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A BAYESIAN APPROACH FOR ENVELOPE MODELS

BY KSHITIJ KHARE1, SUBHADIP PAL AND ZHIHUA SU2

University of Florida

The envelope model is a new paradigm to address estimation and predic-
tion in multivariate analysis. Using sufficient dimension reduction techniques,
it has the potential to achieve substantial efficiency gains compared to stan-
dard models. This model was first introduced by [Statist. Sinica 20 (2010)
927–960] for multivariate linear regression, and has since been adapted to
many other contexts. However, a Bayesian approach for analyzing envelope
models has not yet been investigated in the literature. In this paper, we de-
velop a comprehensive Bayesian framework for estimation and model se-
lection in envelope models in the context of multivariate linear regression.
Our framework has the following attractive features. First, we use the ma-
trix Bingham distribution to construct a prior on the orthogonal basis matrix
of the envelope subspace. This prior respects the manifold structure of the
envelope model, and can directly incorporate prior information about the en-
velope subspace through the specification of hyperparamaters. This feature
has potential applications in the broader Bayesian sufficient dimension re-
duction area. Second, sampling from the resulting posterior distribution can
be achieved by using a block Gibbs sampler with standard associated condi-
tionals. This in turn facilitates computationally efficient estimation and model
selection. Third, unlike the current frequentist approach, our approach can
accommodate situations where the sample size is smaller than the number
of responses. Lastly, the Bayesian approach inherently offers comprehensive
uncertainty characterization through the posterior distribution. We illustrate
the utility of our approach on simulated and real datasets.

1. Introduction.

1.1. Background. Consider the standard multivariate linear regression model,
given by

Y = μ + βX + ε,(1)

where Y ∈ R
r is the multivariate response vector, X ∈ R

p is the vector of non-
stochastic predictors, μ ∈ R

r and β ∈ R
r×p are unknown intercept and regression
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coefficients, and the errors ε ∈ R
r are assumed to have a multivariate normal distri-

bution with mean 0 and covariance matrix �. Our interest lies in the estimation of
β , as it depicts the relationship between the responses and predictors. The standard
multivariate regression estimator for β does not take the stochastic relationships
among the response variables into account. Exploiting these stochastic relation-
ships can lead to improved efficiency in estimation of β .

A substantial step forward along these lines is the envelope model introduced
in [5]. An envelope estimator of β is more efficient than the standard estimator
when there is immaterial information contained in Y; in other words, the distri-
bution of some elements in Y or some linear combinations of the elements in Y
is invariant to the changes in X. To put this more concretely, let � and �0 be
two matrices such that [� �0] ∈ R

r×r is an orthogonal matrix. We assume that
(a) �T

0 Y | X ∼ �T
0 Y, where ∼ means identically distributed and (b) �T Y is un-

correlated with �T
0 Y given X. Hence, the matrix [� �0] divides Y into two parts,

�T Y (the material part) and �T
0 Y (the immaterial part). Conditions (a) and (b)

imply that �T
0 Y is uncorrelated with both �T Y and X, therefore, it does not carry

any information about β and it is immaterial to the regression.
Cook et al. [5] showed that (a) and (b) are equivalent to the following two con-

ditions: (a′) B ⊆ span(�), and (b′) � = �1 + �2 = P��P� + Q��Q� . Here,
B = span(β), P(·) denotes the linear operator that projects onto the subspace in-
dicated by its argument and Q(·) = I − P(·). By [3], if � satisfies (b), span(�)

is called a reducing subspace of �. The �-envelope of B, denoted by E�(B), is
defined as the smallest reducing subspace of � that contains B (see [5]). Conse-
quently, E�(B) can be used to decompose � into variation from the material and
immaterial parts of Y: �1 = Var(P�Y) and �2 = Var(Q�Y). We call (1) an enve-
lope model when (a′) and (b′) are imposed. As β is related only with the material
variation, this decomposition of � suggests that we can achieve efficiency gains
by accounting for all the immaterial information when estimating β . Particularly,
massive efficiency gains can be obtained when ‖�2‖ � ‖�1‖, where ‖ · ‖ denotes
the spectral norm.

The coordinate form of an envelope model can be written as

Y = μ + �ηX + ε, � = �1 + �2 = ���T + �0�0�
T
0 ,(2)

where the coefficients β = �η, � ∈ R
r×u is an orthogonal basis of E�(B) and

u denotes the dimension of the envelope E�(B). The positive definite matrices
� ∈ R

u×u and �0 ∈ R
(r−u)×(r−u) carry the coordinates of � with respect to �

and �0, and η ∈ R
u×p carries the coordinates of β with respect to �. When u =

r , E�(B) = R
r , the envelope model degenerates to the standard model and no

efficiency gains are offered.
Recently, more developments ([6, 15–17]) have taken place in the context of

envelope models. In particular, some restrictions on the data structure have been
removed, and new models have been formulated to achieve efficiency gains beyond
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those offered by the original envelope model. Additionally, an improvement of
the likelihood ratio test for the envelope model has been proposed in [14], and a
connection between envelope models and partial least squares (PLS) has also been
established in [4].

In this paper, we develop a Bayesian approach for analyzing envelope models
in the context of multivariate linear regression. Although Bayesian methods have
been proposed for the related field of sufficient dimension reduction (SDR) (see
[10, 11, 18]), such an investigation has not been undertaken for envelope mod-
els. The attractive features of our approach are as follows. First, we introduce a
class of priors that can incorporate prior information on subspaces. To be more
specific, we put a joint matrix Bingham prior on the orthogonal basis matrix �
(see Section 3). This method respects the fact that the elements of � jointly lie
on an appropriate Stiefel manifold. Hence, prior information about the envelope
subspace can be incorporated through specification of hyperparameters; see, for
example, Remark 2. When prior information about envelope subspace is not avail-
able, this class of priors is also flexible to include objective priors (such as the
uniform flat prior for all parameters). Second, a block Gibbs sampling algorithm
with standard conditionals is derived to sample from the resulting posterior distri-
bution. The ability to generate samples from the posterior distribution allows us
compute posterior expectations and quantiles efficiently, and also perform model
selection (selection of u) using the Deviance Information Criterion (DIC). One of
the conditionals in the Gibbs sampler is a new generalized version of the matrix
Bingham distribution, and we derive an efficient rejection sampler to sample from
this distribution. Third, while the frequentist approach [5] cannot handle small
sample size situations, especially when n < r , our Bayesian approach is stable and
achieves efficiency gains under those situations; see Theorem 1 and the simulation
study in Section 4.2. Lastly, the Bayesian approach offers a comprehensive uncer-
tainty characterization through the posterior distribution. With finite sample size,
while the frequentist envelope model would use bootstrap to get the standard error
of β̂ , the Bayesian envelope model addresses estimation uncertainty directly by
construction of posterior credible intervals. Our prior construction in the context
of envelope models also has useful and important implications for Bayesian SDR.
Currently, all the existing Bayesian SDR models are based on putting an indepen-
dent normal prior on each element of the basis of the central subspace (see, e.g.,
[10, 11, 18]). Under this prior, it is hard to incorporate prior information on cen-
tral subspaces. However, under our formulation and the subsequent construction
of priors, it should be very easy to incorporate prior information about the central
subspace.

The paper is organized as follows. The rest of this section is devoted to a review
of some relevant distributions and an introduction of a generalized Bingham distri-
bution, which will be used for the construction of priors in the Bayesian envelope
model. Section 2 provides an alternative parameterization of the envelope model,
which is essential for model formulation. In Section 3, we introduce the class of
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prior distributions and provide sufficient conditions for posterior propriety. In Sec-
tion 3.3, we develop a block Gibbs sampling algorithm to sample from the pos-
terior distributions corresponding to the priors introduced in Section 3. Section 4
illustrates the applicability of the Bayesian framework developed in the paper on
simulated and real datasets. In Section 5, we include the proofs of the technical
results. A few additional technical results as well as other details are provided in
the supplementary material [9].

1.2. Some relevant distributions. We now establish notation for some proba-
bility distributions, which will be useful in constructing a class of prior distribu-
tions for the envelope model, and also in generating samples from the correspond-
ing posterior distribution.

In preparation, we first introduce some notation. Let Ma,b denote the space
of a × b matrices, and Sa,b denote the Stiefel manifold comprised of all a × b

semi-orthogonal matrices, that is, if � ∈ Sa,b with a ≥ b, then �T � = Ib. Let S+
a,b

denote the collection of all a × b semi-orthogonal matrices such that the maxi-
mum entry (in absolute value) for each column of the matrix is positive, that is,
max(ci) > |min(ci)| where (c1, . . . , cp)T is a column. Note that the compact uni-
modular group Sa,a has a unique Haar measure, which through obvious mappings,
gives rise to induced Haar measures on Sa,b and S+

a,b. Let Oa ⊂R
a denote the set

of vectors with positive entries arranged in decreasing order (the first entry is at
least as large as the second entry, and so on). Let n, r,p be positive integers, and
let u be a nonnegative integer satisfying u ≤ r .

DEFINITION 1. An a × b random matrix H is defined to follow a matrix-
variate normal distribution [MNa,b(M,A1,A2)] if its density function (on the
space Ma,b) is given by

|A1|−b/2|A2|−a/2

√
2π

ab
e(−1/2) tr(A−1

1 (H−M)A−1
2 (H−M)T ).

Here, M ∈ Ma,b. Also, A1 ∈ Ma,a and A2 ∈ Mb,b are both positive definite matri-
ces.

It is known that if H ∼ MNa,b(M,A1,A2), then H has rank equal to min(a, b)

with probability 1. Note that H ∼ MNa,b(M,A1,A2) if and only if vec(H) ∼
Nab(vec(M),A2 ⊗ A1). Here, vec(H) stands for the vector obtained by stacking
the columns of the matrix H on top of each other, and ⊗ stands for the Kronecker
product. Hence, a draw from a matrix-variate normal distribution can be obtained
by making a draw from the corresponding vectorized multivariate normal distribu-
tion.

DEFINITION 2. A random variable Z is defined to have a truncated Inverse-
Gamma distribution with parameters a, b, d > 0, c ≥ 0 [Inverse-Gamma(a, b,

c, d)] if the probability density function of Z is proportional to z−a−1e−b/z1z∈(c,d).
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Methods to sample from the truncated Inverse-Gamma distribution are dis-
cussed in the the supplementary material, Section E [9].

DEFINITION 3. Let A1 ∈ Ma,a and B1 ∈ Mb,b both be positive definite matri-
ces. A random matrix O is defined to have a matrix Bingham distribution on Sa,b

with parameters A1 and B1 [Ba,b(A1,B1)] if the probability density function of O
(with respect to the induced Haar measure on Sa,b) is proportional to

e(−1/2) tr(B1OT A1O).(3)

The matrix Bingham distribution is in turn a matrix version of the Bingham
distribution introduced in Bingham [2]. See [8] and the references therein for more
details. Note that the density in (3) is invariant under arbitrary sign changes to the
columns of O. Hence, the Ba,b(A1,B1) density on Sa,b induces a density on S+

a,b

which is given exactly by the expression in (3), up to proportionality. We will refer
to this density as the Ba,b(A1,B1) density on S+

a,b.
We now introduce a generalized version of the matrix Bingham distribution on

the Stiefel manifold S2,2. This distribution will play a crucial role in the block
Gibbs sampling algorithm in Section 3.3.

DEFINITION 4. A random matrix Z = [Z1 Z2] is defined to have a
generalized matrix Bingham distribution on S2,2 with parameters A1 and A2
[GB2,2(A1,A2)] if the probability density function of Z (with respect to the Haar
measure on S2,2) is proportional to

e−ZT
1 A1Z1−ZT

2 A2Z2 .(4)

The parameters A1 and A2 here are both semi-positive definite matrices. Hoff
[8] provides a rejection sampling method to generate samples from the matrix
Bingham distribution on S2,2. A direct adaptation of this approach in the GB2,2
setting turns out to be inefficient. We provide a more nuanced rejection sampling
method to draw exact samples from the GB2,2(A1,A2) distribution in the supple-
mentary material, Section A [9].

2. A reparameterization of the envelope model. The envelope model (2) in
[5] is parameterized in terms of Grassmann manifolds. In particular, the envelope
subspace E�(B) is a point in an r × u Grassmann manifold. The specification of
� is not unique, but E�(B) = span(�) is unique. Since it is usually hard to spec-
ify a subspace, but it is much easier to specify a basis, we start by introducing
an alternative parametrization of the envelope model, which is in terms of Stiefel
manifolds. Under this parameterization, we use a unique orthogonal basis to repre-
sent an envelope subspace. This leads to a more transparent view of the structure of
the envelope subspace, and also eases the incorporation of prior information about
the envelope subspace into the specification of hyperparameters.
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We consider the following parametrization of the envelope model:

Y = μ + �ηX + ε, � = ���T + �0�0�
T
0 ,(5)

where β = �η, � ∈ S+
r,u, and η ∈ Mu,p , � and �0 are diagonal matrices with diag-

onal entries arranged in decreasing order, and �0 ∈ S+
r,r−u with �T

0 � = 0. We use
ω ∈ Ou and ω0 ∈ Or−u to denote the diagonal vectors of � and �0, respectively.
Note that if � ∈ S+

r,u, and �0 ∈ S+
r,r−u, then (�,�0) ∈ S+

r,r . Hence, the parame-
ter that needs to be estimated is (μ,η, (�,�0),ω,ω0), and the parameter space is
Mr,1 × Mu,p × S+

r,r × Ou × Or−u.
The construction of (2) from (5) can be worked out as follows. For the enve-

lope model in (2), the parameters � and �0 are full symmetric (not necessarily
diagonal) matrices. Let � = P	PT and �0 = P0	0PT

0 denote the spectral de-
compositions of � and �0, respectively, with the diagonal entries of 	 and 	0
arranged in decreasing order. Now, set 	 and 	0 as the “new” � and �0. Also,
set �P and �0P0 (with changes of signs for columns whose maximum entry is
not positive) as the “new” � and �0, respectively. The resulting model is precisely
given by (5).

Hence, although the parameterizations in (2) and (5) look similar, there are im-
portant differences. The � parameter in (5) is the unique orthogonal basis of E�(B)

that belongs to S+
r,u, and diagonalizes the “old” � [in (2)] with diagonal elements,

or eigenvalues, in decreasing order. The restrictions in (5) on the diagonal entries
in � and �0, and the signs of the columns of � and �0, ensure parameter identifi-
ability. This is crucial in facilitating an effective Bayesian analysis.

REMARK 1. If u = r , it can be easily shown that the envelope model (5) is
equivalent to the standard multivariate regression model, by considering the trans-
formation (�,η,�) → (β = �η,� = ���T ).

3. Prior distributions for the envelope model. Let ν1 denote the Lebesgue
measure on Mr,1, ν2 denote the Lebesgue measure on Mu,p , ν3 denote the projec-
tion of the Haar measure for Sr,r on S+

r,r , ν4 denote the Lebesgue measure on Ou,
and ν5 denote the Lebesgue measure on Or−u. We specify a (possibly improper)
prior density for the parameter of interest (with respect to ν1 × ν2 × ν3 × ν4 × ν5)
as follows.

• μ is a priori independent of the other parameters and we put a flat improper
prior on μ, that is, the (improper) prior density of μ with respect to ν1 is given by

π(μ) ∝ 1.(6)

• Fix a p × p positive semi-definite matrix C, and e ∈ Mr,p . The prior density
of η (with respect to ν2) conditioned on ((�,�0),ω,ω0) is proportional to

|�|−p/2e(−1/2) tr(�−1(η−�T e)C(η−�T e)T ).(7)
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If C is positive definite, then (7) the prior distribution of η conditioned on
((�,�0),ω,ω0) is matrix normal. In particular,

η | (�,�0),ω,ω0 ∼ MNu,p

(
�T e,�,C−1)

.

Note that �T e can be interpreted as the conditional prior mean of η. Also, let ωi

be the ith element in ω, then ωiC can be interpreted as the conditional covariance
matrix of the ith row of η. Note that we allow for impropriety by allowing C to be
singular. For example, choosing C = 0 would lead to the flat (improper) prior on
Mu,p .

• Fix an r × r diagonal matrix D with positive diagonal entries, and an r × r

positive semi-definite matrix G. The marginal prior density of O = [� �0] (with
respect to ν3) is proportional to

e(−1/2) tr(D−1OT GO).(8)

It follows from (8) that the prior distribution of O = [� �0] is a matrix Bingham
distribution. In particular,

O ∼ Br,r

(
G,D−1)

.

The following lemma shows that the prior mode for O is an appropriately per-
muted version of the matrix of eigenvectors of G, and thereby provides a concrete
interpretation for the hyperparameter G.

LEMMA 1. Suppose that the eigenvalues of G are distinct. Then the mode for
the prior density of O is unique and can be specified as follows. Let a denote the
vector of diagonal entries of D. For every i = 1, . . . , r , let ti denote the rank of
the ai among all entries in a (from the smallest to the largest). Then for every i =
1, . . . , r , the ith column of the prior mode of O is given by the eigenvector (whose
maximum entry is positive) of G corresponding to the ti th largest eigenvalue of G.

For example, if a = (1,5,3,10,16), then t1 = 1, t2 = 3, t3 = 2, t4 = 4, t5 = 5.
The prior mode is reached when the columns of O are the eigenvectors of G,
corresponding to the (1,3,2,4,5)th largest eigenvalues of G.

The relative magnitude of the diagonal elements of D represents the strength of
the prior information on the envelope subspace. If D = Ir , then tr(D−1OT GO) =
tr(G), which leads to a flat noninformative prior density for O. On the other hand,
if the prior information on the envelope subspace is reliable, we can make the di-
agonal elements of D widely apart, such that their ranking is clear. For example, if
r = 5, the vector of diagonal elements of D can be chosen as (0.01,0.1,1,10,100).
Also, if we are only confident about part of the information on the envelope sub-
space, we can make the corresponding diagonal elements in D to be widely apart,
and the rest of the elements in D close to each other. For example, suppose we
know that the leading eigenvector v1 of G is likely to be the first column in �,
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but we do not have any other information about � and �0. Then we make the
first diagonal element of D to be quite larger than the others, and set all other el-
ements to be the same. For example, if we choose the diagonal elements of D to
be (10,1,1,1,1), then − tr(D−1OT GO) = − tr(G) + 0.9OT·1GO·1, which is max-
imized when O·1 = v1. Another example is presented in Remark 2.

• (ω,ω0) and O are a priori independent. Given α,α0, λ, λ0 > 0, the entries
of ω are a priori distributed as order statistics of u i.i.d. observations from the
Inverse-Gamma(α,λ,0,∞) distribution, and (independently) the entries of ω0
are a priori distributed as order statistics of r − u i.i.d. observations from the
Inverse-Gamma(α0, λ0,0,∞) distribution. In particular, the joint prior density of
ω and ω0 (with respect to ν4 × ν5) is proportional to

u∏
i=1

ω−α−1
i e−λ/ωi

r−u∏
i=1

ω
−α0−1
0,i e−λ0/ω0,i .(9)

Additionally, we allow for impropriety by allowing α to take values in [−(p/2 +
1),0], α0 to take values in [−1,0], and λ, λ0 to take zero values. For example, the
choice α = −1, α0 = −1 and the choice λ = λ0 = 0 will lead to the flat (improper)
prior on Ou × Or−u.

The hyperparameters that are needed to specify a prior from the above class are
e, C, G, D, α, α0 and λ, λ0. Each of these has a natural interpretation in terms of
the respective parameters. Hence, in case subjective prior knowledge exists, it can
be incorporated in our model through these hyperparameters (see Section 3.1). Of
course, if there is no subjective prior knowledge, as illustrated below, our class of
prior distributions is flexible enough to allow for objective (often improper) priors.

3.1. Two specific prior choices. A natural choice of an objective prior is the
following. If we choose e = 0, C = 0, G = 0, α = −(p/2 + 1), α0 = −1 and
λ = λ0 = 0, it follows from the above discussion that the joint (improper) prior
density for the parameters (on the space Mr,1 × Mu,p × S+

r,r × Ou × Or−u with
respect to measure ν1 × ν2 × ν3 × ν4 × ν5) is given by

π
(
μ,η, (�,�0),ω,ω0

) ∝ 1,(10)

for every (μ,η, (�,�0),ω,ω0) ∈ Mr,1 × Mu,p × S+
r,r × Ou × Or−u. We will refer

to the density in (10) as the uniform Haar improper prior density for the envelope
model.

We also suggest another prior as follows. Su and Cook [16], Section 3.5, pro-
vide a detailed description and discussion of a procedure for generating a suit-
able initial value of the parameters for an iterative optimization procedure in
the context of partial envelope models. An adaptation of this approach to the
current setting is summarized in the supplementary material, Section B [9]. Let
(η∗, (�∗,�∗

0),ω
∗,ω∗

0) denote the parameter values obtained after performing this
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procedure. We now make the following choice of hyperparameters. Set e = �∗η∗.
If u ≥ 2, solve for α and λ from the equations

α

λ
= 1

u

u∑
i=1

1

ω∗
i

, and
α2

λ2 + α

λ2 = 1

u

u∑
i=1

1

(ω∗
i )

2 .

Here, we are essentially using the method of moments, and the fact that the entries
of ω are a priori distributed as order statistics of u i.i.d. observations from the
Inverse-Gamma(α,λ,0,∞) distribution. If u = 1, we choose α = 1

ω∗
1

and λ = 1.
In a similar fashion, if u < r − 1, we solve for α0 and λ0 from the equations

α0

λ0
= 1

r − u

r−u∑
i=1

1

ω∗
0,i

, and
α2

0

λ2
0

+ α0

λ2
0

= 1

r − u

r−u∑
i=1

1

(ω∗
0,i )

2 .

If u = r − 1, we choose α0 = 1
ω∗

0,1
and λ0 = 1.

We assign the elements of (ω∗,ω∗
0) as the diagonal elements of the hyperparam-

eter D. Alternatively, the diagonal elements of D can also be generated (i.i.d.) from
a distribution supported on the positive part of the real line. Based on Lemma 1, we
now provide a procedure to choose the hyperparameter G to incorporate the prior
information about the envelope subspace as follows. We first generate the eigen-
values of G, λ1, λ2, . . . , λr i.i.d. from a distribution supported on positive part of
the real line. Let λ(1), . . . , λ(r) be the ordered λ’s (from the largest to the small-
est). The relative magnitude of the eigenvalues can also represent our confidence
in the prior information. The more confident we are about our prior information
on � and �0, the larger variance we put on the distribution used for drawing the
λ(i)’s. In the wheat protein data example in Section 4.4, we have used the chi-
square distribution. This is because chi-square distribution has only one parameter
that is directly associated with its variance. For every i = 1, . . . , r , let ti denote the
rank of a∗

i among all the entries in a∗. Following the example after Lemma 1, if
a∗ = (1,5,3,10,16), then t1 = 1, t2 = 3, t3 = 2, t4 = 4, t5 = 5. We then construct
a diagonal matrix 	 with 	ii = λ(ti) for every i = 1, . . . , r . Let O∗ = [�∗ �∗

0].
Finally, we set G = O∗	(O∗)T . By Lemma 1, we have ensured through the above
procedure that O∗ is the prior mode of O. We set the remaining hyperparameter
C to the zero matrix, thereby completing our hyperparameter choice. Henceforth,
we will refer to this prior choice as the empirical prior. Both the prior choices in-
troduced in this section will be illustrated in the wheat protein data application in
Section 4.4.

REMARK 2. If only partial information is available for the envelope subspace,
it can also be incorporated in a similar manner. For example, in the preceding
example with r = 5, suppose that u = 2 and we know a unit vector v1 is likely
to be the first column in � and unit vectors v2 and v3 are likely to be the first
and third columns in �0. In this case, we know part of the envelope subspace,
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and part of its orthogonal complement. We then generate λ1, . . . , λ5 i.i.d. from
a distribution supported on positive part of the real line. Let (v4,v5) ∈ S+

5,2 be a
basis of the orthogonal complement of span(v1,v2,v3). Then G = O∗	(O∗)T ,
where O∗ = (v1,v4,v2,v5,v3) and 	ii = λ(ti) for i = 1, . . . ,5. Here, the diagonal
elements of D can be set as a∗ = (a1, a2, a3, a4, a5), with a1 > a2 > a3 > a4 = a5,
reflecting our lack of prior knowledge on v4 and v5.

3.2. Derivation of posterior density and conditions for posterior propriety.
Suppose we have n independent observation vectors Y1,Y2, . . . ,Yn satisfying (5)
with corresponding covariate vectors X1,X2, . . . ,Xn. Then the likelihood function
L(μ,η, (�,�0),ω,ω0) is given by

(2π)−(nr)/2|�|−n/2|�0|−n/2

(11)
× e(−1/2) tr{(Y−1nμT −XηT �T )(���T +�0�0�

T
0 )−1(Y−1nμT −XηT �T )T },

where Y is an n × r matrix with rows given by YT
1 ,YT

2 , . . . ,YT
n , X is an n × p

matrix with rows given by XT
1 ,XT

2 , . . . ,XT
n and 1n ∈ R

n×1 is a column vector of
1’s. Without loss of generality, we assume that the columns of the covariate matrix
X are centered. If n > p, we will assume that X is of full column rank. Clearly,
if n ≤ p, then such an assumption does not hold. It follows from (6), (7), (8), (9)
and (11) that the posterior density of the parameter of interest (with respect to
ν1 × ν2 × ν3 × ν4 × ν5) is given by

π
((

μ,η, (�,�0),ω,ω0
) |Y)

∝ (2π)−(nr)/2|�|−n/2|�0|−n/2

× e(−1/2) tr{(Y−1nμT −XηT �T )(���T +�0�0�
T
0 )−1(Y−1nμT −XηT �T )T }(12)

× e(−1/2) tr(�−1(η−�T e)C(η−�T e)T )e(−1/2) tr(D−1OT GO)

×
u∏

i=1

ω
−α−p/2−1
i e−λ/ωi

r−u∏
i=1

ω
−α0−1
0,i e−λ0/ω0,i .

Since the prior density is allowed to be improper, it is important to establish con-
ditions under which the posterior density is proper, that is, the expression on the
right-hand side in (12) can be normalized to obtain a probability density function.
The next theorem establishes sufficient conditions for posterior propriety (proof is
provided in Section 5.2).

THEOREM 1. The posterior density in (12) is proper under either of the fol-
lowing conditions:

1. n > max(r,p + 3).
2. n + 2α > 1, λ,λ0 > 0 and C is positive definite.
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3.3. Sampling from the posterior distribution. In order to perform Bayesian
statistical inference, it is crucial to compute quantities related to the posterior dis-
tribution, for example, the posterior mean or posterior quantiles. The posterior
density for our model is intractable in the sense that it is not possible to compute
these quantities analytically or to generate i.i.d. samples from the posterior dis-
tribution. However, we show in the supplementary material, Section C [9], that
various conditional posterior densities have a standard form, and we develop sys-
tematic scan and random scan Gibbs sampling algorithm to generate samples from
the posterior distribution. It follows easily that the Markov chains corresponding
to both the random scan and systematic scan Gibbs samplers have the density in
(12) as a stationary density. The theorem below shows that both the random scan
and systematic scan versions of the Gibbs sampler for the generalized matrix Bing-
ham distribtuion are, in fact, Harris ergodic. This provides theoretical guarantees
that the Gibbs sampling algorithms provide approximate samples from the density
in (12).

THEOREM 2. The systematic scan and random scan Gibbs samplers specified
in the supplementary material, Section C [9], are Harris ergodic.

A proof of this theorem is provided in Section 5.3 below. Note that the theo-
rem above holds for an arbitrary initial value of the parameter vector, and allows
us to use the Markov chain averages to approximate intractable posterior quanti-
ties of interest (such as posterior means, posterior standard deviations or posterior
quantiles). We note here that while we will use posterior means to obtain point
estimates of parameters of interest, the posterior mode of the parameter vector can
be obtained by an iterative optimization approach specified in the supplementary
material, Section D [9].

4. Simulation and data analysis. In this section, we provide one simulated
data example and one real example to demonstrate the utility of the methodology
developed in this paper. Note that, once u is fixed, methods for computing posterior
quantities of interest have been developed in Section 3.3. We now discuss how to
select the dimension of the envelope subspace u using the Deviance Information
Criterion (DIC) in Section 4.1.

4.1. Selection of u. An important issue that needs to be dealt with for fitting
an envelope model is the choice of u. Possible choices of u are u = 0,1, . . . , r . Let

θ = (
μT ,ηT ,vec

([�,�0])T ,ωT ,ωT
0

)T
denote the parameter vector. Notice that the effective number of parameters
changes with u, by Section 3.1 in [5], the effective number of parameters is
r + up + r(r + 1)/2. For each u, we fit a Bayesian envelope model with a given
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choice of prior. Let {θ (i)}Mi=1 represent values sampled from the relevant posterior
distribution after performing M steps of the Gibbs sampling Markov chain (after
an appropriate burn-in). For a given parameter vector θ , we define the deviance as
D(θ) := −2 logL(θ), where L(θ) is the likelihood function defined in (11). Let
D̄ := ∑M

i=1 D(θ (i))/M . The DIC score (see, e.g., [7], page 185) with the given
choice of u is then computed as DIC = D̄ + ∑M

i=1(D(θ (i)) − D̄)2/(2(M − 1)).
The value of u which corresponds to the minimum DIC score is chosen.

4.2. Simulated data. In this section, based on common practice in the litera-
ture, we perform a frequentist evaluation of the Bayesian procedures developed in
this paper. This will be done by using replicated datasets which are generated from
a known “true” model, and evaluating the average model selection and estimation
performance of our Bayesian procedures in comparison with the true model.

We consider a setting with r = 5, p = 2 and u = 2. The subscript “true” is
attached to a quantity if it is associated with the “true” model. Elements in ηtrue ∈
R

u×p were generated from i.i.d. Uniform[0,5]. We obtained the r × r orthogonal
matrix Otrue from the left singular vectors of an r × r matrix with i.i.d. standard
normal entries. The basis of the envelope subspace �true was chosen to be the first
two columns of Otrue, and �0,true was chosen to be the remaining three columns.
We set ωtrue to be (1,2)T and ω0,true to be (20,16,12)T ; the error covariance
matrix �true is then �true = �true�true�

T
true + �0,true�0,true�

T
0,true. The intercept

vector μtrue was a vector of zeros. We varied the sample sizes from 30, 100 and
200. For each sample size, 200 datasets were generated. The elements in X were
i.i.d. Uniform[0,5] variables, and Y was computed following the envelope model
in (5).

We first demonstrate the performance of DIC in dimension selection. To en-
sure a fair comparison among various choices of u, we use the uniform Haar prior
[as described in (10)] for each choice of u. With every sample size, we counted
the number of replications for which the minimum DIC score corresponds to each
given value of u between 0 and 5. The results are provided in Table 1. The parame-
ter vector of the true model has effective dimension 24. We notice that with sample
size 30, DIC selects the correct value of u 98.5% of the time, and it selects the cor-
rect dimension 100% of the time for sample sizes 100 and 200. Hence, with small

TABLE 1
Number of replications (out of 200) for which a given value of u

corresponds to the minimum DIC score

u = 0 u = 1 u = 2 u = 3 u = 4 u = 5

n = 30 0 3 197 0 0 0
n = 100 0 0 200 0 0 0
n = 200 0 0 200 0 0 0
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sample size, it seems that DIC would occasionally underestimate the dimension,
but this problem is quickly mitigated for moderate sample size.

Now we focus on comparing the efficiency and accuracy of the posterior mean
estimators of the Bayesian envelope model versus the Bayesian standard multi-
variate linear regression model. We consider two versions: the Bayesian standard
model, which refers to a Bayesian envelope model with u = r (see Remark 1);
and the Bayesian Wishart standard model, which specifies an inverse Wishart dis-
tribution for � and a matrix normal prior for β | � (see [12], page 33). Now, for
all datasets mentioned above, we fit a Bayesian envelope model with u = 2 using
the uniform Haar prior, and also a Bayesian standard model again with a uniform
Haar prior. For both models, posterior mean estimates for β = �η were obtained
for each of the datasets using the Gibbs sampling procedure outlined in Section 3.3
(and the supplementary material, Section C [9]). A burn-in of 1000 iterations was
used, and the posterior estimates were computed using the next 2500 iterations.

For each sample size n = 30,100,200, we computed the estimation variance
and average squared error (an estimate of MSE) of the posterior mean estimates
for each element in β over 200 replications for both the Bayesian envelope model
and the Bayesian standard model. More specifically, for each model, let β̂

(k)
ij be the

estimate of the (i, j)th element from the kth replication, the estimation variance
is given by

∑200
k=1(β̂

(k)
ij − β̄ij )

2/200, where β̄ij = ∑200
k=1 β̂

(k)
ij /200, and the average

squared error is given by
∑200

k=1(β̂
(k)
ij − βij,true)

2/200. The estimation variances
and average squared errors for estimating β11 from both models are plotted in Fig-
ure 1. The other elements in β all have similar pattern. From Figure 1, we first
notice that the red lines (estimation variance) and the blue lines (average squared
error) are overlapping with each other for both methods, indicating that estima-
tion variance is the major contributor of average squared error. For each sample
size, the estimator from the Bayesian envelope model has much smaller estimation
variance and average squared error than the Bayesian standard model. To quantify

FIG. 1. Comparison of the Bayesian standard model versus the Bayesian envelope model. The solid
lines mark the Bayesian envelope model and the dashed lines mark the Bayesian standard model. The
red lines mark estimation variances and the blue lines mark the average squared errors. The red lines
are overlapped with the blue lines in this plot because estimation variance is the main contributor of
the average square errors.
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TABLE 2
Ratio of estimation variance and average squared error in estimation of β . RatioVar denotes the
ratio of estimation variance of the Bayesian standard model versus the Bayesian envelope model.

RatioMSE denotes the ratio of average squared error of the Bayesian standard model versus
the Bayesian envelope model

n = 30 n = 100 n = 200

RatioVar RatioMSE RatioVar RatioMSE RatioVar RatioMSE

β1,1 2.867 2.828 3.447 3.462 2.868 3.187
β1,2 1.986 1.985 1.740 1.749 2.249 2.286
β1,3 2.772 2.765 2.498 2.499 3.573 3.572
β1,4 3.454 3.444 2.910 2.929 2.827 2.906
β1,5 2.863 2.841 3.480 3.494 4.475 4.637
β2,1 2.161 2.141 2.058 2.029 1.870 1.908
β2,2 1.867 1.859 1.254 1.253 1.557 1.558
β2,3 2.244 2.242 1.965 1.953 2.383 2.382
β2,4 2.376 2.367 2.181 2.184 1.796 1.783
β2,5 1.872 1.868 2.169 2.172 2.127 2.216

the efficiency gains by Bayesian envelope model, we computed the ratios of the
estimation variance and average squared error of the Bayesian standard estimator
versus the Bayesian envelope estimator for each sample size. From Table 2, we find
that the ratios stays about the same across different sample sizes, which suggests
that the relative performance of the Bayesian envelope model versus the Bayesian
standard model is quite stable with the change of sample size. For sample size 200,
the estimation variance ratio ranges from 1.56 to 4.48, which is a substantial effi-
ciency gain in many applications. We also compared the Bayesian envelope model
with the Bayesian Wishart standard model, and the results are similar to those in
Table 2. The details are contained in the supplementary material, Section G [9].

As pointed out in [5], the efficiency gains for the envelope model are substan-
tial especially when the immaterial part is more variant than the material part,
that is, the largest entry in ω0,true is larger than the largest entry in ωtrue. When
the immaterial part is less variant than the material part, the envelope model is
still at least as efficient as the standard model, but the gains are not as substan-
tial as the ones presented in Table 2. The Bayesian envelope model inherits these
properties. To demonstrate this, and for balance, we added simulation results with
ωtrue = (20,16)T , ω0,true = (0.5,1,2)T and ωtrue = (1,1)T , ω0,true = (1,1,1)T in
the supplementary material, Section H [9]. Also, since our estimator is derived
from the normal likelihood, we also investigated its robustness under deviation of
normality. Based on our numerical experiments (not shown here), we find that a
moderate departure from normality does not have a notable affect on the perfor-
mance of the Bayesian envelope estimator.

The Bayesian envelope model also works well with small sample size. We set
r = 50 and n = 30. We let p = 10, ωtrue = (2,1), ω0,true = (100,99, . . . ,53), and
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TABLE 3
Ratio of estimation variance and average squared error for ten randomly selected elements in β ,

with n = 30 and r = 50. RatioVar denotes the ratio of estimation variance of the Bayesian standard
model versus the Bayesian envelope model. RatioMSE denotes the ratio of average squared error of

the Bayesian standard model versus the Bayesian envelope model

β6,2 β9,10 β19,8 β15,6 β10,9 β48,9 β3,5 β15,2 β17,9 β34,2

RatioMSE 4.390 5.423 5.101 7.917 8.870 7.653 5.412 2.712 8.543 3.919
RatioVar 4.390 5.383 5.099 9.914 8.837 7.971 5.357 3.130 8.627 3.936

generated the elements in ηtrue independently from N(0,102). The other parame-
ters were generated the same way as in the settings that produced Table 2. We used
the empirical Bayes prior discussed in Section 3.1 to set the hyperparameters. By
Theorem 1, when n < r , the hyperparameter C needs to be positive definite for
posterior propriety. Hence, we set C to be a diagonal matrix with diagonal ele-
ments being independent χ2

1 variates. We find that the Bayesian envelope model
achieves substantial efficiency gains compared to the Bayesian standard model.
Table 3 provides the ratio of estimation variance and average squared error for
ten randomly selected elements of β . For all of the elements in Table 3, the ra-
tio of estimation variance is greater than 1 with some of them much larger than
1, indicating the Bayesian envelope model is more efficient. We also compare the
Bayesian envelope model with the Bayesian Wishart standard model using a uni-

form improper prior for β | �, and an Inverse-Wishart(2r + 1,
tr(YT

c (I−PX)Yc)

n
Ir )

prior for �. The results are included in the supplementary material, Section I [9].

4.3. Comparison of the Bayesian envelope estimator and non-Bayesian enve-
lope estimator. We used the same data that produced Table 2 (200 simulated data
sets each for n = 30,100,200), and we fit both the Bayesian envelope model and
the non-Bayesian envelope model to the data. The estimation variance and average
squared errors are computed, and their ratios are displayed in Table 4. We notice
that the ratios are around 1, indicating that their performance is similar in this
setting. We would like to remind the reader that the Bayesian framework devel-
oped in this paper offers the following advantages compared to the non-Bayesian
framework.

• Ability to address uncertainty by constructing posterior credible intervals (using
the same Markov chain used for computing posterior expectations). To illustrate
this, Table 5 provides 95% posterior credible intervals for each element of β
for a sample data set (out of the 200 simulated datasets) for sample size n =
100,200.

• Ability to incorporate prior information. We illustrate this by implementing the
scenario described in Remark 2. We use the same settings that were used for gen-
erating Table 2. Suppose we know a unit vector v1 is very likely to be the first
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TABLE 4
Ratio of estimation variance and average squared error in estimation of β . RatioVar denotes the
ratio of estimation variance of the non-Bayesian envelope model versus the Bayesian envelope

model. RatioMSE denotes the ratio of average squared error of the non-Bayesian envelope model
versus the Bayesian envelope model

n = 30 n = 100 n = 200

RatioVar RatioMSE RatioVar RatioMSE RatioVar RatioMSE

β1,1 1.031 1.016 1.033 1.017 0.994 1.002
β1,2 1.019 1.023 1.019 1.024 0.994 0.991
β1,3 0.995 0.995 0.995 0.994 0.998 0.997
β1,4 1.000 1.005 1.001 1.005 1.008 1.008
β1,5 1.014 0.998 1.012 0.996 1.000 0.997
β2,1 1.011 1.006 1.039 1.035 0.997 0.999
β2,2 1.017 1.005 1.019 1.009 1.008 1.016
β2,3 1.020 1.012 1.039 1.029 0.989 0.994
β2,4 1.028 1.012 1.025 1.011 1.006 1.002
β2,5 1.019 1.020 1.064 1.065 1.003 1.001

column in �, and unit vectors v2 and v3 are very likely to be the first and third
columns of �0. In principle, we can complete O∗ = (v1,v4,v2,v5,v3) by pick-
ing (v4,v5) ∈ S+

5,2 to be any orthogonal basis of span(v1,v2,v3)
⊥. We, however,

make a careful choice of (v4,v5) using the procedure in the supplementary ma-
terial, Section B [9] as follows. Obtain �̃ (as described in the supplementary
material, Section B [9]) and denote its two columns by g1 and g2. Project g1 and
g2 on span(v1,v2,v3)

⊥, and denote the projection as g̃1 and g̃2. Without loss

TABLE 5
95% posterior credible intervals for each element of β for

a sample data set with n = 100 and with n = 200

n = 100 n = 200

Lower Upper Lower Upper

β1,1 3.52 3.74 3.60 3.73
β1,2 −4.60 −4.43 −4.55 −4.40
β1,3 0.78 0.97 0.89 1.00
β1,4 0.94 1.10 1.02 1.15
β1,5 −4.53 −4.37 −4.51 −4.41
β2,1 −3.06 −2.81 −2.90 −2.71
β2,2 5.98 6.16 5.84 5.98
β2,3 1.18 1.45 1.37 1.53
β2,4 −3.06 −2.80 −3.62 −3.46
β2,5 3.40 3.61 3.75 3.88
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TABLE 6
Ratio of estimation variance and average squared error in estimation of β . RatioVar denotes the
ratio of estimation variance of the non-Bayesian envelope model versus the Bayesian envelope

model with informative prior. RatioMSE denotes the ratio of average squared error of the
non-Bayesian envelope model versus the Bayesian envelope model

n = 30 n = 100 n = 200

RatioVar RatioMSE RatioVar RatioMSE RatioVar RatioMSE

β1,1 1.362 1.361 1.170 1.167 1.144 1.147
β1,2 1.440 1.473 1.225 1.203 1.343 1.354
β1,3 1.249 1.245 1.125 1.120 1.068 1.068
β1,4 1.135 1.144 1.048 1.046 1.040 1.041
β1,5 1.198 1.197 1.065 1.072 1.129 1.131
β2,1 2.491 2.607 2.187 2.223 2.050 2.047
β2,2 2.923 3.033 2.500 2.527 3.466 3.490
β2,3 1.773 1.797 1.411 1.403 1.675 1.668
β2,4 2.197 2.194 1.435 1.426 1.440 1.450
β2,5 2.012 2.054 1.156 1.156 1.708 1.721

of generality, suppose the norm of g̃1 is greater than or equal to g̃2 (otherwise
switch them). Take v4 = g̃1/‖g̃1‖, and v5 as a basis of span(v1,v2,v3,v4)

⊥.
With O∗ in hand, we now choose the hyperaparameter G as specified in Re-
mark 2. The generation of other hyperparameters follows the empirical approach
specified in the supplementary material, Section B [9] and Section 3.1. Results
from a comparison between the Bayesian envelope with this informative prior,
and the non-Bayesian envelope model are summarized in Table 6. Compared
to Table 4, where we used a noninformative prior, we obtain extra gains by
using the informative prior, especially when the sample size is smaller. If we
have full information about the full orientation of the envelope subspace and its
orthogonal complement, essentially the same procedure as above [without the
complication of choosing (v4,v5)] can be used to construct an informative prior.

• Ability to analyze data with n < r (see Table 3).

4.4. Example: Analysis of wheat data. We now illustrate the Bayesian enve-
lope model using the wheat protein data [5]. The data consists of r = 6 responses,
which measure the log infrared reflectance at six different wavelengths for 50
ground wheat samples. The predictor is a binary indicator, taking 0 or 1 if a sample
has high or low protein content. There are 26 samples with high protein content,
and 24 samples with low protein content. We used both the prior choices developed
in Section 3.1 for the Bayesian envelope model. To select the dimension of the en-
velope subspace, we fit a Bayesian envelope model with each u (u = 0,1, . . . ,6)
and computed the DIC scores. The corresponding DIC scores, obtained using the
procedure outlined in Section 4.1, are provided in Table 7. For both prior choices,
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TABLE 7
DIC values for all possible dimensions of the Bayesian envelope model

with uniform Haar prior and empirical prior

u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 6

Uniform prior 1257.7 1201.9 1206.3 1208.0 1209.3 1211.1 1216.0
Empirical prior 1254.5 1197.5 1374.3 1245.8 1266.2 1333.0 1668.0

the model corresponding to u = 1 has the lowest DIC score. It is worth mentioning
that for the empirical prior case, the gap between the lowest and the second lowest
DIC score is much larger as compared to the uniform Haar prior case.

We now turn to estimation of the regression coefficients β . In this example, β =
(β1, . . . , β6)

T is a 6×1 vector. For each prior choice, we fit the Bayesian envelope
model with u = 1 as suggested by DIC, and then compute the posterior mean and
posterior standard deviation for each βi , i = 1, . . . ,6. Based on Remark 1, we use
the Bayesian envelope model with u = 6 to get the posterior mean and standard
deviation of βi ’s for the Bayesian standard model. Results are provided in Table 8
and Table 9. It is clear from both these tables that using the envelope model can
lead to a substantial reduction in variability of the regression coefficients. The
ratios of the posterior standard deviation of the Bayesian standard model versus
the Bayesian envelope model range from 6.3 to 65.2 with the uniform Haar prior,
and from 6.3 to 64.4 for the empirical prior. Hence, the Bayesian envelope model
has much smaller posterior standard deviation, and should produce more reliable
estimators.

5. Technical proofs.

5.1. Proof of Lemma 1. Without loss of generality, we will assume that the
entries of a are arranged in decreasing order. Let G = P	PT denote the spectral

TABLE 8
Posterior means and standard deviations of β for wheat protein data,

using a uniform Haar prior

Bayesian envelope model Bayesian standard model

Coefficient Post. mean Post. SD Post. mean Post. SD

β1 −1.039 0.378 2.934 10.479
β2 4.406 0.498 7.745 8.630
β3 3.630 0.417 7.219 9.273
β4 −5.880 0.644 −2.395 10.157
β5 0.594 0.224 2.799 14.601
β6 −1.610 0.904 0.410 5.759
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TABLE 9
Posterior means and standard deviation of β for wheat protein data,

using an empirical prior

Bayesian envelope model Bayesian standard model

Coefficient Post. mean Post. SD Post. mean Post. SD

β1 −1.054 0.372 3.308 9.216
β2 4.394 0.480 8.064 7.606
β3 3.619 0.405 7.567 8.170
β4 −5.868 0.620 −2.046 8.948
β5 0.588 0.212 3.259 12.815
β6 −1.555 0.888 0.656 5.115

decomposition of G, where P ∈ S+
r,r and the diagonal entries of 	 are arranged

in increasing order. Let A denote the diagonal matrix with the entries of a as its
diagonal elements.

To prove Lemma 1, it enough to prove that tr(AOT GO) is uniquely minimized
over S+

r,r at O = P. Let br = ar , and bi = ai − ai+1 for every i = 1, . . . , r − 1. Let
	i denote the ith column of O for every i = 1, . . . , r . It follows that

tr
(
AOT GO

) =
r∑

i=1

ai	
T
i G	i =

r∑
i=1

(
r∑

j=i

bj

)
	T
i G	i =

r∑
j=1

bj

( j∑
i=1

	T
i G	i

)

=
r∑

j=1

bj tr
(
OT

j GOj

)
,

where Oj denotes the submatrix of the first j columns of O. Now, by [13], The-
orem 1.2, it follows that for every j = 1, . . . , r , tr(OT

j GOj ) is uniquely mini-
mized over S+

r,r when Oj corresponds to the submatrix of the first j columns of P.
Lemma 1 now follows by the arguments above.

5.2. Proof of Theorem 1. We start with a lemma which will be a crucial in-
gredient in investigating propriety of the posterior density. Let Yc ∈ R

n×r be the
centered data matrix of Y whose ith row is (Yi − Ȳ)T .

LEMMA 2. If Y1,Y2, . . . ,Yn are independent observations satisfying (5),
with corresponding covariate vectors X1,X2, . . . ,Xn and errors ε1,ε2, . . . ,εn,
respectively, then with probability 1, YT

c Yc is positive definite. If n > max(p, r),
then with probability 1, YT

c (I − PX)Yc is a positive definite matrix.

PROOF. Since ε1,ε2, . . . ,εn are i.i.d. multivariate normal, it follows that the
n × r matrix E, whose ith row is given by εT

i , follows a MNn,r (0, In,�) distribu-
tion. Hence, Yc follows a MNn,r (XηT �T , In,�) distribution. Hence, Yc has rank
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r with probability 1 (since n > r). It follows that YT
c Yc is positive definite with

probability 1.
Since (I − PX)X= 0, it follows that YT

c (I − PX)Yc = ET (I − PX)E. If ET (I −
PX)E = ET (I − PX)2E is not positive definite, then there exists z ∈ R

r such that
(I − PX)Ez = 0, that is, Ez lies in the column space of X. Note that Ez has a
multivariate normal distribution on R

n, whereas X has rank less than or equal to p.
Hence, the probability that Ez lies in the column space of X is zero. It follows that
Y

T
c (I − PX)Yc is positive definite with probability 1. �

By Lemma 2, if n > max(p, r), it is safe to assume that the specific observed
values of Y1,Y2, . . . ,Yn (and the corresponding X1,X2, . . . ,Xn) satisfy the prop-
erty that YT

c (I − PX)Yc is positive definite. With the above lemma in hand, we
now commence with the main proof.

Let A denote the integral of the unnormalized density on the right-hand side of
(12) (over Mr,1 ×Mu,p ×S+

r,r ×Ou ×Or−u) with respect to ν1 ×ν2 ×ν3 ×ν4 ×ν5.
We will prove that A is finite under the conditions in Theorem 1.

Note that

tr
{(
Y− 1nμ

T −XηT �T )(
���T + �0�0�

T
0

)−1(
Y− 1nμ

T −XηT �T )T }
= tr

{(
���T + �0�0�

T
0

)−1(
Y− 1nμ

T −XηT �T )T
× (

Y− 1nμ
T −XηT �T )}

= tr
{(

���T + �0�0�
T
0

)−1(
Y− 1nμ

T −XηT �T )T
× (P1n

+ Q1n
)
(
Y− 1nμ

T −XηT �T )}
= tr

{(
���T + �0�0�

T
0

)−1(13)

× [
n(Ȳ − μ)(Ȳ − μ)T + (

Y−XηT �T )T Q1n

(
Y−XηT �T )]}

= tr
{(

���T + �0�0�
T
0

)−1

× [
n(μ − Ȳ)(μ − Ȳ)T + (

Yc −XηT �T )T (
Yc −XηT �T )]}

= tr
{
n(μ − Ȳ)T

(
���T + �0�0�

T
0

)−1
(μ − Ȳ)

}
+ tr

{(
Yc� −XηT )

�−1(
Yc� −XηT )T } + tr

(
Yc�0�

−1
0 �T

0 Y
T
c

)
.

Note that under the conditions in Theorem 1, XT
X+C is a positive definite matrix.

Hence,

tr
((
Yc� −XηT )

�−1(
Yc� −XηT )T ) + tr

(
�−1(

η − �T e
)
C

(
η − �T e

)T )
= tr

(
�−1(

Yc� −XηT )T (
Yc� −XηT ))

+ tr
(
�−1(

η − �T e
)
C

(
η − �T e

)T )
(14)
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= tr
(
�−1(

ηXT
XηT − 2ηXT

Yc� + �T
Y

T
c Yc�

))
+ tr

(
�−1(

ηCηT − 2ηCeT � + �T eCeT �
))

= tr
(
�−1(

η − �T ẽ
)(
X

T
X+ C

)(
η − �T ẽ

)T ) + tr
(
�−1�T G̃�

)
,

where

ẽ = (
Y

T
c X+ eC

)(
X

T
X+ C

)−1

and

G̃ = Y
T
c Yc + eCeT − ẽ

(
X

T
X+ C

)
ẽT .

Since ∫
Mr,1

e(−1/2) tr{n(μ−Ȳ)T (���T +�0�0�
T
0 )−1(μ−Ȳ)}ν1(dμ)

= (2π)r/2nr/2|�|1/2|�0|1/2,

it follows from (12) and (14) that

A =
∫
S+

r,r×Ou×Or−u

(∫
Mu,p

e(−1/2) tr{�−1(η−�T ẽ)(XT
X+C)(η−�T ẽ)T }ν2(dη)

)
× (2π)−(n−1)r/2nr/2|�|−(n+p−1)/2|�0|−(n−1)/2

× e(−1/2) tr(�−1�T G̃�)e(−1/2) tr(�−1
0 �T

0 (YT
c Yc)�0)

×
u∏

i=1

ω−α−1
i e−λ/ωi

r−u∏
i=1

ω
−α0−1
0,i

× e−λ0/ω0,i e(−1/2) tr(D−1OT GO)ν3
(
d(�,�0)

)
ν4(dω)ν5(dω0)(15)

=
∫
S+

r,r×Ou×Or−u

nr/2|�|−(n−1)/2|�0|−(n−1)/2|(XT
X+ C)|−u/2

(
√

2π)r(n−1)−up

× e(−1/2) tr(�−1�T G̃�)e(−1/2) tr(�−1
0 �T

0 (YT
c Yc)�0)

×
u∏

i=1

ω−α−1
i e−λ/ωi

r−u∏
i=1

ω
−α0−1
0,i

× e−λ0/ω0,i e(−1/2) tr(D−1OT GO)ν3
(
d(�,�0)

)
ν4(dω)ν5(dω0).

Since Ok ⊂ R
k+ for every k ∈ N, we get from (15) that

A ≤
∫
S+

r,r×R
+
u ×R

+
r−u

nr/2|�|−(n−1)/2|�0|−(n−1)/2|(XT
X+ C)|−u/2

(
√

2π)r(n−1)−up

× e(−1/2) tr(�−1�T G̃�)e(−1/2) tr(�−1
0 �T

0 (YT
c Yc)�0)(16)
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×
u∏

i=1

ω−α−1
i e−λ/ωi

r−u∏
i=1

ω
−α0−1
0,i

× e−λ0/ω0,i e(−1/2) tr(D−1OT GO)ν3
(
d(�,�0)

)
dω dω0.

It can be easily checked that the matrices

M1 =
[
Y

T
c Yc Y

T
c X

X
T
Yc X

T
X

]
and M2 =

[
eCeT eC
CeT C

]
are nonnegative definite. If n > max(r,p), then∣∣∣∣YT

c Yc Y
T
c X

X
T
Yc X

T
X

∣∣∣∣ = ∣∣XT
X

∣∣∣∣YT
c (I − PX)Yc

∣∣ > 0.

Hence, the matrix M1 is positive definite if n > p. It follows that the matrix

M1 + M2 =
[
Y

T
c Yc + eCeT

Y
T
c X+ eC

X
T
Yc + CeT

X
T
X+ C

]
is nonnegative definite [and positive definite if n > max(r,p)]. Since X

T
X + C

is a positive definite matrix under the conditions in Theorem 1, it follows by the
properties of block partitioned nonnegative definite matrices that the matrix

Y
T
c Yc + eCeT − (

Y
T
c X+ eC

)(
X

T
X+ C

)−1(
X

T
Yc + CeT )

= Y
T
c Yc + eCeT − ẽ

(
X

T
X+ C

)
ẽT

= G̃

is nonnegative definite [and positive definite if n > max(r,p)]. It follows that un-
der the conditions in Theorem 1, the matrices G̃ + 2λIr and Y

T
c Yc + 2λ0Ir are

positive definite matrices.
Note that

|�| =
u∏

i=1

ωi, |�0| =
r−u∏
i=1

ω0,i ,(17)

tr
(
�−1�T G̃�

) =
u∑

i=1

(�T G̃�)ii

ωi

,(18)

tr
(
�−1

0 �T
0

(
Y

T
c Yc

)
�0

) =
r−u∑
i=1

(�T
0 (YT

c Yc)�0)ii

ω0,i

.(19)

Note that for a, b > 0, ∫ ∞
0

x−a−1e−b/2x dx = b−aKa,
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where Ka is a finite constant which depends only on a. It follows that∫
R

+
u

|�|−(n−1)/2e(−1/2) tr(�−1�T G̃�)

(
u∏

i=1

ω−α−1
i e−λ/ωi

)
dω

(20)

= (K(n+2α−1)/2)
u

u∏
i=1

(
�T G̃� + 2λIu

)−(n+2α−1)/2
ii ,

and ∫
R

+
r−u

|�0|−(n−1)/2e(−1/2) tr(�−1
0 �T

0 (YT
c Yc)�0)

×
(

r−u∏
i=1

ω
−α0−1
0,i e−λ0/ω0,i

)
dω0(21)

= (K(n+2α0−1)/2)
r−u

r−u∏
i=1

(
�T

0
(
Y

T
c Yc

)
�0 + 2λ0Ir−u

)−(n+2α0−1)/2
ii .

Since G is positive semi-definite, and D is a diagonal matrix with positive diagonal
entries, we get that

e(−1/2) tr(D−1OT GO) ≤ 1

for every O ∈ S+
r,r . It follows from (16), (20) and (21) that there exists a finite

constant A0 such that

A ≤ A0

∫
S+

r,r

u∏
i=1

(
�T G̃� + 2λIu

)−(n+2α−1)/2
ii

×
r−u∏
i=1

(
�T

0
(
Y

T
c Yc + G

)
�0 + 2λ0Ir−u

)−(n+2α0−1)/2
ii ν3

(
d(�,�0)

)
.

Let ei ∈ R
u be the vector with ith entry equal to 1, and all other entries equal

to 0. Note that eT
i ei = 1. Then for every � ∈ S+

r,u, it follows that (�ei )
T (�ei ) =

eT
i �T �ei = eT

i ei = 1. Hence,(
�T G̃�

)
ii = eT

i �T G̃�ei

= (�ei )
T G̃(�ei )

≥ λmin(G̃),

where λmin(G̃) denotes the smallest eigenvalue of G̃. Similarly, for every �0 ∈
S+

r,r−u, (
�T

0
(
Y

T
c Yc

)
�0

)
ii ≥ λmin

(
Y

T
c Yc

)
.
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Since ν3 is a probability measure on S+
r,r , it follows that

A ≤ A0
(
λmin(G̃) + 2λ

)−u(n+2α−1)/2(
λmin

(
Y

T
c Yc

) + 2λ0
)−(r−u)(n+2α0−1)/2

×
∫
S+

r,r

ν3
(
d(�,�0)

)
≤ A0

(
λmin(G̃) + 2λ

)−u(n+2α−1)/2(
λmin

(
Y

T
c Yc

) + 2λ0
)−(r−u)(n+2α0−1)/2

< ∞.

5.3. Proof of Theorem 2. In order to prove Theorem 2, we first prove a general
mathematical result about orthogonal matrices.

LEMMA 3. Let

O = (o1,o2, . . . ,or ) ∈ R
r×r

be an orthogonal matrix, and let

I = (e1, e2, . . . , er ) ∈ R
r×r

be an identity matrix. Let Ri,j,θ ∈ R
r×r be an identity matrix except its elements

(i, i), (i, j), (j, i) and (j, j) are sin(θ), − cos(θ), cos(θ) and sin(θ). Define the
set R = {Ri,j,θ : 0 ≤ θ < 2π,1 ≤ i < j ≤ n}. Then there exists a matrix M such
that OM = I and M is a multiplication of r members in R.

PROOF. We will use mathematical induction for the proof of the above state-
ment. When r = 3, we perform the following procedure:

1. Rotate (o1,o2,o3) to (o(1)
1 ,o(1)

2 ,o(1)
3 ) such that o(1)

3 = o3 and o(1)
2 ∈ span(e2,

e3).
2. Rotate (o(1)

1 ,o(1)
2 ,o(1)

3 ) to (o(2)
1 ,o(2)

2 ,o(2)
3 ) such that o(2)

2 = o(1)
2 and o(2)

3 ∈
span(e2, e3).

3. After Step 1 and Step 2, both o(2)
2 and o(2)

3 are in span(e2, e3), then we must

have o(2)
1 = e1. Now we rotate (o(2)

2 ,o(2)
3 ) to align with (e2, e3).

From the preceding procedure, notice that we always rotate two vectors at a
time. Now we prove the validity of Step 1, the validity of Step 2 and Step 3
follows similarly. In Step 1, there exists a unit length vector a such that a ∈
span(o1,o2) ∩ span(e2, e3). If not, then we must have span(o1,o2) ⊥ span(e2, e3),
as dim(span(o1,o2)) = 2 and dim(span(e2, e3)) = 2, it cannot happen when r = 3.
Let o(1)

2 = a, then o(1)
2 ∈ span(e2, e3). As we also have o(1)

2 ∈ span(o1,o2), there ex-
ists a rotation presented by R1,2,θ1 such that o2R1,2,θ1 = a. Notice that o3R1,2,θ1 =
o3. Let o(1)

1 = o1R1,2,θ1 . Then we have (o1,o2,o3)R1,2,θ1 = (o(1)
1 ,o(1)

2 ,o(1)
3 ). In

Step 2, the rotation is presented as right multiplying (o(1)
1 ,o(1)

2 ,o(1)
3 ) by R1,3,θ2 ,
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and similarly in Step 3, R2,3,θ3 is right multiplied to (o(2)
1 ,o(2)

2 ,o(2)
3 ). Therefore,

the statement holds for r = 3.
Suppose the statement holds for r = k − 1, k ≥ 4. When r = k, we perform the

following procedure:

1. Rotate (o1,o2, . . . ,ok) to (o(1)
1 ,o(1)

2 , . . . ,o(1)
k ) such that o(1)

i = oi , i ≥ 3 and

o(1)
2 ∈ span(e2, e3, . . . , ek).

2. Rotate (o(1)
1 ,o(1)

2 , . . . ,o(1)
k ) to (o(2)

1 ,o(2)
2 , . . . ,o(2)

k ) such that o(2)
i = o(1)

i for

i = 2,4,5, . . . , k, and o(2)
3 ∈ span(e2, e3, . . . , ek).

3. . . . .

We follow the pattern in Step 1 and Step 2 for the other steps. At Step i, i =
3, . . . , k − 1, we keep all the o(i−1)

j ’s (j runs from 1 to k except 1 and i + 1) fixed

and only rotate o(i−1)
1 and o(i−1)

i+1 such that o(i)
i+1 ∈ span(e2, e3, . . . , ek).

Each of the preceding step is valid. We take Step 1 as an example. Be-
cause dim(span(o1,o2)) = 2, dim(span(e2, e3, . . . , ek)) = k − 1, and the space is
k dimensional, there exists a unit length vector a such that a ∈ span(o1,o2) ∩
span(e2, e3, . . . , ek). Let o(1)

2 = a, then o(1)
2 ∈ span(e2, e3, . . . , ek). As o(1)

2 ∈
span(o1,o2), there exists a rotation presented by R1,2,θ1 such that o2R1,2,θ1 = a.
Notice that oiR1,2,θ1 = oi for i ≥ 3. Let o(1)

1 = o1R1,2,θ1 . Then we have (o(1)
1 ,o(1)

2 ,

. . . ,o(1)
k ) = (o1,o2, . . . ,ok)R1,2,θ1 . The validity for the rest of the steps results

from the same argument.
After all the preceding steps, we have o(k−1)

j ∈ span(e2, e3, . . . , ek) for j =
2, . . . , k. Then we must have o(k−1)

1 = e1. As span(o(k−1)
2 ,o(k−1)

3 , . . . ,o(k−1)
k ) =

span(e2, e3, . . . , ek), this is a k − 1 dimensional subspace and the first element of
all o(k−1)

j , j = 2, . . . , k, is 0. Using the result for r = k − 1, the statement also
holds for r = k. By mathematical induction, the statement holds. �

We now make some observations.

(a) Note that sampling from the conditional distribution of [O·i : O·j ] specified
in (C.5), (C.8) or (C.9) corresponds to multiplying by a matrix of the form Ri,j,θ

considered in Lemma 3, and that for every 1 ≤ i < j ≤ r , Ri,j,0 = Ir .
(b) For every 1 ≤ i ≤ u and 1 ≤ j ≤ r − u, the conditional density of ωi in

(C.3) and ω0,j in (C.4) is strictly positive on (ωi−1,ωi+1) and (ω0,j−1,ω0,j+1),
respectively.

(c) Let ω, ω̃ ∈ Ou be arbitrarily chosen. Let c = min(ω1, ω̃1), and ω∗ =
(c/(u − i + 2))ui=1 ∈ Ou. We now illustrate the following method of moving from
ω to ω̃. Note that 0 < ω∗

1 < ω2, and ω∗
i−1 < ω∗

i < ωi+1. Hence, by (b), one can
move from ω to ω∗ as part of one step of the systematic or random scan Gibbs
sampling chain. Now consider keeping all the entries of ω∗ the same, except
changing the last entry to ω̃u. Since ω∗

u−1 < ω̃u, it follows by (b) that this move
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can be achieved as part of one step of both the Gibbs sampling algorithms. Since
ω∗

u−2 < ω̃u−1 < ω̃u, it again follows by observation (b) that we can make a move
which keeps all entries of the current vector same, except changing the (u − 1)th
entry to ω̃u−1, as part of one step of both Gibbs sampling chain. Continuing this
process, and combining the above arguments, it can thus be shown that it is pos-
sible to move from ω to ω̃ as part of u + 1 steps of both Gibbs sampling Markov
chains.

(d) Let ω0, ω̃0 ∈ Or−u be arbitrarily chosen. By exactly the same arguments as
those used in (c), it can be shown that it is possible to move from ω0 to ω̃0 as part
of r − u + 1 steps of both Gibbs sampling Markov chains.

It follows by observations (a) and (b) above, and the continuity of all the condi-
tional densities involved (in the interior of their respective supports) in the Gibbs
sampling algorithms that the 1-step Markov transition density of staying at the cur-
rent value is strictly positive for both the systematic scan and random scan Gibbs
samplers considered in Theorem 2. Also, by Lemma 3, and observations (a), (b),
(c) and (d) above, that the r + 1-step Markov transition densities of both the sys-
tematic scan and random scan Gibbs samplers considered in Lemma 2 are strictly
positive everywhere on Ou × Or−u × S+

r,r . This implies that both Markov chains
are irreducible and aperiodic. As noted earlier, both Markov chains have the den-
sity in (C.2) as a stationary density. It follows that both the systematic scan and
random scan Gibbs samplers in Theorem 2 are Harris ergodic (see [1]).

SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian approach for envelope models” (DOI: 10.1214/
16-AOS1449SUPP; .pdf). The supplement [9] provides additional details and
proofs for many of the results in the authors’ paper.
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