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We develop a general approach to valid inference after model selection.
At the core of our framework is a result that characterizes the distribution of a
post-selection estimator conditioned on the selection event. We specialize the
approach to model selection by the lasso to form valid confidence intervals
for the selected coefficients and test whether all relevant variables have been
included in the model.

1. Introduction. As a statistical technique, linear regression is both simple
and powerful. Not only does it provide estimates of the “effect” of each variable,
but it also quantifies the uncertainty in those estimates, allowing inferences to be
made about the effects. However, in many applications, a practitioner starts with a
large pool of candidate variables, such as genes or demographic features, and does
not know a priori which are relevant. This is especially problematic when there are
more variables than observations, since then the model is unidentifiable (at least in
the setting where the predictors are assumed fixed).

In such settings, it is tempting to let the data decide which variables to include
in the model. For example, one common approach when the number of variables is
not too large is to fit a linear model with all variables included, observe which ones
are significant at level α, and then refit the linear model with only those variables
included. The problem with this is that the p-values can no longer be trusted, since
the variables that are selected will tend to be those that are significant. Intuitively,
we are “overfitting” to a particular realization of the data.

To formalize the problem, consider the standard linear regression setup, where
the response y ∈ R

n is generated from a multivariate normal distribution:

y ∼ N
(
μ, σ 2In

)
(1.1)
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where μ is modeled as a linear function of predictors x1, . . . ,xp ∈ R
n, and σ 2 is

assumed known. (We consider the more realistic case where σ 2 is unknown in Sec-
tion 8.1.) We choose a subset M ⊂ {1, . . . , p} and ask for the linear combination
of the predictors in M that minimizes the expected error, that is,

βM ≡ arg min
bM

E
∥∥y − XMbM

∥∥2 = X+
Mμ,(1.2)

where X+
M ≡ (XT

MXM)−1XT
M is the pseudo-inverse of XM . Notice that (1.2) im-

plies that the targets βM
j and βM ′

j in different models M �= M ′ are in general dif-
ferent. This is simply a restatement of the well-known fact that a regression co-
efficient describes the effect of a predictor, adjusting for the other predictors in
the model. In general, the coefficient of a predictor cannot be compared across
different models.

Thus, “inference after selection” is ambiguous in linear regression because the
target of inference changes with the selected model [Berk et al. (2013)]. In the next
section, we discuss several ways to resolve this ambiguity.

2. Post-selection inference in linear regression. At first blush, the fact that
the target βM changes with the model is deeply troubling, since it seems to im-
ply that the parameters are random. However, the randomness is actually in the
choice of which parameters to consider, not in the parameters themselves. Imag-
ine that there are a priori p2p−1 well-defined population parameters, one for each
coefficient in all 2p possible models:

{
βM

j : M ⊂ {1, . . . , p}, j ∈ M
}
.

We only ever form inferences for the parameters βM̂
j in the model M̂ we select.

This adaptive choice of which parameters to consider can lead to inferences with
undesirable frequency properties, as noted by Benjamini and Yekutieli (2005) and
Benjamini, Heller and Yekutieli (2009).

To be concrete, suppose we want a confidence interval CM̂
j for a parameter βM̂

j .
What frequency properties should CM̂

j have? By analogy to the classical setting,
we might require that

P
(
βM̂

j ∈ CM̂
j

) ≥ 1 − α,

but the event inside the probability is not well-defined because βM
j is undefined

when j /∈ M . Two ways around this issue are suggested by Berk et al. (2013):

1. Conditional coverage: Since we form an interval for βM
j if and only if model

M is selected, that is, M̂ = M , it makes sense to condition on this event. Hence,
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we might require that our confidence interval CM
j satisfy

P
(
βM

j ∈ CM
j |M̂ = M

) ≥ 1 − α.(2.1)

The benefit of this approach is that we avoid ever having to compare coefficients
across two different models M �= M ′.

Another way to understand conditioning on the model is to consider data split-
ting [Cox (1975)], an approach to post-selection inference that most statisticians
would agree is valid. In data splitting, the data is divided into two halves, with
one half used to select the model and the other used to conduct inference. Fithian,
Sun and Taylor (2014) argues that inferences obtained by data splitting are only
valid conditional on the model that was selected on the first half of the data. There-
fore, conditional coverage is a reasonable frequency property to require of a post-
selection confidence interval.

2. Simultaneous coverage: It also makes sense to talk about events that are de-
fined simultaneously over all j ∈ M̂ . Berk et al. (2013) propose controlling the
familywise error rate

FWER ≡ P
(
βM̂

j /∈ CM̂
j for any j ∈ M̂

)
,(2.2)

but this is very stringent when many predictors are involved.
Instead of controlling the probability of making any error, we can control the

expected proportion of errors—although “proportion of errors” is ambiguous in the
event that we select zero variables. Benjamini and Yekutieli (2005) simply declare
the error to be zero when |M̂| = 0:

FCR ≡ E

[ |{j ∈ M̂ : βM̂
j /∈ CM̂

j }|
|M̂| ; |M̂| > 0

]
,(2.3)

while Storey (2003) suggests conditioning on |M̂| > 0:

pFCR ≡ E

[ |{j ∈ M̂ : βM̂
j /∈ CM̂

j }|
|M̂|

∣∣∣|M̂| > 0
]
.(2.4)

The two criteria are closely related. Since FCR = pFCR · P(|M̂| > 0), pFCR con-
trol implies FCR control.

The two ways above are related: conditional coverage (2.1) implies pFCR (2.4)
(and hence, FCR) control.

LEMMA 2.1. Consider a family of intervals {CM̂
j }

j∈M̂
that each have condi-

tional (1 − α) coverage:

P
(
βM̂

j /∈ CM̂
j |M̂ = M

) ≤ α for all M and j ∈ M.

Then FCR ≤ pFCR ≤ α.
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PROOF. Condition on M̂ and iterate expectations:

pFCR = E

[
E

[ |{j ∈ M̂ : βM̂
j /∈ CM̂

j }|
|M̂|

∣∣∣M̂]∣∣∣|M̂| > 0
]

= E

[∑
j∈M̂

P(βM̂
j /∈ CM̂

j |M̂)

|M̂|
∣∣∣|M̂| > 0

]

≤ E

[
α|M̂|
|M̂|

∣∣∣|M̂| > 0
]

= α. �

Theorem 2 in Weinstein, Fithian and Benjamini (2013) proves a special case
of Lemma 2.1 for a particular selection procedure, and Proposition 11 in Fithian,
Sun and Taylor (2014) provides a more general result, but this result is sufficient
for our purposes: to establish that conditional coverage is a sensible criterion to
consider in post-selection inference.

Although the criterion is easy to state, how do we construct an interval with
conditional coverage? This requires that we understand the conditional distribution

y|{M̂(y) = M
}
, y ∼ N

(
μ,σ 2I

)
.

One of the main contributions of this paper is to show that this distribution is
indeed possible to characterize, making valid post-selection inference feasible in
the context of linear regression.

3. Outline of our approach. We have argued that post-selection intervals for
regression coefficients should have 1 − α coverage conditional on the selected
model:

P
(
βM

j ∈ CM
j |M̂ = M

) ≥ 1 − α,

both because this criterion is interesting in its own right and because it implies
FCR control. To obtain an interval with this property, we study the conditional
distribution

ηT
My|{M̂ = M},(3.1)

which will allow, more generally, conditional inference for parameters of the form
ηT

Mμ. In particular, the regression coefficients βM
j = eT

j X+
Mμ can be written in this

form, as can many other linear contrasts.
Our paper focuses on the specific case where the lasso is used to select the

model M̂ . We begin in Section 4 by characterizing the event {M̂ = M} for the
lasso. As it turns out, this event is a union of polyhedra. More precisely, the event
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{M̂ = M, ŝM = sM}, that specifies the model and the signs of the selected vari-
ables, is a polyhedron of the form{

y ∈ R
n : A(M, sM)y ≤ b(M, sM)

}
.

Therefore, if we condition on both the model and the signs, then we only need
to study

ηT y|{Ay ≤ b}.(3.2)

We do this in Section 5. It turns out that this conditional distribution is essentially
a (univariate) truncated Gaussian. We use this to derive a statistic F z(ηT y) whose
distribution given {Ay ≤ b} is Unif(0,1).

3.1. Related work. The resulting post-selection test has a similar structure to
the pathwise significance tests of Lockhart et al. (2014) and Taylor et al. (2014),
which also are conditional tests. However, the intended application of our test is
different. While their significance tests are specifically intended for the path con-
text, our framework allows more general questions about the model the lasso se-
lects: we can test the model at any value of λ or form confidence intervals for an
individual coefficient in the model.

There is also a parallel literature on confidence intervals for coefficients in high-
dimensional linear models based on the lasso estimator [Javanmard and Montanari
(2013), van de Geer et al. (2013), Zhang and Zhang (2014)]. The difference be-
tween their work and ours is that they do not address post-selection inference; their

target is β0, the coefficients in the true model, rather than βM̂ , the coefficients in
the selected model. The two will not be the same unless M̂ happens to contain
all nonzero coefficients of β0. Although inference for β0 is appealing, it requires
assumptions about correctness of the linear model and sparsity of β0. Pötscher
and Schneider (2010) consider confidence intervals for the hard-thresholding and
soft-thresholding estimators in the case of orthogonal design. Our approach instead
regards the selected model as a linear approximation to the truth, a view shared by
Berk et al. (2013) and Miller (2002).

The idea of post-selection inference conditional on the selected model appears
in Pötscher (1991), although the notion of inference conditional on certain relevant
subsets dates back to Fisher (1956); see also Robinson (1979). Leeb and Pötscher
(2005, 2006) obtained a number of negative results about estimating the distribu-
tion of a post-selection estimator, although they note their results do not neces-
sarily preclude the possibility of post-selection inference. Benjamini and Yekutieli
(2005) also consider conditioning on the selection event, although they argue that
this is too conservative. To the contrary, we show that conditioning on the selected
model can produce reasonable confidence intervals in a wide variety of situations.

Inference conditional on selection has also appeared in literature on the winner’s
curse: Sampson and Sill (2005), Sill and Sampson (2009), Zhong and Prentice
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(2008), Zollner and Pritchard (2007). These works are not really associated with
model selection in linear regression, though they employ a similar approach to
inference.

4. The lasso and its selection event. In this paper, we apply our post-
selection inference procedure to the model selected by the lasso [Tibshirani
(1996)]. The lasso estimate is the solution to the usual least squares problem with
an additional �1 penalty on the coefficients:

β̂ ∈ arg min
β

1

2
‖y − Xβ‖2

2 + λ‖β‖1.(4.1)

The �1 penalty shrinks many of the coefficients to exactly zero, and the tradeoff
between sparsity and fit to the data is controlled by the penalty parameter λ ≥ 0.
However, the distribution of the lasso estimator β̂ is known only in the less in-
teresting n � p case Knight and Fu (2000), and even then, only asymptotically.
Inference based on the lasso estimator is still an open question.

Because the lasso produces sparse solutions, we can define model “selected” by
the lasso to be simply the set of predictors with nonzero coefficients:

M̂ = {j : β̂j �= 0}.
Then post-selection inference seeks to make inferences about βM , given {M̂ =
M}, as defined in (1.2).

The rest of this section focuses on characterizing this event {M̂ = M}. We begin
by noting that in order for a vector of coefficients β̂ and a vector of signs ŝ to be
solutions to the lasso problem (4.1), it is necessary and sufficient that they satisfy
the Karush–Kuhn–Tucker (KKT) conditions:

XT (Xβ̂ − y) + λŝ = 0,(4.2)

ŝi = sign(β̂j ) if β̂j �= 0,
(4.3)

ŝi ∈ [−1,1] if β̂j = 0.

Following Tibshirani (2013), we consider the equicorrelation set

M̂ ≡ {
i ∈ {1, . . . , p} : |ŝi | = 1

}
.(4.4)

Notice that we have implicitly identified the model M̂ with the equicorrelation set.
Since |ŝi | = 1 for any β̂i �= 0, the equicorrelation set does in fact contain all predic-
tors with nonzero coefficients, although it may also include some predictors with
zero coefficients. However, for almost every λ, the equicorrelation set is precisely
the set of predictors with nonzero coefficients.

It turns out that it is easier to first characterize {(M̂, ŝ) = (M, s)} and obtain
{M̂ = M} as a corollary by taking a union over the possible signs. The next result
is an important first step.
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LEMMA 4.1. Assume the columns of X are in general position [Tibshirani
(2013)]. Let M ⊂ {1, . . . , p} and s ∈ {−1,1}|M| be a candidate set of variables
and their signs, respectively. Define the random variables

w(M, s) := (
XT

MXM

)−1(
XT

My − λs
)
,(4.5)

u(M, s) := XT−M

(
XT

M

)+s + 1

λ
XT−M(I − PM)y,(4.6)

where PM ≡ XM(XT
MXM)−1XM is projection onto the column span of XM . Then

the selection procedure can be rewritten in terms of w and u as{
(M̂, ŝ) = (M, s)

} = {
sign

(
w(M, s)

) = s,
∥∥u(M, s)

∥∥∞ < 1
}
.(4.7)

PROOF. First, we rewrite the KKT conditions (4.2) by partitioning them ac-
cording to the equicorrelation set M̂ , adopting the convention that −M̂ means
“variables not in M̂”:

XT

M̂
(X

M̂
β̂

M̂
− y) + λŝ

M̂
= 0,

XT

−M̂
(X

M̂
β̂

M̂
− y) + λŝ−M̂

= 0,

sign(β̂
M̂

) = ŝ
M̂

,

‖ŝ−M̂
‖∞ < 1.

Since the KKT conditions are necessary and sufficient for a solution, we obtain
that {(M̂, ŝ) = (M, s)} if and only if there exist w and u satisfying

XT
M(XMw − y) + λs = 0,

XT−M(XMw − y) + λu = 0,

sign(w) = s,

‖u‖∞ < 1.

We can solve the first two equations for w and u to obtain the equivalent set of
conditions

w = (
XT

MXM

)−1(
XT

My − λs
)
,

u = XT−M

(
XT

M

)+s + 1

λ
XT−M(I − PM)y,

sign(w) = s,

‖u‖∞ < 1,

where the first two are the definitions of w and u given in (4.5) and (4.6), and the
last two are the conditions on w and u given in (4.7). �
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Lemma 4.1 is remarkable because it says that the event {(M̂, ŝ) = (M, s)} can
be rewritten as affine constraints on y. This is because w and u are already affine
functions of y, and the constraints sign(·) = s and ‖ · ‖∞ < 1 can also be rewritten
in terms of affine constraints. The following proposition makes this explicit.

PROPOSITION 4.2. Let w and u be defined as in (4.5) and (4.6). Then

{
sign(w) = s,‖u‖∞ < 1

} =
{(

A0(M, s)

A1(M, s)

)
y <

( b0(M, s)

b1(M, s)

)}
,(4.8)

where A0,b0 encode the “inactive” constraints {‖u‖∞ < 1}, and A1,b1 encode
the “active” constraints {sign(w) = s}. These matrices have the explicit forms

A0(M, s) = 1

λ

(
XT−M(I − PM)

−XT−M(I − PM)

)
,

b0(M, s) =
(

1 − XT−M

(
XT

M

)+s

1 + XT−M

(
XT

M

)+s

)
,

A1(M, s) = −diag(s)
(
XT

MXM

)−1
XT

M,

b1(M, s) = −λdiag(s)
(
XT

MXM

)−1s.

PROOF. First, substituting expression (4.5) for w, we rewrite the “active” con-
straints as {

sign(w) = s
} = {

diag(s)w > 0
}

= {
diag(s)

(
XT

MXM

)−1(
XT

My − λs
)
> 0

}
= {

A1(M, s)y < b1(M, s)
}
.

Next, substituting expression (4.6) for u, we rewrite the “inactive” constraints
as

{‖u‖∞ < 1
} =

{
−1 < XT−M

(
XT

M

)+s + 1

λ
XT−M(I − PM)y < 1

}

= {
A0(M, s)y < b0(M, s)

}
. �

Combining Lemma 4.1 with Proposition 4.2, we obtain the following.

THEOREM 4.3. Let A(M, s) = (A0(M,s)
A1(M,s)

)
and b(M, s) = (b0(M,s)

b1(M,s)

)
, where Ai

and bi are defined in Proposition 4.2. Then

{M̂ = M, ŝ = s} = {
A(M, s)y ≤ b(M, s)

}
.
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FIG. 1. A geometric picture illustrating Theorem 4.3 for n = 2 and p = 3. The lasso partitions Rn

into polyhedra according to the selected model and signs.

As a corollary, {M̂ = M} is simply the union of the above events over all possi-
ble sign patterns.

COROLLARY 4.4. {M̂ = M} = ⋃
s∈{−1,1}|M| {A(M, s)y ≤ b(M, s)}.

Figure 1 illustrates Theorem 4.3 and Corollary 4.4. The lasso partitions of Rn

into polyhedra according to the model it selects and the signs of the coefficients.
The shaded area corresponds to the event {M̂ = {1,3}}, which is a union of two
polyhedra. Notice that the sign patterns {+,−} and {−,+} are not possible for the
model {1,3}.

5. Polyhedral conditioning sets. In order to obtain inference conditional on
the model, we need to understand the distribution of

ηT
My|{M̂ = M}.

However, as we saw in the previous section, {M̂ = M} is a union of polyhedra, so
it is easier to condition on both the model and the signs,

ηT
My|{M̂ = M, ŝ = s},

since the conditioning event is a single polyhedron {A(M, s)y ≤ b(M, s)}. Notice
that inferences that are valid conditional on this finer event will also be valid con-
ditional on {M̂ = M}. For example, if a confidence interval CM

j for βM
j has (1−α)

coverage conditional on the model and signs

P
(
βM

j ∈ CM
j |M̂ = M, ŝ = s

) ≥ 1 − α,
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it will also have (1 − α) coverage conditional only on the model by the Law of
Total Probability:

P
(
βM

j ∈ CM
j |M̂ = M

) = ∑
s
P

(
βM

j ∈ CM
j |M̂ = M, ŝ = s

)
P(ŝ = s|M̂ = M)

≥ ∑
s

(1 − α)P(ŝ = s|M̂ = M)

= 1 − α.

This section is divided into two subsections. First, we study how to condition on
a single polyhedron; this will allow us to condition on {M̂ = M, ŝ = s}. Then we
extend the framework to condition on a union of polyhedra, which will allow us to
condition only on the model {M̂ = M}. The inferences obtained by conditioning on
the model will in general be more efficient (i.e., narrower intervals, more powerful
tests), at the price of more computation.

5.1. Conditioning on a single polyhedron. Suppose we observe y ∼ N(μ,�),
and η ∈R

n is some direction of interest. To understand the distribution of

ηT y|{Ay ≤ b},(5.1)

we rewrite {Ay ≤ b} in terms of ηT y and a component z which is independent of
ηT y. That component is

z ≡ (
In − cηT )

y,(5.2)

where

c ≡ �η
(
ηT �η

)−1
.(5.3)

It is easy to verify that z is uncorrelated with, and hence independent of, ηT y.
Notice that in the case where � = σ 2In, z is simply the residual (In − Pη)y from
projecting y onto η.

We can now rewrite {Ay ≤ b} in terms of ηT y and z.

LEMMA 5.1. Let z be defined as in (5.2) and c as in (5.3). Then the condition-
ing set can be rewritten as follows:

{Ay ≤ b} = {
V−(z) ≤ ηT y ≤ V+(z),V0(z) ≥ 0

}
,

where

V−(z) ≡ max
j :(Ac)j<0

bj − (Az)j
(Ac)j

,(5.4)

V+(z) ≡ min
j :(Ac)j>0

bj − (Az)j
(Ac)j

,(5.5)

V0(z) ≡ min
j :(Ac)j=0

bj − (Az)j .(5.6)

Note that V−, V+, and V0 refer to functions. Since they are functions of z only,
(5.4)–(5.6) are independent of ηT y.
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FIG. 2. A geometric interpretation of why the event {Ay ≤ b} can be characterized as
{V−(z) ≤ ηT y ≤ V+(z)}. Assuming � = I and ‖η‖2 = 1, V−(z) and V+(z) are functions of z
only, which is independent of ηT y.

PROOF. We can decompose y = c(ηT y) + z and rewrite the polyhedron as

{Ay ≤ b} = {
A

(
c
(
ηT y

) + z
) ≤ b

}
= {

Ac
(
ηT y

) ≤ b − Az
}

= {
(Ac)j

(
ηT y

) ≤ bj − (Az)j for all j
}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηT y ≤ bj − (Az)j
(Ac)j

, for j : (Ac)j > 0,

ηT y ≥ bj − (Az)j
(Ac)j

, for j : (Ac)j < 0,

0 ≤ bj − (Az)j , for j : (Ac)j = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

where in the last step, we have divided the components into three categories de-
pending on whether (Ac)j � 0, since this affects the direction of the inequality (or
whether we can divide at all). Since ηT y is the same quantity for all j , it must be
at least the maximum of the lower bounds, which is V−(z), and no more than the
minimum of the upper bounds, which is V+(z). �

Lemma 5.1 tells us that[
ηT y|{Ay ≤ b}] d= [

ηT y|{V−(z) ≤ ηT y ≤ V+(z),V0(z) ≥ 0
}]

.(5.7)

Since V+(z),V−(z),V0(z) are independent of ηT y, they behave as “fixed” quan-
tities. Thus, ηT y is conditionally like a normal random variable, truncated to be
between V−(z) and V+(z). We would like to be able to say

“ηT y|{Ay ≤ b} ∼ TN
(
ηT μ, σ 2ηT �η,V−(z),V+(z)

)
,”

but this is technically incorrect, since the distribution on the right-hand side
changes with z. By conditioning on the value of z, ηT y|{Ay ≤ b, z = z0} is a
truncated normal. We can then use the probability integral transform to obtain
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a statistic F z(ηT y) that has a Unif(0,1) distribution for any value of z. Hence,
F z(ηT y) will also have a Unif(0,1) distribution marginally over z. We make this
precise in the next theorem.

THEOREM 5.2. Let F
[a,b]
μ,σ 2 denote the CDF of a N(μ,σ 2) random variable

truncated to the interval [a, b], that is,

F
[a,b]
μ,σ 2 (x) = �((x − μ)/σ) − �((a − μ)/σ)

�((b − μ)/σ) − �((a − μ)/σ)
,(5.8)

where � is the CDF of a N(0,1) random variable. Then

F
[V−(z),V+(z)]
ηT μ,ηT �η

(
ηT y

)|{Ay ≤ b} ∼ Unif(0,1),(5.9)

where V− and V+ are defined in (5.4) and (5.5). Furthermore,[
ηT y|Ay ≤ b, z = z0

] ∼ TN
(
ηT μ, σ 2‖η‖2,V−(z0),V+(z0)

)
.

PROOF. First, apply Lemma 5.1:[
ηT y|Ay ≤ b, z = z0

] d= [
ηT y|V−(z) ≤ ηT y ≤ V+(z),V0(z) ≥ 0, z = z0

]
d= [

ηT y|V−(z0) ≤ ηT y ≤ V+(z0),V0(z0) ≥ 0, z = z0
]
.

The only random quantities left are ηT y and z. Now we can eliminate z = z0 from
the condition using independence:[

ηT y|Ay ≤ b, z = z0
] d= [

ηT y|V−(z0) ≤ ηT y ≤ V+(z0)
]

∼ TN
(
ηT μ, σ 2‖η‖2,V−(z0),V+(z0)

)
.

Letting F z(ηT y) ≡ F
[V−(z),V+(z)]
ηT μ,ηT �η

(ηT y), we can apply the probability integral
transform to the above result to obtain[

F z(ηT y
)|Ay ≤ b, z = z0

] d= [
F z0

(
ηT y

)|Ay ≤ b, z = z0
]

∼ Unif(0,1).

If we let pX denote the density of a random variable X given {Ay ≤ b}, what we
have just shown is that

pF z(ηT y)|z(t |z0) ≡ pF z(ηT y),z(t, z0)

pz(z0)
= 1[0,1](f )

for any z0. The desired result now follows by integrating over z0:

pF z(ηT y)(t) =
∫

pF z(ηT y)|z(t |z0)pz(z0) dz0

=
∫

1[0,1](t)pz(z0) dz0

= 1[0,1](t). �
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5.2. Conditioning on a union of polyhedra. We have just characterized the
distribution of ηT y, conditional on y falling into a single polyhedron {Ay ≤ b}.
We obtain such a polyhedron if we condition on both the model and the signs
{M̂ = M, ŝ = s}. If we want to only condition on the model {M̂ = M}, then we
will have to understand the distribution of ηT y, conditional on y falling into a
union of such polyhedra, that is,

ηT y
∣∣⋃

s
{Asy ≤ bs}.(5.10)

As Figure 3 makes clear, the argument proceeds exactly as before, except that
ηT y is now truncated to a union of intervals, instead of a single interval. There is
a V− and a V+ for each possible sign pattern s, so we index the intervals by the
signs. This leads immediately to the next theorem, whose proof is essentially the
same as that of Theorem 5.2.

THEOREM 5.3. Let FS
μ,σ 2 denote the CDF of a N(μ,σ 2) random variable

truncated to the set S. Then

F
⋃

s[V−
s (z),V+

s (z)]
ηT μ,ηT �η

(
ηT y

)∣∣⋃
s

{Asy ≤ bs} ∼ Unif(0,1),(5.11)

where V−
s (z) and V+

s (z) are defined in (5.4) and (5.5) and A = As and b = bs.

6. Post-selection intervals for regression coefficients. In this section, we
combine the characterization of the lasso selection event in Section 4 with the

FIG. 3. When we take the union over signs, the conditional distribution of ηT y is trun-
cated to a union of disjoint intervals. In this case, the Gaussian is truncated to the set
(−∞,V+

{−,−}(z)] ∪ [V−
{+,+}(z),∞).
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results about the distribution of a Gaussian truncated to a polyhedron (or union of
polyhedra) in Section 5 to form post-selection intervals for lasso-selected regres-
sion coefficients. The key link is that the lasso selection event can be expressed as
a union of polyhedra:

{M̂ = M} = ⋃
s∈{−1,1}|M|

{M̂ = M, ŝ = s}

= ⋃
s∈{−1,1}|M|

{
A(M, s)y ≤ b(M, s)

}
,

where A(M, s) and b(M, s) are defined in Theorem 4.3. Therefore, conditioning
on selection is the same as conditioning on a union of polyhedra, so we can apply
the framework of Section 5.

Recall that our goal is to form confidence intervals for βM
j = eT

j X+
Mμ, with

(1 − α)-coverage conditional on {M̂ = M}. Taking η = (X+
M)T ej , we can use

Theorem 5.3 to obtain

F
⋃

s[V−
s (z),V+

s (z)]
βM

j ,σ 2‖η‖2

(
ηT y

)|{M̂ = M} ∼ Unif(0,1).

This gives us a test statistic for testing any hypothesized value of βM
j . We can

invert this test to obtain a confidence set

CM
j ≡

{
βM

j : α

2
≤ F

⋃
s[V−

s (z),V+
s (z)]

βM
j ,σ 2‖η‖2

(
ηT y

) ≤ 1 − α

2

}
.(6.1)

In fact, the set CM
j is an interval, as formalized in the next result.

THEOREM 6.1. Let η = (X+
M)T ej . Let L and U be the (unique) values satis-

fying

F
⋃

s[V−
s (z),V+

s (z)]
L,σ 2‖η‖2

(
ηT y

) = 1 − α

2
, F

⋃
s[V−

s (z),V+
s (z)]

U,σ 2‖η‖2

(
ηT y

) = α

2
.

Then [L,U ] is a (1 − α) confidence interval for βM
j , conditional on {M̂ = M},

that is,

P
(
βM

j ∈ [L,U ]|M̂ = M
) = 1 − α.(6.2)

PROOF. By construction, PβM
j

(βM
j ∈ CM

j |M̂ = M) = 1 − α, where CM
j is de-

fined in (6.1). The claim is that the set CM
j is in fact the interval [L,U ]. To see

this, we need to show that the test statistic F
⋃

s[V−
s (z),V+

s (z)]
L,σ 2‖η‖2 (ηT y) is monotone de-

creasing in βM
j so that it crosses 1 − α

2 and α
2 at unique values. This follows from

the fact that the truncated Gaussian distribution has monotone likelihood ratio in
the mean parameter. See the Appendix for details. �



POST-SELECTION INFERENCE FOR THE LASSO 921

Alternatively, we could have conditioned on the signs, in addition to the model,
so that we would only have to condition on a single polyhedron. We also showed
in Section 5 that

F
[V−

s (z),V+
s (z)]

βM
j ,σ 2‖η‖2

(
ηT y

)|{M̂ = M, ŝ = s} ∼ Unif(0,1).

Inverting this statistic will produce intervals that have (1−α) coverage conditional
on {M̂ = M, ŝ = s}, and hence (1 − α) coverage conditional on {M̂ = M}. How-
ever, these intervals will be less efficient; they will in general be wider. However,
one may be willing to sacrifice statistical efficiency for computational efficiency.
Notice that the main cost in computing intervals according to Theorem 6.1 is deter-
mining the intervals [V−

s (z),V+
s (z)] for each s ∈ {−1,1}|M|. The number of such

sign patterns is 2|M|. While this might be feasible when |M| is small, it is not fea-
sible when we select hundreds of variables. Conditioning on the signs means that
we only have to compute the interval [V−

s (z),V+
s (z)] for the sign pattern s that was

actually observed.
Figure 4 shows the tradeoff in statistical efficiency. When the signal is strong, as

in the left-hand plot, there is virtually no difference between the intervals obtained
by conditioning on just the model, or the model and signs. On the other hand, in
the right-hand plot, we see that we can obtain very wide intervals when the signal
is weak. The widest intervals are for actual noise variables, as expected.

To understand why post-selection intervals are sometimes very wide, notice that
when a truncated Gaussian random variable Z is close to the endpoints of the
truncation interval [a, b], there are many means μ that would be consistent with
that observation—hence, the wide intervals. Figure 5 shows confidence intervals
for μ as a function of Z. When Z is far from the endpoints of the truncation

FIG. 4. Comparison of the confidence intervals by conditioning on the model only (statistically
more efficient, but computationally more expensive) and conditioning on both the model and signs
(statistically less efficient, but computationally more feasible). Data were simulated for n = 25,
p = 50, and 5 true nonzero coefficients; only the first 20 coefficients are shown. (Variables with
no intervals are included to emphasize that inference is only on the selected variables.) Conditioning
on the signs in addition to the model results in no loss of statistical efficiency when the signal is
strong (left) but is problematic when the signal is weak (right).
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FIG. 5. Upper and lower bounds of 90% confidence intervals for μ based on a single observation
x/σ ∼ TN(0,1,−3,3). We see that as long as the observation x is roughly 0.5σ away from either
boundary, the size of the intervals is comparable to the unadjusted OLS confidence interval.

interval, we basically recover the nominal OLS intervals (i.e., not adjusted for
selection).

The implications are clear. When the signal is strong, ηT y will be far from the
endpoints of the truncation region, so we obtain the nominal OLS intervals. On the
other hand, when a variable just barely entered the model, then ηT y will be close
to the edge of the truncation region, and the interval will be wide.

6.1. Optimality. We have derived a confidence interval CM
j whose conditional

coverage, given {M̂ = M}, is at least 1 − α. The fact that we have found such an
interval is not remarkable, since many such intervals have this property. However,
given two intervals with the same coverage, we generally prefer the shorter one.
This problem is considered in Fithian, Sun and Taylor (2014) where it is shown
that CM

j is, with one small tweak, the shortest interval among all unbiased intervals
with 1 − α coverage.

An unbiased interval C for a parameter θ is one which covers no other parame-
ter θ ′ with probability more than 1 − α, that i,

Pθ

(
θ ′ ∈ C

) ≤ 1 − α for all θ, θ ′ �= θ.(6.3)

Unbiasedness is a common restriction to ensure the existence of an optimal interval
[Lehmann and Romano (2005)]. The shortest unbiased interval for βM

j , among
all intervals with conditional 1 − α coverage, resembles to the interval [L,U ] in
Theorem 6.1. There, the critical values L and U were chosen symmetrically so
that the pivot has α/2 area in either tail. However, it may be possible to obtain a
shorter interval on average by allocating the a probability unequally between the
two tails. Theorem 5 of Fithian, Sun and Taylor (2014) provides a general formula
for obtaining shortest unbiased intervals in exponential families.
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7. Data example. We apply our post-selection intervals to the diabetes data
set from Efron et al. (2004). Since p < n for this data set, we can estimate σ 2 using
the residual sum of squares from the full regression model with all p predictors.
After standardizing all variables, we chose λ according to the strategy in Negahban
et al. (2012), λ = 2E(‖XT ε‖∞). This expectation was computed by simulation,
where ε ∼ N(0, σ̂ 2), resulting in λ ≈ 190. The lasso selected four variables: BMI,
BP, S3 and S5.

The post-selection intervals are shown in Figure 6, alongside the nominal con-
fidence intervals produced by fitting OLS to the four selected variables, ignoring
selection. The nominal intervals do not have (1 − α) coverage conditional on the
model and are not valid post-selection intervals. Also depicted are the confidence
intervals obtained by data splitting, as discussed in Section 2. This is a competi-
tor method that also produces valid confidence intervals conditional on the model.
The lasso selected the same four variables on half of the data, and then nominal
intervals for these four variables using OLS on the other half of the data.

We can make two observations from Figure 6.

1. The adjusted intervals provided by our method essentially reproduces the
OLS intervals for the strong effects, whereas data splitting intervals are wider by
a factor of

√
2 (since only n/2 observations are used in the inference). For this

dataset, the POSI intervals are 1.36 times wider than the OLS intervals. For all
the variables, our method produces the shortest intervals among the methods that
control selective type 1 error.

FIG. 6. Inference for the four variables selected by the lasso (λ = 190) on the diabetes data set.
The point estimate and adjusted confidence intervals using the approach in Section 6 are shown in
black. The OLS intervals, which ignore selection, are shown in red. The green lines show the intervals
produced by splitting the data into two halves, forming the interval based on only half of the data.
The blue line corresponds to the POSI method of Berk et al. (2013).



924 LEE, SUN, SUN AND TAYLOR

2. One variable, S3 which would have been deemed significant using the OLS
intervals, is no longer significant after accounting for selection. Data splitting, our
selection-adjusted intervals, and POSI intervals conclude that S3 is not significant.
This demonstrates that taking model selection into account can have substantive
impacts on the conclusions.

8. Extensions.

8.1. Estimation of σ 2. The above results rely on knowing σ 2 or at least having
a good estimate of it. If n > p, then the variance σ̂ 2 of the residuals from fitting
the full model is a consistent estimator and in general can be substituted for σ 2 to
yield asymptotically valid confidence intervals. Formally, the condition is that the
pivot is smooth with respect to σ . Geometrically speaking, the upper and lower
truncation limits V+ and V− must be well-separated (with high probability). We
refer the interested reader to Section 2.3 in Tian and Taylor (2015) for details.

In the setting where p > n, obtaining an estimate of σ 2 is more challenging,
but if the pivot satisfies a monotonicity property, plugging in an overestimate of
the variance gives conservative confidence intervals. We refer the reader to Theo-
rem 11 in Tibshirani et al. (2015) for details.

8.2. Elastic net. One problem with the lasso is that it tends to select one vari-
able out of a set of correlated variables, resulting in estimates that are unstable.
One way to stabilize them is to add an �2 penalty to the lasso objective, resulting
in the elastic net [Zou and Hastie (2005)]:

β̃ = argmin
β

1

2
‖y − Xβ‖2

2 + λ‖β‖1 + γ

2
‖β‖2

2.(8.1)

Using a nearly identical argument to Lemma 4.1, we see that {M̂ = M, ŝ = s} if
and only if there exist w̃ and ũ satisfying(

XT
MXM + γ I

)
w̃ − XT

My + λs = 0,

XT−M(XMw̃ − y) + λũ = 0,

sign(w̃) = s,

‖ũ‖∞ < 1.

These four conditions differ from those of Lemma 4.1 in only one respect: XT
MXM

in the first expression is replaced by XT
MXM + γ I . Continuing the argument of

Section 4, we see that the selection event can be rewritten

{M̂ = M, ŝ = s} =
{(

Ã0(M, s)

Ã1(M, s)

)
y <

( b̃0(M, s)

b̃1(M, s)

)}
,(8.2)
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where Ãk and b̃k are analogous to Ak and bk in Proposition 4.2, except replacing
(XT

MXM)−1 by (XT
MXM + γ I)−1 everywhere it appears. Notice that (XT

MXM)−1

appears explicitly in A1 and b1, and also implicitly in A0 and b0, since PM and
(XT

M)+ both depend on (XT
MXM)−1.

Now that we have rewritten the selection event in the form {Ay ≤ b}, we can
once again apply the framework in Section 5 to obtain a test for the elastic net
conditional on this event.

9. Conclusion. Model selection and inference have long been regarded as
conflicting goals in linear regression. Following the lead of Berk et al. (2013), we
have proposed a framework for post-selection inference that conditions on which
model was selected, that is, the event {M̂ = M}. We characterize this event for the
lasso and derive optimal and exact confidence intervals for linear contrasts ηT μ,
conditional on {M̂ = M}. With this general framework, we can form post-selection
intervals for regression coefficients, equipping practitioners with a way to obtain
“valid” intervals even after model selection.

APPENDIX: MONOTONICITY OF F

LEMMA A.1. Let Fμ(x) := F
[a,b]
μ,σ 2 (x) denote the cumulative distribution func-

tion of a truncated Gaussian random variable, as defined as in (5.8). Then Fμ(x)

is monotone decreasing in μ.

PROOF. First, the truncated Gaussian distribution with CDF Fμ := F
[a,b]
μ,σ 2 is

a natural exponential family in μ, since it is just a Gaussian with a different base
measure. Therefore, it has monotone likelihood ratio in μ. That is, for all μ1 > μ0
and x1 > x0:

fμ1(x1)

fμ0(x1)
>

fμ1(x0)

fμ0(x0)
,

where fμi
:= dFμi

denotes the density. (Instead of appealing to properties of ex-
ponential families, this property can also be directly verified.)

This implies

fμ1(x1)fμ0(x0) > fμ1(x0)fμ0(x1), x1 > x0.

Therefore, the inequality is preserved if we integrate both sides with respect to x0
on (−∞, x) for x < x1. This yields∫ x

−∞
fμ1(x1)fμ0(x0) dx0 >

∫ x

−∞
fμ1(x0)fμ0(x1) dx0, x < x1,

fμ1(x1)Fμ0(x) > fμ0(x1)Fμ1(x), x < x1.

Now we integrate both sides with respect to x1 on (x,∞) to obtain(
1 − Fμ1(x)

)
Fμ0(x) >

(
1 − Fμ0(x)

)
Fμ1(x)

which establishes Fμ0(x) > Fμ1(x) for all μ1 > μ0. �
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