdifferential of a convex function g : Rn → R at a point θ ∈ R

n is the set
consisting of all subgradients of g at θ and will be denoted by ∂g(θ). For every finite con-
vex function g on R

n and θ ∈ R
n, the subdifferential ∂g(θ) is nonempty, closed, convex and

bounded (see, e.g., Rockafellar [31], page 218).
The following is the reason why ∂f (θ∗) (for f (θ) := ‖D(r)θ‖1) plays a key role in under-

standing the risk of (4). It has been proved by Oymak and Hassibi [28], Theorem 2.2, that for
a general penalized estimator:

θ̂
g
λ := arg min

θ∈Rn

(
1

2
‖Y − θ‖2 + σλg(θ)

)
,

where g :Rn →R is convex, its risk under the model Y ∼ Nn(θ
∗, σ 2In) satisfies:

(22) R
(
θ̂

g
λ , θ∗) ≤ σ 2

n
E

(
inf

v∈λ∂g(θ∗)
‖Z − v‖2

)
,

where λ∂g(θ∗) := {λv : v ∈ ∂g(θ∗)} and the expectation on the right-hand side is with respect
to the standard Gaussian vector Z ∼ Nn(0, In). Moreover, inequality (22) cannot in general
be improved, because, as proved in [28], Proposition 4.2, it is tight in the low σ limit, that
is, the limit (as σ → 0) of the left-hand side of (22) scaled by σ 2/n equals the expectation
on the right-hand side of (22). Inequality (22) will be our main technical tool for studying
the risk of (4), and thus it will be important to understand the subdifferentials of the function
θ �→ ‖D(r)θ‖1.

The next result (proved in Subsection C.4 of the supplementary material [15]) character-
izes the subdifferential of f (θ) := ‖D(r)θ‖1.

PROPOSITION 2.5. Consider the function f :Rn →R defined by f (α) := ‖D(r)α‖1. Fix
θ ∈R

n. Then a vector v ∈ R
n belongs to the subdifferential ∂f (θ) if and only if the following

two conditions hold:

(23)
n∑

i=j

(
r + i − j − 1

r − 1

)
vi = 0 for 1 ≤ j ≤ r ,

and

(24)
n∑

i=j

(
r + i − j − 1

r − 1

)
vi =

{
sgn

((
D(r)θ

)
j−r

)
if

(
D(r)θ

)
j−r 	= 0,

∈ [−1,1] otherwise

for r < j ≤ n. Here sgn(x) denotes the sign of x for x 	= 0.

It should be clear from the above proposition that ∂f (θ∗) is always a convex polyhedron
and is of a different nature when D(r)θ∗ 	= 0 as opposed to when D(r)θ∗ = 0. For example,
when D(r)θ∗ = 0, the zero vector belongs to ∂f (θ∗) and moreover, the sets λ∂f (θ∗) := {λv :
v ∈ ∂f (θ∗)} are increasing as λ increases. Both these facts are not true when D(r)θ∗ 	= 0. We
thus separate our risk results into the two cases: D(r)θ∗ 	= 0 and D(r)θ∗ = 0. First we deal
with the case D(r)θ∗ 	= 0. The other (simpler) case is in Lemma 2.14.

Assume therefore that D(r)θ∗ 	= 0. The following quantities (all defined in terms of the
subdifferential ∂f (θ∗)) will play a key role in our risk bounds for the penalized estimator (4).
Let

(25) v∗ := arg min
v∈∂f (θ∗)

‖v‖ and v0 := arg min
v∈aff(∂f (θ∗))

‖v‖,
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where aff(∂f (θ∗)) denotes the affine hull of ∂f (θ∗) (recall that for a subset S ⊆ R
n, its

affine hull aff(S) consists of all vectors w1x1 + · · · + wmxm such that m ≥ 1, xi ∈ S and
w1 +· · ·+wm = 1). Note that v∗ and v0 are uniquely defined because they are simply the pro-
jections of the zero vector onto the closed convex sets ∂f (θ∗) and aff(∂f (θ∗)) respectively.
Moreover, they are both nonzero vectors because every vector v in ∂f (θ∗) (and consequently
aff(∂f (θ∗))) is nonzero as it satisfies

n∑
i=j

(
r + i − j − 1

r − 1

)
vi = sgn

((
D(r)θ∗)

j−r

)

whenever (D(r)θ∗)j−r 	= 0 (it should be kept in mind that we are working under the assump-
tion that D(r)θ∗ 	= 0). It is helpful to note here that v0 = v∗ when r = 1 (see Lemma 2.7) but
for r ≥ 2, they are not necessarily the same.

In addition to v∗ and v0, we need the following quantity:

(26) λθ∗(z) := arg min
λ≥0

inf
v∈∂f (θ∗)

‖z − λv‖ for z ∈ R
n.

In words, λθ∗(z) is the value of λ which minimizes the distance of the vector z from the
set λ∂f (θ∗). Lemma B.5 in the supplementary material [15] proves that λθ∗(z) is uniquely
defined for each z ∈ R

n (under the assumption that D(r)θ∗ 	= 0) and also that Eλθ∗(Z) < ∞
where the expectation is taken with respect to Z ∼ Nn(0, In). We are now ready to state our
first result on the risk of the penalized trend filtering estimators (recall �r(θ) from (12)).

THEOREM 2.6. Fix r ≥ 1 and suppose θ∗ ∈ R
n with D(r)θ∗ 	= 0. Let

(27) λ∗ := n1−r

(
Eλθ∗(Z) + 2

‖v0‖
)
,

where the expectation is taken with respect to the standard Gaussian vector Z ∼ Nn(0, In).
Then for every regularization parameter λ ≥ λ∗, we have

(28) R
(
θ̂

(r)
λ , θ∗) ≤ Crσ

2�r

(
θ∗) + 64σ 2

n

‖v∗‖2

‖v0‖2 + 4σ 2

n3−2r

(
λ − λ∗)2∥∥v∗∥∥2

for a constant Cr that only depends on r .

The bound (28) (which holds for every λ ≥ λ∗) is clearly smallest when λ = λ∗. To sim-
plify the right-hand side of (28) further, we need to bound ‖v∗‖ from above and ‖v0‖ from
below. This is done in the next result.

LEMMA 2.7. Let f : Rn → R be given by f (θ) := ‖D(r)θ‖1 and let θ∗ ∈ R
n be such

that D(r)θ∗ 	= 0.

1. Suppose r = 1. Then v0 = v∗. Further suppose that θ∗ has k ≥ 1 jumps (first order
knots) with signs r1, . . . , rk and let n0, n1, . . . , nk denote the lengths of the constant pieces of
θ∗. Then

(29) ‖v0‖2 = ∥∥v∗∥∥2 = 1

n0
+ 1

nk

+ 4
k−1∑
i=1

I {ri 	= ri+1}
ni

.

2. For r ≥ 2, we have

(30) ‖v0‖ ≥ (r − 1)!
(r + 1)2r−1 n−r+1/2.
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3. Suppose r ≥ 2 and θ∗ satisfies the minimum length condition (13) with constant c, then

(31)
∥∥v∗∥∥ ≤ Crc

−r+1/2(k + 1)rn−r+1/2,

where Cr is a constant depending only on r .

We shall now present more explicit risk bounds by combining Theorem 2.6 and
Lemma 2.7. Since the information provided by Lemma 2.7 about ‖v0‖ and ‖v∗‖ is much
more precise for r = 1 compared to r ≥ 2, we find it natural to state our risk results sepa-
rately in the two cases r = 1 and r ≥ 2. The following result deals with the r = 1 case.

COROLLARY 2.8. Suppose θ∗ ∈ R
n has k ≥ 1 jumps with signs r1, . . . , rk and suppose

that n0, n1, . . . , nk denote the lengths of the constant pieces of θ∗. Then, with λ∗ as in (27),
we have

(32) R
(
θ̂

(1)
λ , θ∗) ≤ Cσ 2

(
�1

(
θ∗) + (λ − λ∗)2

n

k∑
i=0

I {ri 	= ri+1}
ni

)

for every λ ≥ λ∗. Here C is a universal constant. Also, we use our usual convention r0 =
rk+1 = 0.

Further, if θ∗ satisfies the minimum length condition (13) with constant c, then

(33) R
(
θ̂

(1)
λ , θ∗) ≤ C(c)σ 2

(
k + 1

n
log

en

k + 1
+ (

λ − λ∗)2 k + 1

n2

k∑
i=0

I {ri 	= ri+1}
)
,

where C(c) depends on c alone.

Inequality (33) implies that, under the minimum length condition, we have

(34) R
(
θ̂

(1)
λ , θ∗) ≤ C(c)σ 2 k + 1

n
log

en

k + 1
for λ = λ∗,

where k is the number of jumps of θ∗, that is, k = k1(θ
∗). Moreover, the logarithmic term

above cannot be removed in general. This is due to the following reason. First note that, for
every nonrandom λ possibly depending on λ∗, the penalized estimator θ̂

(1)
λ has worse risk

compared to the ideally tuned constrained estimator, that is, θ̂
(1)
V with V = V (r)(θ∗). This

fact (which is noted and explained in Section 5.2), together with Lemma 2.4, implies clearly
that the logarithmic factor in (34) cannot be removed in general.

REMARK 2.6 (Comparison to existing results). Among the class of existing results for
the risk of θ̂

(1)
λ , the strongest (in terms of giving the smallest bound on the risk) is due to Lin

et al. [23] who proved that, when λ is appropriately selected (depending on θ∗), θ̂
(1)
λ satisfies

(35) R
(
θ̂

(1)
λ , θ∗) ≤ C

σ 2(k + 1)

n

([
log(k + 1) + log logn

]
logn + √

k + 1
)

provided

(36) min
0≤i≤k

ni ≥ cn

k + 1

for a positive constant c. Here n0, . . . , nk are the lengths of the constant pieces of θ∗. This
bound from Lin et al. [23] is smaller compared to an earlier result of Dalalyan, Hebiri and
Lederer [6] and to a very recent result of Ortelli and van de Geer [27] (although the results
of [6, 27] apply to a universal choice of the tuning parameter λ; see Remark 2.7). The bound
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(35) is weaker than (34) in two respects: (a) there are additional terms in (35) involving logn

and k compared to (34), and (b) our minimum length condition (13) is weaker than (36): (13)
requires that ni ≥ cn/(k + 1) only for those i for which ri 	= ri+1 while (36) requires this for
all i.

Note that the regularization parameter λ∗ (for which the near parametric risk bound (34)
holds) depends on θ∗. Further, the exact nature of its dependence on θ∗ is not apparent from
its definition (27). In the next result, we provide a more explicit upper bound for λ∗. For this,
we require a stronger length condition than (13). Note that we are still in the r = 1 case.

LEMMA 2.9. Consider the same setting as in Corollary 2.8. Assume that the length
condition:

(37) min
0≤i≤k:ri 	=ri+1

ni ≥ c1n

k + 1
and max

0≤i≤k:ri 	=ri+1
ni ≤ c2n

k + 1

holds for two positive constants c1 ≤ 1 and c2 ≥ 1. Let λ∗ be as defined in (27). Then there
exists a positive constant C∗(c1, c2) (which depends only on c1 and c2) such that

(38) λ∗ ≤ C∗(c1, c2)

√
n∑k

i=0 I {ri 	= ri+1}
log

(
en

k + 1

)
.

Lemma 2.9 can be used, in conjunction with the risk bound (33) (which holds for every
λ ≥ λ∗) to yield the following result which provides bounds similar to (34) for explicit choices
of λ.

COROLLARY 2.10. Consider the same setting as in Lemma 2.9 and assume the length
condition (37). Then if the regularization parameter λ satisfies

(39) λ = 


√
n∑k

i=0 I {ri 	= ri+1}
(

log
en

k + 1

)
,

we have

(40) R
(
θ̂

(1)
λ , θ∗) ≤ C(c1)σ

2(
1 + 
2)k + 1

n
log

en

k + 1

for every 
 ≥ C∗(c1, c2) (where C∗(c1, c2) is the constant given by Lemma 2.9). Also C(c1)

depends only on c1.
Also, if the regularization parameter λ satisfies

(41) λ = 

√

n log(en),

we have

(42) R
(
θ̂

(1)
λ , θ∗) ≤ C(c1)

σ 2(k + 1)(log(en))

n

(
1 + 
2

k∑
i=0

I {ri 	= ri+1}
)

for every 
 ≥ C∗(c1, c2).

In the bound (42), the term
∑k

i=0 I {ri 	= ri+1} can be further bounded by its maximum
possible value of k + 1. However, in certain instances (such as when θ∗ is monotone),∑k

i=0 I {ri 	= ri+1} can be much smaller than k + 1.
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REMARK 2.7 (Comparison to existing results). We now compare Corollary 2.10 to ex-
isting results for the penalized estimator in Lin et al. [23], Dalalyan, Hebiri and Lederer [6]
and Ortelli and van de Geer [27]. Note first that the choice (39) of λ depends on certain as-
pects of θ∗: in particular, it depends on k,

∑k
i=0 I {ri 	= ri+1} and the values c1 and c2 in the

length condition (37). The bound (35) of Lin et al. [23] holds for λ1 = (nmin0≤i≤k ni)
1/4

which also depends on the true vector θ∗ through the lengths n1, . . . , nk . If we assume that
each ni is of order n/(k + 1), then

(43) λ1 ∼
√

n√
k + 1

.

Note that the leading term in our choice (39) of λ as well as in λ1 is
√

n. Corollary 2.10 also
applies to the choice (41) for which the bound (42) holds. Note that (41) has considerably
less dependence on θ∗ as it only depends on the constants c1 and c2 appearing in the length
condition (37). On the other hand, the bound (42) is weaker compared to (40). However,
(42) needs to be compared to the results of Dalalyan, Hebiri and Lederer [6], Proposition 3,
and Ortelli and van de Geer [27], Corollary 4.4. Indeed, Dalalyan, Hebiri and Lederer [6]
considered the choice

(44) λ2 := 2
√

2n log(n/δ)

and proved that the following loss bound holds with probability at least 1 − δ:

(45)
1

n

∥∥θ̂ (1)
λ − θ∗∥∥2 ≤ C(c1)

(
(k + 1)2

n
log

en

δ
+ k + 1

n
log(en) log

en

δ

)
.

This result has been improved slightly in the very recent paper Ortelli and van de Geer
[27] (see also van de Geer [37]) where the log(en) log(en/δ) term in the right-hand side
above is replaced by log(en/(k + 1)) log(en/δ) (i.e., one of the log(en) terms is replaced by
log(en/(k + 1))). An expectation (risk) bound has not been proved in these two papers. Note
the the choice of λ in (41) is similar to that of λ2 in (44) although our choice needs 
 to be
sufficiently large while the choice λ2 is universal (although it depends on δ). On the other
hand, the high probability bound implied by (42) is (see Remark 2.3) the statement that

1

n

∥∥θ̂ (1)
λ − θ∗∥∥2 ≤ C(c1)

σ 2(k + 1)(log(en))

n

(
1 + 
2

k∑
i=0

I {ri 	= ri+1}
)

+ 4σ 2

n
log

(
δ−1)

holds with probability at least 1− δ. This is stronger compared to (45) because the right-hand
side of (45) has a log(en) log(en/δ) ≥ (log(en))2 term.

We reiterate here that our length condition (37) involves an upper bound on ni for ri 	=
ri+1. From an examination of the proof of Lemma 2.9, it will be clear that we will obtain a
weaker upper bound for λ∗ in the sense of having additional multiplicative factors involving
k if this upper bound assumption on ni is removed. No such upper bound is needed for the
results in Lin et al. [23], Dalalyan, Hebiri and Lederer [6], Ortelli and van de Geer [27]. On
the other hand, our lower bound (and our upper bound in (37)) involves only those i satisfying
ri 	= ri+1 while the assumptions in these earlier papers required a lower bound on every ni .

We now state our risk results for (4) with r ≥ 2 when D(r)θ∗ 	= 0. The following result is
obtained by combining Theorem 2.6 and Lemma 2.7.
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COROLLARY 2.11. Fix r ≥ 2. Suppose D(r)θ∗ 	= 0 and θ∗ satisfies the minimum length
condition (13) with constant c. Then, with λ∗ as in (27), we have

R
(
θ̂

(r)
λ , θ∗) ≤ Cr(c)σ

2
(

k + 1

n
log

en

k + 1
+ (k + 1)2r

n

+ (
λ − λ∗)2 (k + 1)2r

n2

)(46)

for every λ ≥ λ∗. Here k := kr (θ
∗) and Cr(c) depends only on c.

Corollary 2.11 implies that when θ∗ satisfies the minimum length condition (13), then
(with k = kr (θ

∗))

(47) R
(
θ̂

(r)
λ , θ∗) ≤ Cr(c)σ

2
(

k + 1

n
log

en

k + 1
+ (k + 1)2r

n

)
for λ = λ∗.

It may be noted that the above result is weaker than our corresponding risk bound for the
constrained trend filtering estimator (Corollary 2.3) because of the additional term involving
(k + 1)2r . We believe that this term is redundant and is an artifact of our proof. Specifically,
this additional term comes from the fact that our upper bound for ‖v∗‖ and lower bound for
‖v0‖ in Lemma 2.7 are off by a factor of (k + 1)r .

With the aim of providing an explicit value for λ for which the bound (47) holds, the next
result gives an upper bound for λ∗. As in the case of Lemma 2.9, we need a stronger length
condition (compared to (13)) for this result.

LEMMA 2.12. Fix r ≥ 2. Suppose D(r)θ∗ 	= 0 and θ∗ satisfies the length condition:

(48) min
0≤i≤k:ri 	=ri+1

ni ≥ c1n

k + 1
and max

0≤i≤k:ri 	=ri+1
ni ≤ c2n

k + 1

for two positive constants c1 ≤ 1 and c2 ≥ 1. Here n0, . . . , nk have the same meaning as in
(13). Then λ∗ (defined as in (27)) satisfies

(49) λ∗ ≤ C∗
r (c1, c2)

√
n log

(
en

k + 1

)
,

where C∗
r (c1, c2) depends on r , c1 and c2 alone.

Note that even though (48) and (37) look exactly the same, the difference is that (37)
applies to r = 1 while (48) applies to r = 2. The meaning of n0, . . . , nk depends on r . Indeed,
the ni’s refer to the lengths of the constant pieces for r = 1, the lengths of the linear pieces
for r = 2, etc.

Compared to (38), the bound (49) is weaker because there is no
∑k

i=0 I {ri 	= ri+1} in the
denominator in (49).

Combining Lemma 2.12 with the risk bound (46), we obtain the following result which
provides bounds similar to (47) for explicit choices of λ.

COROLLARY 2.13. Consider the same setting as in Lemma 2.12 and assume the length
condition (48). Then if the regularization parameter satisfies

(50) λ = 


√
n log

(
en

k + 1

)
,
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we have

(51) R
(
θ̂

(r)
λ , θ∗) ≤ Cr(c1)σ

2(
2 + 
2)(k + 1)2r

n
log

en

k + 1

for every 
 ≥ C∗
r (c1, c2) (where C∗

r (c1, c2) is the constant given by Lemma 2.9). Also Cr(c1)

only depends only on r and c1.
Further, if the regularization parameter λ satisfies

(52) λ = 

√

n log(en),

we have

(53) R
(
θ̂

(r)
λ , θ∗) ≤ Cr(c1)σ

2(
2 + 
2)(k + 1)2r

n
log(en)

for every 
 ≥ C∗
r (c1, c2).

Finally, we deal with the risk of the penalized estimator when D(r)θ∗ = 0. Here we have
the following result which proves that the risk is parametric (without any logarithmic factors)
as long as the tuning parameter λ is larger than or equal to

√
6n log(en). This result holds for

every r ≥ 1.

LEMMA 2.14. Suppose D(r)θ∗ = 0. Then for every λ ≥ √
6n log(en), we have

R
(
θ̂

(r)
λ , θ∗) ≤ Crσ

2

n
,

for a constant Cr that depends on r alone.

3. Proof ideas. In this section, we provide a brief overview of the main ideas under-
lying our proofs. Full proofs are in the supplementary material [15]. For studying the con-
strained trend filtering estimator θ̂

(r)
V , we invoke the general theory of convex-constrained

least squares estimators. Convex-constrained least squares estimators are estimators of the
form

θ̂ := arg min
θ∈Rn

{
1

2
‖Y − θ‖2 : θ ∈ K

}
,

for a closed convex set K . Clearly, θ̂
(r)
V is a special case of this estimator when K is taken to

be the set K(r)(V ) defined as

K(r)(V ) := {
θ ∈ R

n : ∥∥D(r)θ
∥∥

1 ≤ V n1−r}.
The general theory of convex-constrained least squares estimators (summarized in Section A
of the supplementary material [15]) states that the accuracy of θ̂

(r)
V as an estimator for θ∗

under the model Y ∼ Nn(θ
∗, σ 2In) can be deduced from bounds on the quantity:

(54) E sup
θ∈K

(r)
V :‖θ−θ∗‖≤t

〈
ξ, θ − θ∗〉

,

where ξ ∼ Nn(0, σ 2In). To prove Theorem 2.1, we prove bounds on (54) in [15], Lemma B.1.
Our strategy involves using Dudley’s entropy bound to control (54) in terms of the metric
entropy of the set:

Sr(V, t) := {
α ∈ R

n : ‖α‖ ≤ t,
∥∥D(r)α

∥∥
1 ≤ V n1−r}.
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We then bound the metric entropy of Sr(V, t) via its fat-shattering dimension (it is well
known that fat-shattering dimension can be used to control metric entropy; see e.g., Rudelson
and Vershynin [32]). Metric entropy and fat-shattering dimension are formally defined in the
supplementary material [15]. Our idea of using fat shattering to establish the metric entropy
of Sr(V, t) and thereby bounding (54) seems novel. Previous bounds on quantities similar to
(54) in the context of trend filtering used eigenvector incoherence (see, e.g., Wang et al. [38])
and the ideas here are quite different from our methods.

To prove the strong sparsity risk bound, Theorem 2.2, we use another strand of results
from the general theory of convex-constrained least squares estimators. Specifically, a result
from Oymak and Hassibi [28] implies that the risk of θ̂

(r)
V at V = V ∗ := V (r)(θ∗) can be

obtained by controlling the Gaussian width of the tangent cone of the convex set K(r)(V ∗)
at θ∗. These general results, along with the definitions of tangent cones and Gaussian width,
are again recalled in [15], Subsection A. Understanding the tangent cone to K(r)(V ∗) at θ∗
then becomes key to proving Theorem 2.2.

We provide a precise characterization of the tangent cones of K(r)(V ∗) in [15], Lem-
ma C.3. These tangent cones have a complicated structure (especially for r ≥ 2) and cal-
culating their Gaussian width is nontrivial. Our idea behind these calculations is the fact
(proved in Lemma B.2) that, under a unit norm constraint, every vector α in the tangent cone
of K(r)(V ∗) at θ∗ is nearly made up of two (r − 1)th order convex/concave sequences in
each polynomial part of θ∗ (note that a sequence θ ∈ R

n is said to be (r − 1)th order con-
vex/concave if the vector D(r−1)θ is monotone; see, e.g., Kuczma [20]). The special case of
this observation for r = 1 implies that every vector α with ‖α‖ ≤ 1 in the tangent cone to
K(1)(V ∗) at θ∗ is nearly made up of two monotonic sequences in each constant piece of θ∗.
For r = 2, it means that every vector α with ‖α‖ ≤ 1 in the tangent cone to K(2)(V ∗) at θ∗ is
nearly made up of two convex/concave sequences in each linear piece of θ∗.

The above observation allows us to compute the Gaussian width of these tangent cones
using metric entropy results (established again via connections between metric entropy and
fat shattering) and also available results (from Bellec [2]) on the Gaussian widths of shape
constrained cones. The set of all (r −1)th order convex sequences in R

n forms a convex cone
in R

n and these cones have been studied in the literature on shape constrained estimation.
For r = 1, the above idea bears strong similarities with the method employed in Lin et al.

[23] for studying the penalized estimator (4) for r = 1. In this paper, they use the key obser-
vation that for appropriate λ, the vector (I − P0)(θ̂

(1)
λ − θ∗) is well approximated by a vector

which is made of two monotonic sequences in each constant piece of θ∗. Here P0 is the pro-
jection matrix onto the piecewise constant structure determined by θ∗ and I is the identity
matrix. This idea is similar in spirit to our observation on the tangent cone of K(1)(V ∗) at
θ∗. The details differ though as we are working with the vectors in the tangent cone while
Lin et al. [23] focus on a functional of θ̂

(1)
λ − θ∗ (note though that if θ̂ has variation ≤ V ∗,

then θ̂ − θ∗ does indeed belong to the tangent cone). Also our method for dealing with the
Gaussian width of the set of these piecewise monotonic vectors is sharper than the analysis
of Lin et al. [23] and our analysis also extends to every r ≥ 2.

The results in Section 2.2 for the penalized estimator are all based on (22). We use the
precise characterization of the subdifferential of the penalty function θ �→ ‖D(r)θ‖1 given in
Proposition 2.5 to control the right-hand side of (22). Our idea here is to relate the right-hand
side of (22) to the risk of the constrained estimator (we use and extend ideas from Foygel and
Mackey [10] for this). This allows us to derive risk results for the penalized trend filtering
estimator as a corollary to our results for the constrained estimator.

4. Simulations. In this section, we present numerical evidence for our theoretical re-
sults. We generate data from a piecewise constant function f ∗

1 and a continuous piecewise
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FIG. 3. The two functions f ∗
1 and f ∗

2 .

affine function f ∗
2 on [0,1] and evaluate the performance of the trend filtering estimators

for r = 1 (total variation denoising) and r = 2, respectively. The functions f ∗
1 and f ∗

2 (see
Figure 3) are given by

f ∗
1 (x) := 2I(0.2,0.4](x) + 4I(0.4,0.6](x) + I(0.6,0.8](x) + 4I(0.8,1](x)

and

f ∗
2 (x) := −44 max(x − 0.25,0) + 48 max(x − 0.5,0) − 56 max(x − 0.75,0) + 28x.

The function f ∗
1 was used in the simulation study of Lin et al. [23]. In addition to these

functions, we also performed a simulation study on another piecewise constant function f ∗
3

which is similar to the blocks function of Donoho and Johnstone [7]; for space constraints
we have moved the results for f ∗

3 to the supplementary material (see Section E in [15]).
From f ∗

1 and a value of n (chosen from a grid of size 30 between 100 and 10,000; the grid
being equally spaced on the logarithmic scale), we generated an n × 1 observation vector
Y ∼ Nn(θ

∗, In) where θ∗ is the vector obtained by sampling f ∗
1 at n equally spaced points

with end-points 0 and 1. We then computed the following six estimators on the data vector
Y : (a) the ideal constrained estimator (3) with V = V ∗ = ‖Dθ∗‖1, (b) the ideal penalized
estimator (4) with λ = λ∗ (as defined in (27)), (c) two cross-validation (CV) based estimators,
(d) the penalized estimator (4) with λ of the form (39) with 
 = 1 and (e) the penalized
estimator (4) with λ of the form (41) with 
 = 0.5. Corollary 2.10 proves that the risk with
these λ choices decays as (logn)/n (ignoring terms involving k) provided 
 is taken to be a
large enough constant. In our simulations for f ∗

1 , we found that 
 = 1 in (39) and 
 = 0.5
in (41) were large enough to yield the desired performance. Higher values of 
 led to similar
rates of decay of the risk with n (even though the risk itself seemed to become larger with 
).

Here are some details behind the computation of these estimates. The constrained estimator
was computed by the convex optimization software MOSEK (via the R package Rmosek).
The penalized estimators were computed via the R package tvd for total variation denoising.
The computation of the ideal penalized estimator requires computing the value of λ∗ and, for
this, we need to compute Eλθ∗(Z) (where Z ∼ Nn(0, In)) and 2/‖v0‖ (see (27)). 2/‖v0‖ was
calculated by the formula (29). For Eλθ∗(Z), we used the fact that λθ∗(z) can be calculated by
convex optimization for each z ∈ R

n which implies that the expectation can be computed by



ADAPTIVE RISK BOUNDS IN UNIVARIATE TVD AND TREND FILTERING 223

FIG. 4. Plots when the true function is f ∗
1 . The top-left plot shows the λ∗ values, the CV λ values (median and

the first and third quartiles over 200 replications) and the values corresponding to the explicit penalties (39) with

 = 1 and (41) with 
 = 0.5. The other three figures show the behavior of the risk as a function of n. In the
last two plots, the legend shows the value of R2 and the slope respectively for the curves corresponding to each
estimator.

Monte Carlo averaging. More details behind this are provided in the supplementary material
(Section E in [15]). The CV estimators were calculated using the R package genlasso
which provides two penalized estimates based on CV: one based on choosing λ so as to
minimize the CV error (CV1) and the other based on choosing λ via the one standard error
rule (CV2).

For each data set, we computed the value of the loss ‖θ̂ − θ∗‖2/n for each of these six
estimates. We generated 600 replications of the data for each value of n to compute the
average value of the loss which is an approximation of the risk of each estimator. Our results
are provided in Figure 4. The top-left plot shows the different values of λ employed by the
estimators based on (4). Here we plotted the λ∗ values as well as those corresponding to (39)
with 
 = 1 (penalty one) and (41) with 
 = 0.5 (penalty two). In addition, we also plotted
here the penalty levels chosen by the CV estimators. These are random so we plotted their
median and quartile values over the 600 replications. The remaining three plots in Figure 4
show the risks of the six estimators. In the top-right plot, the risk is simply plotted as a
function of n (from our theoretical results, the risk is supposed to decay like the curve n �→
(t1/n) log(t2n) for two constants t1 and t2). In the bottom-left plot, we plotted n times the risk
against logn. These curves are supposed to be linear so we provided the squared correlation
(R2) values of each of the curves in this plot. One can see that the R2 values are close to one
for every estimator except CV1. Finally, in the bottom-right plot, we plotted the logarithm
of the risk against logn. We expect the curves here to have a near-linear relationship with
negative slope of −1. The least squares slope values for the different curves are given in the
legend in this and it is clear that, for the non-CV estimators, the slope is indeed close to −1.

The numerical results in Figure 4 for the non-CV estimates therefore clearly support our
theoretical results. On the other hand, the behavior of the CV estimators seems more com-
plicated and a theoretical study of their risk performance is beyond the scope of the present
paper.

We also show results for f ∗
2 where we evaluated the performance of trend filtering for

r = 2. We did a simplified study here with the three estimators: (a) the ideal constrained
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FIG. 5. Risk plots when the true function is f ∗
2 .

estimator (3) with V = V ∗ = n‖D2θ∗‖1, (b) the penalized estimator (4) with λ taken to be
(50) with 
 = 1/16 and (c) the penalized estimator (4) with λ taken to be (52) with 
 = 1/16.
Note that our theoretical results apply to (50) and (52) for a sufficiently large 
. For f ∗

2 ,
we found in simulations that 
 = 1/16 was large enough to yield the desired rates. Higher
values of 
 inflated risk but gave similar risk decay rates. We could not compute the ideal
penalized estimator with λ = λ∗ (defined in (27)) here as the convex optimization problem to
compute λθ∗(z) was highly ill-conditioned for n ≥ 1000 so that MOSEK seemed unable to
find the global minimum (see Section E of [15] for more details). We also did not compute
CV estimates here as these are not the focus of this paper.

Our results are given in Figure 5. The left plot shows n times the risk plotted against logn.
Our theory indicates that the curve corresponding to each estimator should be linear so we
provided the squared correlation (R2) values which are all close to 1. The right plot shows the
behavior of log risk against logn. These curves are expected to have a near-linear relationship
with negative slope of −1. The legend shows the least squares slopes which are all close to
−1. These plots therefore support our theoretical results.

5. Discussion. In this section, we address various issues that are naturally linked to our
main results.

5.1. Weakening our assumptions. We emphasized the vector estimation setting (2) in this
paper. Our results can also be interpreted in the function estimation setting in the following
way. There is an unknown function f ∗ and we observe data Y1, . . . , Yn according to the
model:

Yi = f ∗(xi) + ξi for i = 1, . . . , n,

where f ∗ : [0,1] → R is the unknown regression function and ξ1, . . . , ξn are i.i.d. N(0, σ 2).
We focused on the situation where xi = i/n for i = 1, . . . , n. We can estimate f ∗ by any
discrete spline f̂ of degree r − 1 whose values at i/n, 1 = 1, . . . , n, are given by θ̂1, . . . , θ̂n

(with θ̂ defined as in (3) or (4)). We then evaluate the performance of f̂ as an estimator for
f ∗ via the loss 1

n

∑n
i=1(f

∗(xi)− f̂ (xi))
2 and prove bounds for the risk when f ∗ is a discrete

spline in terms of the number of polynomials that make up f ∗.
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This basic setting (which is standard and used in many theoretical papers on univariate
nonparametric regression) can be generalized in many ways and we mention two extensions
involving the design points x1, . . . , xn below. One is the situation where x1, . . . , xn are not
equally spaced. In this case, note that the penalty terms in (3) and (4) need to be changed for
r ≥ 2; see for example, Tibshirani [36]. We believe that our results will still hold in this case
provided x1, . . . , xn satisfy κ1/n ≤ xi − xi−1 ≤ κ2/n for two constants κ1 and κ2. However,
this would make the notation in our proofs quite cumbersome.

One can also study the setting where x1, . . . , xn are generated independently from a com-
mon distribution ν on [0,1] and/or we measure the loss via

∫
(f̂ (x) − f ∗(x))2 dν(x). Ana-

lyzing this situation will require handling additional approximation error terms and we will
leave it for future work.

5.2. Constrained and penalized estimators. As mentioned in the Introduction, we have
studied both constrained and penalized versions of trend filtering while previous papers have
focused on the penalized estimator alone. When the noise level σ tends to zero, it can be
proved that the constrained estimator with V = V ∗ := V (r)(θ∗) is better than the penalized
estimator for every choice of the tuning parameter λ. More precisely,

(55) lim
σ↓0

1

σ 2 R
(
θ̂

(r)
V ∗ , θ∗)

< lim
σ↓0

1

σ 2 R
(
θ̂

(r)
λ , θ∗)

for every λ ∈ [0,∞).

Here λ is even allowed to depend on θ∗ as long as it is nonrandom. Inequality (55) follows
from the results of Oymak and Hassibi [28] as described below. Oymak and Hassibi [28],
Theorem 2.1, implies

(56) lim
σ↓0

1

σ 2 R
(
θ̂

(r)
V ∗ , θ∗) = 1

n
E

(
inf

v∈cone(∂g(θ∗))
‖Z − v‖2

)
and Oymak and Hassibi [28], Theorem 1.1, implies

(57) lim
σ↓0

1

σ 2 R
(
θ̂

(r)
λ , θ∗) = 1

n
E

(
inf

v∈λ∂g(θ∗)
‖Z − v‖2

)

for every λ ≥ 0. Here g(θ) := nr−1‖D(r)θ‖1, λ∂g(θ∗) := {λv : v ∈ ∂g(θ∗)}, cone(∂g(θ∗)) :=⋃
λ≥0 λ∂g(θ∗) and Z ∼ Nn(0, In). As cone(∂g(θ∗)) is strictly larger than λg(θ∗) for every

fixed λ > 0, the right-hand side of (56) will be strictly smaller than the right-hand side of (57)
which proves (55).

The implication of this inequality is that there exist settings (where σ is small) where the
constrained estimator with V = V ∗ is better than every penalized estimator. Therefore, it
makes sense to study the constrained estimator in addition to the penalized estimator.

5.3. Results for data-dependent tuning parameters. From a practical point of view, a ma-
jor limitation of the results of this paper is that they only hold for ideal or oracle choices of
the tuning parameters. Indeed, our strong sparsity risk bounds for the constrained estimator
require V to be close to V ∗ := V (r)(θ∗). On the other hand, our risk bounds for the penal-
ized estimator require knowledge of the noise level σ (note that the tuning parameter in (4)
involves σ ) as well as certain aspects of θ∗. For example, the choices (27), (39) and (50)
depend on certain properties of the locations and signs of the knots of θ∗. The choices (41)
and (52) have lesser dependence on θ∗ but they still depend on the constants c1 and c2 from
the condition (48).

We would like to note that this feature is also present in earlier papers on the trend filtering
estimators. The strong sparsity risk results of Lin et al. [23] hold for the tuning choice (43)
which depends on θ∗. The results of Dalalyan, Hebiri and Lederer [6] and Ortelli and van de
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Geer [27] hold for the tuning choice (44) which does not depend on θ∗ but depends on the
noise level σ and the probability level δ (note that these results of [6, 27] give only high
probability statements and not expectation (risk) bounds).

We would like to highlight the problem of proving risk bounds under strong sparsity for
completely data-dependent choices of the tuning parameters as a major open problem. One
can approach this problem via the constrained estimator which would require estimation of
the variation functional V (r)(θ∗). Alternatively, one can approach this problem via the pe-
nalized estimator which would require estimation of σ and λ∗ (defined in (27)). It will be
interesting to see if the risk of log(en)/n (up to multiplicative factors depending on k) will
be achieved for a completely data dependent method of tuning.

5.4. Connections to results for the LASSO. The trend filtering estimators are closely re-
lated to the LASSO estimator of Tibshirani [35]. Indeed, for r = 1, it is easy to see that
the constrained estimator θ̂

(1)
V is exactly equal to Xβ̂V where X is the n × n matrix whose

(i, j)th entry equals I {i ≥ j} and β̂V := arg minθ∈Rn{‖Y − Xβ‖2 : ∑n
i=2 |βi | ≤ V }. There-

fore, our strong sparsity risk results for θ̂
(1)
V can simply be seen as results for the LASSO

estimator for this special design matrix X. This connection to LASSO also holds for r ≥ 2
(see Tibshirani [36]).

Based on this link to the LASSO, it might seem possible to believe that our results might
be derivable from general theorems about the LASSO. However, existing strong sparsity
risk bounds for the LASSO impose stringent conditions on the design matrix (such as the
compatibility condition or the restricted eigenvalue condition) which do not hold for this
particular design matrix X (see Dalalyan, Hebiri and Lederer [6]). The relaxed compatibility
condition of [6] does hold for this X and the authors of [6] use this observation to prove rates
under strong sparsity but their argument is not strong enough to yield the k+1

n
log en

k+1 bound.
More importantly, it is not clear if the relaxed compatibility condition or a modified version
of it holds for r ≥ 2.

5.5. Comparison to the L0 estimators. It is natural to compare the performance of the
trend-filtering estimators to the estimators obtained by replacing the L1 norm in (3) by the
L0 norm:

(58) θ̂
(r)
k := arg min

θ∈Rn

{
1

2
‖Y − θ‖2 : ∥∥D(r)θ

∥∥
0 ≤ k

}
.

Under strong sparsity, that is, ‖D(r)θ∗‖0 ≤ k, it should be possible to prove that

(59) R
(
θ̂

(r)
k , θ∗) ≤ Cr

σ 2(k + 1)

n
log

en

k + 1
.

A proof of this result for r = 1 can be found in the recent paper Gao, Han and Zhang [12],
Theorem 2.1. We could not find an exact reference for r ≥ 2 but we believe that (59) should
be true based on the regression connection described in the previous subsection and existing
results for L0-penalized estimators in linear regression (see, e.g., [30], Theorem 4).

From a comparison of (59) with (18), it might seem that the constrained trend filtering
estimator (with V = V ∗) has similar performance under strong sparsity as that of the L0 esti-
mator. However, it must be kept in mind here that (18) requires the minimum length condition
(13) while the bound (59) for the L0 estimator does not require any such minimum length
condition. Without the minimum length condition, the L1 estimator performs much worse
compared to the L0 estimator as proved in the recent paper Fan and Guan [9]. Note, how-
ever, that the minimum length condition is quite natural from the point of view of estimating
piecewise polynomial functions.
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From a computational viewpoint, (58) can be efficiently computed for r = 1 via dynamic
programming (see, e.g., Winkler and Liebscher [40]) but it is not clear how to compute it for
r ≥ 2. On the other hand, the trend filtering estimators are efficiently computable for every
r ≥ 2 via convex optimization (see, e.g., Arnold and Tibshirani [1] and Kim et al. [19] for
details).

5.6. Connection to shape constrained estimators. Shape constrained regression estima-
tors are closely related to the trend filtering estimators. Indeed, if one takes the constrained
trend filtering estimator (3) and replaces the L1 constraint by a nonnegativity constraint on
D(r)θ , then we obtain shape constrained estimators. Specifically, consider

(60) θ̂
(r)
shape := arg min

θ∈Rn

{
1

2
‖Y − θ‖2 : D(r)θ ≥ 0

}
.

Here D(r)θ ≥ 0 means that each component of the vector D(r)θ is nonnegative. When r =
1, (60) coincides with the classical isotonic least squares estimator and when r = 2, (60)
coincides with the convex least squares estimator (see Groeneboom and Jongbloed [14] for
an introduction to shape constrained estimation). Like the trend filtering estimators, the shape
constrained estimators enjoy the property that D(r)θ̂

(r)
shape is sparse. However, unlike the trend

filtering estimators, there is no tuning parameter in (60) (of course, (60) is only applicable in
situations where θ∗ satisfies the constraint D(r)θ∗ ≥ 0 exactly or in some approximate sense).

The risk of (60) under the strong sparsity assumption (and the shape assumption D(r)θ ≥
0) has received much recent attention (see Guntuboyina and Sen [16] for a recent survey). In
Bellec [2], it was proved that

(61) R
(
θ̂

(r)
shape, θ

∗) ≤ inf
θ :D(r)θ≥0

(
1

n

∥∥θ∗ − θ
∥∥2 + Cr

σ 2(k + 1)

n
log

en

k + 1

)
,

where k := kr (θ) = ‖D(r)θ‖0. This result is very similar to our risk bounds for the con-
strained trend filtering estimator with the important difference that no minimum length con-
dition is required for (61). It is interesting to note that we use the above result in the proof of
Theorem 2.2.
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SUPPLEMENTARY MATERIAL

Supplement to “Adaptive risk bounds in univariate total variation denoising and
trend filtering” (DOI: 10.1214/18-AOS1799SUPP; .pdf). This supplementary material con-
tains additional results and omitted proofs.
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