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Feature interactions can contribute to a large proportion of variation in
many prediction models. In the era of big data, the coexistence of high dimen-
sionality in both responses and covariates poses unprecedented challenges in
identifying important interactions. In this paper, we suggest a two-stage inter-
action identification method, called the interaction pursuit via distance corre-
lation (IPDC), in the setting of high-dimensional multi-response interaction
models that exploits feature screening applied to transformed variables with
distance correlation followed by feature selection. Such a procedure is com-
putationally efficient, generally applicable beyond the heredity assumption,
and effective even when the number of responses diverges with the sample
size. Under mild regularity conditions, we show that this method enjoys nice
theoretical properties including the sure screening property, support union
recovery and oracle inequalities in prediction and estimation for both inter-
actions and main effects. The advantages of our method are supported by
several simulation studies and real data analysis.

1. Introduction. Recent years have seen a surge of interests on interaction
identification in the high-dimensional setting by many researchers. For instance,
Hall and Xue [8] proposed a recursive approach to identify important interactions
among covariates, where all p covariates are first ranked by the generalized cor-
relation and then only the top p1/2 ones are retained to construct pairwise inter-
actions of order O(p) for further screening and selection of both interactions and
main effects. A forward selection based screening procedure was introduced in
[9] for identifying interactions in a greedy fashion under the heredity assumption.
Such an assumption in the strong sense requires that an interaction between two
covariates should be included in the model only if both main effects are important,
while the weak version relaxes such a constraint to the presence of at least one
main effect being important. Regularization methods have also been used for in-
teraction selection under the heredity assumption. See, for example, [3, 19] and [1].
Under the inverse modeling framework, [11] proposed a new method, called the
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sliced inverse regression for interaction detection (SIRI), which can detect pair-
wise interactions among covariates without the heredity assumption. The theoret-
ical development in [11] relies primarily on the joint normality assumption on the
covariates. The innovated interaction screening procedure was introduced in [7]
for high-dimensional nonlinear classification with no heredity assumption.

Although the aforementioned methods can perform well in many scenarios, they
may have two potential limitations. First, those approaches assume mainly inter-
action models with a single response, while the coexistence of multiple responses
becomes increasingly common in the big data era. Second, those developments
are usually built upon the strong or weak heredity assumption, or the normality
assumption, which may not be satisfied in certain real applications.

To enable broader applications in practice, in this paper we consider the follow-
ing high-dimensional multi-response interaction model

y = α + BT
x x + BT

z z + w,(1)

where y = (Y1, . . . , Yq)
T is a q-dimensional vector of responses, x =

(X1, . . . ,Xp)T is a p-dimensional vector of covariates, z is a p(p − 1)/2-
dimensional vector of all pairwise interactions between covariates Xj ’s, α =
(α1, . . . , αq)

T is a q-dimensional vector of intercepts, Bx ∈ Rp×q and Bz ∈
R[p(p−1)/2]×q are regression coefficient matrices for the main effects and interac-
tions, respectively, and w = (W1, . . . ,Wq)

T is a q-dimensional vector of random
errors with mean zero and being independent of x. Each response in this model
is allowed to have its own regression coefficients, and to simplify the presenta-
tion, the covariate vector x is assumed to be centered with mean zero. Commonly
encountered is the setting of high dimensionality in both responses and covari-
ates, where the numbers of responses and covariates, q and p, can diverge with
the sample size. It is of practical importance to consider sparse models in which
the rows of the coefficient matrices Bx and Bz are sparse with only a fraction of
nonzeros. We aim at identifying the important interactions and main effects, which
have nonzero regression coefficients, that contribute to the responses.

Interaction identification in the multi-response interaction model (1) with large
p and q is intrinsically challenging. The difficulties include the high dimension-
ality in responses, the high computational cost caused by the existence of a large
number of interactions among covariates, and the technical challenges associated
with the complex model structure. The idea of variable screening can speed up the
computation. Yet, under model setting (1) most existing variable screening meth-
ods based on the marginal correlation may no longer work. To appreciate this, let
us consider a specific case of model (1) with only one response

Y = α +
p∑

j=1

βjXj +
p−1∑
k=1

p∑
�=k+1

γk�XkX� + W,(2)

where all the notation is the same as therein with Bx = (βj )1≤j≤p and Bz =
(γk�)1≤k≤p−1,k+1≤�≤p. For simplicity, assume that the covariates X1, . . . ,Xp are
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independent of each other. Then under the above model setting (2), it is easy to see
that

E(Y |Xj) = α + βjXj .(3)

This representation shows that if some covariate Xj is an unimportant main effect
with βj = 0, then the conditional mean of Y given Xj is free of Xj , regardless
of whether Xj contributes to interactions or not. When such a covariate Xj in-
deed appears in an important interaction, variable screening methods based on the
marginal correlations of Y and Xk’s are not capable of detecting Xj if the heredity
assumption fails to hold. As a consequence, there is an important need for new pro-
posals of interaction screening. When the covariates are correlated, the conditional
mean (3) may depend on Xj indirectly through correlations with other covariates
when βj = 0. Such a relationship can, however, be still weak if the correlations
between Xj and other covariates are weak.

To address the aforementioned challenges, we suggest a new two-stage ap-
proach to interaction identification, named the interaction pursuit via distance
correlation (IPDC), exploiting the idea of interaction screening and selection. In
the screening step, we first transform the responses and covariates and then per-
form variable screening based on the transformed responses and covariates. Such a
transformation enhances the dependence of responses on covariates that contribute
to important interactions or main effects. The novelty of our interaction screening
method is that it aims at recovering variables that contribute to important inter-
actions instead of finding these interactions directly, which reduces the computa-
tional cost substantially from a factor of O(p2) to O(p). To take advantage of
the correlation structure among multiple responses, we build our marginal utility
function using the distance correlation proposed in [18]. After the screening step,
we conduct interaction selection by constructing pairwise interactions with the re-
tained variables from the first step, and applying the group regularization method to
further select important interactions and main effects for the multi-response model
in the reduced feature space.

The main contributions of this paper are twofold. First, the suggested IPDC
method provides a computationally efficient approach to interaction screening and
selection in ultra-high dimensional interaction models. Such a procedure accom-
modates the model setting with a diverging number of responses, and is generally
applicable without the requirement of the heredity assumption. Second, our proce-
dure is theoretically justified to be capable of retaining all covariates that contribute
to important interactions or main effects with asymptotic probability one, the so-
called sure screening property [5, 15], in the screening step. In the selection step,
it is also shown to enjoy nice sampling properties for both interactions and main
effects such as the support union recovery and oracle inequalities in prediction and
estimation. In particular, there are two key messages that are delivered in this pa-
per: a separate screening step for interactions can significantly enhance the screen-



900 KONG, LI, FAN AND LV

ing performance if one aims at finding important interactions, and screening inter-
action variables can be more effective and efficient than screening interactions di-
rectly due to the noise accumulation. The former message is elaborated more with
a numerical example presented in Section C.1 of the Supplementary Material [12].

The rest of the paper is organized as follows. Section 2 introduces the new inter-
action screening approach and studies its theoretical properties. We illustrate the
advantages of the proposed procedure using several simulation studies in Section 3
and a real data example in Section 4. Section 5 discusses some possible extensions
of our method. The proofs of main results are relegated to the Appendix. The de-
tails about the post-screening interaction selection, additional numerical studies
and additional proofs of main results as well as additional technical details are
provided in the Supplementary Material.

2. A new interaction screening approach.

2.1. Motivation of the new method. To facilitate the presentation, we call
XkX� an important interaction if the corresponding row of Bz is nonzero, and Xk

an active interaction variable if there exists some 1 ≤ � �= k ≤ p such that XkX�

is an important interaction. Denote by I the set of all important interactions. Sim-
ilarly, Xj is referred to as an important main effect if its associated row of Bx is
nonzero. It is of crucial importance to identify both the set A of all active interac-
tion variables and the set M of all important main effects.

Before presenting our main ideas, let us revisit the specific example (2) dis-
cussed in the Introduction. A phenomenon mentioned there is that variable screen-
ing methods using the marginal correlations between the response and covariates
can fail to detect active interaction variables that have no main effects. We now
consider the square transformation for the response. Some standard calculations
(see Section E.1 of the Supplementary Material) yield

E
(
Y 2|Xj

) =
[
β2

j +
j−1∑
k=1

γ 2
kjE

(
X2

k

) +
p∑

�=j+1

γ 2
j�E

(
X2

�

)]
X2

j

+ 2

[
βjα +

j−1∑
k=1

βkγkjE
(
X2

k

) +
p∑

�=j+1

β�γj�E
(
X2

�

)]
Xj + Cj ,

where Cj is some constant that is free of Xj . This shows that the conditional mean
E(Y 2|Xj) is linear in X2

j as long as Xj is an active interaction variable, that is,
γkj or γj� �= 0 for some k or �, regardless of whether it is also an important main
effect or not. In fact, we can see from the above representation that the coefficient
of X2

j reflects the cumulative contribution of covariate Xj to response Y as both
an interaction variable and a main effect.

Motivated by the above example, we consider the approach of screening interac-
tion variables via some marginal utility function for the transformed variables Y 2
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and X2
j , with the square transformation applied to both the response and covari-

ates. Such an idea has been exploited in [6] for interaction screening in the setting
of single-response interaction models. To rank the relative importance of features,
they calculated the Pearson correlations between Y 2 and X2

j . This idea is, how-
ever, no longer applicable when there are multiple responses, since the Pearson
correlation is not well defined for the pair of q-vector y of responses with q > 1
and covariate Xj . A naive strategy is to screen the interaction variables for each
response Yk with 1 ≤ k ≤ q using the approach of [6]. Such a naive procedure can
suffer from several potential drawbacks. First, it may be inefficient and can result in
undesirable results since the correlation structure among the responses Y1, . . . , Yq

is completely ignored. Second, when q is large it may retain too many interaction
variables in total, which can in turn cause difficulty in model interpretation and
high computational cost when further selecting active interaction variables.

To address the afore-discussed issues, we propose to construct the marginal
utility function exploiting the distance correlation introduced in [18]. More specif-
ically, we identify the set of all active interaction variables A by ranking the dis-
tance correlations between the squared covariates X2

j and the squared response
vector y ◦ y, where ◦ denotes the Hadamard (componentwise) product of two vec-
tors. The distance correlation

dcorr(u,v) = dcov(u,v)√
dcov(u,u)dcov(v,v)

is well defined for any two random vectors u ∈ Rdu and v ∈ Rdv of arbitrary mixed
dimensions, where the distance covariance between u and v is given by

dcov2(u,v) = 1

cducdv

∫
Rdu+dv

|ϕu,v(s, t) − ϕu(s)ϕv(t)|2
‖s‖du+1‖t‖dv+1 dsdt.

Here, cm = π(m+1)/2/�{(m+1)/2} is the half area of the unit sphere Sm ⊂ Rm+1,
ϕu,v(s, t), ϕu(s), and ϕv(t) are the characteristic functions of (u,v), u, and v, re-
spectively, and ‖ · ‖ denotes the Euclidean norm. Compared to the Pearson correla-
tion, it also has the advantage that the distance correlation of two random vectors
is zero if and only if they are independent. Moreover, the distance correlation of
two univariate Gaussian random variables is a strictly increasing function of the
absolute value of the Pearson correlation between them. See [18] for more prop-
erties and discussions of the distance correlation, and [10] for a fast algorithm for
computing the distance correlation.

It is worth mentioning that [14] introduced a model-free feature screening pro-
cedure based on the distance correlations of the original response and covariates.
Their method is applicable to the cases of multiple responses and grouped co-
variates. Yet we found that the use of distance correlations for the transformed
response vector and covariates, y ◦ y and X2

j , can result in improved performance
in interaction variable screening. The specific example considered in Section 2.1
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provides some intuitive explanation of this phenomenon. To further illustrate this
point, we generated 200 data sets from the following simple interaction model:

Y = X1X2 + W,(4)

where the covariate vector x = (X1, . . . ,Xp)T ∼ N(0,�) with p = 1000 and � =
(ρ|j−k|)1≤j,k≤p , ρ ranging in (−1,1) measures the correlation level among co-
variates, and the random error W ∼ N(0,1) is independent of x. As shown in Fig-
ure 1, the sample distance correlation between X2

1 and Y 2 is much larger than that
between X1 and Y . For covariates having weak correlation with active interaction
variables X1 and X2, such as X10 and X1000, the square transformation does not in-

FIG. 1. Plots of sample distance correlations as a function of correlation level ρ based on

model (4). Top left: d̂corr(X2
1, Y 2) (solid) and d̂corr(X1, Y ) (dashed); top right: d̂corr(X2

3, Y 2)

(solid) and d̂corr(X3, Y ) (dashed); bottom left: d̂corr(X2
10, Y 2) (solid) and d̂corr(X10, Y ) (dashed);

bottom right: d̂corr(X2
1000, Y 2) (solid) and d̂corr(X1000, Y ) (dashed).
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crease their distance correlations with the response. The numerical studies in Sec-
tions 3 and 4 also confirm the advantages of our method over the procedure in [14].

2.2. Interaction screening. Suppose we have a sample (yi ,xi)
n
i=1 of n inde-

pendent and identically distributed (i.i.d.) observations from (y,x) in the multi-
response interaction model (1). For each 1 ≤ k ≤ p, denote by dcorr(X2

k,y ◦ y) the
distance correlation between the squared covariate X2

k and squared response vector
y ◦ y. The idea of the screening step of our IPDC procedure is to rank the impor-
tance of the interaction variables Xk using the sample version of distance correla-
tions dcorr(X2

k,y ◦ y). Similarly, we conduct screening of main effects based on
the sample version of distance correlations dcorr(Xj ,y) between covariates Xj

and response vector y.
For notational simplicity, we write X∗

k = X2
k , ỹ = y/

√
q , and y∗ = ỹ ◦ ỹ = y ◦

y/q . Define two population quantities

ω∗
k = dcov2(X∗

k ,y∗)√
dcov2(X∗

k ,X
∗
k )

and ωj = dcov2(Xj , ỹ)√
dcov2(Xj ,Xj )

(5)

with 1 ≤ k, j ≤ p for interaction variables and main effects, respectively. Denote
by ω̂∗

k and ω̂j the empirical versions of ω∗
k and ωj , respectively, constructed by

plugging in the corresponding sample distance covariances based on the sample
(yi ,xi )

n
i=1. According to [18], the sample distance covariance between any two

random vectors u and v based on a sample (ui ,vi )
n
i=1 is given by

d̂cov
2
(u,v) = Ŝ1 + Ŝ2 − 2Ŝ3,

where the three quantities are defined as Ŝ1 = n−2 ∑n
i,j=1 ‖ui − uj‖‖vi − vj‖,

Ŝ2 = [n−2 ∑n
i,j=1 ‖ui − uj‖][n−2 ∑n

i,j=1 ‖vi − vj‖], and Ŝ3 = n−3 ∑n
i,j,k=1 ‖ui −

uk‖‖vj − vk‖. In view of

dcorr2(
X2

k,y ◦ y
) = dcorr2(

X∗
k ,y∗) = ω∗

k/
{
dcov2(

y∗,y∗)}1/2

and

dcorr2(Xj ,y) = dcorr2(Xj , ỹ) = ωj/
{
dcov2(̃y, ỹ)

}1/2
,

the procedure of screening the interaction variables and main effects via distance
correlations dcorr(X2

k,y◦y) and dcorr(Xj ,y) suggested above is equivalent to that
of thresholding the quantities ω∗

k ’s and ωj ’s, respectively.
More specifically, in the screening step of IPDC we estimate the sets of impor-

tant main effects M and active interaction variables A as

(6) M̂ = {1 ≤ j ≤ p : ω̂j ≥ τ1} and Â = {
1 ≤ k ≤ p : ω̂∗

k ≥ τ2
}
,

where τ1 and τ2 are some positive thresholds. With the set Â of retained interaction
variables, we construct a set of pairwise interactions

Î = {
(k, l) : 1 ≤ k < l ≤ p and k, l ∈ Â

}
.(7)
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This gives a new interaction screening procedure. It is worth mentioning that the
set of constructed interactions Î tends to overestimate the set of all important inter-
actions I since the goal of the first step of IPDC is screening interaction variables.
Such an issue can be addressed in the selection step of IPDC investigated in Sec-
tion B of the Supplementary Material.

2.3. Sure screening property. We now study the sampling properties of the
newly proposed interaction screening procedure. Some mild regularity conditions
are needed for our analysis.

CONDITION 1. Both dcov(Xk,Xk) and dcov(X2
k,X

2
k) are bounded away from

zero uniformly in k.

CONDITION 2. There exists some constant c0 > 0 such that E{exp(c0X
2
k)}

and E{exp(c0‖y‖/√q)} are uniformly bounded.

CONDITION 3. There exist some constants c1, c2 > 0 and 0 ≤ κ1, κ2 < 1/2
such that minj∈M ωj ≥ 3c1n

−κ1 and mink∈A ω∗
k ≥ 3c2n

−κ2 .

Condition 1 is a basic assumption requiring that the distance variances of co-
variates Xk and squared covariates X2

k are at least of a constant order. Conditions
2 and 3 are analogous to the regularity conditions in [14]. In particular, Condi-
tion 2 controls the tail behavior of the covariates and responses, which facilitates
the derivation of deviation probability bounds. Condition 3 also shares the same
spirit as Condition 3 in [5], and can be understood as an assumption on the mini-
mum signal strength in the feature screening setting. Smaller constants κ1 and κ2
correspond to stronger marginal signal strength for active interaction variables and
important main effects, respectively. With these regularity conditions, we establish
the sure screening property of IPDC in the following theorem.

THEOREM 1. Under Conditions 1–2 with logp = o(nη0) for η0 = min{(1 −
2κ1)/3, (1 − 2κ2)/5}, there exists some positive constant C such that

P
(

max
1≤j≤p

|ω̂j − ωj | ≥ c1n
−κ1

)
≤ O

(
exp

{−Cn(1−2κ1)/6})
,(8)

P
(

max
1≤k≤p

∣∣ω̂∗
k − ω∗

k

∣∣ ≥ c2n
−κ2

)
≤ O

(
exp

{−Cn(1−2κ2)/10})
.(9)

Assume in addition that Condition 3 holds and set τ1 = 2c1n
−κ1 and τ2 = 2c2n

−κ2 .
Then we have

(10) P(M ⊂ M̂ and I ⊂ Î) = 1 − O
{
exp

(−Cnη0/2)}
.
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Theorem 1 reveals that the IPDC enjoys the sure screening property that all
active interaction variables and all important main effects can be retained in the
reduced model with high probability. In particular, we see that it can handle ultra-
high dimensionality with logp = o(nη0). A comparison of the deviation probabil-
ity bounds in (8) and (9) shows that interaction screening is generally more chal-
lenging, and thus needs more restrictive constraint on dimensionality p than main
effect screening; see the probability bound (15) and its main effect counterpart for
more details. It is also seen that when the marginal signal strength for interactions
and main effects becomes stronger, the sure screening property of IPDC holds for
higher dimensionality p.

For any feature screening procedure, it is of practical importance to control the
dimensionality of the reduced feature space, since feature selection usually follows
the screening for further selection of important features in such a space. We next
investigate such an aspect for IPDC. Let s1 and s2 be the cardinalities of sets of
all important main effects M and all active interaction variables A, respectively.
With the thresholds τ1 = 2c1n

−κ1 and τ2 = 2c2n
−κ2 specified in Theorem 1, we

introduce two sets of unimportant main effects and inactive interaction variables

(11) M1 = {
j ∈ Mc : ωj ≥ c1n

−κ1
}

and A1 = {
k ∈ Ac : ω∗

k ≥ c2n
−κ2

}
that are of significant marginal effects. Denote by s3 and s4 the cardinalities of
these two sets M1 and A1, respectively. Larger values of s3 and s4 indicate more
difficulty in the problem of interaction and main effect screening in the high-
dimensional multi-response interaction model (1).

THEOREM 2. Assume that all the conditions of Theorem 1 hold and set τ1 =
2c1n

−κ1 and τ2 = 2c2n
−κ2 . Then we have

P
{|M̂| ≤ s1 + s3 and |Î| ≤ (s2 + s4)(s2 + s4 − 1)/2

}
(12)

= 1 − O
{
exp

(−Cnη0/2)}
for some positive constant C.

Theorem 2 quantifies how the size of the reduced model for interactions and
main effects is related to the thresholding parameters τ1 and τ2, and the cardi-
nalities of the two sets M1 and A1. In particular, we see that when si = O(nδi )

with some constants δi ≥ 0 for 1 ≤ i ≤ 4, the total number of retained interac-
tions and main effects in the reduced feature space can be controlled as O(nδ)

with δ = max{δ1 ∨ δ3,2(δ2 ∨ δ4)}, where ∨ denotes the maximum of two values.
In contrast, the dimensionality p is allowed to grow nonpolynomially with sample
size n in the rate of logp = o(nη0) with η0 = min{(1 − 2κ1)/3, (1 − 2κ2)/5}. The
reduced model size can fall below the sample size and be a smaller order of n when
both max{δ1, δ3} < 1 and max{δ2, δ4} < 1/2 are satisfied. The post-screening in-
teraction selection and its sampling properties are further investigated in Section B
of the Supplementary Material.
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3. Simulation studies. We illustrate the finite-sample performance of our
method using several simulation examples. Two sets of models are considered for
the single-response case and the multi-response case, respectively. This section
evaluates the screening performance, while the post-screening selection perfor-
mance is investigated in Section C.2 of the Supplementary Material.

3.1. Screening in single-response models. We begin with the following four
high-dimensional single-response interaction models:

Model 1: Y = 2X1 + 2X2 + X1X2 + W,

Model 2: Y = 2X1 + 3X1X2 + 3X1X3 + W,

Model 3: Y = 3X1X2 + 3X1X3 + W,

Model 4: Y = 3I(X12 ≥ 0) + 2X22 + 3X1X2 + W,

where all the notation is the same as in (1) and I(·) denotes the indicator function.
The covariate vector x = (X1, . . . ,Xp)T is sampled from the distribution N(0,�)

with covariance matrix � = (ρ|j−k|)1≤j,k≤p for ρ ∈ (−1,1), and the error term
W ∼ N(0,1) is generated independently of x to form an i.i.d. sample of size
n = 200. For each of the four models, we further consider three different settings
with (p,ρ) = (2000,0.5), (5000,0.5) and (2000,0.1), respectively. In particular,
Models 2 and 3 are adapted from simulation scenarios 2.2 and 2.3 in Jiang and Liu
[11], whereas Model 4 is adapted from simulation example 2.b of Li, Zhong and
Zhu [14] and accounts for model misspecification since without any prior informa-
tion, our working model treats X12 as a linear predictor instead of I(X12 ≥ 0). We
see that Model 1 satisfies the strong heredity assumption and Model 2 obeys the
weak heredity assumption, while Models 3 and 4 violate the heredity assumption
since none of the active interaction variables are important main effects.

We compare the interaction and main effect screening performance of the IPDC
with the SIS [5], DCSIS [14], SIRI [11], IP [6] and iFORT and iFORM [9]. Like
IPDC, SIRI and IP were developed for screening interaction variables and main
effects separately. In particular, SIRI is an iterative procedure, while all others are
noniterative ones. For a fair comparison, we adopt the initial screening step de-
scribed in Section 2.3 of Jiang and Liu [11] to implement SIRI in a noniterative
fashion, and keep the top ranked covariates. Since the SIS is originally designed
only for main effect screening and the original DCSIS screens variables without
the distinction between main effects and interaction variables, we construct pair-
wise interactions based on the covariates recruited by SIS and DCSIS, and refer
to the resulting procedures as SIS2 and DCSIS2, respectively, to distinguish them
from the original ones. It is worth mentioning that the SIS2 shares a similar spirit
to the TS-SIS procedure proposed in [13], where the difference is that the latter
constructs pairwise interactions between the main effects retained by SIS and all
p covariates. Following the suggestions of Fan and Lv [5] and Li, Zhong and Zhu



IPDC 907

[14], we keep the top [n/(logn)] variables after ranking for each screening pro-
cedure. We examine the screening performance by the proportions of important
main effects, important interactions and all of them being retained by each screen-
ing procedure over 100 replications.

Table 1 reports the screening results of different methods. In Model 1, all screen-
ing methods are able to retain almost all important main effects and interactions
across all three settings. The IPDC outperforms SIS2, DCSIS2, SIRI, IP, iFORT
and iFORM in Models 2–4 over all three settings. It is seen that SIS2 can barely
identify important interactions for those three models. The advantage of IPDC over
SIS2, DCSIS2 and SIRI is most pronounced when the heredity assumption is vio-
lated as in Models 3 and 4. We also observe significant improvement of IPDC over
IP in many of those model settings. When the dimensionality increases from 2000
to 5000 (settings 1 and 2), the problem of interaction and main effect screening
becomes more challenging as indicated by the drop of the screening probabilities.
Compared to others, IPDC consistently performs well.

It is interesting to observe that in view of settings 1 and 3, the interaction screen-
ing performance can be improved in the presence of a higher level of correlation
among covariates. One possible explanation is that high correlation among covari-
ates may increase the dependence of the response on the interaction variables, and
thus benefit interaction screening. For instance, in Model 2 due to the correlation
between the interaction variable X2 (or X3) and main effect X1, the response Y

depends on X2 (or X3) not only directly through the interaction X1X2 (or X1X3)
but also indirectly through the main effect X1. Therefore, in this case high correla-
tion among covariates can boost the performance of interaction screening. Similar
phenomenon has been documented for DCSIS in the literature; see, for example,
Models 1.b and 1.c in Table 2 of Li, Zhong and Zhu [14].

3.2. Screening in multi-response model. We next consider the setting of in-
teraction model with multiple responses and specifically Model 5 with q = 10
responses:

Y1 = β1X1 + β2X2 + β3X1X2 + W1,

Y2 = β4X1 + β5X2 + β6X1X3 + W2,

Y3 = β7X1 + β8X2 + β9X6X7 + W3,

Y4 = β10X1 + β11X2 + β12X8X9 + W4,

Y5 = β13X6X7 + β14X8X9 + W5,

Y6 = β15X1 + β16X2 + β17X1X2 + W6,

Y7 = β18X1 + β19X2 + β20X1X3 + W7,

Y8 = β21X1 + β22X2 + β23X6X7 + W8,

Y9 = β24X1 + β25X2 + β26X8X9 + W9,

Y10 = β27X6X7 + β28X8X9 + W10,
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TABLE 1
Proportions of important main effects, important interactions and all of them retained by different screening methods. For SIS2, DCSIS2 and SIRI,

interactions are constructed using the top [n/(logn)] covariates ranked by their marginal utilities with the response.

Model 1 Model 2 Model 3 Model 4

Method X1 X2 X1X2 All X1 X1X2 X1X3 All X1X2 X1X3 All X12 X22 X1X2 All

Setting 1: (p,ρ) = (2000,0.5)

SIS2 1.00 1.00 1.00 1.00 0.95 0.48 0.23 0.20 0.08 0.04 0.04 0.93 1.00 0.05 0.05
iFORT 1.00 1.00 1.00 1.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.56 1.00 0.00 0.00
iFORM 1.00 1.00 1.00 1.00 0.85 0.07 0.02 0.00 0.00 0.00 0.00 0.53 1.00 0.00 0.00
DCSIS2 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 1.00 0.68 0.68 0.99 1.00 0.92 0.91
SIRI 1.00 1.00 1.00 1.00 1.00 0.99 0.88 0.87 1.00 0.73 0.73 0.89 1.00 0.86 0.78
IP 1.00 1.00 1.00 1.00 0.95 1.00 0.87 0.83 1.00 0.90 0.90 0.93 1.00 1.00 0.93
IPDC 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99

Setting 2: (p,ρ) = (5000,0.5)

SIS2 1.00 1.00 1.00 1.00 0.94 0.39 0.17 0.15 0.03 0.00 0.00 0.86 1.00 0.03 0.02
iFORT 1.00 1.00 1.00 1.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.40 1.00 0.00 0.00
iFORM 1.00 1.00 1.00 1.00 0.85 0.04 0.01 0.00 0.00 0.00 0.00 0.41 1.00 0.00 0.00
DCSIS2 1.00 1.00 1.00 1.00 1.00 0.99 0.80 0.79 1.00 0.46 0.46 0.99 1.00 0.86 0.85
SIRI 1.00 1.00 1.00 1.00 1.00 0.99 0.81 0.80 1.00 0.63 0.63 0.83 1.00 0.84 0.71
IP 1.00 1.00 1.00 1.00 0.94 1.00 0.73 0.69 1.00 0.85 0.85 0.86 1.00 1.00 0.86
IPDC 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 1.00 0.98 0.98 0.99 1.00 1.00 0.99

Setting 3: (p,ρ) = (2000,0.1)

SIS2 1.00 1.00 1.00 1.00 1.00 0.08 0.04 0.00 0.02 0.00 0.00 0.97 1.00 0.00 0.00
iFORT 1.00 1.00 1.00 1.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.64 1.00 0.00 0.00
iFORM 1.00 1.00 1.00 1.00 0.92 0.06 0.01 0.01 0.01 0.00 0.00 0.62 1.00 0.00 0.00
DCSIS2 1.00 1.00 1.00 1.00 1.00 0.71 0.72 0.55 0.19 0.11 0.00 1.00 1.00 0.06 0.06
SIRI 1.00 1.00 1.00 1.00 1.00 0.58 0.58 0.34 0.35 0.37 0.16 0.86 1.00 0.19 0.15
IP 1.00 1.00 0.99 0.99 1.00 0.64 0.64 0.38 0.79 0.75 0.58 0.97 1.00 0.98 0.95
IPDC 1.00 1.00 1.00 1.00 1.00 0.80 0.79 0.62 0.93 0.90 0.84 1.00 1.00 1.00 1.00
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where all the notation and setup are the same as in Section 3.1, the covariate vec-
tor x = (X1, . . . ,Xp)T is sampled from distribution N(0,�) with covariance ma-
trix � = (0.5|j−k|)1≤j,k≤p , and the error vector w = (W1, . . . ,Wq)

T ∼ N(0, Iq)

is independent of x. The nonzero regression coefficients βk with 1 ≤ k ≤ 28
for all important main effects and interactions are generated independently as
βk = (−1)U Uniform(1,2), where U is a Bernoulli random variable with success
probability 0.5 and Uniform(1,2) is the uniform distribution on [1,2]. For simplic-
ity, we consider only the setting of (n,p,ρ) = (100,1000,0.5). In Model 5, co-
variates X1 and X2 are both active interaction variables and important main effects,
whereas covariates X3 and Xj with 6 ≤ j ≤ 9 are active interaction variables only.

To simplify the presentation, we examine only the proportions of active inter-
action variables and important main effects retained by different screening proce-
dures. A direct application of SIS to each response Yk with 1 ≤ k ≤ q results in
q marginal correlations for each covariate Xj with 1 ≤ j ≤ p. We thus consider
two modifications of SIS to deal with multi-response data. Specifically, we exploit
two new marginal measures, max1≤k≤q |ĉorr(Yk,Xj )| and

∑q
k=1 |ĉorr(Yk,Xj )|, to

quantify the importance of covariates Xj , where ĉorr denotes the sample corre-
lation. We refer to these two methods as SIS.max and SIS.sum, respectively. The
SIRI and IP are not included for comparison in this model since both methods were
not designed for multi-response models, while the DCSIS is still applicable since
the distance correlation is well defined in such a scenario.

Since feature screening is more challenging in multi-response models, we im-
plement IPDC in a slightly different fashion than in single-response models. Recall
that in Section 3.1, IPDC screens interaction variables and main effects separately,
and keeps the top [n/(logn)] of each type of variables. For Model 5, we take a
union of these two sets of variables and regard an active interaction variable or
important main effect as being retained if such a variable belongs to the union,
which can contain up to 2[n/(logn)] variables. Consequently we construct pair-
wise interactions of all variables in the union. To ensure fair comparison, we keep
the top 2[n/(logn)] variables for the other screening methods SIS.max, SIS.sum
and DCSIS.

Table 2 summarizes the screening results under Model 5. We see that all meth-
ods perform well in recovering variables X1, X2 and X3. Yet only IPDC is able to
retain active interaction variables X6, . . . ,X9 with large probability.

3.3. Screening in multi-response model with discrete covariates. We now turn
to the scenario of multi-response interaction model with mixed covariate types and
specifically Model 6 with q = 50 responses and (n,p) = (100,1000):

Y1 = β1X1 + β2X2 + β3X3 + β4X4 + β5X1X2 + β6X3X4 + W1,

Y2 = β7X1 + β8X2 + β9X3 + β10X4 + β11X1X3 + β12X4X5 + W2,

Y3 = β13X1 + β14X2 + β15X3 + β16X4 + β17X4X5 + β18X9X13 + W3,
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TABLE 2
Proportions of important main effects and active interaction variables retained by different

screening methods

Method X1 X2 X3 X6 X7 X8 X9

SIS.max 1.00 (0.00) 1.00 (0.00) 0.98 (0.01) 0.12 (0.03) 0.18 (0.04) 0.13 (0.03) 0.08 (0.03)
SIS.sum 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04)
DCSIS 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.61 (0.05) 0.57 (0.05) 0.72 (0.05) 0.68 (0.05)
IPDC 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.91 (0.03) 0.90 (0.03) 0.95 (0.02) 0.90 (0.03)

Y4 = β19X1 + β20X2 + β21X3 + β22X4 + β23X9X12 + β24X12X13 + W4,

Y5 = β25X9X12 + β26X9X13 + β27X12X13 + W5,

and the remaining nine groups of five responses are defined in a similar way to
how Y6, . . . , Y10 were defined in Model 5 in Section 3.2, that is, repeating the sup-
port of each response but with regression coefficients βk generated independently
from the same distribution as in Model 5. There are several key differences with
Model 5. We consider higher response dimensionality q = 50, higher population
collinearity level ρ = 0.8, and larger true model sizes for the responses. The co-
variates X1, . . . ,Xp are sampled similarly as in Model 5, but the even numbered
covariates are further discretized. More specifically, each even numbered covari-
ate is assigned values 0,1 or 2 if the original continuous covariate takes values
below 0, between 0 and 1.5, or above 1.5, respectively, and then centered with
mean zero. These discrete covariates are included in the model because in real
applications some covariates can also be discrete. For instance, the covariates in
the single nucleotide polymorphism (SNP) data are typically coded to take values
0,1 and 2. In addition, the random errors W1, . . . ,Wq are sampled independently
from the t-distribution with 5 degrees of freedom. Thus, Model 6 involves both a
non-Gaussian design matrix with mixed covariate types and a non-Gaussian error
vector.

We list in Table 3 the screening performance of all the methods as in Section 3.2.
Note that the standard errors are omitted in this table to save space. Comparing

TABLE 3
Proportions of important main effects and active interaction variables retained by different

screening methods

Method X1 X2 X3 X4 X5 X9 X12 X13

SIS.max 1.00 1.00 1.00 1.00 1.00 0.65 0.44 0.24
SIS.sum 1.00 1.00 1.00 1.00 1.00 0.76 0.45 0.25
DCSIS 1.00 1.00 1.00 1.00 1.00 0.93 0.28 0.80
IPDC 1.00 1.00 1.00 1.00 1.00 0.92 0.67 0.85
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these results to those in Table 2, we see that the problem of interaction screen-
ing becomes more difficult in this model. This result is reasonable since the sce-
nario of Model 6 is more challenging than that of Model 5. Nevertheless, IPDC
still improves over other methods in retaining active interaction variables X9, X12
and X13.

4. Real data analysis. We further evaluate the performance of our proposed
procedure on a multivariate yeast cell-cycle data set from [17], which can be ac-
cessed in the R package “spls”. This data set has been studied in [4] and [2]. Our
goal is to predict how much mRNA is produced by 542 genes related to the yeast
cell’s replication process. For each gene, the binding levels of 106 transcription
factors (TFs) are recorded. The binding levels of the TFs play a role in determin-
ing which genes are expressed and help detail the process behind eukaryotic cell-
cycles. Messenger RNA is collected for two cell-cycles for a total of eighteen time
points. Thus, this data set has sample size n = 542, number of covariates p = 106
and number of response q = 18, with all variables being continuous.

Considering the relatively large sample size, we use 30% of the data as training
and the rest as testing, and repeat such random splitting for 100 times. We follow
the same screening and selection procedures as in the simulation study for the set-
ting of multiple responses in Section 3. Similarly, we take a union of the set of
retained interaction variables and the set of retained main effects. For fair compar-
ison, we keep 2[n/(logn)] = 62 variables in the screening procedures of SIS.max,
SIS.sum and DCSIS, and use those variables to construct pairwise interactions for
the selection step.

Table 4 presents the results on the prediction error and selected model size.
Paired t-tests of prediction errors on the 100 splits of IPDC-GLasso against
SIS.max-GLasso, SIS.sum-GLasso and DCSIS-GLasso result in p-values 2.86 ×

TABLE 4
Means and standard errors (in parentheses) of prediction error as well as numbers of selected main

effects and interactions for each method in yeast cell-cycle data

Model size

Method PE (×10−3) Main Interaction

SIS.max-GLasso 224.05 (1.20) 73.73 (7.96) 755.35 (61.38)
SIS.sum-GLasso 223.42 (1.17) 50.76 (3.97) 764.68 (63.52)
DCSIS-GLasso 223.93 (1.16) 63.67 (7.47) 705.11 (61.46)
IPDC-GLasso 220.44 (1.14) 113.78 (9.74) 801.70 (54.86)

SIS.max-GLasso-Lasso 226.66 (1.45) 47.56 (3.66) 327.32 (19.38)
SIS.sum-GLasso-Lasso 225.07 (1.48) 50.76 (3.97) 319.25 (19.95)
DCSIS-GLasso-Lasso 226.40 (1.43) 47.12 (3.92) 306.18 (20.75)
IPDC-GLasso-Lasso 222.43 (1.39) 56.08 (3.33) 300.93 (15.17)
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10−11, 1.70 × 10−13 and 1.15 × 10−14, respectively. Moreover, paired t-tests
of prediction errors on the 100 splits of IPDC-GLasso-Lasso against SIS.max-
GLasso-Lasso, SIS.sum-GLasso-Lasso and DCSIS-GLasso-Lasso give p-values
2.92 × 10−4, 2.30 × 10−2 and 9.73 × 10−5, respectively. These results show sig-
nificant improvement of our method over existing ones.

5. Discussions. We have investigated the problem of interaction identification
in the setting where the numbers of responses and covariates can both be large. Our
suggested two-stage procedure IPDC provides a scalable approach with the idea of
interaction screening and selection. It exploits the joint information among all the
responses by using the distance correlation in the screening step and the regular-
ized multi-response regression in the selection step. One key ingredient is the use
of the square transformation to responses and covariates for effective interaction
screening. The established sure screening and model selection properties enable
its broad applicability beyond the heredity assumption.

Although we have focused our attention on the square transformation of the
responses and covariates due to its simplicity and the motivation discussed in Sec-
tion 2.1, it is possible that other functions can also work for the idea of IPDC.
It would be interesting to investigate and characterize what class of functions is
optimal for the purpose of interaction screening.

Like all independence screening methods using the marginal utilities includ-
ing the SIS and DCSIS, our feature screening approach may fail to identify some
important interactions or main effects that are marginally weakly related to the re-
sponses. One possible remedy is to exploit the idea of the iterative SIS proposed in
[5] which has been shown to be capable of ameliorating the SIS. Recently, [20] also
introduced an iterative DCSIS procedure and demonstrated that it can improve the
finite-sample performance of the DCSIS. The theoretical properties of these itera-
tive feature screening approaches are, however, less well understood. It would be
interesting to develop an effective iterative IPDC procedure for further improving
on the IPDC and investigate its sampling properties. For more flexible modeling,
it is also of practical importance to extend the idea of IPDC to high-dimensional
multi-response interaction models in the more general settings of the generalized
linear models, nonparametric models and survival models, as well as other single-
index models and multi-index models. These possible extensions are beyond the
scope of the current paper and will be interesting topics for future research.

APPENDIX: PROOFS OF MAIN RESULTS

We provide the main steps of the proof of Theorem 1 and the proof of Theo-
rem 2 in this Appendix. Some intermediate steps of the proof of Theorem 1 and
additional technical details are included in the Supplementary Material. Hereafter,
we denote by C̃i with i ≥ 0 some generic positive constants whose values may
vary from line to line.
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A.1. Proof of Theorem 1. The proof of Theorem 1 consists of two parts. The
first part establishes the exponential probability bounds for ω̂j − ωj and ω̂∗

k − ω∗
k ,

and the second part proves the sure screening property.

Part 1. We first prove inequalities (8) and (9), which give the exponential prob-
ability bounds for ω̂j − ωj and ω̂∗

k − ω∗
k , respectively. Since the proofs of (8) and

(9) are similar, here we focus on (9) to save space. Recall that

ω∗
k = dcov2(X∗

k ,y∗)√
dcov2(X∗

k ,X
∗
k )

and ω̂∗
k = d̂cov

2
(X∗

k ,y∗)√
d̂cov

2
(X∗

k ,X
∗
k )

.

The key idea of the proof is to show that for any positive constant C̃, there exist
some positive constants C̃1, . . . , C̃4 such that

P
(

max
1≤k≤p

∣∣d̂cov
2(

X∗
k ,y∗) − dcov2(

X∗
k ,y∗)∣∣ ≥ C̃n−κ2

)
(13)

≤ pC̃1 exp
{−C̃2n

(1−2κ2)/5} + C̃3 exp
{−C̃4n

(1−2κ2)/10}
,

P
(

max
1≤k≤p

∣∣d̂cov
2(

X∗
k ,X

∗
k

) − dcov2(
X∗

k ,X
∗
k

)∣∣ ≥ C̃n−κ2
)

(14)
≤ pC̃1 exp

{−C̃2n
(1−2κ2)/5}

for all n sufficiently large. Once these two probability bounds are obtained, it fol-
lows from Conditions 1–2 and Lemmas 2–3 and 6 that

P
(

max
1≤k≤p

∣∣ω̂∗
k − ω∗

k

∣∣ ≥ c2n
−κ2

)
≤ O

(
p exp

{−C1n
(1−2κ2)/5} + exp

{−C2n
(1−2κ2)/10})

(15)

≤ O
(
exp

{−Cn(1−2κ2)/10})
,

where C1, C2 and C are some positive constants, and the last inequality follows
from the condition that logp = o(nη0) with η0 = min{(1 − 2κ1)/3, (1 − 2κ2)/5}.

It thus remains to prove (13) and (14). Again we concentrate on (13) since (14)
can be shown using similar arguments. Define φ(X∗

1k,X
∗
2k) = |X∗

1k − X∗
2k| and

ψ(y∗
1,y∗

2) = ‖y∗
1 − y∗

2‖. According to [18], we have

dcov2(
X∗

k ,y∗) = Tk1 + Tk2 − 2Tk3 and d̂cov
2(

X∗
k ,y∗) = T̂k1 + T̂k2 − 2T̂k3,

where Tk1 = E[φ(X∗
1k,X

∗
2k)ψ(y∗

1,y∗
2)], Tk2 = E[φ(X∗

1k,X
∗
2k)]E[ψ(y∗

1,y∗
2)],

Tk3 = E[φ(X∗
1k,X

∗
2k)ψ(y∗

1,y∗
3)], and

T̂k1 = n−2
n∑

i,j=1

φ
(
X∗

ik,X
∗
jk

)
ψ

(
y∗
i ,y∗

j

)
,

T̂k2 =
[
n−2

n∑
i,j=1

φ
(
X∗

ik,X
∗
jk

)][
n−2

n∑
i,j=1

ψ
(
y∗
i ,y∗

j

)]
,
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T̂k3 = n−3
n∑

i=1

n∑
j,l=1

φ
(
X∗

ik,X
∗
jk

)
ψ

(
y∗
i ,y∗

l

)
.

It follows from the triangle inequality that

max
1≤k≤p

∣∣d̂cov
2(

X∗
k ,y∗) − dcov2(

X∗
k ,y∗)∣∣

(16)
≤ max

1≤k≤p
|T̂k1 − Tk1| + max

1≤k≤p
|T̂k2 − Tk2| + 2 max

1≤k≤p
|T̂k3 − Tk3|.

To establish the probability bound for the term max1≤k≤p |d̂cov
2
(X∗

k ,y∗) −
dcov2(X∗

k ,y∗)|, it is sufficient to bound each term on the right-hand side above.
To enhance the readability, we proceed with three main steps.

Step 1. We start with the first term max1≤k≤p |T̂k1 − Tk1|. An application of the
Cauchy–Schwarz inequality gives

Tk1 ≤ {
E

[
φ2(

X∗
1k,X

∗
2k

)]
E

[
ψ2(

y∗
1,y∗

2
)]}1/2

.

It follows from the triangle inequality that

(17) φ
(
X∗

1k,X
∗
2k

) = ∣∣X∗
1k − X∗

2k

∣∣ ≤ ∣∣X∗
1k

∣∣ + ∣∣X∗
2k

∣∣ = X2
1k + X2

2k

and

(18) ψ
(
y∗

1,y∗
2
) = ∥∥y∗

1 − y∗
2
∥∥ ≤ ∥∥y∗

1
∥∥ + ∥∥y∗

2
∥∥ ≤ ‖̃y1‖2 + ‖̃y2‖2,

in view of y∗
1 = ỹ1 ◦ ỹ1 and the fact that ‖a ◦ a‖ ≤ ‖a‖2 for any a ∈ Rq . By (17),

we have E[φ2(X∗
1k,X

∗
2k)] ≤ E{2(X4

1k + X4
2k)} = 4E(X4

1k). Similarly, it holds
that E[ψ2(y∗

1,y∗
2)] ≤ 4E(‖̃y1‖4). Combining these results leads to 0 ≤ Tk1 ≤

4{E(X4
1k)E(‖̃y1‖4)}1/2. By Condition 2, E(X4

1k) and E(‖̃y1‖4) are uniformly
bounded by some positive constant for all 1 ≤ k ≤ p. Thus, for any positive con-
stant C̃, |Tk1/n| < C̃n−κ2/8 holds uniformly for all 1 ≤ k ≤ p when n is suffi-
ciently large.

Let T̂ ∗
k1 = n(n− 1)−1T̂k1 = {n(n− 1)}−1 ∑

i �=j φ(X∗
ik,X

∗
jk)ψ(y∗

i ,y∗
j ). Then we

have

|T̂k1 − Tk1| ≤ n−1(n − 1)
∣∣T̂ ∗

k1 − Tk1
∣∣ + |Tk1/n| ≤ ∣∣T̂ ∗

k1 − Tk1
∣∣ + C̃n−κ2/8

for all 1 ≤ k ≤ p, which entails

(19) P
(

max
1≤k≤p

|T̂k1 − Tk1| ≥ C̃n−κ2/4
)

≤ P
(

max
1≤k≤p

∣∣T̂ ∗
k1 − Tk1

∣∣ ≥ C̃n−κ2/8
)

for sufficiently large n. Thus, it is sufficient to bound T̂ ∗
k1 − Tk1.
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Since X∗
ik and y∗

i are generally unbounded, we apply the technique of truncation
in the technical analysis. Define

T̂ ∗
k1,1 = {

n(n − 1)
}−1 ∑

i �=j

φ
(
X∗

ik,X
∗
jk

)
ψ

(
y∗
i ,y∗

j

)
I
{
φ

(
X∗

ik,X
∗
jk

) ≤ M1
}

× I
{
ψ

(
y∗
i ,y∗

j

) ≤ M2
}
,

T̂ ∗
k1,2 = {

n(n − 1)
}−1 ∑

i �=j

φ
(
X∗

ik,X
∗
jk

)
ψ

(
y∗
i ,y∗

j

)
I
{
φ

(
X∗

ik,X
∗
jk

) ≤ M1
}

× I
{
ψ

(
y∗
i ,y∗

j

)
> M2

}
,

T̂ ∗
k1,3 = {

n(n − 1)
}−1 ∑

i �=j

φ
(
X∗

ik,X
∗
jk

)
ψ

(
y∗
i ,y∗

j

)
I
{
φ

(
X∗

ik,X
∗
jk

)
> M1

}
,

where I{·} denotes the indicator function and the thresholds M1,M2 > 0 will be
specified later. Then we have T̂ ∗

k1 = T̂ ∗
k1,1 + T̂ ∗

k1,2 + T̂ ∗
k1,3. Consequently, we can

rewrite Tk1 as Tk1 = Tk1,1 + Tk1,2 + Tk1,3 with

Tk1,1 = E
[
φ

(
X∗

1k,X
∗
2k

)
ψ

(
y∗

1,y∗
2
)
I
{
φ

(
X∗

1k,X
∗
2k

) ≤ M1
}
I
{
ψ

(
y∗

1,y∗
2
) ≤ M2

}]
,

Tk1,2 = E
[
φ

(
X∗

1k,X
∗
2k

)
ψ

(
y∗

1,y∗
2
)
I
{
φ

(
X∗

1k,X
∗
2k

) ≤ M1
}
I
{
ψ

(
y∗

1,y∗
2
)
> M2

}]
,

Tk1,3 = E
[
φ

(
X∗

1k,X
∗
2k

)
ψ

(
y∗

1,y∗
2
)
I
{
φ

(
X∗

1k,X
∗
2k

)
> M1

}]
.

Clearly, T̂ ∗
k1,1, T̂ ∗

k1,2, and T̂ ∗
k1,3 are unbiased estimators of Tk1,1, Tk1,2 and Tk1,3,

respectively. Therefore, it follows from Bonferroni’s inequality that

P
(

max
1≤k≤p

∣∣T̂ ∗
k1 − Tk1

∣∣ ≥ C̃n−κ2/8
)

(20)

≤
3∑

j=1

P
(

max
1≤k≤p

∣∣T̂ ∗
k1,j − Tk1,j

∣∣ ≥ C̃n−κ2/24
)
.

In what follows, we will provide details on deriving an exponential tail probability
bound for each term on the right-hand side above.

Step 1.1. We first consider T̂ ∗
k1,1 −Tk1,1. For any δ > 0, by Markov’s inequality

we have

P
(
T̂ ∗

k1,1 − Tk1,1 ≥ δ
) ≤ exp(−tδ) exp(−tTk1,1)E

[
exp

(
t T̂ ∗

k1,1
)]

(21)

for t > 0. Let h(X∗
1k,y∗

1;X∗
1k,y∗

2) = φ(X∗
1k,X

∗
2k)ψ(y∗

1,y∗
2)I{φ(X∗

1k,X
∗
2k) ≤

M1}I{ψ(y∗
1,y∗

2) ≤ M2} be the kernel of the U -statistic T̂ ∗
k1,1 and define

W
(
X∗

1k,y∗
1; . . . ;X∗

nk,y∗
n

)
= m−1{

h
(
X∗

1k,y∗
1;X∗

1k,y∗
2
) + h

(
X∗

3k,y∗
3;X∗

4k,y∗
4
) + · · ·(22)

+ h
(
X∗

2m−1,k,y∗
2m−1;X∗

2m,k,y∗
2m

)}
,
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where m = 
n/2� is the integer part of n/2. According to the theory of U -statistics
[16], Section 5.1.6, any U -statistic can be expressed as an average of averages of
i.i.d. random variables. This representation gives

T̂ ∗
k1,1 = (n!)−1

∑
n!

W
(
X∗

i1k
,y∗

i1
; . . . ;X∗

ink,y∗
in

)
,

where
∑

n! represents the summation over all possible permutations (i1, . . . , in) of
(1, . . . , n). An application of Jensen’s inequality yields that for any t > 0,

E
[
exp

(
t T̂ ∗

k1,1
)] = E

{
exp

[
(n!)−1

∑
n!

tW
(
X∗

i1k
,y∗

i1
; . . . ;X∗

ink,y∗
in

)]}

≤ E

{
(n!)−1

∑
n!

exp
[
tW

(
X∗

i1k
,y∗

i1
; . . . ;X∗

ink,y∗
in

)]}
= E

{
exp

[
tW

(
X∗

1k,y∗
1; . . . ;X∗

nk,y∗
n

)]}
= Em{

exp
[
tm−1h

(
X∗

1k,y∗
1;X∗

2k,y∗
2
)]}

,

where the last equality follows from (22). The above inequality together with (21)
leads to

P
(
T̂ ∗

k1,1 − Tk1,1 ≥ δ
) ≤ exp(−tδ)Em{

etm−1[h(X∗
1k,y

∗
1;X∗

2k,y
∗
2)−Tk1,1]}.

Note that E[h(X∗
1k,y∗

1;X∗
2k,y∗

2) − Tk1,1] = 0 and

−Tk1,1 ≤ h
(
X∗

1k,y∗
1;X∗

2k,y∗
2
) − Tk1,1 ≤ M1M2 − Tk1,1.

Hence, it follows from Lemma 9 that

P
(
T̂ ∗

k1,1 − Tk1,1 ≥ δ
) ≤ exp

[−tδ + t2M2
1M2

2/(8m)
]

for any t > 0. Minimizing the right-hand side above with respect to t gives
P(T̂ ∗

k1,1 −Tk1,1 ≥ δ) ≤ exp(−2mδ2/M2
1M2

2 ) for any δ > 0. Similarly, we can show
that P(T̂ ∗

k1,1 − Tk1,1 ≤ −δ) ≤ exp(−2mδ2/M2
1M2

2 ). Therefore, it holds that

P
(∣∣T̂ ∗

k1,1 − Tk1,1
∣∣ ≥ δ

) ≤ 2 exp
(−2mδ2/M2

1M2
2
)
.

Recall that m = 
n/2�. If we set M1 = nξ1 and M2 = nξ2 with some positive con-
stants ξ1 and ξ2, then for δ = C̃n−κ2/24 with any positive constant C̃, there exists
some positive constant C̃1 such that when n is sufficiently large,

P
(∣∣T̂ ∗

k1,1 − Tk1,1
∣∣ ≥ C̃n−κ2/24

) ≤ 2 exp
(−C̃2C̃1n

1−2κ2−2ξ1−2ξ2
)

for all 1 ≤ k ≤ p. This along with Bonferroni’s inequality entails

P
(

max
1≤k≤p

∣∣T̂ ∗
k1,1 − Tk1,1

∣∣ ≥ C̃n−κ2/24
)

(23)
≤ 2p exp

(−C̃2C̃1n
1−2κ2−2ξ1−2ξ2

)
.
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Step 1.2. We next deal with T̂ ∗
k1,2 − Tk1,2. Note that

0 ≤ Tk1,2 ≤ M1E
[
ψ

(
y∗

1,y∗
2
)
I
{
ψ

(
y∗

1,y∗
2
)
> M2

}]
for all 1 ≤ k ≤ p. It follows from the Cauchy–Schwarz inequality that

E
[
ψ

(
y∗

1,y∗
2
)
I
{
ψ

(
y∗

1,y∗
2
)
> M2

}]
(24)

≤ [
E

[
ψ2(

y∗
1,y∗

2
)]

P
{
ψ

(
y∗

1,y∗
2
)
> M2

}]1/2
.

In view of (18), we see that

E
[
ψ2(

y∗
1,y∗

2
)] ≤ E

[(‖̃y1‖2 + ‖̃y2‖2)2]
(25)

≤ E
[
2
(‖̃y1‖4 + ‖̃y2‖4)] = 4E

(‖̃y1‖4)
and the probability term in (24) is bounded from above by

P
(‖̃y1‖2 + ‖̃y2‖2 > M2

) ≤ P
(‖̃y1‖2 > M2/2

) + P
(‖̃y2‖2 > M2/2

)
= 2P

(‖̃y1‖ >
√

M2/2
)

(26)

≤ 2 exp(−c0

√
M2/2)E

[
exp

(
c0‖̃y1‖)]

,

where c0 is a positive constant given in Condition 2 and the last inequality follows
from Markov’s inequality. Combining inequalities (24)–(26) and by Condition 2,
we obtain

(27) E
[
ψ

(
y∗

1,y∗
2
)
I
{
ψ

(
y∗

1,y∗
2
)
> M2

}] ≤ C̃2 exp
(−2−1c0

√
M2/2

)
and thus 0 ≤ Tk1,2 ≤ C̃2M1 exp(−2−1c0

√
M2/2), where C̃2 is some positive con-

stant. Recall that M1 = nξ1 and M2 = nξ2 . Then for any positive constant C̃, it
holds that

0 ≤ Tk1,2 ≤ C̃2n
ξ1 exp

(−2−3/2c0n
ξ2/2) ≤ C̃n−κ2/48

for all 1 ≤ k ≤ p when n is sufficiently large. This inequality gives

(28) P
(

max
1≤k≤p

∣∣T̂ ∗
k1,2 − Tk1,2

∣∣ ≥ C̃n−κ2/24
)

≤ P
(

max
1≤k≤p

∣∣T̂ ∗
k1,2

∣∣ ≥ C̃n−κ2/48
)

for all n sufficiently large.
Note that for all 1 ≤ k ≤ p, |T̂ ∗

k1,2| is uniformly bounded from above by
M1[n(n − 1)]−1 ∑

i �=j ψ(y∗
i ,y∗

j )I{ψ(y∗
i ,y∗

j ) > M2}. Thus, in view of (27), apply-
ing Markov’s inequality yields that for any δ > 0,

P
(

max
1≤k≤p

∣∣T̂ ∗
k1,2

∣∣ ≥ δ/2
)

≤ P

{
M1

[
n(n − 1)

]−1 ∑
i �=j

ψ
(
y∗
i ,y∗

j

)
I
{
ψ

(
y∗
i ,y∗

j

)
> M2

} ≥ δ/2
}
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≤ (δ/2)−1E

{
M1

[
n(n − 1)

]−1 ∑
i �=j

ψ
(
y∗
i ,y∗

j

)
I
{
ψ

(
y∗
i ,y∗

j

)
> M2

}}

= (δ/2)−1M1E
[
ψ

(
y∗

1,y∗
2
)
I
{
ψ

(
y∗

1,y∗
2
)
> M2

}]
≤ (δ/2)−1M1C̃2 exp

(−2−1c0

√
M2/2

)
.

Since M1 = nξ1 and M2 = nξ2 , setting δ = C̃n−κ2/24 in the above inequality en-
tails

P
(

max
1≤k≤p

∣∣T̂ ∗
k1,2

∣∣ ≥ C̃n−κ2/48
)

≤ 48C̃−1C̃2n
κ2+ξ1 exp

(−2−3/2c0n
ξ2/2)

.

Combining this inequality with (28) gives

P
(

max
1≤k≤p

∣∣T̂ ∗
k1,2 − Tk1,2

∣∣ ≥ C̃n−κ2/24
)

(29)
≤ 48C̃−1C̃2n

κ2+ξ1 exp
(−2−3/2c0n

ξ2/2)
.

Step 1.3. We finally handle the term T̂ ∗
k1,3 − Tk1,3 and show that it satisfies

P
(

max
1≤k≤p

∣∣T̂ ∗
k1,3 − Tk1,3

∣∣ ≥ C̃n−κ2/24
)

(30)

≤ 48pC̃−1C̃3n
κ2 exp

(−8−1c0n
ξ1

)
with C̃3 some positive constant in Section D.1 of the Supplementary Material.

Combining the results in (20), (23) and (29)–(30) leads to

P
(

max
1≤k≤p

∣∣T̂ ∗
k1 − Tk1

∣∣ ≥ C̃n−κ2/8
)

≤ 2p exp
(−C̃2C̃1n

1−2κ2−2ξ1−2ξ2
) + 48pC̃−1C̃3n

κ2 exp
(−8−1c0n

ξ1
)

+ 48C̃−1C̃2n
κ2+ξ1 exp

(−2−3/2c0n
ξ2/2)

.

Let ξ1 = (1 − 2κ2)/3 − 2η and ξ2 = 3η with some 0 < η < (1 − 2κ2)/6. Then we
have

P
(

max
1≤k≤p

∣∣T̂ ∗
k1 − Tk1

∣∣ ≥ C̃n−κ2/8
)

≤ pC̃1 exp
{−C̃2n

(1−2κ2)/3−2η}
(31)

+ C̃3 exp
{−C̃4n

3η/2}
,

where C̃1, . . . , C̃4 are some positive constants. This inequality along with (19)
yields

P
(

max
1≤k≤p

|T̂k1 − Tk1| ≥ C̃n−κ2/4
)

≤ pC̃1 exp
{−C̃2n

(1−2κ2)/3−2η}
(32)

+ C̃3 exp
{−C̃4n

3η/2}
.
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Step 2. For the second term max1≤k≤p |T̂k2 − Tk2|, we show in Section D.2 of
the Supplementary Material that

P
(

max
1≤k≤p

|T̂k2 − Tk2| ≥ C̃n−κ2/4
)

≤
p∑

k=1

P
(|T̂k2 − Tk2| ≥ C̃n−κ2/4

)
(33)

≤ pC̃5 exp
{−C̃6n

(1−2κ2)/5}
holds, where C̃5 and C̃6 are some positive constants.

Step 3. We further prove that the third term T̂k3 − Tk3 satisfies

P
(

max
1≤k≤p

|T̂k3 − Tk3| ≥ C̃n−κ2/4
)

≤ pC̃1 exp
{−C̃2n

(1−2κ2)/3−2η}
(34)

+ C̃3 exp
{−C̃4n

3η/2}
with C̃1, . . . , C̃4 some positive constants in Section D.3 of the Supplementary Ma-
terial.

Combining inequalities (16) and (32)–(34) and setting η = (1 − 2κ2)/15 entail

P
{

max
1≤k≤p

∣∣d̂cov
2(

X∗
k ,y∗) − dcov2(

X∗
k ,y∗)∣∣ ≥ C̃n−κ2

}
(35)

≤ pC̃1 exp
{−C̃2n

(1−2κ2)/5} + C̃3 exp
{−C̃4n

(1−2κ2)/10}
with C̃1, . . . , C̃4 some positive constants, which completes the proof for the first
part of Theorem 1.

Part 2. We now proceed to prove the second part of Theorem 1. The main idea
is to build the probability bounds for two events {M ⊂ M̂} and {I ⊂ Î}. We first
bound P(M ⊂ M̂). Define an event �1 = {maxj∈M |ω̂j − ωj | < c1n

−κ1}. Then
by Condition 3, conditional on the event �1 we have ω̂j ≥ 2c1n

−κ1 for all j ∈ M,
which gives

P(M ⊂ M̂) ≥ P(�1) = 1 − P
(
�c

1
)

(36)
= 1 − P

(
max
j∈M |ω̂j − ωj | ≥ c1n

−κ1
)
.

Following similar arguments as for proving (15), it can be shown that there exist
some positive constants C̃5 and C̃6 such that

P
(

max
j∈M |ω̂j − ωj | ≥ c1n

−κ1
)

= O
(
s1 exp

{−C̃5n
(1−2κ1)/3}

+ exp
{−C̃6n

(1−2κ1)/6})
,

where s1 is the cardinality of M. This inequality together with (36) yields

(37) P(M ⊂ M̂) ≥ 1 − O
(
s1 exp

{−C̃5n
(1−2κ1)/3} + exp

{−C̃6n
(1−2κ1)/6})

.
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We next bound P(I ⊂ Î). Note that P(I ⊂ Î) ≥ P(A ⊂ Â) since conditional
on the event {A ⊂ Â} it holds that {I ⊂ Î}. Define an event �2 = {maxk∈A |ω̂∗

k −
ω∗

k | < c2n
−κ2}. Then by Condition 3, we have ω̂k ≥ 2c2n

−κ2 for all k ∈ A con-
ditional on the event �2, which leads to P(A ⊂ Â) ≥ P(�2). Combining these
results yields

(38) P(I ⊂ Î) ≥ P(�2) = 1 − P
(
�c

2
) = 1 − P

(
max
k∈A

∣∣ω̂∗
k − ω∗

k

∣∣ ≥ c2n
−κ2

)
.

Using similar arguments as for proving (15) shows that there exist some positive
constants C̃7 and C̃8 such that

P
(
max
k∈A

∣∣ω̂∗
k − ω∗

k

∣∣ ≥ c2n
−κ2

)
= O

(
s2 exp

{−C̃7n
(1−2κ2)/5} + exp

{−C̃8n
(1−2κ2)/10})

,

where s2 is the cardinality of A. This together with (38) entails

P(I ⊂ Î) ≥ 1 − O
(
s2 exp

{−C̃7n
(1−2κ2)/5} + exp

{−C̃8n
(1−2κ2)/10})

.(39)

Finally, combining (37) and (39), we obtain

P(M ⊂ M̂ and I ⊂ Î) ≥ P(M ⊂ M̂) + P(I ⊂ Î) − 1

≥ 1 − O
(
s1 exp

{−C̃5n
(1−2κ1)/3} + exp

{−C̃6n
(1−2κ1)/6})

− O
(
s2 exp

{−C̃7n
(1−2κ2)/5} + exp

{−C̃8n
(1−2κ2)/10})

≥ 1 − O
(
exp

{−Cnη0/2})
,

where C is some positive constant, and the last inequality follows from the facts
s1, s2 ≤ p and the condition that logp = o(nη0) with η0 = min{(1 − 2κ1)/3, (1 −
2κ2)/5}. This concludes the proof for the second part of Theorem 1.

A.2. Proof of Theorem 2. Define an event �3 = {max1≤j≤p |ω̂j − ωj | <

c1n
−κ1}. For any j ∈ Mc, if ωj < c1n

−κ1 and |ω̂j − ωj | < c1n
−κ1 , then we

have ω̂j < 2c1n
−κ1 . Thus, conditional on the event �3, the cardinality of {j :

ω̂j ≥ 2c1n
−κ1 and j ∈ Mc} cannot exceed that of {j : ωj ≥ c1n

−κ1 and j ∈ Mc}.
This entails that the cardinality of {j : ω̂j ≥ 2c1n

−κ1} is no larger than that of
{j : ωj ≥ c1n

−κ1 and j ∈ Mc} ∪ M, which is in turn bounded from above by
|M| + s3. Thus, it follows from (8) in Theorem 1 that

P
(|M̂| ≤ |M| + s3

) ≥ P(�3) = 1 − P
(

max
1≤j≤p

|ω̂j − ωj | ≥ c1n
−κ1

)
≥ 1 − O

(
exp

{−Cn(1−2κ1)/6})
.

Similarly, we can show that

P
{|Î| ≤ (|A| + s4

)(|A| + s4 − 1
)
/2

} ≥ 1 − O
(
exp

{−Cn(1−2κ2)/10})
.
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Combining these two probability bounds yields

P
{|M̂| ≤ |M| + s3 and |Î| ≤ (|A| + s4

)(|A| + s4 − 1
)
/2

}
≥ 1 − O

(
exp

{−Cn(1−2κ1)/6}) − O
(
exp

{−Cn(1−2κ2)/10})
≥ 1 − O

(
exp

{−Cnη0/2})
,

where C is some positive constant, and the last inequality follows from the condi-
tion that logp = o(nη0) with η0 = min{(1 − 2κ1)/3, (1 − 2κ2)/5}. This completes
the proof of Theorem 2.
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SUPPLEMENTARY MATERIAL

Supplementary material to “Interaction pursuit in high-dimensional
multi-response regression via distance correlation” (DOI: 10.1214/16-
AOS1474SUPP; .pdf). Due to space constraints, the details about the post-
screening interaction selection, additional numerical studies, some intermediate
steps of the proof of Theorem 1 and additional technical details are provided in the
Supplementary Material [12].
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