Translator Disclaimer
August 2016 The Tracy–Widom law for the largest eigenvalue of F type matrices
Xiao Han, Guangming Pan, Bo Zhang
Ann. Statist. 44(4): 1564-1592 (August 2016). DOI: 10.1214/15-AOS1427

Abstract

Let ${\mathbf{A}}_{p}=\frac{{\mathbf{Y}}{\mathbf{Y}}^{*}}{m}$ and ${\mathbf{B}}_{p}=\frac{{\mathbf{X}}{\mathbf{X}}^{*}}{n}$ be two independent random matrices where ${\mathbf{X}}=(X_{ij})_{p\times n}$ and ${\mathbf{Y}}=(Y_{ij})_{p\times m}$ respectively consist of real (or complex) independent random variables with $\mathbb{E}X_{ij}=\mathbb{E}Y_{ij}=0$, $\mathbb{E}|X_{ij}|^{2}=\mathbb{E}|Y_{ij}|^{2}=1$. Denote by $\lambda_{1}$ the largest root of the determinantal equation $\det(\lambda{\mathbf{A}}_{p}-{\mathbf{B}}_{p})=0$. We establish the Tracy–Widom type universality for $\lambda_{1}$ under some moment conditions on $X_{ij}$ and $Y_{ij}$ when $p/m$ and $p/n$ approach positive constants as $p\rightarrow\infty$.

Citation

Download Citation

Xiao Han. Guangming Pan. Bo Zhang. "The Tracy–Widom law for the largest eigenvalue of F type matrices." Ann. Statist. 44 (4) 1564 - 1592, August 2016. https://doi.org/10.1214/15-AOS1427

Information

Received: 1 June 2015; Revised: 1 December 2015; Published: August 2016
First available in Project Euclid: 7 July 2016

zbMATH: 1378.60023
MathSciNet: MR3519933
Digital Object Identifier: 10.1214/15-AOS1427

Subjects:
Primary: 34K25, 60B20
Secondary: 60F05, 62H10

Rights: Copyright © 2016 Institute of Mathematical Statistics

JOURNAL ARTICLE
29 PAGES


SHARE
Vol.44 • No. 4 • August 2016
Back to Top