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ROBUSTNESS TO OUTLIERS IN LOCATION–SCALE PARAMETER
MODEL USING LOG-REGULARLY VARYING DISTRIBUTIONS

BY ALAIN DESGAGNÉ

Université du Québec à Montréal

Estimating the location and scale parameters is common in statistics, us-
ing, for instance, the well-known sample mean and standard deviation. How-
ever, inference can be contaminated by the presence of outliers if modeling
is done with light-tailed distributions such as the normal distribution. In this
paper, we study robustness to outliers in location–scale parameter models
using both the Bayesian and frequentist approaches. We find sufficient con-
ditions (e.g., on tail behavior of the model) to obtain whole robustness to
outliers, in the sense that the impact of the outliers gradually decreases to
nothing as the conflict grows infinitely. To this end, we introduce the family
of log-Pareto-tailed symmetric distributions that belongs to the larger family
of log-regularly varying distributions.

1. Introduction. In Bayesian analysis, outlying observations and prior mis-
specification may contaminate the posterior inference. For instance, a group of
observations may suggest a quite different posterior inference than that proposed
by the prior and the rest of data. Using light-tailed distributions such as the normal
can lead to an undesirable compromise where the posterior distribution concen-
trates on an area that is not supported by any sources of information. The conflict
is usually resolved automatically by modeling with heavy-tailed distributions, in
favor of the sources of information with the lightest tails. O’Hagan and Pericchi
[16] refer to this situation as the theory of conflict resolution in Bayesian statistics,
in their extensive review of the literature on that topic.

Conflict resolution in Bayesian analysis was first described by De Finetti [7].
The theory has mostly been developed for location parameter inference; see, for
instance, Dawid [6]; O’Hagan [13–15]; Angers [5]; Desgagné and Angers [10];
Kumar and Magnus [12]; Andrade and Omey [4]; Andrade, Dorea and Guevara
Otiniano [1].

The theory on pure scale parameter inference was first analyzed by Andrade and
O’Hagan [2], who considered partial robustness using regularly varying distribu-
tions (see also Andrade and Omey [4] and Andrade, Dorea and Guevara Otiniano
[1], who generalize their work of partial robustness), and then by Desgagné [8],
who considered whole robustness using log-exponentially varying distributions.
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Note that partial robustness exists if the conflicting values have a significant but
limited influence on the posterior distribution, as the conflict grows infinitely. In
contrast, whole robustness is achieved if the influence of the conflicting values on
the posterior distribution gradually decreases to nothing. To illustrate this, consider
the estimation of a location parameter for a Laplace model (with a prior of 1).
Hence, the posterior mode (or the maximum likelihood estimator) is the sample
median. If, for instance, the sample is (10,20,30,40,50, x, x, x, x), and we let
x → ∞, then a wholly robust estimator of the location would be around 30 (the
center of the nonoutlying observations), while the partially robust sample median
estimates the location by 50, that is, the maximum of the nonoutliers.

This paper goes a step beyond the literature in that it considers robustness
for both location and scale parameters in the same model. The only other pa-
per that considers Bayesian robustness in a location–scale model is Andrade and
O’Hagan [3]. The essential difference is that partial robustness to a single outlier
is achieved in their paper, while whole robustness to multiple outliers for both
location and scale estimation is obtained in this paper.

Another distinctive aspect of this paper is the possibility of using the results
of robustness in both frequentist and Bayesian approaches. Although the model
allows us to add prior information on the location and scale through a very general
joint prior density π(μ,σ) [essentially, we only require that σπ(μ,σ) is bounded],
it is also possible to choose a noninformative prior such that π(μ,σ) ∝ 1/σ . The
location and scale parameters can therefore be estimated in a robust way using
either the Bayesian approach or a frequentist method like maximum likelihood
estimation.

This paper is organized as follows. In Section 2, we introduce the class of log-
regularly varying functions because tail behavior plays a crucial role in the search
of robustness. Essentially, this class includes functions with a right tail that exhibits
a logarithmic decay, which can be considered a super heavy tail. As a result, we
also define the family of log-regularly varying distributions.

The model with its assumptions is described in Section 3.1, and the resolution
of conflicts is addressed through the main results of this paper in Section 3.2. Two
simple conditions of robustness are given. Modeling with a log-regularly varying
distribution is the first. In the second condition, the number of nonoutlying ob-
servations must be larger than the maximum between the number of small and
large outliers. Results of robustness are asymptotic, where the outlying observa-
tions tend to −∞ or +∞. Note that the asymptotic nature is about the outliers
and not the sample size, as is usually understood. Whole robustness is expressed
through different types of convergence of quantities, based on the complete sam-
ple, to quantities based only on the nonoutlying observations, resulting in a com-
plete rejection of outliers. We obtain the uniform convergence of the posterior
densities, the convergence in L1, the convergence in distribution and the uniform
convergence of the likelihoods.
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In Section 4, we introduce the family of log-Pareto-tailed symmetric distribu-
tions that belongs to the larger family of log-regularly varying distributions. It con-
sists essentially of a symmetric density, such as the standard normal, with extremi-
ties replaced by log-Pareto tails, that is, with logarithmic decay. In the presence of
outlying observations, the log-Pareto tails ensure robust inference. Otherwise, the
estimation is practically unaffected by the tails and is determined mostly by the
chosen symmetric density.

In Section 5, we show that even if the results are asymptotic, they are still useful
in practice with data. We first illustrate the threshold feature in Section 5.1. When
an observation moves away from the nonconflicting values, its influence on the in-
ference first increases gradually up to a certain threshold. The conflict then begins,
and the model resolves it by progressively reducing the influence of the moving
observation (now an outlier) to nothing. This built-in feature is attractive in prac-
tice in that conflict is managed in a sensitive and automatic way. In Section 5.2,
concurrent estimators are compared under different scenarios through simulations
of observations to find how they perform in the presence—or absence—of outly-
ing observations. Nonrobust, partially and wholly robust modeling is considered.
We conclude in Section 6, and some proofs are given in Section 7.

2. Log-regularly varying functions. As mentioned in the Introduction, tail
behavior is crucial for robust modeling. Hence, we introduce the class of log-
regularly varying functions, as defined in Desgagné [8], following the idea of
regularly varying functions developed by Karamata [11]. For each function in Sec-
tion 2, say g, we assume that g(z) is continuous and strictly positive for z larger
than or equal to a certain constant.

DEFINITION 1 (Log-regularly varying function). We say that a measurable
function g is log-regularly varying at ∞ with index ρ ∈ R, written g ∈ Lρ(∞), if

∀ε > 0,∀τ ≥ 1, there exists a constant A(ε, τ ) > 0 such that
z ≥ A(ε, τ ) and 1/τ ≤ ν ≤ τ ⇒ |νρg(zν)/g(z) − 1| < ε.

If ρ = 0, g is said to be log-slowly varying at ∞.

In other words, g ∈ Lρ(∞) if g(zν)/g(z) converges to ν−ρ uniformly in any set
ν ∈ [1/τ, τ ] (for any τ ≥ 1) as z → ∞. The pointwise convergence for any ν > 0
follows.

Note that if we define the function h(z) = g(ez), or equivalently g(z) = h(log z),
we have g ∈ Lρ(∞) if and only if h is regularly varying at ∞ with index −ρ,
because limz→∞ h(νz)/h(z) = ν−ρ . Therefore, we can obtain different results di-
rectly from the theory of regularly varying functions. For instance, the functions
log(log z) and 1 are both log-slowly varying at ∞ since log z and 1 are slowly
varying.
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PROPOSITION 1 (Equivalence). For any ρ ∈ R, we have g ∈ Lρ(∞) if and
only if there exists a constant A > 1 and a function s ∈ L0(∞) such that for z ≥ A,
g can be written as

g(z) = (log z)−ρs(z).

PROOF. It is well known that if a function h is regularly varying at ∞ with
index −ρ, it can be represented as h(z) = z−ρl(z), where l is some slowly varying
function. It is equivalent to say that g ∈ Lρ(∞), where

g(z) = h(log z) = (log z)−ρl(log z) = (log z)−ρs(z),

with s(z) = l(log z) ∈ L0(∞). �

The next proposition establishes the asymptotic dominance of a logarithmic
function over a log-slowly varying function.

PROPOSITION 2 (Dominance). If s ∈ L0(∞) and g ∈ Lρ(∞), then for all
δ > 0, there exists a constant A(δ) > 1 such that z ≥ A(δ) ⇒

(log z)−δ < s(z) < (log z)δ and (log z)−ρ−δ < g(z) < (log z)−ρ+δ.

PROOF. It is well known that if l is slowly varying, then for every δ > 0, we
have z−δl(z) → 0 and zδl(z) → ∞ as z → ∞. It follows that z−δ < l(z) < zδ for
z sufficiently large. If we replace z by log z and we set s(z) = l(log z), then s ∈
L0(∞), and we obtain that (log z)−δs(z) → 0 and (log z)δs(z) → ∞ as log z → ∞
(or equivalently z → ∞) and (log z)−δ < s(z) < (log z)δ for z sufficiently large.
Since we can write g(z) = (log z)−ρs(z), the second part of the proposition follows
directly. �

The index ρ can be interpreted as a measure of the tail’s thickness or as a tail
index, which is useful for the ordering of different tails. The function with the
smallest tail index ρ has the heaviest tail. More formally, we can verify that if g1 ∈
Lρ1(∞) and g2 ∈ Lρ2(∞), then ρ1 > ρ2 ⇒ g1(z)/g2(z) → 0 as z → ∞. The tail
index ρ is also useful to determine if (1/z)g(z) is integrable, where g(z) ∈ Lρ(∞),
as described in the next proposition.

PROPOSITION 3 (Integrability). If g(z) ∈ Lρ(∞), then there exists a constant
A > 0 such that (1/z)g(z) is integrable on z ≥ A, if and only if:

(i) ρ > 1,
(ii) ρ = 1, with the log-slowly varying part of g(z) having a sufficiently fast

decay [e.g., faster than (log(log z))−β , with β > 1].
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PROOF. If we define h such that g(z) = h(log z), and we choose A sufficiently
large, then h is regularly varying at ∞ with index −ρ, and we have∫ ∞

A
(1/z)g(z) dz =

∫ ∞
A

(1/z)h(log z) dz =
∫ ∞

logA
h(u)du =

∫ ∞
logA

u−ρl(u) du,

where l is slowly varying. For any δ > 0, if A is sufficiently large, we have u−δ <

l(u) < uδ . Therefore, the integral exists if ρ > 1 and does not if ρ < 1.
If ρ = 1, we see that the decay of l determines the existence of the integral.

If, for instance, l(u) < (logu)−β or s(z) = l(logu) < (log(logu))−β , with β > 1
and s ∈ L0(∞), then the integral exists. Instead, if l(u) > (logu)−β or s(z) =
l(logu) > (log(logu))−β , with β < 1 and s ∈ L0(∞), then the integral does not
exist. �

In particular, if f is a continuous symmetric probability density function defined
on R such that g(z) = zf (z) ∈ Lρ(∞), we know from Proposition 3 that a tail
index ρ > 1 is sufficient to guarantee that f is proper and that ρ ≥ 1 is a necessary
condition. This leads us to the next definition.

DEFINITION 2 (Log-regularly varying distribution). A random variable Z and
its distribution are said to be log-regularly varying with index ρ ≥ 1 if their sym-
metric density f is such that zf (z) ∈ Lρ(∞).

Using Propositions 1 and 2, this means that for all δ > 0 and |z| larger than
a certain constant, the symmetric (with respect to 0) density f of a log-regularly
varying distribution with index ρ can be written as f (z) = (1/|z|)(log |z|)−ρs(|z|),
where s ∈ L0(∞) can be bounded by (log |z|)−δ and (log |z|)δ . Such a density with
logarithmic decaying tails can be referred to as a super heavy-tailed distribution.

In the next proposition, we see the asymptotic impact of a location–scale trans-
formation on a log-regularly varying function g and the density f of a log-
regularly varying distribution. Mostly, it is another way to express tail thickness.

PROPOSITION 4 (Location–scale transformation). If g(z) = zf (z) ∈ Lρ(∞),
then we have, as z → ∞,

g
(
(z − μ)/σ

)
/g(z) → 1 and (1/σ)f

(
(z − μ)/σ

)
/f (z) → 1,

uniformly on (μ,σ ) ∈ [−λ,λ] × [1/τ, τ ], for any λ ≥ 0 and τ ≥ 1.

PROOF. Using g ∈ Lρ(∞) with Proposition 1, there exists a function s ∈
L0(∞) such that g(z) = (log z)−ρs(z), if z is large enough. Therefore, for any
chosen λ ≥ 0 and τ ≥ 1, if z is sufficiently large, we have

g((z − μ)/σ)

g(z)
=

(
log((z − μ)/σ)

log z

)−ρ s((z − μ)/σ)

s(z)
.
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It is purely algebraic to show that the term (log((z−μ)/σ))/(log z) converges to 1
uniformly on any set (μ,σ ) ∈ [−λ,λ] × [1/τ, τ ] as z → ∞.

Finally, we want to show that s((z − μ)/σ)/s(z) converges to 1 uniformly on
any set (μ,σ ) ∈ [−λ,λ] × [1/τ, τ ] as z → ∞, or equivalently that s(y)/s(z) con-
verges to 1 uniformly on y ∈ [(z−λ)/τ, (z+λ)τ ]. We observe that for any chosen
λ ≥ 0 and τ ≥ 1, if z is sufficiently large, we have

z1/2 ≤ (z − λ)/τ ≤ (z + λ)τ ≤ z2.

Therefore, it suffices to show that s(y)/s(z) converges to 1 uniformly on y ∈
[z1/2, z2], or equivalently, that s(zν)/s(z) converges to 1 uniformly on any set
ν ∈ [1/2,2], which is the case since s ∈ L0(∞). The second part of the proposi-
tion follows directly. �

3. Resolution of conflicts in a location–scale parameter model.

3.1. Model.

(i) Let X1, . . . ,Xn be n random variables conditionally independent given μ

and σ with their conditional densities given by

Xi | μ,σ
D∼ (1/σ)f

(
(xi − μ)/σ

);
(ii) the joint prior density of μ and σ is given by μ,σ

D∼ π(μ,σ), where n ≥
2, x1, . . . , xn,μ ∈ R, σ > 0.

We assume that the prior π(μ,σ) is nonnegative on R, and the only other re-
quired assumption is that σπ(μ,σ) is bounded. Note that in particular, if we have
no prior information or if we use the model in a frequentist approach, then we
set π(μ,σ) ∝ 1/σ , an improper joint prior density which can be considered as
noninformative.

We assume that f is a proper density that is continuous and strictly positive
on R. In addition, we assume it is symmetric with respect to the origin. We also
assume that both tails of |z|f (z) are monotonic, which means that the tails of f (z)

are also monotonic. Note that monotonicity of the tails of f (z) and |z|f (z) means
that there exists a constant M ≥ 0 such that

|y| ≥ |z| ≥ M implies that f (y) ≤ f (z) and |y|f (y) ≤ |z|f (z).(1)

It follows that f (z) and |z|f (z) are bounded on the real line, with a limit of 0
in their tails as |z| → ∞. Hence, considering also the prior, we can define the
constant B as follows:

B = max
{
sup
z∈R

f (z), sup
z∈R

|z|f (z), sup
μ∈R,σ>0

σπ(μ,σ)
}
.(2)
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These conditions are referred to below as the conditions of regularity on f . The
density f can possess other parameters than location and scale, such as a shape
parameter, but they are assumed to be known.

We study robustness of the estimation of μ and σ in the presence of outliers.
The nature of the results is asymptotic, in the sense that some xi are going to −∞
or +∞. We want to find sufficient conditions to obtain whole robustness, that is, a
complete rejection of the outliers.

Among the n observations, denoted by xn = (x1, . . . , xn), we assume that k ≥ 2
of them, denoted by the vector xk, form a group of nonoutlying observations. We
assume that l of them are considered as left outliers (smaller than the nonoutliers)
and r of them are considered as right outliers (larger than the nonoutliers), with
k + l + r = n.

For i = 1, . . . , n, we define three binary functions ki, li and ri as follows. If xi

is a nonoutlying observation, we set ki = 1; if it is a left outlier, we set li = 1; and
if it is a right outlier, we set ri = 1. These functions are set to 0 otherwise. We have
ki + li + ri = 1 for i = 1, . . . , n, with

∑n
i=1 ki = k,

∑n
i=1 li = l and

∑n
i=1 ri = r .

We assume that each outlier is going to −∞ or +∞ at its own specific rate, to
the extent that the ratio of two outliers is bounded. We can write

xi = ai + biω,

for i = 1, . . . , n, where ai and bi are some constants such that ai ∈ R and:

(i) bi = 0 if ki = 1;
(ii) bi < 0 if li = 1;

(iii) bi > 0 if ri = 1;

and we let ω → ∞. Note that if multiple outliers share the same bi , they move as
a block at the same rate.

Let the joint posterior density of μ and σ be denoted by π(μ,σ | xn) and the
marginal density of X1, . . . ,Xn be denoted by m(xn), with

π(μ,σ | xn) = [
m(xn)

]−1
π(μ,σ)

n∏
i=1

(1/σ)f
(
(xi − μ)/σ

)
.

Let the joint posterior density of μ and σ considering only the nonoutlying obser-
vations xk be denoted by π(μ,σ | xk) and its corresponding marginal density be
denoted by m(xk), with

π(μ,σ | xk) = [
m(xk)

]−1
π(μ,σ)

n∏
i=1

[
(1/σ)f

(
(xi − μ)/σ

)]ki .

The likelihood functions can be found by setting π(μ,σ) ∝ 1/σ and letting

L(μ,σ | xn) ∝ σπ(μ,σ | xn) and L(μ,σ | xk) ∝ σπ(μ,σ | xk).
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PROPOSITION 5. Considering the Bayesian context given in Section 3.1, the
joint posterior densities π(μ,σ | xk) and π(μ,σ | xn) are proper.

The proof of Proposition 5 is given in Section 7.

3.2. Resolution of conflicts. The results of robustness are now given.

THEOREM 1. Consider the model and context described in Section 3.1, and
assume that the conditions of regularity on f are satisfied. If we have:

(i) zf (z) ∈ Lρ(∞) [zf (z) is log-regularly varying at ∞ with index ρ ≥ 1],
(ii) k > max(l, r),

then we obtain the following results:

(a)

lim
ω→∞

m(xn)∏n
i=1[f (xi)]li+ri

= m(xk).

(b)

lim
ω→∞π(μ,σ | xn) = π(μ,σ | xk),

uniformly on (μ,σ ) ∈ [−λ,λ] × [1/τ, τ ], for any λ ≥ 0 and τ ≥ 1.
(c)

lim
ω→∞

∫ ∞
0

∫ ∞
−∞

∣∣π(μ,σ | xn) − π(μ,σ | xk)
∣∣dμdσ = 0.

(d) As ω → ∞,

μ,σ | xn
D→ μ,σ | xk,

and in particular

μ | xn
D→ μ | xk and σ | xn

D→ σ | xk.

(e)

lim
ω→∞L(μ,σ | xn) = L(μ,σ | xk),

uniformly on (μ,σ ) ∈ [−λ,λ] × [1/τ, τ ], for any λ ≥ 0 and τ ≥ 1.

Proof of result (a) is substantial and therefore is given in Section 7. This is,
however, the crucial part in the proof of Theorem 1.
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PROOF OF RESULT (b). Consider (μ,σ ) such that π(μ,σ) > 0 [the proof for
the case (μ,σ ) such that π(μ,σ) = 0 is trivial]. We have, as ω → ∞,

π(μ,σ | xn)

π(μ,σ | xk)
= m(xk)

m(xn)

π(μ,σ )
∏n

i=1(1/σ)f ((xi − μ)/σ)

π(μ,σ )
∏n

i=1[(1/σ)f ((xi − μ)/σ)]ki

= m(xk)

m(xn)

n∏
i=1

[
(1/σ)f

(
(xi − μ)/σ

)]li+ri

= m(xk)
∏n

i=1[f (xi)]li+ri

m(xn)
·

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

→ 1.

The first part of the last term does not depend on μ and σ and converges to 1 as
ω → ∞, using result (a). The second part of the last term also converges to 1
uniformly in any set (μ,σ ) ∈ [−λ,λ] × [1/τ, τ ] using Proposition 4. Further-
more, since f and σπ(μ,σ) are bounded, π(μ,σ | xk) is also bounded on any
set (μ,σ ) ∈ [−λ,λ] × [1/τ, τ ]. Then we have∣∣π(μ,σ | xn) − π(μ,σ | xk)

∣∣
= π(μ,σ | xk)

∣∣∣∣π(μ,σ | xn)

π(μ,σ | xk)
− 1

∣∣∣∣ → 0 as ω → ∞. �

PROOFS OF RESULTS (c) AND (d). We can use Scheffé’s theorem [17] directly
to prove results (c) and (d). Using Proposition 5, we know that π(μ,σ | xk) and
π(μ,σ | xn) are proper. Using result (b), we have that π(μ,σ | xn) → π(μ,σ |
xk) pointwise as ω → ∞ for any μ ∈ R and σ > 0, as a result of the uniform
convergence. The conditions of Scheffé’s theorem are then satisfied, and we obtain
the convergence in L1 given in result (c) as well as the following result:

lim
ω→∞

∫
E

π(μ,σ | xn) dμdσ =
∫
E

π(μ,σ | xk) dμdσ,

uniformly for all rectangles E in R×R
+. �

PROOF OF RESULT (e). It suffices to write the likelihood functions as L(μ,σ |
xn) ∝ σπ(μ,σ | xn) and L(μ,σ | xk) ∝ σπ(μ,σ | xk) with π(μ,σ) ∝ 1/σ , and
result (e) follows directly from result (b). �

An attractive feature of Theorem 1 is the simplicity of its only two sufficient
conditions. Condition (i) says that modeling must be done using density f of a
log-regularly varying distribution with index ρ ≥ 1; see Definition 2. Note that it
involves only the tails of the function |z|f (z). Essentially, the decay of the tails
must be logarithmic. For that purpose, in the next section we introduce the fam-
ily of log-Pareto-tailed symmetric distributions that belong to the family of log-
regularly varying distributions.
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Condition (ii) requires that k > l and k > r . For instance, a group of k = 6
nonoutlying observations is sufficient to ensure the rejection of l = 5 outliers at
left and r = 5 at right. The nonoutlying group must be the most important, which
is rather intuitive. The most demanding case occurs when all outliers are on the
same side (e.g., l = 0). Condition (ii) can then be written as k > n/2, which means
that the nonoutliers must represent more than half of the sample. A few numerical
simulations tend to confirm our expectation that a larger difference between k and
max(l, r) results in a faster rejection of the outliers.

The asymptotic behavior of the marginal m(xn) is given in result (a). This fun-
damental result is probably of more theoretical than practical interest because it
leads to results (b) to (e). The asymptotic behavior of the posterior density is
given in result (b). The posterior considering the entire sample converges to the
posterior considering only the k nonoutlying observations, uniformly in any set
(μ,σ ) ∈ [−λ,λ] × [1/τ, τ ]. The outliers are then completely rejected as they are
going to plus or minus infinity. We also obtain the pointwise convergence.

In result (c), we obtain the convergence in L1 of the posterior densities consid-
ering the entire sample to the posterior considering only the nonoutlying observa-
tions. In result (d), we obtain the convergence in distribution, that is Pr(μ,σ ∈ E |
xn) converges to Pr(μ,σ ∈ E | xk) as ω → ∞, uniformly for all rectangles E in
R×R

+. Because the convergence is uniform, this is actually a stronger result than
the convergence in distribution, which requires only pointwise convergence. We
also obtain the convergence in distribution of the posterior marginal distributions.
Therefore, any estimation of μ and σ based on posterior quantiles or Bayesian
credible intervals is robust to outliers.

In result (e), the likelihood considering the entire sample converges to the
likelihood considering only the nonoutlying observations, uniformly in any set
(μ,σ ) ∈ [−λ,λ] × [1/τ, τ ]. It follows that the maximum of L(μ,σ | xn) con-
verges to the maximum of L(μ,σ | xk), and therefore the maximum likelihood
estimates also converge, as ω → ∞.

4. The family of log-Pareto-tailed symmetric distributions. As stated in
Theorem 1, modeling with a log-regularly varying distribution is one of the con-
ditions of robustness. However, such a distribution is super heavy-tailed, and the
usual densities defined on R are light or heavy-tailed. Therefore, we introduce in
this section the family of log-Pareto-tailed symmetric distributions that belongs
to the larger family of log-regularly varying distributions. Given that the condi-
tions of robustness involve only the tails of density f (z), the proposed solution
consists in altering a symmetric density, such as the usual normal, uniform or Stu-
dent’s t distributions, by replacing its extremities with log-Pareto tails, that is, a
function proportional to |z|−1(log |z|)−β , with β > 1. This idea comes from the
generalized exponential power (GEP) distribution, a family introduced by Angers
[5] and revisited in more detail by Desgagné and Angers [9]. The GEP density is
essentially a uniform density in the center with a large spectrum of tail behavior,
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classified in types I to V, from light to super heavy-tailed. In particular, the GEP
of type V is a log-regularly varying distribution because its density has log-Pareto
tails. We propose here to generalize the GEP distribution of type V to the family of
log-Pareto-tailed symmetric distributions by using any symmetric densities in the
center instead of limiting the choice to the uniform density.

DEFINITION 3. A random variable Z has a log-Pareto-tailed symmetric dis-
tribution if its density is given by

f (z | φ, α,β)

= K(φ,α,β)

(
g(z | φ)1[−α,α](z) + g(α | φ)

α

|z|
(

logα

log |z|
)β

1(α,∞)

(|z|)
)
,

where z ∈ R, α > 1, β > 1, 1A(·) is an indicator function, and g(· | φ) is any
density that is symmetric with respect to the origin, continuous and strictly positive
on [−α,α], with its vector of parameters given by φ ∈ �. The normalizing constant
is given by

K(φ,α,β) = (β − 1)

(2G(α | φ) − 1)(β − 1) + 2g(α | φ)α logα
,

where G(α | φ) = ∫ α
−∞ g(u | φ) du.

In particular, if g(z | φ) is a normal density, we say that the random variable Z

has a log-Pareto-tailed normal distribution. If g(z | φ) is a Student’s t density, we
say that Z has a log-Pareto-tailed Student’s t distribution, and so on. The core of
the density f (z | φ, α,β) is located between −α and α, and the tails are positioned
in the area |z| > α. Tail thickness is controlled with the parameter β . This density
satisfies the condition of robustness required in Theorem 1, since for |z| > α, we
have

|z|f (z | φ, α,β) ∝ (
log |z|)−β ∈ Lβ(∞).

All conditions of regularity assumed in Section 3.1 are satisfied as well. The den-
sity f (z | φ, α,β) is continuous and strictly positive on R, proper (see Propo-
sition 3) and symmetric with respect to the origin. Furthermore, both tails of
|z|f (z | φ, α,β) are monotonic.

In practice, choosing parameters α and β directly is not necessarily an intuitive
task. It could be easier to choose other indirect but related quantities. Here is an
interesting strategy in five steps: a practitioner first chooses his favorite symmetric
density g(z | φ) and its vector of parameters φ (other than the location and scale
parameters μ and σ , which will be added later), such as the N(0,1). The second
step consists in setting the normalizing constant K(φ,α,β) to 1. The desirable conse-
quence is that the core (between −α and α) of the density f (z | φ, α,β) becomes
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exactly the density g(z | φ), the familiar density of the user. The third step consists
in choosing the mass of the core, which is defined as

q = Pr(−α ≤ Z ≤ α | φ, α,β).

For instance, we could choose q = 0.95, which leaves 2.5% of the mass in
each tail. Then, the density f (z | φ, α,β) would be exactly the N(0,1) density for
95% of its mass located in the center. The following steps are done automatically.
Given that K(φ,α,β) has been set to 1, it follows that q = 2G(α | φ) − 1. However,
to ensure that α > 1 as required, we must choose q > 2G(1 | φ) − 1. If the last
equality is rearranged, it leads us to the fourth step, which consists in calculating
α as follows:

α = G−1
(

1 + q

2

∣∣∣∣ φ

)
.

For example, a N(0,1) with q = 0.95 generates a value of α = 1.96. Finally, we
calculate β in the fifth step as follows:

β = 1 + 2g(α | φ)α logα

1 − q
.

Note that this equation is consistent with a normalizing constant of 1, and it satis-
fies β > 1 since α > 1. Our example gives a value of β = 4.08.

We compare in Figure 1 the standard normal density (dashed line) to a log-
Pareto-tailed standard normal density (solid line), with q = 0.95, K(φ,α,β) = 1,
α = 1.96 and β = 4.08. Both densities are identical between −α and α, but differ
in the tails.

FIG. 1. A comparison between the standard normal (dashed line) and log-Pareto-tailed standard
normal (solid line) densities.
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Simulation of observations from a log-Pareto-tailed symmetric distribution is
easy using the inverse transformation method. It is described in detail in Sec-
tion 3.4 of Desgagné and Angers [9] for the log-Pareto-tailed uniform distribution
(labeled GEP density of type V in their paper). It is straightforward to generalize
it to other symmetric densities g(· | φ).

Of course, we can add location and scale parameters, denoted, respectively, by
μ ∈ R and σ > 0, to the density f (z | φ, α,β). We obtain

(1/σ)f
(
(z − μ)/σ | φ, α,β

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K(φ,α,β)(1/σ)g
(
(z − μ)/σ | φ)

, if μ − ασ ≤ z ≤ μ + ασ,

K(φ,α,β)g(α | φ)
α

|z − μ|
(

logα

log(|z − μ|/σ)

)β

,

if |z − μ| ≥ ασ .

Note that when this density is used in the context of robustness described in
Section 3.2, the parameters φ, α and β are assumed to be known. The inference is
done on the location and scale parameters only.

5. Example. In this section, the asymptotic results of robustness found in
Theorem 1 are confronted with data. Without loss of generality, we choose the
improper and noninformative joint prior density π(μ,σ) ∝ 1/σ . Hence, both the
Bayesian and frequentist approaches can be used.

We first illustrate in Section 5.1 the behavior of different estimators of the lo-
cation and scale parameters when one observation moves from 0 to 100, given
that the rest of data lie between −10 and 10. For the estimator based on robust
modeling provided by Theorem 1, we observe an interesting feature that we call
the threshold. The influence of the moving observation on the inference increases
until a certain threshold. Then the nature of this observation gradually changes to
become more and more outlying, as its influence decreases and eventually com-
pletely disappears. In Section 5.2, the performances of concurrent estimators are
compared for different scenarios. We consider simulation of observations from the
normal as well as from contaminated normal distributions, to see how the estima-
tors perform in the presence—or absence—of outliers. The mean square error is
calculated as the measure of performance.

5.1. Illustration of the threshold. We consider a sample of size n = 22 given
by xn = (xk,ω), where the k = 21 nonoutlying observations are represented by
xk = (−10,−9, . . . ,−1,0,1, . . . ,9,10). We study the impact of moving the ob-
servation ω from 0 to 100 on the location–scale parameter inference based on the
maximum likelihood estimator (MLE) calculated for three different densities f ,
in accordance with the model described in Section 3.1. Note that results using the
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Bayesian marginal posterior median are very similar. Naturally, the standard nor-
mal density has been chosen as the nonrobust model. The corresponding MLE are
then the usual sample mean and (biased) sample standard deviation.

The log-Pareto-tailed standard normal density, as illustrated in Figure 1, is also
studied. We have chosen q = 0.95, α = 1.96 and β = 4.08, as discussed in Sec-
tion 4. This modeling leads to complete rejection of the outlier, as described by
Theorem 1. We also examined other values of q (the values of α and β are cal-
culated automatically using the proposed algorithm in Section 4). If we choose a
larger value of q , then the density is closer to the N(0,1), and the same goes for
the inference in the absence of outliers. However, the threshold of robustness in-
creases. The choice of 0.95 appeared to be well balanced for good inference with
and without outliers.

The third density f considered is the Student’s t , a common choice for robust
modeling. This density satisfies the conditions of robustness given in Andrade and
O’Hagan [3] (which lead to partial robustness concerning the scale parameter),
but not the conditions of whole robustness given in Theorem 1. The degrees of
freedom has been set to 10, again to search for balance between good inference
with and without outliers. An implicit scale parameter of 0.964 (other than σ ) has
been added to match its interquartile range to that of the two densities considered
above.

Robustness for the three models is illustrated in Figure 2. On the x-axis, the
observation ω moves from 0 to 100. The estimators μ̂ (left graph) and σ̂ (right
graph) lie on the y-axis.

FIG. 2. Estimation of the location (left graph) and scale (right graph) parameters for the normal
model (dashed lines), the log-Pareto-tailed normal model (solid lines) and the Student’s t model
(dotted-dashed lines), using the MLE.
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The influence of the outlier on a nonrobust inference is clearly visible in the
normal model (dashed lines) by the estimators growing indefinitely as the out-
lier increases. For ω = 100, we find μ̂ = 4.55 and σ̂ = 21.65. Using the normal
quantile of 1.96, this model thus suggests that 95% of the observations should be
between −37.9 and 47.0, which is barely supported by data located between −10
and 10, and not at all by the outlier ω = 100.

Whole robustness is illustrated by the log-Pareto-tailed normal model (solid
lines). We can see in Figure 2 that ω reaches its maximum influence around 16,
where μ̂ and σ̂ are approximately equal to 0.8 and 7. The influence of ω then
begins to decrease after this threshold as μ̂ and σ̂ eventually converge to their
corresponding MLE considering only the nonoutlying observations xk, given by
μ̂ = 0 and σ̂ = 6.06. For ω = 100, we find μ̂ = 0.05 and σ̂ = 6.28. Using the
normal quantile of 1.96 (remember that this model is a standard normal density
except for the 2.5% log-Pareto tails), this model thus suggests that 95% of the
observations should be between −12.3 and 12.4, which is wholly supported by
data, if ω = 100 is considered as an outlier generated from the log-Pareto tails.

Finally, partial robustness is illustrated by the Student’s t model (dotted-dashed
lines). For ω = 100, we find μ̂ = 0.35 and σ̂ = 8.44. Using the appropriate quantile
of 2.147, this model thus suggests that 95% of the observations should be between
−17.8 and 18.5, which is partially supported by data located between −10 and
10. Note that as ω continues to grow beyond 100, our calculations show that μ̂

decreases toward 0, and σ̂ continues to grow toward an upper limit of 8.71. This
indicates that location estimation using the Student’s t is wholly robust. However,
scale parameter estimation is only partially robust, in the sense that the inference
is contaminated by the outlier, but only to a certain extent.

5.2. Performance and simulations. We present here a brief study of the perfor-
mance of the three models described above (the robust log-Pareto-tailed normal,
the partially robust Student’s t and the popular but nonrobust normal distributions)
under three scenarios of simulations. For each scenario and model, a sample of
size n = 30 is simulated 25,000 times, and the location and scale parameters are
estimated each time using the MLE. Note that again, results using the Bayesian
marginal posterior median are very similar. The performance is then measured by
the mean square error (MSE). For each scenario, the true values are μ = 0 and
σ = 1. The MSE for the estimation of μ and σ are given in Tables 1 and 2, respec-
tively.

In the first scenario, the samples are simulated from a N(0,1). We see that in the
absence of outliers, the three models obtain the same excellent performance both
for the estimation of the location (MSE = 0.03) and the scale (MSE = 0.02). This
is rather predictable, because the three densities are very similar, if not identical,
except for the tails. The impact of the tails on the estimation is felt mainly in the
presence of outliers.
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TABLE 1
Mean square error for MLE of μ under different scenarios (n = 30)

Scenario

Model 100% N(0,1) 10% N(0,6) 5% N(8,1)

Log-Pareto-tailed normal 0.03 0.05 0.07
Student’s t 0.03 0.06 0.09
Normal 0.03 0.15 0.29

In the second scenario, we consider a mixture of normal distributions, where
an observation has a 90% probability of being generated from a N(0,1) and 10%
from a N(0,6). A mixture of normal distributions is also studied in the third sce-
nario, where on average 95% of the observations are generated from a N(0,1) and
the remaining 5% from a N(8,1).

As for the estimation of μ, we can see in Table 1 that both log-Pareto-tailed
normal and Student’s t models give very similar MSE for the two contaminated
scenarios (0.05 to 0.09), slightly larger than those of the 100% N(0,1) scenario
without outliers. However, the normal model is clearly affected by the outliers as
its MSE increases to 0.15 and 0.29, respectively, for the second and third scenarios.

The picture for the estimation of σ is a bit different, as can be seen in Table 2.
For both scenarios, the performance of the three models can be markedly discrim-
inated in accordance with known theory. The MSE are around 0.10 for the robust
log-Pareto normal model, around 0.30 for the partially robust Student t model and
above 1 for the nonrobust normal model.

6. Conclusion. Complete rejection of outliers has been investigated in a
location–scale parameter model. The analysis has been done primarily in a
Bayesian context, but it has been extended to the frequentist approach with max-
imum likelihood estimators. Essentially, asymptotic robustness is guaranteed if
modeling is done using a log-regularly varying distribution (with logarithmic tail
decay) and if k > max(l, r), that is, if the number of nonoutliers is larger than both

TABLE 2
Mean square error for MLE of σ under different scenarios (n = 30)

Scenario

Model 100% N(0,1) 10% N(0,6) 5% N(8,1)

Log-Pareto-tailed normal 0.02 0.11 0.09
Student’s t 0.02 0.32 0.30
Normal 0.02 1.46 1.14
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the number of outliers at −∞ and at +∞. The first condition is easy to verify
because it involves only the tails of a density through a limit; there are no inte-
grals, derivatives or distribution functions involved. The second condition is quite
reasonable and intuitive.

We obtain the uniform convergence of the posterior density given the complete
sample to the density considering only the nonoutlying observations. We also ob-
tain the convergence in L1, the convergence in distribution, as well as the uniform
convergence of the likelihoods. Therefore any estimation of the location and scale
parameters based on posterior quantiles or the maximum likelihood estimates is
robust to outliers.

Even if the results are asymptotic, they are still useful in practice with data, as
illustrated by the threshold feature in Section 5.1. When one observation moves
away from the rest of data, its influence on the inference begins to increase grad-
ually, because it brings additional information that helps us discriminate among
the possible values of the parameter. However, there comes a point where this
moving observation conflicts with the rest of data. When this threshold is reached,
the model automatically resolves the conflict by progressively reducing the influ-
ence of the outlying observation. As the conflict grows infinitely, the impact of the
outlier completely disappears. This built-in feature is attractive in practice in that
conflict is managed in a sensitive and automatic way.

Estimating the location and scale parameters is common in statistics, using, for
instance, the well-known sample mean and standard deviation. Results found in
this paper can be readily used in practice to address this problem in a robust way,
whether one prefers the Bayesian approach or maximum likelihood estimation.
We consider a realistic sample of any size with multiple possible outliers in any
direction. The assumption of a symmetric density f with the same tail behavior
seems reasonable for most of the applications. Because we do not know before-
hand which observations are going to be outlying, it is generally desirable to give
each density and each tail the same weight, and to let the largest group dominate
in case of conflict. The choice of the appropriate density is addressed in a practical
way by introducing the family of log-Pareto-tailed symmetric distributions. Fur-
thermore, the model allows us to add prior information on the location and scale
through a very general joint prior density, which includes the possibility to choose
a noninformative prior.

This paper can be generalized in different ways. For instance, we can consider
asymmetric densities f with different tail behavior. The family of log-regularly
varying distributions could be widened to consider, for instance, distributions with
a right tail proportional to (1/z) exp(−δ(log z)γ ), with 0 < γ < 1 and δ > 0, which
is an exponential transformation of the function exp(−δzγ ). Robustness to mis-
specification of the prior can also be investigated.

7. Proofs. The proof of Proposition 5 is given in Section 7.1, and the proof of
result (a) of Theorem 1 is given in Section 7.2.
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7.1. Proof of Proposition 5. To prove that π(μ,σ | xn) is proper [the proof for
π(μ,σ | xk) is omitted because it is similar], it suffices to show that the marginal
m(xn) is finite. Without loss of generality, we assume for convenience that x1 <

x2 < · · · < xn. We also define the constant δ > 0 as half the minimum distance
between two observations, that is,

δ = min
i∈{1,...,n−1}

{
(xi+1 − xi)/2

}
.

We first consider μ ∈ R and δ/M ≤ σ < ∞, where M is the constant of mono-
tonicity given in equation (1). Then we have

∫ ∞
δ/M

∫ ∞
−∞

π(μ,σ)

n∏
i=1

(1/σ)f
(
(xi − μ)/σ

)
dμdσ

a≤ Bn
∫ ∞
δ/M

(1/σ)n
∫ ∞
−∞

(1/σ)f
(
(x1 − μ)/σ

)
dμdσ

b= Bn
∫ ∞
δ/M

(1/σ)n dσ

∫ ∞
−∞

f
(
μ′)dμ′

c= Bn(M/δ)n−1/(n − 1) < ∞.

In step a, we bound σπ(μ,σ) and n−1 densities f by B , where B is given in (2).
In step b, we use the change of variable μ′ = (x1 − μ)/σ . In step c, we use n ≥ 2
as assumed in the Bayesian context given in Section 3.1.

We now consider (xj−1 +xj )/2 ≤ μ ≤ (xj +xj+1)/2, for j = 1, . . . , n and 0 <

σ ≤ δ/M . If we define x0 := −∞ and xn+1 := ∞, the union of these n mutually
disjoint intervals constitutes the real line, that is, −∞ < μ < ∞. Then we have

π(μ,σ)

n∏
i=1

(1/σ)f
(
(xi − μ)/σ

)

a≤ (1/σ)B

n∏
i=1

(1/σ)f
(
(xi − μ)/σ

)

= (1/σ)Bf
(
(xj − μ)/σ

) × (1/σ)

n∏
i=1 (i �=j)

(1/σ)f
(
(xi − μ)/σ

)

b≤ (1/σ)Bf
(
(xj − μ)/σ

) × (1/σ)
[
(1/σ)f (δ/σ )

]n−1

c≤ B(B/δ)n−2(1/σ)f
(
(xj − μ)/σ

) × (1/σ)2f (δ/σ)

∝ (1/σ)f
(
(xj − μ)/σ

) × (
δ/σ 2)

f (δ/σ).

In step a, we bound σπ(μ,σ) by B . In step b, we use f ((xi − μ)/σ) ≤ f (δ/σ)

by the monotonicity of the tails of f (z) since |xi − μ|/σ ≥ δ/σ ≥ δ(M/δ) = M ,
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because if i �= j , we have

|xi − μ| ≥ min
{
(xj − xj−1)/2, (xj+1 − xj )/2

} ≥ δ.

In step c, we bound (1/σ)f (δ/σ ) by B/δ for n − 2 terms. Finally, we have
∫ δ/M

0

(
δ/σ 2)

f (δ/σ)

∫ (xj+xj+1)/2

(xj−1+xj )/2
(1/σ)f

(
(xj − μ)/σ

)
dμdσ

≤
∫ ∞

0
f

(
σ ′)dσ ′

∫ ∞
−∞

f
(
μ′)dμ′ = 1/2 < ∞,

where we use the changes of variable σ ′ = δ/σ and μ′ = (xj − μ)/σ .

7.2. Proof of result (a) of Theorem 1. Consider the model described in Sec-
tion 3.1, and assume that the conditions of regularity on f are satisfied. We also
assume that zf (z) ∈ Lρ(∞) and k > max(l, r), as given in Theorem 1. Two lem-
mas are first given, and the proof of result (a) follows.

LEMMA 1. ∀λ ≥ 0, ∀τ ≥ 1, there exists a constant D(λ, τ) ≥ 1 such that
z ∈R and (μ,σ ) ∈ [−λ,λ] × [1/τ, τ ] ⇒

1/D(λ, τ ) ≤ (1/σ)f
(
(z − μ)/σ

)
/f (z) ≤ D(λ, τ).

PROOF. Proposition 4 states that (1/σ)f ((z−μ)/σ)/f (z) converges to 1 uni-
formly in any set (μ,σ ) ∈ Eλ,τ as z → ∞, where Eλ,τ = [−λ,λ] × [1/τ, τ ].
Hence, ∀λ ≥ 0 and ∀τ ≥ 1, the ratio (1/σ)f ((z − μ)/σ)/f (z) can be bounded,
say by 1/1.01 and 1.01, if |z| is larger than a certain constant, say A(λ, τ), using
the symmetry of f . Therefore, we choose D(λ, τ) ≥ 1.01.

If −A(λ, τ) ≤ z ≤ A(λ, τ), we observe that |z − μ|/σ is also bounded on
(μ,σ ) ∈ Eλ,τ . Therefore, since f is continuous and strictly positive on R, it fol-
lows that ∀λ ≥ 0 and ∀τ ≥ 1, we can find a constant D(λ, τ) ≥ 1.01 as large as we
want such that the ratio (1/σ)f ((z − μ)/σ)/f (z) is bounded below by 1/D(λ, τ )

and above by D(λ, τ), for any (μ,σ ) ∈ Eλ,τ . �

LEMMA 2. There exists a constant C > 0 such that

|z| ≥ 2M 
⇒ sup
μ∈R

f (μ)f (z − μ)

f (z)
≤ C,

where M is given in equation (1).

PROOF. Let the constant C = 2D(0,2)B , where B is given in equation (2),
and D(0,2) comes from Lemma 1. Consider |z| ≥ 2M .

First, consider 0 ≤ |μ| ≤ |z|/2. We have

f (μ)f (z − μ)

f (z)

a≤ f (μ)f (z/2)

f (z)

b≤ 2D(0,2)f (μ)
c≤ 2D(0,2)B = C.
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In step a, we use f (z − μ) ≤ f (z/2) by the monotonicity of the tails of f since
|z − μ| ≥ |z|/2 ≥ (2M)/2 = M . In step b, we use (1/2)f (z/2)/f (z) ≤ D(0,2)

using Lemma 1. In step c, we bound f by B .
Second, consider |z|/2 ≤ |μ| < ∞. We have

f (μ)f (z − μ)

f (z)
≤ f (z/2)f (z − μ)

f (z)
≤ 2D(0,2)f (z − μ) ≤ 2D(0,2)B = C,

using f (μ) ≤ f (z/2) in the first inequality by the monotonicity of the tails of f

since |μ| ≥ |z|/2 ≥ (2M)/2 = M and the same arguments as above for the other
inequalities. �

We first observe that

m(xn)

m(xk)
∏n

i=1[f (xi)]li+ri

= m(xn)

m(xk)
∏n

i=1[f (xi)]li+ri

∫ ∞
−∞

∫ ∞
0

π(μ,σ | xn) dσ dμ

=
∫ ∞
−∞

∫ ∞
0

π(μ,σ)
∏n

i=1[(1/σ)f ((xi − μ)/σ)]ki+li+ri

m(xk)
∏n

i=1[f (xi)]li+ri
dσ dμ

=
∫ ∞
−∞

∫ ∞
0

π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

dσ dμ.

Therefore, we show that the last integral converges to 1 as ω → ∞ to prove re-
sult (a). If we use Lebesgue’s dominated convergence theorem to pass the limit
ω → ∞ inside the integral, we have

lim
ω→∞

∫ ∞
−∞

∫ ∞
0

π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

dσ dμ

=
∫ ∞
−∞

∫ ∞
0

lim
ω→∞π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

dσ dμ

=
∫ ∞
−∞

∫ ∞
0

π(μ,σ | xk) dσ dμ = 1,

using Proposition 4 in the second equality and Proposition 5 in the last one. Note
that pointwise convergence is sufficient, for any value of μ ∈ R and σ > 0, once
the limit is passed inside the integral.

However, in order to use Lebesgue’s dominated convergence theorem, we need
to show that π(μ,σ | xk)

∏n
i=1[(1/σ)f ((xi − μ)/σ)/f (xi)]li+ri is bounded, for

any value of ω ≥ x0, by an integrable function of μ and σ that does not depend
on ω. The constant x0 can be chosen as large as we want, and some minimum
values for x0 will be given throughout the proof.
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To achieve this, we divide the domain of integration into four quadrants delin-
eated by the axes μ = 0 and σ = 1. Note that the proofs are only given for the two
quadrants in the region of μ ≥ 0 because the proofs for μ < 0 are similar.

We choose the constant x0 larger than a certain threshold such that the ranking
of the set {|xi | : li + ri = 1} remain unchanged for all ω ≥ x0. Given that each
observation xi can be written as xi = ai + biω, with bi = 0 if ki = 1, bi < 0 if
li = 1 and bi > 0 if ri = 1, the ranking is therefore primarily determined by the
values of |bi |. Then, without loss of generality, we assume for convenience that

min
i : li+ri=1

{|bi |} = 1 and ω = min
i : li+ri=1

{|xi |}.
If li + ri = 1, we can use Lemma 1, with xi = ai + biω = bi(ω + ai/bi) and

|bi | ≥ 1, to establish that the ratio f (xi)/f (ω) is bounded, precisely by

1/D
(|ai/bi |, |bi |) ≤ |bi |f (xi)/f (ω) ≤ D

(|ai/bi |, |bi |).
QUADRANT 1. Consider 0 ≤ μ < ∞ and 1 ≤ σ < ∞. We have

π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

∝ π(μ,σ)

σn

n∏
i=1

f ((xi − μ)/σ)

[f (xi)]li+ri

a≤ B

σn+1

n∏
i=1

D(|ai |,1)f ((biω − μ)/σ)

[f (xi)]li+ri

b≤ 1

[f (ω)]l+r

B

σn+1

n∏
i=1

D
(|ai |,1

)
f

(
(biω − μ)/σ

)[|bi |D(|ai/bi |, |bi |)]li+ri

∝ 1

[f (ω)]l+r

1

σn+1

n∏
i=1

f
(
(biω − μ)/σ

)

c= 1

[f (ω)]l+r

[f (μ/σ)]k
σ n+1

n∏
i=1

[
f

(
(biω − μ)/σ

)]li+ri

= (1/σ)f (μ/σ)

σ k−1/2

[
ω/σ

ωf (ω)

]l+r [f (μ/σ)]k−1

σ 1/2

n∏
i=1

[
f

(
(biω − μ)/σ

)]li+ri .

In step a, we use xi = ai + biω and

f
(
(xi − μ)/σ

) = f
(
(biω − μ)/σ + ai/σ

) ≤ D
(|ai |,1

)
f

(
(biω − μ)/σ

)
using Lemma 1 since |ai/σ | ≤ |ai |. We also bound σπ(μ,σ) by B . In step b, we
use 1/f (xi) ≤ |bi |D(|ai/bi |, |bi |)/f (ω). In step c, we set bi = 0 if ki = 1 and we
use f (−μ/σ) = f (μ/σ) by symmetry of f .
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It suffices to show that[
ω/σ

ωf (ω)

]l+r [f (μ/σ)]k−1

σ 1/2

n∏
i=1

[
f

(
(biω − μ)/σ

)]li+ri < ∞,

since (1/σ)k−1/2(1/σ)f (μ/σ) is an integrable function on Quadrant 1,∫ ∞
1

(1/σ)k−1/2
∫ ∞

0
(1/σ)f (μ/σ)dμdσ ≤

∫ ∞
1

(1/σ)k−1/2 dσ = 1

k − 3/2
≤ 2,

since k ≥ 2. To achieve this, we split the region of σ into three parts between
1 < ω1/2 < ω/(2M) < ∞, where M is defined in equation (1). Note that since
ω ≥ x0, this is well defined if x0 > max(1, (2M)2).

Consider 0 ≤ μ < ∞ and ω/(2M) ≤ σ < ∞. Then we have[
ω/σ

ωf (ω)

]l+r [f (μ/σ)]k−1

σ 1/2

n∏
i=1

[
f

(
(biω − μ)/σ

)]li+ri

a≤ Bn−1
[

ω/σ

ωf (ω)

]l+r 1

σ 1/2

b≤ Bn−1(2M)l+r+1/2 (1/ω)1/2

[ωf (ω)]l+r

c≤ Bn−1(2M)l+r+1/2 (1/ω)1/2

(logω)−(ρ+1)(l+r)

d≤ Bn−1(2M)l+r+1/2[
2(ρ + 1)(l + r)/e

](ρ+1)(l+r)
< ∞.

In step a, we use f (·) ≤ B . In step b, we use ω/σ ≤ 2M and (1/σ) ≤ (2M)/ω.
In step c, we use ωf (ω) > (logω)−ρ−1 if ω ≥ x0 ≥ A(1), where A(1) comes
from Proposition 2. In step d , it is purely algebraic to show that the maximum of
(logω)β/ω1/2 is (2β/e)β for ω > 1 and β > 0, where β = (ρ + 1)(l + r) in our
equation.

Now consider the two other parts combined (we will split them in the next step),
that is, 0 ≤ μ < ∞ and 1 ≤ σ ≤ ω/(2M). We have[

ω/σ

ωf (ω)

]l+r [f (μ/σ)]k−1

σ 1/2

n∏
i=1

[
f

(
(biω − μ)/σ

)]li+ri

a≤
[

ω/σ

ωf (ω)

]l+r [f (μ/σ)]k−1

σ 1/2

n∏
i=1

[
f (biω/σ)

]li [f (
(biω − μ)/σ

)]ri

= [f (μ/σ)]k−r−1

σ 1/2

n∏
i=1

[
(ω/σ)f (biω/σ)

ωf (ω)

]li+ri [f (biω/σ − μ/σ)f (μ/σ)

f (biω/σ)

]ri

b≤ Bk−r−1Cr 1

σ 1/2

n∏
i=1

[
(ω/σ)f (biω/σ)

ωf (ω)

]li+ri

c≤ Bk−r−1Cr 1

σ 1/2

[
(ω/σ)f (ω/σ)

ωf (ω)

]l+r

.
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In step a, we use f ((biω − μ)/σ) ≤ f (biω/σ) if li = 1 (which means bi < 0)
by the monotonicity of the tails of f since |biω − μ|/σ ≥ |bi |ω/σ ≥ |bi |(2M) ≥
2M ≥ M . In step b, we use f (μ/σ) ≤ B and we use Lemma 2 since |bi |ω/σ ≥
|bi |(2M) ≥ 2M . In step c, we use f (biω/σ) ≤ f (ω/σ) by the monotonicity of
the tails of f since |bi |ω/σ ≥ ω/σ ≥ 2M ≥ M .

Consider 0 ≤ μ < ∞ and ω1/2 ≤ σ ≤ ω/(2M). We have

1

σ 1/2

[
(ω/σ)f (ω/σ)

ωf (ω)

]l+r
a≤ Bl+r (1/ω)1/4

[ωf (ω)]l+r

b≤ Bl+r (1/ω)1/4

(logω)−(ρ+1)(l+r)

c≤ Bl+r[4(ρ + 1)(l + r)/e
](ρ+1)(l+r)

< ∞.

In step a, we use (ω/σ)f (ω/σ) ≤ B and (1/σ)1/2 ≤ (1/ω)1/4. In step b, we use
ωf (ω) > (logω)−ρ−1 if ω ≥ x0 ≥ A(1), where A(1) comes from Proposition 2.
In step c, it is purely algebraic to show that the maximum of (logω)β/ω1/4 is
(4β/e)β for ω > 1 and β > 0, where β = (ρ + 1)(l + r) in our equation.

Finally consider 0 ≤ μ < ∞ and 1 ≤ σ ≤ ω1/2. Then we have

1

σ 1/2

[
(ω/σ)f (ω/σ)

ωf (ω)

]l+r
a≤

[
ω1/2f (ω1/2)

ωf (ω)

]l+r
b≤ 2(ρ+1)(l+r) < ∞.

In step a, we use 1/σ ≤ 1, and we use (ω/σ)f (ω/σ) ≤ ω1/2f (ω1/2) by the
monotonicity of the tails of |z|f (z) since ω/σ ≥ ω1/2 ≥ x

1/2
0 ≥ M if x0 ≥ M2.

In step b, we use ω1/2f (ω1/2)/(ωf (ω)) ≤ 2(1/2)−ρ = 2ρ+1 if ω ≥ x0 ≥ A(1,2),
where A(1,2) comes from the definition of a log-regularly varying function.

QUADRANT 2. Consider −∞ < μ ≤ 0 and 1 ≤ σ < ∞. The proof for Quad-
rant 2 is similar to that of Quadrant 1.

QUADRANT 3. Consider −∞ < μ ≤ 0 and 0 < σ ≤ 1. The proof for Quad-
rant 3 is similar to that of Quadrant 4, given below. The condition k > r is therefore
replaced by k > l. Note that k > max(l, r) is assumed in Theorem 1.

QUADRANT 4. Consider 0 ≤ μ < ∞ and 0 < σ ≤ 1. We need to show, actu-
ally, that

lim
ω→∞

∫ ∞
0

∫ 1

0
π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

dσ dμ

=
∫ ∞

0

∫ 1

0
π(μ,σ | xk) dσ dμ.
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For Quadrant 1, we show this result when we integrate σ between 1 and ∞. We
bound the integrand of the left term, for any value of ω ≥ x0, by an integrable func-
tion of μ and σ that does not depend on ω, in order to use Lebesgue’s dominated
convergence theorem to pass the limit ω → ∞ inside the integral. For Quadrant 4,
we proceed slightly differently. We begin by breaking down the left term into two
parts as follows:

lim
ω→∞

∫ ∞
0

∫ 1

0
π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

dσ dμ

= lim
ω→∞

∫ ∞
0

∫ 1

0
π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

× 1[0,ω/2](μ)dσ dμ

+ lim
ω→∞

∫ ∞
ω/2

∫ 1

0
π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

dσ dμ,

where the indicator function 1A(μ) is equal to 1 if μ ∈ A, and equal to 0 otherwise.
We then show that the first part is equal to the integral

∫ ∞
0

∫ 1
0 π(μ,σ | xk) dσ dμ,

and the second part is equal to 0.
For the first equality, we again use Lebesgue’s dominated convergence theorem

to pass the limit ω → ∞ inside the integral. We have

lim
ω→∞

∫ ∞
0

∫ 1

0
π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

1[0,ω/2](μ)dσ dμ

=
∫ ∞

0

∫ 1

0
π(μ,σ | xk) lim

ω→∞
n∏

i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

× 1[0,ω/2](μ)dσ dμ

=
∫ ∞

0

∫ 1

0
π(μ,σ | xk) × 1 × 1[0,∞)(μ)dσ dμ

=
∫ ∞

0

∫ 1

0
π(μ,σ | xk) dσ dμ,

using Proposition 4 in the second equality. Note that pointwise convergence is
sufficient, for any value of μ ∈ R and σ > 0, once the limit is passed inside the
integral. However, in order to use Lebesgue’s dominated convergence theorem,
we need to show that for any value of ω ≥ x0, the integrand is bounded by an
integrable function of μ and σ that does not depend on ω.
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Consider 0 ≤ μ ≤ ω/2 (the integrand is equal to 0 if ω/2 < μ < ∞) and 0 <

σ ≤ 1. We have

π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

1[0,ω/2](μ)

a≤ π(μ,σ | xk)

n∏
i=1

[
2D(0,2)

(1/σ)f ((xi − μ)/σ)

f (xi/2)

]li+ri

∝ π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi/2)

]li+ri

b≤ π(μ,σ | xk)

n∏
i=1

[
f (xi − μ)

f (xi/2)

]li+ri

c≤ π(μ,σ | xk),

and π(μ,σ | xk) is an integrable function. In step a, we use 1[0,ω/2](μ) = 1
and (1/2)f (xi/2)/f (xi) ≤ D(0,2) using Lemma 1. In step b, we use (|xi −
μ|/σ)f ((xi − μ)/σ) ≤ |xi − μ|f (xi − μ) by the monotonicity of the tails of
|z|f (z), and in step c we use f (xi − μ) ≤ f (xi/2) by the monotonicity of the
tails of f (z) since |xi − μ|/σ ≥ |xi − μ| ≥ |xi |/2 ≥ ω/2 ≥ x0/2 ≥ M , if we
choose x0 ≥ 2M . Note that the condition μ ≤ ω/2(≤ xi/2) is used only to jus-
tify |xi − μ| ≥ |xi |/2 when ri = 1.

Now we show the second equality, that is,

lim
ω→∞

∫ ∞
ω/2

∫ 1

0
π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

dσ dμ = 0.

We first bound above the integrand, and then we show that the integral of the upper
bound converges to 0 as ω → ∞.

Consider ω/2 ≤ μ < ∞ and 0 < σ ≤ 1. We have

π(μ,σ | xk)

n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (xi)

]li+ri

a≤ [
2D(0,2)

]l
π(μ,σ | xk)

n∏
i=1

[ |bi |D(|ai/bi |, |bi |)(1/σ)f ((xi − μ)/σ)

f (ω)

]ri

∝ π(μ,σ)

n∏
i=1

[
(1/σ)f

(
(ai − μ)/σ

)]ki

[
(1/σ)f ((xi − μ)/σ)

f (ω)

]ri

b≤ (1/σ)B
[
4D(0,4)(1/σ)f (ω/σ)

]k n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (ω)

]ri
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∝ (1/σ)
[
(1/σ)f (ω/σ)

]k n∏
i=1

[
(1/σ)f ((xi − μ)/σ)

f (ω)

]ri

c≤ (1/σ)
[
(1/σ)f (ω/σ)

]k−r
n∏

i=1

[
(1/σ)f

(
(xi − μ)/σ

)]ri

d= (1/σ)
[
(1/σ)f (ω/σ)

]k−r
r∏

i=1

(1/σ)f
(
(xi − μ)/σ

)
.

In step a, we use (1/σ)f ((xi − μ)/σ)/f (xi) ≤ 2D(0,2) if li = 1, using the
same arguments given above for the case 0 ≤ μ ≤ ω/2. We also use 1/f (xi) ≤
|bi |D(|ai/bi |, |bi |)/f (ω) if ri = 1. In step b, we bound σπ(μ,σ) by B . We also
use

f
(
(ai − μ)/σ

) ≤ f
(
(1/4)ω/σ

) ≤ 4D(0,4)f (ω/σ)

if ki = 1 using the monotonicity of the tails of f (z) in the first inequality since,
if we define a(k) = maxi : ki=1{|ai |} with ω ≥ x0 ≥ 4a(k), we have |ai − μ|/σ =
(μ − ai)/σ ≥ (ω/2 − a(k))/σ ≥ (ω/2 − ω/4)/σ = (1/4)ω/σ ≥ ω/4 ≥ x0/4 ≥ M

if we choose x0 ≥ 4M . We use Lemma 1 in the second inequality. In step c,
we use (ω/σ)f (ω/σ) ≤ ωf (ω), using the monotonicity of the tails of |z|f (z)

since ω/σ ≥ ω ≥ x0 ≥ M if we choose x0 ≥ M . In step d , we assume for con-
venience and without loss of generality that the right outliers are denoted by
x1 < x2 < · · · < xr .

We now split the real line (which includes the region ω/2 ≤ μ < ∞) into r

mutually disjoint intervals given by (xj−1 + xj )/2 ≤ μ ≤ (xj + xj+1)/2, for j =
1, . . . , r , where we define x0 := −∞ and xr+1 := ∞. We also define the constant
δ > 0 as

δ = min
i∈{1,...,r−1}

{
(xi+1 − xi)/2

}
.

Consider (xj−1 + xj )/2 ≤ μ ≤ (xj + xj+1)/2, for j = 1, . . . , r and 0 < σ ≤ 1.
Then we have

(1/σ)
[
(1/σ)f (ω/σ)

]k−r
r∏

i=1

(1/σ)f
(
(xi − μ)/σ

)

a≤ (B/δ)r−1(1/σ)
[
(1/σ)f (ω/σ)

]k−r
(1/σ)f

(
(xj − μ)/σ

)
b≤ (B/δ)r−1Bk−r−1ω−(k−r)(ω/σ 2)

f (ω/σ) × (1/σ)f
(
(xj − μ)/σ

)
.

In step a, we use, for i �= j , (1/σ)f ((xi − μ)/σ) ≤ B/|xi − μ| ≤ B/δ, where we
bound |z|f (z) by B , and we use |xi − μ| ≥ δ because if i �= j , we have

|xi − μ| ≥ min
{
(xj − xj−1)/2, (xj+1 − xj )/2

} ≥ δ.
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In step b, we use (ω/σ)f (ω/σ) ≤ B for k − r − 1 terms. Finally, we have

ω−(k−r)
∫ 1

0

(
ω/σ 2)

f (ω/σ)

∫ (xj+xj+1)/2

(xj−1+xj )/2
(1/σ)f

(
(xj − μ)/σ

)
dμdσ

≤ ω−(k−r)
∫ ∞

0

(
ω/σ 2)

f (ω/σ)

∫ ∞
−∞

(1/σ)f
(
(xj − μ)/σ

)
dμdσ

a= ω−(k−r)
∫ ∞

0
f

(
σ ′)dσ ′

∫ ∞
−∞

f
(
μ′)dμ′ ≤ ω−(k−r) b→ 0 as ω → ∞.

In step a, we use the changes of variable σ ′ = ω/σ and μ′ = (xj −μ)/σ . In step b,
we use the condition k > r .
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