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DETECTING RELEVANT CHANGES IN THE MEAN OF
NONSTATIONARY PROCESSES—A MASS EXCESS APPROACH1
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Ruhr-Universität Bochum∗ and Tsinghua University†

This paper considers the problem of testing if a sequence of means
(μt )t=1,...,n of a nonstationary time series (Xt )t=1,...,n is stable in the sense
that the difference of the means μ1 and μt between the initial time t = 1 and
any other time is smaller than a given threshold, that is |μ1 − μt | ≤ c for all
t = 1, . . . , n. A test for hypotheses of this type is developed using a bias cor-
rected monotone rearranged local linear estimator and asymptotic normality
of the corresponding test statistic is established. As the asymptotic variance
depends on the location of the roots of the equation |μ1 − μt | = c a new
bootstrap procedure is proposed to obtain critical values and its consistency
is established. As a consequence we are able to quantitatively describe rele-
vant deviations of a nonstationary sequence from its initial value. The results
are illustrated by means of a simulation study and by analyzing data exam-
ples.

1. Introduction. A frequent problem in time series analysis is the detection of
structural breaks. Since the pioneering work of [32] in quality control change point
detection has become an important tool with numerous applications in economics,
climatology, engineering, hydrology and many authors have developed statistical
tests for the problem of detecting structural breaks or change-points in various
models. Exemplarily we mention [3, 6, 9, 16, 26] and [4] and refer to the work of
[5] and [25] for more recent reviews.

Most of the literature on testing for structural breaks formulates the hypotheses
such that in the statistical model the stochastic process under the null hypothesis
of “no change-point” is stationary. For example, in the problem of testing if a
sequence of means (μt )t=1,...,n of a nonstationary time series (Xt)t=1,...,n is stable
it is often assumed that Xt = μt + εt with a stationary error process (εt )t=1,...,n.
The null hypothesis is then given by

(1.1) H0 : μ1 = μ2 = · · · = μn,
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while the alternative (in the simplest case of only one structural break) is defined
as H1 : μ(1) = μ1 = μ2 = · · · = μk �= μk+1 = μk+2 = · · · = μn = μ(2), where
k ∈ {1, . . . , n} denotes the (unknown) location of the change. The formulation of
the null hypothesis in the form (1.1) facilitates the analysis of the distributional
properties of a corresponding test statistic substantially, because one can work
under the assumption of stationarity. Consequently, it is a very useful assumption
from a theoretical point of view.

On the other hand, if the differences {|μ1 − μt |}t=2,...,n are rather “small,” a
modification of the statistical analysis might not be necessary although the test re-
jects the “classical” null hypothesis (1.1) and detects nonstationarity. For example,
as pointed out by [21], in risk management one wants to fit a model for forecasting
the Value at Risk from “uncontaminated data,” that means from data after the last
change-point. If the changes are small they might not yield large changes in the
Value at Risk. Now using only the uncontaminated data might decrease the bias
but increases the variance of a prediction. Thus, if the changes are small, the fore-
casting quality might not necessarily decrease and—in the best case—would only
improve slightly. Moreover, any benefit with respect to statistical accuracy could
be negatively overcompensated by additional transaction costs.

In order to address these issues [21] proposed to investigate precise hypotheses
in the context of change point analysis, where one does not test for exact equality,
but only looks for “similarity” or a “relevant” difference. This concept is well
known in biostatistics (see, e.g., [43]) but has also been used to investigate the
similarity of distribution functions (see [1, 2] among others). In the context of
detecting a change in a sequence of means (or other parameters of the marginal
distribution) [21] assumed two stationary phases and tested if the difference before
and after the change point is small, that is

(1.2) H0 : |μ(1) − μ(2)| ≤ c versus H1 : |μ(1) − μ(2)| > c,

where c > 0 is a given constant specified by the concrete application (in the exam-
ple of the previous paragraph c could be determined by the transaction costs). Their
approach heavily relies on the fact that the process before and after the change
point is stationary, but this assumption might also be questionable in many appli-
cations.

A similar idea can be used to specify the economic design of control charts for
quality control purposes. While in change-point analysis the focus is on testing
for the presence of a change and on estimating the time at which a change occurs
once it has been detected, control charting has typically been focused more on
detecting such a change as quickly as possible after it occurs (see, e.g., [11, 44]
among many others). In particular, control charts are related to sequential change
point detection, while the focus of the cited literature is on retrospective change
point detection.

In the present paper, we investigate alternative relevant hypotheses in the ret-
rospective change point problem, which are motivated by the observation that
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FIG. 1. Illustration of the set Mc in (1.4).

in many applications the assumption of two stationary phases (such as constant
means before and after the change point) cannot be justified as the process param-
eters change continuously in time. For this purpose, we consider the location scale
model

(1.3) Xi,n = μ(i/n) + εi,n,

where {εi,n : i = 1, . . . , n}n∈N denotes a triangular array of centered random vari-
ables (note that we do not assume that the “rows” {εj,n : j = 1, . . . , n} are sta-
tionary) and μ : [0,1] → R is the unknown mean function. We define a change as
relevant, if the amount of the change and the time period where the change occurs
are reasonably large. More precisely, for a level c > 0 we consider the level set

(1.4) Mc = {
t ∈ [0,1] : ∣∣μ(t) − μ(0)

∣∣ > c
}

of all points t ∈ [0,1], where the mean function differs from its original value at
the point 0 by an amount larger than c. The situation is illustrated in Figure 1,
where the curve represents the mean function μ with μ(0) = 0 and the lines in
boldface represent the set Mc (with c = 1). These periods resemble in some sense
popular run rules from the statistical quality control literature which signal if k of
the last m standardized sample means fall in the interval (see, e.g., [11]). Define

(1.5) Tc := λ(Mc)

as the corresponding excess measure, where λ denotes the Lebesgue measure. We
now propose to investigate the hypothesis that the relative time, where this differ-
ence is larger than c does not exceed a given constant, say � ∈ (0,1), that is

(1.6) H0 : Tc ≤ � versus H1 : Tc > �.

We consider the change as relevant, if the Lebesgue measure Tc = λ(Mc) is
larger than the threshold �. Note that this includes the case when a change (greater
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than c) occurs at some point t1 < 1 − � and the mean level remains constant
otherwise.

In many applications, it might also be of interest to investigate one-sided hy-
potheses, because one wants to detect a change in certain direction. For this pur-
pose, we also consider the sets M±

c = {t ∈ [0,1] : ± (μ(t)−μ(0)) > c} and define
the hypotheses

H+
0 : T +

c = λ
(
M+

c

) ≤ � versus H+
1 : T +

c > �,(1.7)

H−
0 : T −

c = λ
(
M−

c

) ≤ � versus H−
1 : T −

c > �.(1.8)

The hypotheses (1.6), (1.7) and (1.8) require the specification of two parameters
� and c and in a concrete application both parameters have to be defined after a
careful discussion with the practitioners. In particular, they will be different in dif-
ferent fields of application. Another possibility is to investigate a relative deviation
from the mean, that is: μ(t) deviates from μ(0) relative to μ(0) by at most x%
(see Section 2.2.2 for a discussion of this measure).

Although the mean function in model (1.3) cannot be assumed to be monotone,
we use a monotone rearrangement type estimator (see [19]) to estimate the quan-
tities Tc, T +

c , T −
c , and propose to reject the null hypothesis (1.6), (1.7) (1.8) for

large values of the corresponding test statistic. We study the properties of these
estimators and the resulting tests in a model of the form (1.3) with a locally sta-
tionary error process, which have found considerable interest in the literature (see
[18, 30, 31, 47] and [42] among others). In particular, we do not assume that the
underlying process is stationary, as the mean function can vary smoothly in time
and the error process is nonstationary. Moreover, we also allow that the derivative
of the mean function μ may vanish on the set of critical roots

C = {
t ∈ [0,1] : ∣∣μ(t) − μ(0)

∣∣ = c
}

and prove that appropriately standardized versions of the monotone rearrangement
estimators are consistent for Tc, T +

c and T −
c , and asymptotically normally dis-

tributed. The main challenge in this asymptotic analysis is to quantify the order of
an approximation of the quantity

(1.9) λ
({

t ∈ [0,1] : ∣∣μ̂(t) − μ̂(0)
∣∣ > c

})
,

where μ̂ is an appropriate estimate of the regression function. While estimates of
the mean trend have been already studied under local stationarity in the literature
(see, e.g., [46]), the analysis of the quantity (1.9) and its approximation requires
a careful localization of the effect of the estimation error around the critical roots
satisfying the equation |μ(t) − μ(0)| = c.

It is demonstrated—even in the case of independent or stationary errors—that
the variance of the limit distribution depends sensitively on (eventually higher or-
der) derivatives of the regression function at the critical roots, which are very dif-
ficult to estimate. Moreover, because of the nonstationarity of the error process in
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(1.3) the asymptotic variance depends also in a complicated way on the unknown
dependence structure. We propose a bootstrap method to obtain critical values for
the test, which is motivated by a Gaussian approximation used in the proof of the
asymptotic normality. This re-sampling procedure is adaptive in the sense that it
avoids the direct estimation of the critical roots and the values of the derivatives of
the regression function at these points.

Note that Tc is the excess Lebesgue measure (or mass) of the time when the
absolute difference between the mean trend and its initial value exceeds the level c.
Thus, our approach is naturally related to the concept of excess mass which has
found considerable attention in the literature. Many authors used the excess mass
approach to investigate multimodality of a density (see, e.g., [13, 29, 33, 34]). The
asymptotic properties of distances between an estimated level and the “true” level
set of a density have also been studied in several publications (see [7, 10, 17] and
[27] among many others). The concept of mass excess has additionally been used
for discrimination between time series (see [12]), for the construction of monotone
regression estimates [15, 19], quantile regression [14, 20], clustering [36] and for
bandwidth selection in density estimation (see [37]), but to our best knowledge it
has not been used for change point analysis.

Most of the literature discusses regular points, that are points, where the first
derivative of the density or regression function does not vanish, but there exist
also references where this condition is relaxed. For example, [24] proposed a test
for multimodality of a density comparing the difference between the empirical
distribution function and a class of unimodal distribution functions. They observed
that the stochastic order of the test statistic depends on the minimal number k, such
that the kth derivative of the cumulative distribution function does not vanish. [33]
studied the asymptotic properties of an estimate of the mass excess functional of
a cumulative distribution function F with density f and [41] observed that the
minimax risk in the problem of estimating the level set of a density depends on its
“regularity.” More recently, [12] used the excess mass functional for discrimination
analysis under the additional assumption of unimodality.

The present paper differs from this literature with respect to several perspec-
tives. First, we are interested in change point analysis and develop a test for a rele-
vant difference in the mean of the process over a certain range of time. Therefore—
in contrast to most of the literature, which deals with i.i.d. data—we consider the
regression model (1.3) with a nonstationary error process. Second, we are inter-
ested in an estimate, say T̂N,c of the Lebesgue measure Tc of the level set Mc and
its asymptotic properties in order to construct a test for the change point problem
(1.6). Therefore—in contrast to many references—we do not discuss estimates of
an excess mass functional or a distance between an estimated level set and the
“true” level set, but investigate the asymptotic distribution of T̂N,c. Third, as this
distribution depends sensitively on the critical points and the dependence structure
of the nonstationary error process, we use a Gaussian approximation to develop a
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bootstrap method, which allows us to find quantiles without estimating the location
of the critical points and the derivatives of the regression function at these points.

We also mention the differences to the work of [28] and [39], which has its
focus on the detection of intervals of homogeneity of the underlying process, while
the present paper investigates the problem to detect significant deviations of an
inhomogeneous process from its initial distribution (here specified by different
values of the mean function).

The approach proposed in this paper is also related to the sojourn time of a (real
valued) stochastic process, say {X(t)}t∈[0,1], which is defined as

Sc =
∫ 1

0
1
{∣∣X(t) − X(0)

∣∣ > c
}
dt

and has widely been studied in probability theory under specific distributional as-
sumptions (see, e.g., [8, 40] among many). To be precise, let X(t) = μ(t) + ε(t)

for some centered process {ε(t)}t∈[0,1], then compared to the quantity Tc defined
in (1.5), which refers to expectation μ(t), the quantity Sc is a random variable. An
alternative excess-type measure is now given by the expected sojourn time

(1.10) ec := E(Sc),

and the corresponding null hypotheses can be formulated as

H0 : ec ≤ � versus H1 : ec > �.

A further quantity of interest was mentioned by a referee to us and is defined by
the probability that the sojourn time exceeds the threshold �, that is,

(1.11) pc,� := P(Sc > �).

This quantity cannot be directly used for testing, but can be considered as a mea-
sure of a relevant deviation for a sufficiently long time from the initial state X(0).

The rest of paper is organized as follows. In Section 2, we motivate our ap-
proach, define an estimator of the quantity Tc, discuss alternative measures and
give some basic assumptions of the nonstationary model (1.3). Section 3 is devoted
to a discussion of the asymptotic properties of this estimator in the case, where all
critical points are regular points, that is μ(1)(s) �= 0 for all s ∈ C. We focus on this
case first, because here the arguments are more transparent. In particular, in this
case all roots are of the same order and contribute to the asymptotic variance of
the limit distribution, which simplifies the statement of the results substantially. In
this case, we also identify a bias problem, which makes the implementation of the
test at this stage difficult. The general case is carefully investigated in Section 4,
where we also address the bias problem using a jackknife approach. The bootstrap
procedure is developed in the second part of Section 4. In Section 5, we illustrate
its finite sample properties by means of a simulation study. Finally, some discus-
sion on multivariate data is given in Section 6. In this section, we also propose
estimators of the quantities (1.10) and (1.11). All proofs and technical details are
deferred to an Suuplementary Material [22], which also contains an illustration of
the method analyzing two data examples.
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2. Estimation and basic assumptions.

2.1. Relevant changes via a mass excess approach. Recall the definition of the
testing problems (1.6), (1.7), (1.8) and note that Tc = T +

c + T −
c , where

T +
c =

∫ 1

0
1
(
μ(t) − μ(0) > c

)
dt, T −

c =
∫ 1

0
1
(
μ(t) − μ(0) < −c

)
dt,

and 1(B) denotes the indicator function of the set B . In most parts of the paper we
mainly concentrate on the estimation of the quantity T +

c and study the asymptotic
properties of an appropriately standardized estimate (see, e.g., Theorems 3.1 and
4.1). Corresponding results for the estimators of T −

c and Tc can be obtained by
similar methods and the joint weak convergence is established in Theorem 3.2 and
Theorem 4.2 without giving detailed proofs.

We propose to estimate the mean function by a local linear estimator

(2.1)

(
μ̂bn(t),

ˆ̇μbn(t)
)T

= argmin
β0∈R,β1∈R

n∑
i=1

(
Xi − β0 − β1(i/n − t)

)2
K

(
i/n − t

bn

)
, t ∈ [0,1],

where K(·) denotes a continuous and symmetric kernel supported on the interval
[−1,1]. We define an estimator of T +

c by

(2.2) T̂ +
N,c = 1

N

N∑
i=1

∫ ∞
c

1

hd

Kd

(
μ̂bn(i/N) − μ̂bn(0) − u

hd

)
du,

where Kd(·) is a symmetric kernel function supported on the interval [−1,1] such
that

∫ 1
−1 Kd(x) dx = 1. In (2.2) the quantity hd > 0 denotes a bandwidth and N is

the number of knots in a Riemann approximation (see the discussion in the follow-
ing paragraph), which does not need to coincide with the sample size n. It turns
out that the procedures proposed in this paper are not sensitive with respect to the
choice of hd and N , provided that these parameters have been chosen sufficiently
small and large, respectively (see Section 5 for a further discussion).

A statistic of the type (2.2) has been proposed by [19] to estimate the inverse of a
strictly increasing regression function, but we use it here without assuming mono-
tonicity of the mean function μ. Observing that μ̂bn(t) is a consistent estimate of
μ(t) we argue (rigorous arguments are given later) that

(2.3)

T̂ +
N,c = 1

N

N∑
i=1

∫ ∞
c

1

hd

Kd

(
μ(i/N) − μ(0) − u

hd

)
du + oP (1)

= 1

hd

∫ 1

0

∫ ∞
c

Kd

(
μ(x) − μ(0) − u

hd

)
dudx + oP (1)

= T +
c + oP (1)
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FIG. 2. Smooth approximation phd
of the step function q = 1M+

c
for different choices of the band-

width hd .

as n,N → ∞, hd → 0. In Figure 2 we display the functions

phd
: t → 1

hd

∫ ∞
c

Kd

(
μ(t) − μ(0) − u

hd

)
du and q : t → 1

(
μ(t) − μ(0) ≥ c

)
and visualize that phd

is a smooth approximation of the indicator function for
decreasing hd (for the function considered in Figure 1). This smoothing is intro-
duced to derive the asymptotic properties of the statistic T̂ +

N,c and to construct a
valid bootstrap procedure without estimating the critical roots and derivatives of
the regression function. Thus, intuitively (rigorous arguments will be given in the
following sections) the statistic T̂ +

N,c is a consistent estimator of T +
c and a similar

argument for T −
c will provide a consistent estimator of the quantity Tc defined in

(1.5). The null hypothesis is finally rejected for large values of this estimate.
In order to make these heuristic arguments more rigorous, we make the follow-

ing basic assumptions for the model (1.3).

ASSUMPTION 2.1. (a) The mean function is twice differentiable with Lips-
chitz continuous second derivative.

(b) There exists a positive constant ε0, such that for all δ ∈ [0, ε0] there are kδ

closed disjoint intervals I1,δ, . . . , Ikδ,δ , such that
⋃kδ

i=1 Ii,δ is a decomposition of{
t ∈ [0,1] : ∣∣μ(t) − μ(0) − c

∣∣ ≤ δ
} ∪ {

t ∈ [0,1] : ∣∣μ(t) − μ(0) + c
∣∣ ≤ δ

}
,

where the number of intervals kδ satisfies sup0≤δ≤ε0
kδ ≤ M for some universal

constant M . In particular, there exists only a finite number of roots of the equation
μ(t) − μ(0) = ±c. We also assume that |μ(1) − μ(0)| �= c.

It is worthwhile to mention that all results presented in the paper remain true
if the regression function is Lipschitz continuous on the interval [0,1] and the as-
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sumptions regarding its differentiability (such as Assumption 2.1) hold in a neigh-
bourhood of the critical roots. Our first result makes the approximation of T +

c by
its deterministic counterpart

(2.4) T +
N,c := 1

N

N∑
i=1

∫ ∞
c

1

hd

Kd

(
μ(i/N) − μ(0) − u

hd

)
du

in (2.3) rigorous. For this purpose let

mγ,δ(μ) = λ
({

t ∈ [0,1] : ∣∣μ(t) − γ
∣∣ ≤ δ

})
denote the Lebesgue measure of the set of points, where the mean function lies in
a δ-neighbourhood of the point γ .

PROPOSITION 2.1. If Assumption 2.1 holds and mc+μ(0),δ(μ) = O(δι) for
some ι > 0 as δ → 0, we have for the quantity T +

N,c in (2.4),

T +
N,c − T +

c = O
(
max

{
hι

d,N−1})
as N → ∞, hd → 0.

PROOF. By elementary calculations it follows that∫ ∞
c

1

hd

Kd

(
μ(i/N) − μ(0) − u

hd

)
du − 1

(
μ(i/N) − μ(0) > c

)

= 1
({∣∣c − (

μ(i/N) − μ(0)
)∣∣ ≤ hd

}) ∫ ∞
c−μ(i/N)+μ(0)

hd

Kd(x) dx

− 1
({

μ(i/N) − μ(0) − hd < c ≤ μ(i/N) − μ(0)
})

.

Therefore, we obtain (observing that
∫ 1
−1 Kd(x) dx = 1)∣∣T +

N,c − T +
c

∣∣
=

∣∣∣∣∣ 1

N

N∑
i=1

∫ ∞
c

1

hd

Kd

(
μ( i

N
) − μ(0) − u

hd

)
du − 1

(
μ

(
i

N

)
− μ(0) > c

)∣∣∣∣∣
+ O

(
1

N

)

≤ 2

N

N∑
i=1

1
(∣∣μ(i/N) − μ(0) − c

∣∣ ≤ hd

) + O
(
N−1)

= 2mc+μ(0),hd
(μ) + O

(
N−1) = O

(
max

{
hι

d,
1

N

})

as N → ∞, hd → 0. �
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2.2. Alternatives measures of mass excess. In this section, we briefly mention
several alternative measures of mass excess, which might be of interest in applica-
tions and for which similar results as stated in this paper can be derived. For the
sake of brevity, we do not state these results in full detail in this paper and only
describe the measures with corresponding estimates.

2.2.1. Deviations from an average trend. In applications, one might be also
interested if there exist relevant deviations of the sequence (μ(i/n))i=
nt0�+1,...,n

from an average trend formed from the previous period (μ(i/n))i=1,...,
nt0�. This
question can be addressed by estimating the quantity∫ 1

t0

1
(
μ(t) −

∫ t0

0
μ(s) ds > c

)
dt = λ

({
t ∈ [t0,1] : μ(t) −

∫ t0

0
μ(s) ds > c

})
.

Using similar arguments as given in this paper (and the Supplementary Material
[22]) one can prove consistency and derive the asymptotic distribution of the esti-
mate

1

N

N∑
i=
Nt0�

∫ ∞
c

1

hd

Kd

(
μ̂bn(i/N) − ∫ t0

0 μ̂bn(s) ds − u

hd

)
du,

where μ̂bn is local linear estimator of μ (in Section 4 we will use a bias corrected
version of μ̂bn ).

2.2.2. Relative deviations. If μ(0) �= 0 an alternative measure of excess can
be defined by∫ 1

0
1
(∣∣∣∣μ(t) − μ(0)

μ(0)

∣∣∣∣ > c

)
dt = λ

({
t ∈ [0,1] :

∣∣∣∣μ(t) − μ(0)

μ(0)

∣∣∣∣ > c

})
.(2.5)

This measure of excess allows to define a relevant change in the mean relative to
its initial value and makes the choice of the constant c easier in applications. For
example, if one chooses c = 0.1, one is interested in relevant deviation from the
initial value by more than 10%. The quantity in equation (2.5) can be estimated in
a similar way as described in the previous paragraph and the details are omitted
for the sake of brevity.

2.3. Locally stationary processes. In Sections 3 and 4, we will establish the
asymptotic properties of the statistic T̂ +

N,c as an estimator of T +
c and derive a boot-

strap approximation to derive critical values. Since we are interested in a pro-
cedure for nonstationary processes we require several technical assumptions on
the error process in model (1.3). The less experienced reader can easily skip this
paragraph and consider an independent identically distributed array of centered
random variables εi,n in model (1.3) with variance σ 2. The main challenge in
the proofs is neither the dependence structure nor the nonstationarity of the er-
ror process but consists in the fact that definition (2.2) defines a complicated map
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from the class of estimators to the Lebesgue measure of random sets of the form
{t : |μ̂bn(t) − μ̂bn(0)| > c}. Thus, although a standardized version of the local lin-
ear estimator μ̂bn is asymptotically normally distributed (under suitable condi-
tions), a rigorous analysis of this mapping is required to derive the distributional
properties of the statistic T̂ +

N,c. These depend sensitively on the local behaviour of
the function μ at points satisfying the equation |μ(t) − μ(0)| = c and the corre-
sponding analysis represents the most important part of the work, which is inde-
pendent of the error structure in model (1.3).

To be precise let ‖X‖q = (E|X|q)1/q denote the Lq -norm of the random vari-
able X (q ≥ 1). We begin recalling some basic definitions on physical dependence
measures and locally stationary processes.

Let η = (ηi)i∈Z be a sequence of independent identically distributed random
variables, Fi = {ηs : s ≤ i}, denote by η′ = (η′

i )i∈Z an independent copy of η and
define F∗

i = (. . . , η−2, η−1, η
′
0, η1, . . . , ηi). For t ∈ [0,1] let G : [0,1] ×R

∞ →R

denote a nonlinear filter, that is a measurable function, such that G(t,Fi) is a
properly defined random variable for all t ∈ [0,1].

(1) A sequence (εi,n)i=1,...,n is called locally stationary process, if there exists
a filter G such that εi,n = G(i/n,Fi) for all i = 1, . . . , n.

(2) For a nonlinear filter G with supt∈[0,1] ‖G(t,Fi)‖q < ∞, the physical de-
pendence measure of G with respect to ‖ · ‖q is defined by

(2.6) δq(G, k) = sup
t∈[0,1]

∥∥G(t,Fk) − G
(
t,F∗

k

)∥∥
q .

(3) The filter G is called Lipschitz continuous with respect to ‖ · ‖q if and only
if

(2.7) sup
0≤s<t≤1

∥∥G(t,Fi) − G(s,Fi)
∥∥
q/|t − s| < ∞.

The filter G is used to model nonstationarity. The quantity δq(G, k) measures
the dependence of G(t,Fk) on η′

0 over the interval [0,1]. When δq(G, k) con-
verges sufficiently fast to 0 such that

∑
k δq(G, k) < ∞, we speak of a short range

dependent time series. Condition (2.7) means that the data generating mechanism
G is varying smoothly in time. We refer to [47] for more details, in particular for
examples of locally stationary linear and nonlinear time series, calculations of the
dependence measure (2.6) and for the verification of (2.7). With this notation, we
make the following assumptions regarding the error process in model (1.3).

ASSUMPTION 2.2. The error process (εi,n)i=1,...,n in model (1.3) is a zero-
mean locally stationary process with filter G, which satisfies the following condi-
tions:

(a) There exists a constant χ ∈ (0,1), such that δ4(G, k) = O(χk) as k → ∞.
(b) G is Lipschitz continuous with respect to ‖·‖4 and supt∈[0,1] ‖G(t,F0)‖4 <

∞.
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(c) The long-run variance σ 2(t) := ∑∞
i=−∞ cov(G(t,Fi),G(t,F0)), t ∈ [0,1]

of the filter G is Lipschitz continuous and nondegenerate, that is inft∈[0,1] σ(t) > 0.

Condition (a) of Assumption 2.2 means that the error process {εi,n}i=1,...,n in
model (1.3) is locally stationary with geometrically decaying dependence mea-
sure. The theoretical results of the paper can also be derived under the assumption
of a polynomially decaying dependence measure with substantially more compli-
cated bandwidth conditions and proofs. Conditions (b) and (c) are standard in the
literature of locally stationary time series. They are used later for a Gaussian ap-
proximation of the locally stationary time series; see, for example, [48].

3. Twice continuously differentiable mean functions. In this section, we
briefly consider the situation, where the derivatives of the mean function at the
critical set C do not vanish. These assumptions are quite common in the literature
(see, e.g., condition (B.ii) in [27] or assumption (A1) in [37]). We discuss this case
separately because of (at least) two reasons. First, the results and required assump-
tions are slightly simpler here. Second, and more importantly, we use this case to
demonstrate that the estimates of Tc, T +

c and T −
c have a bias, which is asymptot-

ically not negligible and makes their direct application for testing the hypotheses
(1.6), (1.7) and (1.8) difficult. The general case is postponed to Section 4, where
we solve the bias problem and also introduce a bootstrap procedure. We do not
provide proofs of the results in this section, as they can be obtained by similar (but
substantially simpler) arguments as given in the proofs of Theorems 4.1 and 4.2
below.

Recall the definition of the statistic T̂ +
N,c in (2.2), where μ̂bn(t) is the local lin-

ear estimate of the mean function with bandwidth bn. Our first result specifies its
asymptotic distribution, and for its statement we make the following additional
assumption on the bandwidths.

ASSUMPTION 3.1. The bandwidth bn of the local linear estimator satisfies
bn → 0, nbn → ∞, bn/hd → ∞,

√
nbn/ log4 n → ∞, and π∗

n/hd → 0 where
π∗

n := (b2
n + (nbn)

−1/2 logn) logn.

THEOREM 3.1. Suppose that Assumptions 2.1, 2.2 and 3.1 hold, that there
exist roots t+1 , . . . , t+

k+ of the equation μ(t) − μ(0) = c satisfying μ̇(t+j ) �= 0 for
1 ≤ j ≤ k+, and define

R̄1,n = n1/4 log2 n

nbn

, R̄2,n =
(

1

Nbn

+ 1

Nhd

)
(bn ∧ hd),

χ̄n =
(
b4
n + 1

nbn

)
h−1

d .
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If Nbn → ∞, Nhd → ∞,
√

nbn(χ̄n + R̄1,n + R̄2,n) = o(1), then

√
nbn

(
T̂ +

N,c − T +
c −

k+∑
j=1

μ2,Kb2
n

μ̈(t+j )

|μ̇(t+j )| + b2
nc2,Kμ̈(0)

2c0,K

1

|μ̇(t+j )|

)
D⇒ N

(
0, τ 2,+)

,

where τ 2,+ = τ
2,+
1 + τ

2,+
2 ,

τ
2,+
1 =

k+∑
s=1

σ 2(t+s )

μ̇(t+s )2

∫
K2(x) dx,

τ
2,+
2 = σ 2(0)

c2
0,K

(
k+∑
j=1

1

|μ̇(t+j )|

)2 ∫ 1

0
(μ2,K − tμ1,K)2K2(t) dt,

the constants c0,K and c2,K are given by

c0,K = μ0,Kμ2,K − μ2
1,K, c2,K = μ2

2,K − μ1,Kμ3,K

and μl,K = ∫ 1
0 xlK(x) dx for (l = 1,2, . . .).

Theorem 3.1 establishes asymptotic normality under the scenario that μ̇(t) �= 0
for all points t ∈ C+ = {t ∈ [0,1] : μ(t) − μ(0) = c}. This condition guarantees
that the mean function μ is strictly monotone in a neighbourhood of the roots.
Moreover, Assumption 2.1(b), Assumptions 2.2 and 3.1 imply the asymptotic in-
dependence of the estimators of μ(0) and μ(t) for any t ∈ C+.

We conclude this section presenting a corresponding weak convergence result
for the joint distribution of (T̂ +

N,c, T̂
−
N,c), where

T̂ −
N,c = 1

N

N∑
i=1

∫ −c

−∞
1

hd

Kd

(
μ̂bn(i/N) − μ̂bn(0) − u

hd

)
du

denotes an estimate of the quantity T −
c defined in (1.8).

THEOREM 3.2. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied
and that the bandwidth conditions of Theorem 3.1 hold. If there also exist
roots t−1 , . . . , t−

k− of the equation μ(t) − μ(0) = −c, such that μ̇(t−j ) �= 0 (j =
1, . . . , k−), then, as n → ∞,√

nbn

(
T̂ +

N,c − T +
c − β+

c , T̂ −
N,c − T −

c − β−
c

)T D=⇒ N (0, �̃),

where

(3.1) β±
c = μ2,Kb2

n

k±∑
j=1

μ̈(t±j )

|μ̇(t±j )| − b2
nc2,Kμ̈(0)

2c0,K

k±∑
j=1

1

|μ̇(t±j )| ,
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and the elements in the matrix �̃ = (�̃ij )i,j=1,2 are given by �̃11 = τ
2,+
1 + τ

2,+
2 ,

�̃22 = τ
2,−
1 + τ

2,−
2 and

�̃12 = �̃21 = −c−2
0,Kσ 2(0)

k+∑
j=1

1

|μ̇(t+j )|
k−∑
j=1

1

|μ̇(t−j )|
∫ 1

0
(μ2,K − tμ1,K)2K2(t) dt,

where τ
2,−
1 and τ

2,−
2 are defined in a similar way as τ

2,+
1 and τ

2,+
2 in Theorem 3.1.

REMARK 3.1. The representation of the bias in (3.1) has some similarity with
the approximation of the risk of an estimate of the highest density region inves-
tigated in [37]. We suppose that similar arguments as given in the proofs of our
main results can be used to derive asymptotic normality of this estimate (see also
[27]).

REMARK 3.2. The most general assumptions under which the results of our
paper hold are the following.

(a) The mean trend is a piecewise Lipschitz continuous function, with a
bounded number of jump points. If D+(t0) and D−(t0) denote the limit of the
function |μ(·) − μ(0)| from the left an right at the jump point t0, then (D+(t0) −
c)(D−(t0) − c) > 0. In other words, at any jump, the function |μ(·) − μ(0)| does
not “cross” the level c.

(b) There is a finite number of critical roots and the mean trend function has a
Lipschitz continuous second derivative in a neighbourhood of each critical root.

In particular, we exclude the case where jumps occur at critical roots, but there
might be jumps at other points in the interval [0,1]. In this case, the local linear
estimator μ̂bn has to be modified to address for these jumps (see [35] or [23] among
others). For the sake of a transparent representation and for the sake of brevity, we
state our results under Assumptions 2.1 and 2.2.

Theorems 3.1 and 3.2 can be used to construct tests for the hypotheses (1.7) and
(1.8). Similarly, by the continuous mapping theorem we also obtain from Theo-
rem 3.2 the asymptotic distribution of the the statistic T̂N,c = T̂ +

N,c + T̂ −
N,c, which

could be used to construct a test for the hypotheses (1.6). However, such tests
would either require undersmoothing or estimation of the bias β+

c and β−
c in (3.1),

which is not an easy task. We address this problem by a jackknife method in the
following section where we also develop a bootstrap test to avoid the estimation of
the critical roots.

4. Bias correction and bootstrap. In this section, we will address the bias
problem mentioned in the previous section adopting the jackknife bias reduction
technique proposed by [38]. In a second step, we will use these results to construct
a bootstrap procedure. Moreover, we also relax the main assumption in Section 3
that the derivative of the mean function does not vanish at critical roots t ∈ C.
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4.1. Bias correction. Recalling the definition μ̂bn(t) of the local linear esti-
mator in (2.1) with bandwidth bn we define the jackknife estimator by

(4.1) μ̃bn(t) = 2μ̂
bn/

√
2(t) − μ̂bn(t)

for 0 ≤ t ≤ 1. It has been shown in [46] that the bias of the estimator (4.1) is of
order o(b3

n + 1
nbn

), whenever bn ≤ t ≤ 1 − bn, and [48] showed that the estimate
μ̃bn is asymptotically equivalent to a local linear estimate with kernel

K∗(x) = 2
√

2K(
√

2x) − K(x).

In order to use these bias corrected estimators for the construction of tests for
the hypotheses defined in (1.6)–(1.8), we also need to study the estimate μ̃bn(0),
which is not asymptotically equivalent to a local linear estimate with kernel K∗(x).
However, as a consequence of Lemma C.2 in the Supplementary Material [22] we
obtain the stochastic expansion∣∣∣∣∣μ̃bn(0) − μ(0) − 1

nbn

n∑
i=1

K̄∗
(

i

nbn

)
εi,n

∣∣∣∣∣ = O

(
b3
n + 1

nbn

)
,

where the kernel K̄∗(x) is given by

K̄∗(x) = 2
√

2K̄(
√

2x) − K̄(x)

with K̄(x) = (μ2,K − xμ1,K)K(x)/c0,K . Since the kernel K̄∗(x) is not symmet-
ric, the bias of μ̃bn(0) is of the order O(b3

n + 1
nbn

). The corresponding estimators
of the quantities T +

c and T −
c are then defined as in Section 2, where the local lin-

ear estimator μ̂bn is replaced by its bias corrected version μ̃bn . For example, the
analogue of the statistic in (2.2) is given by

(4.2) T̃ +
N,c = 1

N

N∑
i=1

∫ ∞
c

1

hd

Kd

(
μ̃bn(i/N) − μ̃bn(0) − u

hd

)
du.

The investigation of the asymptotic properties of these estimators in the general
case requires some preparations, which are discussed next.

We call a point t ∈ [0,1] a regular point of the mean function μ, if the derivative
μ(1) does not vanish at t . A point t ∈ C is called a critical point of μ of order k ≥ 1
if the first k derivatives of μ at t vanish while the (k + 1)st derivative of μ at t

is nonzero, that is μ(s)(t) = 0 for 1 ≤ s ≤ k and μ(k+1)(t) �= 0. Regular points are
critical points of order 0. Theorem 3.1 or 3.2 are not valid if any of the roots of the
equation μ(t) − μ(0) = c or μ(t) − μ(0) = −c is a critical point of order larger
or equal than 1. The following result provides the asymptotic distribution in this
case and also solves the bias problem mentioned in Section 3. For its statement,
we make the following additional assumptions.
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ASSUMPTION 4.1. The mean function μ is three times continuously dif-
ferentiable. Let t+1 , . . . , t+

k+ and t−1 , . . . , t−
k− denote the roots of the equations

μ(t) − μ(0) = c and μ(t) − μ(0) = −c, respectively. For each t−s (s = 1, . . . , k−)
and each t+s (s = 1, . . . , k+) there exists a neighbourhood of t−s and t+s such that
μ is (v−

s + 1) and (v+
s + 1) times differentiable in these neighbourhoods with cor-

responding critical order v−
s and v+

s , respectively (1 ≤ s ≤ k−, 1 ≤ s ≤ k+). We
also assume that the (v−

s + 1)st and (v+
s + 1)st derivatives of the mean function

are Lipschitz continuous on these neighbourhoods.

ASSUMPTION 4.2. There exist q points 0 = s0 < s1 < · · · < sq < sq+1 = 1
such that the mean function μ is strictly monotone on each interval (si, si+1] (0 ≤
i ≤ q).

It is shown in Lemma C.1 of the Supplementary Material [22] that under the
assumptions made so far the set {t : |μ(t)− c| ≤ hn, t ∈ [0,1]} can be decomposed
as a union of disjoint “small” intervals around the critical roots t+i and t−i , whose

Lebesgue measure is of order h
1/(v+

i +1)
n and h

1/(v−
i +1)

n , respectively, and therefore
depends on the order of the corresponding root. In the Supplementary Material
[22] we prove the following result, which clarifies the distributional properties of
the estimator T̃ +

N,c defined in (4.2) if the sample size converges to infinity.

THEOREM 4.1. Suppose that k+ ≥ 1, and that Assumptions 2.1, 2.2, 4.1 and
Assumption 4.2 are satisfied. Define v+ = max1≤l≤k+ v+

l as the maximum critical
order of the roots of the equation μ(t) − μ(0) = c and introduce the notation

χ+
n =

(
b6
n + 1

nbn

)
h−2

d h
1

v++1
d , R+

1,n = h
− v+

v++1
d

(
b3
n + 1

nbn

)
,

R+
2,n = n1/4 log2 n

nbn

h
− v+

v++1
d , R+

3,n =
(

1

Nbn

+ 1

Nhd

)(
bn ∧ h

1
v++1
d

)
.

Assume further that the bandwidth conditions hd → 0, nbnhd → ∞, bn → 0,
nb2

n → ∞, Nbn → ∞, Nhd → ∞ and πn = o(hd) hold, where

πn := (
b3
n + (nbn)

−1/2 logn
)

logn,

then we have the following results:

(a) If
√

nbnh
v+

v++1
d (χ+

n + R+
1,n + R+

2,n + R+
3,n) = o(1),

√
nbnh

v+
v++1
d /N = o(1),

bv++1
n /hd → ∞, then

√
nbnh

v+
v++1
d

(
T̃ +

N,c − T +
c

) D=⇒N
(
0, σ

2,+
1 + σ

2,+
2

)
,
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where

σ
2,+
1 =

(∫
Kd

(
zv++1)

dz

)2((
v+ + 1

)!) 2
v++1

(4.3)

× ∑
{t+l : v+

l =v+}

σ 2(t+l )

|μ(v++1)(t+l )| 2
v++1

∫ (
K∗(x)

)2
dx,

σ
2,+
2 = σ 2(0)

((
v+ + 1

)!) 2
v++1

∫ (
K̄∗(t)

)2
dt

(4.4)

×
( ∑

{t+l : v+
l =v+}

∣∣μ(v++1)(t+l )∣∣ −1
v++1

∫
Kd

(
zv++1)

dz

)2
.

(b) If bn/h
1

v++1
d = r ∈ [0,∞),

√
nhdh

v+
2(v++1)

d (χ+
n +R+

1,n +R+
2,n +R+

3,n) = o(1),
then

√
nhdh

v+
2(v++1)

d

(
T̃ +

N,c − T +
N,c

) D=⇒N
(
0, ρ

2,+
1 + ρ

2,+
2

)
,

where

ρ
2,+
1 = ∣∣(v+ + 1

)!∣∣ 1
v++1

∑
{t+l : v+

l =v+}

σ 2(t+l )

|μ(v++1)(t+l )| 2
v++1

×
∫

K∗(u)K∗(v)Kd

(
zv++1)

× Kd

((
z + r

∣∣∣∣ (v+ + 1)!
μ(v++1)(t+l )

∣∣∣∣
−1

v++1
(v − u)

)v++1)
dudv dz

and ρ
2,+
2 = r−1σ

2,+
2 , where σ

2,+
2 is defined in (4.4).

In general the rate of convergence of the estimator T̃ +
N,c is determined by the

maximal order of the critical points, and only critical points of maximal order
appear in the asymptotic variance. The rate of convergence additionally depends
on the relative order of the bandwidths bn and hd . Theorem 4.1 also covers the case
v+ = 0, where all roots of the equation μ(t)−μ(0) = c are regular. Moreover, the
use of the jackknife corrected estimate μ̃bn avoids the bias problem observed in
Theorem 3.1.

It is also worthwhile to mention that there exists a slight difference in the state-
ment of part (a) and (b) of Theorem 4.1. While part (a) gives the asymptotic dis-
tribution of T̃ +

N,c − T +
c (appropriately standardized), part (b) describes the weak

convergence of T̃ +
N,c − T +

N,c. The replacement of T +
N,c by its limit T +

c is only pos-

sible under additional bandwidth conditions. In fact, if bn/h
1

v++1
d = r ∈ [0,∞),
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Theorem 4.1 and Proposition 2.1 give
√

nhdh
v+/2(v++1)
d (T̃ +

N,c − T +
c ) − Rn

D=⇒
N (0, ρ

2,+
1 +ρ

2,+
2 ), where ρ

2,+
1 and ρ

2,+
2 are defined in Theorem 4.1, and Rn is a an

additional bias term of order O(
√

nhdh
(v++2)/2(v++1)
d ), which does not necessarily

vanish asymptotically. For example, in the regular case v+ = 0 this bias is of order
o(1) under the additional assumptions nh3

d = o(1) and bn/hd < ∞. Note that these
bandwidth conditions do not allow for the MSE-optimal bandwidth bn ∼ n−1/5.
These considerations give some arguments for using small bandwidths hd in the
estimator (4.2) such that condition (a) of Theorem 4.1 holds, that is hd = o(bv++1

n ).
Moreover, in numerical experiments we observed that smaller bandwidths hd usu-
ally yield a substantially better performance of the estimator T̃ +

N,c and in the re-
maining part of this section we concentrate on this case as this is most important
from a practical point of view.

The next result gives a corresponding statement of the joint asymptotic distri-
bution of (T̃ +

N,c, T̃
−
N,c) and as a consequence that of T̃N,c = T̃ +

N,c + T̃ −
N,c, where the

statistic T̃ −
N,c is defined by

(4.5) T̃ −
N,c = 1

N

N∑
i=1

∫ −c

−∞
1

hd

Kd

(
μ̃bn(i/N) − μ̃bn(0) − u

hd

)
du.

THEOREM 4.2. Assume that the conditions of Theorem 4.1 are satisfied, that
k− ≥ 1 and define v− = max1≤l≤k− v−

l as the maximum order of the critical roots
{t−l : 1 ≤ l ≤ k−}. If, additionally, the bandwidth conditions (a) of Theorem 4.1
hold and similar bandwidth conditions are satisfied for the level −c, we have

√
nbn

(
h

v+
v++1
d

(
T̃ +

N,c − T +
c

)
, h

v−
v−+1
d

(
T̃ −

N,c − T −
c

))T ⇒ N (0,�),

where the matrix � = (�ij )i,j=1,2 has the entries �11 = σ
2,+
1 + σ

2,+
2 , �22 =

σ
2,−
1 + σ

2,−
2 ,

�12 = �21

= −σ 2(0)
((

v+ + 1
)!) 1

v++1
((

v− + 1
)!) 1

v−+1

∫ 1

0

(
K̄∗(t)

)2
dt

× ∑
{t+l : v+

l =v+}

∫
Kd(zv++1) dz

|μ(v++1)(t+l )|1/(v++1)

× ∑
{t−l : v−

l =v−}

∫
Kd(zv−+1) dz

|μ(v−+1)(t−l )|1/(v−+1)
,

and σ
2,−
1 , σ

2,−
2 are defined similarly as σ

2,+
1 , σ

2,+
2 in (4.3), (4.4), respectively.
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The continuous mapping theorem and Theorem 4.2 imply the weak convergence

of the estimator T̃N,c of Tc, that is
√

nbnh
v

v+1
d (T̃N,c − Tc) → N(0, σ 2), where v =

max{v+, v−} and the asymptotic variance is given by σ 2 = �111(v+ ≥ v−) +
�221(v+ ≤ v−) + 2�121(v+ = v−).

4.2. Bootstrap. Although Theorem 4.1 is interesting from a theoretical point
of view and avoids the bias problem described in Section 3, it can not be easily used
to construct a test for the hypotheses (1.6). The asymptotic variance of the statistics
T +

N,c and T −
N,c depends on the long-run variance σ 2(·) and the set C of critical

points, which are difficult to estimate. Moreover, the order of the critical roots is
usually unknown and not estimable. Therefore it is not clear which derivatives have
to be estimated (the estimation of higher order derivatives of the mean function is
a hard problem anyway). As an alternative, we propose a bootstrap test which does
not require the estimation of the derivatives of the mean trend at the critical roots.

The bootstrap procedure is motivated by an essential step in the proof of
Theorem 4.1, which gives the stochastic approximation T̃ +

N,c − T +
c = I ′ +

op((
√

nbnh
v+/(v++1)
d )−1), where the statistic I ′ is defined as

−1

nNbnhd

n∑
j=1

N∑
i=1

Kd

(
μ( i

N
) − μ(0) − c

hd

)
σ

(
j

n

)(
K∗

( i
N

− j
n

bn

)
− K̄∗

(
j

nbn

))
Vj ,

and (Vj )j∈N is a sequence of independent standard normally distributed random
variables. Based on this approximation, we propose the following bootstrap to
calculate critical values.

ALGORITHM 4.1. (1) Choose bandwidths bn, hd and an estimator of the long-
run variance, say σ̂ 2(·), which is uniformly consistent on the set

⋃v+
k=1 Uε(t

+
k ) for

some ε > 0, where Uε(t) denotes a ε-neighbourhood of the point t .
(2) Calculate the bias corrected local linear estimate μ̃bn(t) and the statistic

T̃ +
N,c defined in (4.1) and (4.2), respectively.

(3) Calculate

V̄ =
n∑

j=1

σ̂ 2
(

j

n

)[
N∑

i=1

Kd

(
μ̃bn(

i
N

) − μ̃bn(0) − c

hd

){
K∗

( i
N

− j
n

bn

)
−K̄∗

(
j

nbn

)}]2

.

(4) Let q+
1−α denote the the 1 − α quantile of a centered normal distribution

with variance V̄ , then the null hypothesis in (1.7) is rejected, whenever

(4.6) nNbnhd

(
T̃ +

N,c − �
)
> q+

1−α.

THEOREM 4.3. Assume that the conditions of Theorem 4.1(a) are satisfied,
then the test (4.6) defines a consistent and asymptotic level α test for the hypotheses
(1.7).
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REMARK 4.1. (a) It follows from the proof of Theorem 4.3 in the Supplemen-
tary Material [22] that

P(test (4.6) rejects) −→

⎧⎪⎪⎨
⎪⎪⎩

1 if T +
c > �,

α if T +
c = �,

0 if T +
c < �.

Moreover, these arguments also show that the power of the test (4.6) depends

on the “signal to noise ratio” (� − T +
c )/

√
σ

2,+
1 + σ

2,+
2 and that it is able to detect

local alternatives converging to the null at a rate O((nbn)
−1/2h

−v+/(v++1)
d ). When

the level c decreases, the value of T +
c increases and the rejection probabilities also

increase. On the other hand, for any given level c, the rejection probability will
increase when the threshold � decreases (see equation (B.2) in the Supplementary
Material [22]).

(b) It is also of interest to discuss some uniformity properties in this context. For
this purpose we consider the situation in Theorem 4.3, assume that f is a
potential mean function in (1.3) and denote by v+

f and qf the corresponding
quantities in Assumptions 4.1 and 4.2 for μ = f . For given numbers q̃, ṽ < ∞
let F denote the class of all 3 ∨ (ṽ + 1) + 1 times differentiable functions f

on the interval [0,1] satisfying supf ∈F v+
f ≤ ṽ and supf ∈F qf ≤ q̃ . Consider

a sequence (�n)n∈N satisfying
√

nbnh
ṽ/(ṽ+1)
d (�−�n) → −∞ and define for

a given level c > 0, constants M , L, η, ι > 0 the set Fc(M,η, ι, q̃, ṽ,L,�n)

as the class of all functions f ∈ F with the properties:

(i) The cardinality of the set E+
c (f ) = {t ∈ [0,1] : f (t) − f (0) = c} is at

most M .
(ii) min{|t1 − t2| : t1, t2 ∈ E+

c (f ); t1 �= t2} ≥ η; min{t1 : t1 ∈ E+
c (f )} ≥ η;

max{t1 : t1 ∈ E+
c (f )} ≤ 1 − η.

(iii) supt∈[0,1](f (t) − f (0)) ≥ c + ι.
(iv) supt∈[0,1] max1≤s≤3∨(ṽ+1)+1 |f (s)(t)| ≤ L.
(v) T +

f,c := ∫
1(f (t) − f (0) > c)dt ≥ �n.

If Pf denotes the distribution of the process (Xi,n)i=1,...,n in model (1.3) with
μ = f , then it follows by a careful inspection of the proof of Theorem 4.3 in
the Supplementary Material [22] that

lim
n→∞ inf

f ∈Fc(M,η,ι,q̃,ṽ,L,�n)
Pf (test (4.6) rejects) = 1.

(c) The bootstrap procedure can easily be modified to test the hypothesis (1.6)
referring to the quantity Tc. In step (2), we additionally calculate the statistic
T̃ −

N,c defined in (4.5), T̃N,c = T̃ +
N,c + T̃ −

N,c and the quantity

V ∗ =
n∑

j=1

σ̂ 2
(

j

n

)(
N∑

i=1

K
†
d

(
μ̃bn(i/N) − μ̃bn(0) − c

hd

)
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×
(
K∗

(
i/N − j/n

bn

)
− K̄∗

(
j

nbn

)))2

,

where

K
†
d

(
μ̃bn(i/N) − μ̃bn(0) − c

hd

)
= Kd

(
μ̃bn(i/N) − μ̃bn(0) − c

hd

)

− Kd

(
μ̃bn(i/N) − μ̃bn(0) + c

hd

)
.

Finally, the null hypothesis (1.6) is rejected if nNbnhd(T̃N,c − �) > q1−α ,
where q1−α denotes the (1 − α)th quantile of a centered normal distribution
with variance V ∗.

For the estimation of the the long-variance, we define Sk,r = ∑r
i=k Xi and for

m ≥ 2

�j = Sj−m+1,j − Sj+1,j+m

m
,

and for t ∈ [m/n,1 − m/n]

(4.7) σ̂ 2(t) =
n∑

j=1

m�2
j

2
ω(t, j),

where for some bandwidth τn ∈ (0,1),

ω(t, i) = K

(
i/n − t

τn

)/ n∑
i=1

K

(
i/n − t

τn

)
.

For t ∈ [0,m/n) and t ∈ (1 − m/n,1] we define σ̂ 2(t) = σ̂ 2(m/n) and σ̂ 2(t) =
σ̂ 2(1−m/n), respectively. Note that the estimator (4.7) does not involve estimated
residuals. The following result shows that σ̂ 2 is consistent and can be used in
Algorithm 4.1.

THEOREM 4.4. Let Assumptions 2.1–2.2 be satisfied and assume τn → 0,
nτn → ∞, m → ∞ and m

nτn
→ 0. If, additionally, the function σ 2 is twice con-

tinuously differentiable, then the estimate defined in (4.7) satisfies

sup
t∈[γn,1−γn]

∣∣σ̂ 2(t) − σ 2(t)
∣∣ = Op

(√
m

nτ 2
n

+ 1

m
+ τ 2

n + m5/2/n

)
,

where γn = τn + m/n. Moreover, we have

(4.8) σ̂ 2(t) − σ 2(t) = Op

(√
m

nτn

+ 1

m
+ τ 2

n + m5/2/n

)
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for any fixed t ∈ (0,1), and for s = {0,1},

σ̂ 2(s) − σ 2(s) = Op

(√
m

nτn

+ 1

m
+ τn + m5/2/n

)
.

Note that error term
√

m
nτn

+ 1
m

+τ 2
n in (4.8) is minimized at the rate of O(n−2/7)

by m � n2/7 and τn � n−1/7, where we write rn � sn if rn = O(sn) and sn =
O(rn). For this choice the estimator (4.7) achieves a better rate than the long-run
variance estimator proposed in [48] (see Theorem 5 in this reference).

5. Simulation study. In this section, we investigate the finite sample proper-
ties of the bootstrap tests proposed in the previous sections. For the sake of brevity,
we restrict ourselves to the test (4.6) for the hypotheses (1.7). Similar results can
be obtained for the corresponding tests for the hypotheses (1.6) and (1.8). The code
used to obtain the presented results is available from the second author on request.

Throughout this section, all kernels are chosen as Epanechnikov kernel. The
selection of the bandwidth bn in the local linear estimator is of particular impor-
tance in our approach, and for this purpose we use the generalized cross val-
idation (GCV) method. To be precise, let ẽi,b = Xi,n − μ̃b(i/n) be the resid-
ual obtained from a bias corrected local linear fit with bandwidth b and define
ẽb = (ẽ1,b, . . . , ẽn,b)

T . Throughout this section, we use the bandwidth

b̂n = argmin
b

GCV(b) := argmin
b

n−1êT
b �̂−1

n êb

(1 − K∗(0)/(nb))2 ,

where �̂n is an estimator of the covariance matrix �n := {E(εi,nεj,n)}1≤i,j≤n,
which is obtained by the banding techniques as described in [45].

It turns out that Algorithm 4.1 is not very sensitive with respect to the choice of
the bandwidth hd as long as it is chosen sufficiently small. Similarly, the number N

of knots used in the Riemann approximation (2.2) has a negligible influence on the
test, provided it has been chosen sufficiently large. As a rule of thumb satisfying the
bandwidth conditions of Theorem 4.1(a), we use hd = N−1/2/2 throughout this
section, and investigate the influence of other choices below. The number of knots
is always given by N = n. In order to save computational time we use m = 
n2/7�
and τn = n−1/7 for the estimator σ̂ 2 in the simulation study [see the discussion at
the end of Section 4.2]. For the data analysis in Section A of the Supplementary
Material [22], we suggest a data-driven procedure and use a slight modification
of the minimal volatility method as proposed by [48]. To be precise—in order to
avoid choosing too large values for m and τ—we penalize the quantity

ISEh,j = ise

[ 2⋃
r=−2

σ̂ 2
mh,τj+r

(t)

2⋃
r=−2

σ̂ 2
mh+r ,τj

(t)

]
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in their selection criteria by the term 2(τj + mh/n)IS, where σ̂ 2
mh,τj

(·) is the es-
timator (4.7) of the long-run variance with parameters mh and τj and IS is the
average of the quantities ISEh,j .

All simulation results presented in this section are based on 2000 simulation
runs. We consider the model (1.3) with errors εi,n = G(i/n,Fi)/5, where:

(I) G(t,Fi) = 0.25| sin(2πt)|G(t,Fi−1) + ηi ;
(II) G(t,Fi) = 0.6(1 − 4(t − 0.5)2)G(t,Fi−1) + ηi ;

and the filtration Fi = (η−∞, . . . , ηi) is generated by a sequence {ηi, i ∈ Z} of
independent standard normally distributed random variables. For the mean trend
we consider the following two cases:

(a) μ(t) = 8(−(t − 0.5)2 + 0.25);
(b) μ(t) = sin(2|t − 0.6|π)(1 + 0.4t).

Note that the mean trend (b) is not differentiable at the point 0.6. However, using
similar but more complicated arguments as given in the Supplementary Material
[22], it can be shown that the results of this paper also hold if μ(·) is Lipschitz con-
tinuous outside of an open set containing the critical roots t+1 , . . . , t+

k+, t−1 , . . . , t−
k− .

We begin illustrating the finite sample properties of the (uncorrected) estima-
tor T̂ +

N,c in (2.2) and its bias correction T̃ +
N,c in (4.2) for the quantity T +

c , where
c = 1.8. The corresponding values of T +

c are T +
1.8 = 0.3163 and T +

1.8 = 0.1406 in
models (a) and (b), respectively. In Table 1 we display the bias and standard de-
viation of the two estimators. We observe a substantial reduction of the bias by
a factor between 5 and 75, while there is a slight increase in standard deviation.
Except for one case the bias corrected estimate T̃ +

N,c has a smaller mean squared
error than the uncorrected estimate.

Next, we investigate the finite sample properties of the bootstrap test (4.6) for
the hypotheses (1.7), where the threshold is given by � = 0.3 and � = 0.15. Fol-
lowing the discussion in Remark 4.1(a), we display in Table 2 the simulated type
1 error at the boundary of the null hypothesis in (1.7), that is T +

c = �. A good

TABLE 1
Simulated bias and standard deviation of the estimators T̂ +

N,c and its bias correction T̃ +
N,c , where

c = 1.8. The sample size is n = 500 and the bandwidth has been chosen by GCV

Model

(a, I) (a, II) (b, I) (b, II)

Accuracy Bias sd Bias sd Bias sd Bias sd

T̂ +
N,1.8 −0.105 0.063 −0.122 0.077 −0.077 0.055 −0.054 0.060

T̃ +
N,1.8 −0.008 0.065 −0.011 0.069 −0.001 0.076 0.010 0.085
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TABLE 2
Simulated level of the test (4.6) at the boundary of the null hypothesis (1.7). The sample size is
n = 200 (upper part) and n = 500 (lower part) and various bandwidths are considered. The

bandwidth bcv is chosen by GCV, and b−
cv = bcv − 0.05, b+

cv = bcv + 0.05

Model

(a, I) (b, I) (a, II) (b, II)

n � bn 5% 10% 5% 10% 5% 10% 5% 10%

200 0.3 b−
cv 4 8.95 5.35 10.1 4.9 8.8 5.6 9.35

bcv 3.5 8.2 4.15 8.05 4 8 6 10.7
b+
cv 4.15 7.6 2.85 5.3 3.75 6.85 4.85 9.15

0.15 b−
cv 5.45 8.75 5.8 9.25 6.9 10 6.45 11.55

bcv 6.45 10.8 5.35 8.7 6.45 10.7 7.25 11.05
b+
cv 5.65 10.05 2.45 4.55 6.4 10.15 5.75 9.95

500 0.3 b−
cv 5.2 9.45 5.85 10.1 5.85 10.05 5.55 9.9

bcv 4.6 9.55 5.45 9.85 5.65 9.25 6 10.1
b+
cv 5.15 9.1 5 8.95 3.65 7.15 5.45 9.85

0.15 b−
cv 7.6 12.1 6.5 9.6 7.7 11.15 7.5 11.3

bcv 6.55 11.25 5.1 9.15 7.75 12.2 5.15 9.25
b+
cv 6.85 10.6 4.4 7.5 6.6 11.05 4.6 8.3

approximation of the nominal level at this point is required as the rejection prob-
abilities for T +

c < � or T +
c > � are usually smaller or larger than this value, re-

spectively. The values of c corresponding to T +
c = 0.3 and T +

c = 0.15 are given by
c = 1.82 and c = 1.955 for the mean function (a) and by c = 1.672 and c = 1.78
for the mean function (b). We observe a rather precise approximation of the nom-
inal level, which is improved with increasing sample size. For the sample size
n = 200 the GCV method selects the bandwidths bcv for 0.25, 0.26, 0.23, 0.19
for the models ((I), (a)), ((I), (b)), ((II), (a)) and ((II), (b)), respectively. Similarly,
for the sample size n = 500 the GCV method selects the bandwidths 0.2, 0.17,
0.21, 0.14 for the models ((I), (a)), ((I), (b)), ((II), (a)) and ((II), (b)), respectively.
In order to study the robustness of the test with respect to the choice of bn, we
investigate the bandwidths b−

cv = bcv − 0.05, bcv, b
+
cv = bcv + 0.05. For this range

of bandwidths, the approximation of the nominal level is remarkably stable.
We also briefly address the problem of the sensitivity of the procedure with

respect to the choice of the bandwidth hd . For this purpose, we consider the same
scenarios as in Table 2. For the sake of brevity, we restrict ourselves to the case
n = 500 and the data driven bandwidth bcv . The results are shown in Table 3 for
the bandwidths hd = n−1/2/2 = 0.0224, hd = 0.0112 and hd = 0.0056 and show
that the procedure is very stable with respect to the choice hd as long as hd is
chosen sufficiently small.

In Figure 3, we investigate the properties of the test (4.6) as a function of the
threshold � and level c, where we restrict ourselves to the scenario ((I), (a)). For
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TABLE 3
Simulated level of the test (4.6) at the boundary of the null hypothesis (1.7) for different choices of

the bandwidth hd . The sample size is n = 500. The bandwidth bcv is chosen by GCV

Model

(a, I) (b, I) (a, II) (b, II)

n � hd 5% 10% 5% 10% 5% 10% 5% 10%

500 0.3 0.0224 4.6 9.55 5.45 9.85 5.65 9.25 6 10.1
0.0112 5.3 9.5 6.75 11.01 4.95 8.85 4.6 8.15
0.0056 4.9 9.5 6.7 11.25 5.2 9.3 5.25 9.5

500 0.15 0.0224 6.55 11.25 5.1 9.15 7.75 12.2 5.15 9.25
0.0112 6.1 10.25 5.7 9.35 6.4 10.95 5.45 8.75
0.0056 7.45 12.15 6.25 10.25 7.55 11.95 6.9 11.8

the other cases the observations are similar. The bandwidth is bn = 0.2. In the left
part of the figure the level c is fixed as 1.82 and � varies from 0 to 0.4 (where the
true threshold is � = 0.3). As expected the rejection probabilities decrease with
an increasing threshold �. Similarly, in the right part of Figure 3 we display the
rejection probabilities for fixed � = 0.3 when c varies between 1.44 and 2. Again
the rejection rates decrease when c increases.

We finally investigate the power of the test (4.6) for the hypotheses (1.7) with
c = 1.82 and � = 0.3, where the bandwidth is chosen as bn = 0.2. The model is

FIG. 3. Simulated rejection probabilities of the test (4.6) in model (1.3) for varying values of c

and �. Left: c = 1.82, � ∈ [0,0.4] (the case � = 0.3 corresponds to the boundary of the null hy-
pothesis). Right: � = 0.3, c ∈ [1.44,2] (the case c = 1.82 corresponds to the boundary of the null
hypothesis). The dashed horizontal line represents the nominal level 10%.
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FIG. 4. Simulated power of the test (4.6) in model (1.3) for the hypothesis (1.7) with c = 1.82 and
� = 0.3. The mean functions are given by (5.1) and the case a = 8 corresponds to the boundary of
the null hypothesis. The dashed horizontal line represents the nominal level 10%.

given by (1.3) with error (I ) and different mean functions

(5.1) μ(t) = a
(−(t − 0.5)2 + 0.25

)
, a ∈ [7.5,9.5]

are considered (here the case a = 8 corresponds to the boundary of the hypothe-
ses). The results are presented in Figure 4, which demonstrate that the test (4.6)
has decent power.

Although hypotheses of the form (1.6) have not been investigated in the liter-
ature so far it was pointed out by a referee that it might be of interest to see a
comparison with tests for similar hypotheses. The method most similar in spirit to
our approach is the test of [21] for the hypotheses (1.2). Note that the procedure of
these authors assumes a constant mean before and after the (relevant) change point,
while we investigate if a (inhomogeneous) process deviates from its initial mean
substantially over a sufficiently long period. Thus—strictly speaking—none of the
procedures is applicable to the other testing problem. On the other hand both tests
address the problem of relevant changes under different perspectives and it might
therefore be of interest to see their performance in the respective alternative testing
problems. For this purpose we consider model (1.3) with the mean functions:

(III) μ(t) = 2.5 sin(πt),
(IV) μ(t) = 0 for t ∈ [0,1/3) and μ(t) = 2.5 for t ∈ [2/3,1],

and an independent error process εi,n ∼ N(0,1)/4. Note that model (III) corre-
sponds to the situation considered in this paper (i.e., a continuously varying mean
function), while model (IV) reflects the situation investigated in [21]. In Figure 5,
we display the rejection probabilities of both tests if the level c varies from 0.5 to
2.75 (thus the curves are decreasing with increasing c). The significance level is
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FIG. 5. Rejection rates of the test of [21] (dashed line) and the bootstrap test (4.6) with � = 0.1
(solid line) for various values of the level c. Left panel: regression function (III); right panel: regres-
sion function (IV). The nominal level is 10%.

given by 10%, which means the value of c where the curve is 10% should be close
to 2.5. For the hypotheses (1.6), we fixed � as 0.1, because for a comparison with
the test of [21] it is irrelevant how long the threshold is exceeded and the power of
the test (4.6) decreases for increasing values of � (see Figure 3).

We observe in the left panel of Figure 5 that the test of [21] performs poorly in
model (III), where the mean is not constant and the conditions for its applications
are not satisfied. On the other hand, the bootstrap test (4.6) shows a reasonable
performance in model (IV) although the assumptions for its application are not
satisfied. In particular, this test shows a similar performance as the test of [21] for
small values of �, which is particularly designed for the hypotheses (1.2) (see the
right panel of Figure 5).

6. Further discussion. We conclude this paper with a brief discussion of the
extension of the proposed concept to the multivariate case and its relation to the
concept of sojourn times in probability theory.

6.1. Multivariate data. The results of this paper can be extended to multivari-
ate time series of the form Xi,n = μ(i/n) + ei,n, where Xi,n = (X1

i,n, . . . ,X
m
i,n)

T ,
μ(i/n) = (μ1(i/n), . . . ,μm(i/n))T its corresponding expectation and
(ei,n)i=1,...,n is an m-dimensional time series such that ei,n = G(i/n,Fi), where
G(t,Fi) = (G1(t,Fi), . . . ,Gm(t,Fi))

T is an m-dimensional filter. Assume that
�(t) = ∑∞

i=−∞ cov(G(t,Fi),G(t,F0)) of the error process is strictly positive
and let ‖v‖ denote the Euclidean norm of an m-dimensional vector v. The
excess mass for the m-dimensional mean function is then defined as T c :=
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∫ 1
0 1(‖μ(t) − μ(0)‖ > c)dt and a test for the hypotheses H0 : T c ≤ � versus

H1 : T c > � can be developed by estimating this quantity by

T̂ N,c = 1

N

N∑
i=1

∫ ∞
c2

1

hd

Kd

(‖μ̂(i/N) − μ̂(0)‖2 − u

hd

)
du,

where μ̂ denote the vector of componentwise bias-corrected jackknife estimates
of the vector of regression functions.

The corresponding bootstrap test is now obtained by rejecting the null hypoth-
esis at level α, whenever nNbnhd T̂ N,c − � > q1−α , where q1−α is the (1 − α)-
quantile of the random variable

∑
i,j

Kd

(
ĝ(i/N) − c2

hd

)(
K∗

(
j/n − i/N

bn

)
− K̄∗

(
j

nbn

))

× (∇ĝ(i/N)
)T

�̂1/2(j/n)V j ,

∇ĝ(u) is the gradient of the function ĝ(u) = ‖μ̂(u) − μ̂(0)‖2, V 1,V 2, . . . are in-
dependent standard normally distributed m-dimensional random vectors and �̂(t)

is an analogue of the long run variance matrix estimator defined in (4.7).
Under similar conditions as stated in Assumptions 2.1, 2.2, 4.1, 4.2 and in The-

orem 4.1(a), an analogue of Theorem 4.3 can be proved, that is, the bootstrap test
has asymptotic level α and is consistent.

6.2. Estimates of excess measures related to sojourn times. The excess mea-
sures (1.10) and (1.11) based on sojourn times can easily be estimated under the
assumption that the process {ε(t)− ε(0)}t∈[0,1] is stationary with density f . In this
case, the quantities ec and pc,� can be expressed as

ec = E(Sc) =
∫∫ 1

0
1
(∣∣μ(t) − μ(0) + x

∣∣ > c
)
f (x) dt dx,

pc,� = P(Sc > �) = E
(
E

(
1(Sc > �)|ε(t) − ε(0) = x

))
and corresponding estimators are given by

êc = 1

Nnhd

n∑
i=1

N∑
s=1

∫ ∞
c

Kd

( |μ̂(s/N) − μ̂(0) + Ẑ(i/n)| − u

hd

)
du,

p̂c,� = 1

n

n∑
i=1

1

(
1

Nhd

N∑
s=1

∫ ∞
c

Kd

( |μ̂(s/N) − μ̂(0) + Ẑ(i/n)| − u

hd

)
du > �

)
,

respectively, where μ̂(t) − μ̂(0) is a consistent estimator (say a local linear) of
μ(t)−μ(0) and Ẑ(t) = ε̂(t)− ε̂(0) denotes the corresponding residual. Statistical
analysis can then be developed along the lines of this paper.

However, in the case of a nonstationary error process as considered in this paper
the situation is much more complicated and we leave the development of estima-
tors and investigation of their (asymptotic) properties for future research.
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SUPPLEMENTARY MATERIAL

Supplement to “Detecting relevant changes in the mean of nonstationary
processes—A mass excess approach” (DOI: 10.1214/19-AOS1811SUPP; .pdf).
We provide proof for (B.17) and (B.18) for Theorem 4.1, proof of Theorem 4.4
and technical lemmas in the Supplementary Material.
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