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MINIMAX-OPTIMAL NONPARAMETRIC REGRESSION IN
HIGH DIMENSIONS

BY YUN YANG AND SURYA T. TOKDAR

University of California, Berkeley and Duke University

Minimax L2 risks for high-dimensional nonparametric regression are
derived under two sparsity assumptions: (1) the true regression surface is
a sparse function that depends only on d = O(logn) important predictors
among a list of p predictors, with logp = o(n); (2) the true regression sur-
face depends on O(n) predictors but is an additive function where each addi-
tive component is sparse but may contain two or more interacting predictors
and may have a smoothness level different from other components. For either
modeling assumption, a practicable extension of the widely used Bayesian
Gaussian process regression method is shown to adaptively attain the opti-
mal minimax rate (up to logn terms) asymptotically as both n,p →∞ with
logp = o(n).

1. Introduction. Rapid advances in technology have empowered researchers
to collect data on a large number of explanatory variables to predict many out-
comes of interest [5]. Because the relationship between an outcome Y and its
predictors X1, . . . ,Xp may be highly nonlinear and involve interaction, there is
a practical need to investigate statistical estimation under multivariate regression
models

Y = μ+ f (X1, . . . ,Xp) + ε, ε ∼ N
(
0, σ 2),(1.1)

with minimal assumptions made on f . The quality of estimation that may be
achieved under an assumed model can be mathematically quantified by the mini-
max risk of estimating f from n data points. A classic result due to Charles Stone
[24] states that if no assumption is made on how f depends on X1, . . . ,Xp other
than requiring it to be differentiable with a smoothness level α > 0 (definition be-
low), then the associated minimax risk decays in n at a rate n−α/(2α+p). This rate
is very slow when p is large, which means a very large sample size is needed for
high quality statistical estimation—a phenomenon that has been termed the “curse
of dimensionality.” The curse of dimensionality becomes even more pronounced
in the so-called large p small n setting, where the minimax risk decay rate is ex-
pressed as a function of both n and p, with p growing faster than n [32].
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Practically motivated modeling assumptions must focus on nonparametric
spaces of functions with lower inherent dimensions than the manifest dimension p.
An example of such assumptions is

M1. f potentially depends on all elements of X = (X1, . . . ,Xp), but X itself lies
in a low-dimensional manifold Md in the ambient space R

p .

It is well known that under M1, the minimax rate is n−2α/(2α+d) which is deter-
mined by the smoothness level α of f and the latent manifold dimension d [2, 13,
14, 23, 36, 37], but does not depend on the ambient dimension p. Various nonpara-
metric regression techniques that operate on the ambient space and do not require
estimation of the underlying manifold indeed achieve this minimax rate without
any prior knowledge of d or α [14, 36].

However, for many high-dimensional applications, such as gene expression
studies, a low-dimensional manifold assumption on X may not be tenable or veri-
fiable. In such cases, one often uses the following sparsity inducing assumption:

M2. f depends on a small subset of d predictors with d ≤ min{n,p}.
M2 has served as the springboard for many widely used regression methods, in-
cluding high-dimensional linear regression approaches, such as the Lasso [26] and
the Dantzig selector [6], and nonparametric regression methods with variable se-
lection, such as the Rodeo [15] and the Gaussian process regression [21]. The latter
two allow flexible shape estimation of f and is able to capture interactions among
the selected important predictors. However, in light of the classic result due to [24]
it is conceivable that when f is allowed to be fully nonparametric, M2 should
also suffer from the curse of dimensionality in a large p small n setting, unless
d is much much smaller than p, that is, the regression function is assumed to be
extremely sparse. A precise result that extends the work of [24] to account for
predictor selection is presented in Section 3.

To relax this assumption of extreme sparsity without having to completely give
up on nonparametric shape flexibility, we introduce a third modeling assumption:

M3. f may depend on d � min{nγ ,p} variables for some γ ∈ (0,1) but admits an
additive structure f =∑k

s=1 fs , where each component function fs depends
on a small ds number of predictors.

Clearly, M3 subsumes M2 as a special case. In Section 3, we show M2 gives
slowest minimax rates within M3. At the opposite extreme is the modeling as-
sumption that f admits a completely additive structure with univariate components
f (X) = f1(Xi1)+ · · · + fd(Xid ) for which scalable algorithms have been devised
[11] and attractive minimax risk bounds have been derived albeit under the strong
assumption that all component functions fs have the same smoothness level [12,
17, 20, 22].

Compared to either of these two extremes, M3 provides a much more practi-
cally attractive theory of large p nonparametric regression. In Theorem 3.1, we
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derive sharp upper and lower bounds on the minimax L2 estimation risk under
M3 as a function of n, p, k, component sizes d1, . . . , dk and smoothness levels
of f1, . . . , fk which are allowed to have different levels of smoothness than one
another. Minimax rates under M2 and the completely additive structure of [20]
follow as corollaries to this general result. Our calculations suggest that M3 offers
a minimax risk that decays quickly in n even when p grows almost exponentially
in n, f involves nearly logp many predictors and these predictors interact with
each other.

In Section 4, we demonstrate that a conceptually straightforward extension of
the widely used Gaussian process regression method (see, e.g., [21], for a review)
achieves the minimax rate adaptively across all subclasses of M3 under suitable
large p small n asymptotics where p grows almost exponentially in n. In this pa-
per we restrict only to a theoretical study of this new approach, which we name
“additive Gaussian process regression.” This approach appears entirely practicable
with computational demands similar to those of the popular Bayesian additive re-
gression tree method [7]. A full fledged methodological development of the same
is underway and will be reported elsewhere.

The rest of the paper is organized as follows. Section 2 introduces the notation
and some basic assumptions. Section 3 summarizes our main minimax results for
high-dimensional nonparametric regression under M2 and M3. Section 4 proves
the adaptive minimax optimality of additive Gaussian process regression. Section 5
provides proofs of our main results in Sections 3 and 4. Supporting technical re-
sults and proofs are presented in Section 6.

2. Notation. Let (Xi, Y i), i = 1, . . . , n denote the observations on (X,Y ).
We make a stochastic design assumption that X1, . . . ,Xn are independent and
identically distributed (IID) according to some compactly supported probability
measure Q on R

p and that f ∈ L2(Q), the linear space of real valued func-
tions on R

p equipped with inner product 〈f,g〉Q = ∫
f (x)g(x)Q(dx) and norm

‖f ‖Q = 〈f,f 〉1/2
Q . We do not need to know or estimate Q for the purpose of esti-

mating f , but it is a natural candidate to judge average prediction accuracy at future
observations of X drawn from Q, as will be the case under simple exchangeability
assumptions. Without loss of generality assume support (Q) ⊂ [0,1]p . Let ‖ · ‖
stand for the L2 norm under the Lebesgue measure.

The L2 minimax risk of estimation associated with any function space � ⊂
L2(Q) is defined as

r2
n(�,Q,μ,σ) = inf

f̂∈An

sup
f∈�

Ef,Q‖f̂ − f ‖2
Q,

where An is the space of all measurable functions of data to L2(Q) and Ef,Q

denotes expectation under the model: Xi ∼ Q, Y i |Xi ∼ N(μ + f (Xi), σ 2), inde-
pendently across i = 1, . . . , n. When no risk of ambiguity is present, we shorten
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the notation rn(�,Q,μ,σ) to rn and call rn the minimax risk or the minimax rate,
when viewed as a function of the sample size n.

Let N denote the set of natural numbers and N0 = N ∪ {0}. For any d-dimen-
sional multiindex a = (a1, . . . , ad) ∈ N

d
0 define |a| = a1 + · · · + ad and let Da

denote the mixed partial derivative operator ∂ |a|/∂x
a1
1 · · · ∂x

ad

d . For any real num-
ber b, let 
b� denote the largest integer strictly smaller than b. Use the nota-
tion Cα,d to denote the Banach space of Hölder α-smooth functions on [0,1]d
equipped with the norm

‖f ‖Cα,d = ∑
|k|≤
α�

∥∥Dkf
∥∥∞ + max

x �=y∈[0,1]d
∣∣D
α�f (x)− D
α�(y)

∣∣/‖x − y‖α−
α�.

Let C
α,d
1 denote the unit ball of Cα,d .

For any b ∈ {0,1}p and x = (x1, . . . , xp) ∈ R
p , let xb = (xj :bj = 1) denote

the vector of |b| =∑p
j=1 bj predictors picked by b and let T b :C(R|b|) → C(Rp)

denote the mapping that takes an f ∈ C(R|b|) to T bf :x �→ f (xb). Let Bp,d denote
the set of all b ∈ {0,1}p with |b| = d . We formalize the space of centered, p-
variate, α-smooth functions of sparsity d and bound λ as

�
p
S (λ,α, d) :=

{ ⋃
b∈Bp,d

T b(λC
α,d
1

)}∩Zp,

where Zp = {f ∈ C[0,1]p :
∫

f (x) dx = 0}. The condition that f is centered
can be imposed without any loss of generality due to the presence of the over-
all mean parameter μ in our regression model. The function spaces �

p
S (λ,α, d)

make up M2. For M3, we consider additive convolutions of multiple �
p
S spaces

with an additional restriction on the number of components a single predictor can
appear in. For k, d̄ ∈N, d ∈N

k define

Bp,k,d,d̄ =
{(

b1, . . . , bk) :bs ∈ Bp,ds , bs �= bt ,1 ≤ s �= t ≤ k,

k∑
t=1

bt
j ≤ d̄,1 ≤ j ≤ p

}

and

�
p,k,d̄
A (λ,α, d)

=
{
f =

k∑
s=1

λsT
bs

fs :fs ∈ C
αs,ds

1 ,1 ≤ s ≤ k,
(
b1, . . . , bk) ∈ Bp,k,d,d̄

}
∩Zp.

In studying minimax rates for a fixed k, one can set d̄ as large as k. But in the more
interesting large p small n scenario where k increases with p, the use of a fixed d̄

is crucial for interpreting our results.
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For a metric space (S, ρ), the covering ε-entropy of a subset S ⊂ S is the log-
arithm of the minimum number of ρ-balls of radius ε and centers in S needed to
cover S, and is denoted V (ε, S,ρ). A finite subset A ⊂ S is called ε-packing in S

if any two elements of A have a ρ-distance at least ε. The logarithm of the maxi-
mal cardinality of an ε-packing set in S is called the packing ε-entropy of S and is
denoted C(ε,S,ρ).

3. Minimax risks for large p small n regression. Precise calculations of rn
under M2 and M3 and theoretical results on whether these rates are achieved in
practice are known only under additional simplifying assumptions on the shape
of f , or, for inference tasks that are simpler than prediction. We provide a brief
overview of known results before presenting our main theorem on minimax L2
risk for regression under M3.

3.1. A brief overview of existing results. For linear regression where � is
taken as the set of functions f (x) = xT β with β in an lq (q ≤ 1) ball of Rp and
some additional regularity assumptions are made on the design matrix, [19] shows
that

r2
n �

{
d log(p/d)/n, for q = 0,
(logd/n)1−q/2, for q ∈ (0,1],

up to some multiplicative constant, where d is the number of important predic-
tors. As shown in [9], these rates are the typical minimax risks associated with
variable selection uncertainty. For q = 0, the lq norm precisely encodes the spar-
sity condition of M2. See [32, 33] and [34] for additional results and overviews.
Many authors have established near minimax performance guarantees of various
linear regression methods under the L2 prediction loss; see, for example, [3, 6, 18]
and [38].

As a nonlinear, nonparametric generalization of the linear model, [20] considers
the completely additive special case of M3 where all k components are univariate
and have the same smoothness α > 0 and shows

r2
n � kn−2α/(2α+1) + k logp

n
.

Clearly, the minimax risk decomposes into two terms, where the first term is the
sum of minimax risks of estimating each component and the second term is the
variable selection uncertainty.

An entirely different generalization of the linear model is the sparse, fully non-
parametric regression model M2. To the best of our knowledge, the only minimax
rates result in this context is [9], which analyzes minimax risks of support recov-
ery where the objective is to identify the important predictor rather than estimation
of f itself. It is shown that if d log(p/d)/n is lower bounded by some positive
constant, then for some constant c > 0,

inf
Ĵn

sup
f∈�

Pf (Ĵn �= Jf ) ≥ c,
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where Ĵn ranges over all variable selection estimators, that is, measurable maps of
data to the space of all subsets of {1, . . . , p}, � is the space of all differentiable
functions that depend on only d many predictors and have squared integrable gra-
dients, and Jf ⊂ {1, . . . , p} is the index set of truly important predictors associated
with f . Because of this result, we refer to the term d log(p/d)/n as the risk associ-
ated with variable selection uncertainty. For large p, d log(p/d) is asymptotically
of the same order as the logarithm of

(p
d

)
, the number of ways to select d out of

p predictors. Any estimation problem involving high-dimensional variable selec-
tion is likely to include a variable selection uncertainty term d log(p/d)/n in its
minimax rate.

3.2. New results on minimax rates under M2 and M3. We calculate minimax
L2 risks under the following condition on the stochastic design:

ASSUMPTION Q. Q admits a probability density function (p.d.f.) q on [0,1]p
such that q̄ := supx q(x) < ∞ and infx∈[1/2−�,1/2+�]p q(x) ≥ q for some q > 0
and 0 < � ≤ 1/2.

The requirement of q being lower bonded on some sub-hypercube inside [0,1]p
is crucial to obtaining sharp lower bounds on the minimax risk. This requirement
is essentially equivalent to asking that X cannot be reduced to a lower dimen-
sion without some loss of information, for example, X cannot lie on a lower-
dimensional subspace of manifold as assumed under M1.

THEOREM 3.1. Under Assumption Q, there exist N0 ∈N, 0 < C ≤ 1 ≤ C, all
depending only on d̄ , maxs ds , mins αs , maxs αs , mins λs , maxs λs , such that for
all n > N0,

Cε2
n ≤ r2

n

(
�

p,k,d̄
A (λ,α, d),Q,μ,σ

)≤ Cε̄2
n,

where

ε2
n =

k∑
s=1

λ2
s

(√
nλs

σ

)−4αs/(2αs+ds)

+ σ 2∑
s ds

n
log

p∑
s ds

and

ε̄2
n =

k∑
s=1

λ2
s

(√
nλs

σ

)−4αs/(2αs+ds)

+ σ 2∑
s ds

n
log

p

mins ds

.

REMARK 3.2. By choosing k = 1 and d̄ = 1 in Theorem 3.1, we obtain the
minimax risk for M2 as a simple corollary,

r2
n

(
�

p
S (λ,α, d),Q,μ,σ

)� λ2
(√

nλ

σ

)−4α/(2α+d)

+ σ 2d

n
log

p

d
.(3.1)



658 Y. YANG AND S. T. TOKDAR

REMARK 3.3. One can shed light on the scope and limitations of a model
by investigating the conditions needed on the model parameters in order to bound
the model’s minimax risk by a given margin. From (3.1), the minimax risk of M2
consists of two terms. The second term is the typical risk associated with variable
selection uncertainty [9] which remains small as long as logp � nβ for some β ∈
(0,1), which gives the standard large p small n dynamics between sample size and
predictor count. The first term in (3.1) is the minimax risk of estimating a d-variate,
α-smooth regression function f0 when there is no variable selection uncertainty.
For a fixed smoothness level α, this term remains small as long as d = o(logn) =
o(log logp) under standard large p small n dynamics. In other words, meaningful
statistical learning is possible under M2 only when the true number of important
predictors is much much smaller than the total predictor count.

REMARK 3.4. M3 offers a platform to break away from such extreme spar-
sity conditions. We consider two special cases for illustration under a standard
large p small n dynamic: logp = nβ for some β ∈ (0,1), while allowing k

to depend on n. First, suppose all additive components fs have the same di-
mension (ds ≡ d), smoothness (αs ≡ α) and magnitude (λs ≡ λ), all of which
remain fixed as k increases n. This situation includes as a special case the com-
pletely additive framework of [20]. From Theorem 3.1, the associated minimax
risk r2

n � kn−2α/(2α+d) + kd log(p/d)/n which remains small as long as k =
o(min{n2α/(2α+d), logp/n}) � o(nγ ) for some γ ∈ (0,1). Thus, the total number
of important predictors, which is of the order kd , could be as large as a fractional
power of logp, a number that is much larger than what is allowed under M2.

In the second case, consider an unbalanced case where ds , αs vary with s, but
remain bounded as k increases with n, and the magnitudes diminish so that the
series

∑
s λ

2ds/(2αs+ds)
s is convergent. Theorem 3.1 suggests that a consistent esti-

mator of f exists in this case as long as
∑k

s=1 ds = o(n), that is, the total number
of important predictors is o(n).

REMARK 3.5. Consider another unbalanced scenario where k is fixed and one
additive component is much more complex than the rest, that is, d1/α1 � ds/αs for
s = 2, . . . , k. In this case, Theorem 3.1 gives a minimax risk r2

n ∼ n−2α1/(2α1+d1) +∑k
s=1 ds log(p/ds)/n, where the first term is dominated by the largest risk of all

additive components, while the second term is still determined by the overall vari-
able selection uncertainty. Therefore, the difficulty of estimating a function with
an additive form is determined by the estimation difficulty of its “hardest” compo-
nent.

4. Adaptive near minimax optimality of Bayesian additive Gaussian pro-
cess regression. A Gaussian process (GP) on an Euclidean set K is a random
element W = (Wx :x ∈ X ) of the supremum-norm Banach space of continuous
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functions over X such that any linear functional of W is univariate Gaussian [29].
The probability law of a GP W is completely determined by the mean and covari-
ance functions m(x) = EWx and C(x, x′) = E(Wx − m(x))(Wx′ − m(x′)) and is
denoted by GP(m,C). For any function m :X → R and any nonnegative definite
function C :X ×X → (0,∞), there exist a GP W with law GP(m,C).

Adaptivity and near minimax optimality of Bayesian Gaussian process regres-
sion methods are known for low-dimensional applications [31]. In GP regression,
f is assigned a GP(m,C) prior and inference on f is carried out by summa-
rizing the resulting posterior distribution given data, which also remains a GP
law [21]. Theoretical treatments of GP regression have typically focused on m ≡ 0
and C(x, x′) = CSE(x, x′) = exp(−‖x − x′‖2), the square exponential covariance
function, with additional hyper-parameters inserted inside the covariance function
[8, 27, 31]. In particular, in order to achieve adaptation to unknown smoothness,
[31] considers as prior distribution the law of a rescaled process WA defined as
WA

x = WAx where W ∼ GP(0,CSE) and Ap follows a gamma distribution, and
proves the resulting posterior distribution contracts to the true f at the minimax
rate n−α/(2α+p) up to a logn factor when f is Hölder α-smooth. Extensions to
anisotropic function spaces are carried out by [1].

4.1. Additive Gaussian process regression. For a stochastic process W =
(Wx :x ∈ R

p), a scalar a > 0 and a binary inclusion vector b ∈ {0,1}p , define a
selective-rescaled process Wa,b = (Wa,b

x :x ∈ [0,1]p) by Wa,b
x = Wab�x where

� is the elementwise product operator. Toward a Bayesian estimation of regres-
sion functions f described by M3, we consider the following additive Gaussian
process (add-GP) prior distribution on f :

f = L1W
A1,B1
1 + · · · + LKW

AK,BK

K ; K ∼ π,(4.1)

where π is a probability distribution on N, and LsW
As,Bs
s are IID copies of the

process LWA,B defined as: W ∈ C(Rp), L ∈ R+ and (A,B) ∈ R+ × {0,1}p are
mutually independent random elements distributed as

W ∼ GP
(
0,CSE), L ∼ h,

(4.2)

B ∼
[ p⊗

j=1

Be
(

1

p

)]∣∣∣∣∣|B|≤D0

, A|B|∣∣B ∼ Ga(a1, a2),

where h is a density function on (0,∞) and a1, a2,D0 are prespecified, positive
valued hyper-parameters.

To complete the add-GP prior specification, we need to specify a prior distribu-
tion on (μ,σ ). We consider (μ,σ ) ∼ πμ ×πσ where πμ is a Gaussian distribution
and πσ admits density function on R+ with a compact support inside (0,∞).
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4.2. Posterior contraction rates. For any x1 : ∞ = (x1, x2, . . .) ∈ ([0,1]p)∞
and any θ = (μ,f,σ ), let Pθ(·|x1 : ∞) denote the conditional distribution of
(Y i : i ∈N) given Xi = xi , i ∈N, under (1.1). Let �n(·|(xi, yi),1 ≤ i ≤ n) denote
the posterior distribution of θ under the add-GP prior given (Xi, Y i) = (xi, yi),
1 ≤ i ≤ n. Following [10, 30], the posterior contraction rate of the add-GP prior at
any θ∗ = (μ∗, f ∗, σ ∗) is said to be at least εn if for every x1 : ∞, other than in a
Q∞-null set,

�n

{∥∥μ+ f − μ− f ∗∥∥
n + ∣∣σ − σ ∗∣∣≥ Mεn|(xi, Y i),1 ≤ i ≤ n

} Pθ∗ (·|x1 : ∞)−→ 0

as n → ∞ for some constant M , where ‖ · ‖n denotes an empirical version of
the L2(Q) norm: ‖f ‖2

n = (1/n)
∑n

i=1 f 2(xi). It is possible to replace ‖ · ‖n with
‖ · ‖Q by appealing to the techniques developed for GP priors in Section 2.4
in [36], but we omit the details.

THEOREM 4.1. Under Assumption Q, for any μ∗ ∈R, σ ∗ ∈ support(πσ ) and

f ∗ ∈ �
p,k,d̄
A (λ∗, α∗, d∗) with maxs d∗

s ≤ D0 and k ≤ K0, the posterior contraction
rate at θ∗ = (μ∗, f ∗, σ ∗) is of the order εn(logn)(1+D0)/2 where

ε2
n =

k∑
s=1

λ∗2
s

(√
nλ∗

s

σ ∗
)−4α∗

s /(2α∗
s +d∗

s )

(logn)2qs + σ ∗2∑
s d∗

s

n
logp

with qs = (1 + d∗
s )/(2 + d∗

s /α∗
s ), 1 ≤ s ≤ k, provided K0 logp ≤ nε2

n.

When p grows with n, add-GP regression essentially employs a sequence of pri-
ors changing with n. In this case, it is possible and useful to also let K0 grow with n

and study posterior contraction rate at a sequence of f ∗ = f ∗
n changing with n.

Theorem 4.1 remains valid as long as K0 logp ≤ nε2
n, the true number of compo-

nents k ≤ K0, αs are bounded from above and below and maxs λs is bounded.

REMARK 4.2. Related work on estimation of f under M3 includes [20],
where convergence rates are investigated for an M-estimator with a sparsity
penalty on the number of additive components and smoothness penalties on each
components. However, [20] considers only univariate components. In [25], PAC-
Bayesian bounds are derived for general additive regression with additive GP pri-
ors. However, [25] assumes that the covariate vector X is pre-divided into M sub-
sets (X(1), . . . ,X(M)) and f (x) = ∑M

m=1 fm(x(m)), with sparsity constraints on
the component functions. Both these studies assume that important predictors are
not shared across components, which makes the studied methods somewhat re-
stricted in application. A lack of overlap comes with the technical advantage that
‖∑s fs‖2

Q decomposes to
∑

s ‖fs‖2
Q if every fs has Q-integral 0. In the more gen-

eral case where components are allowed to share predictors, a naïve application of
the Cauchy–Schwarz inequality gives ‖∑s fs‖2

Q ≤ k
∑

s ‖f 2
s ‖Q, but the multipli-

cation by k results in sub-optimal rates unless K0 grows extremely slowly in n.
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Our assumption that any predictor can appear in at most d̄ many components, for
some fixed d̄ , overcomes this difficulty with the help of Lemma 6.5.

5. Proofs of the main results.

5.1. Minimax rates.

LEMMA 5.1. For every α,λ, d ∈ N there exist N0 > 0, 0 < C ≤ 1 ≤ C, such
that for any n > N0 and all p ∈ N, the εn that solves C(εn,�

p
S (λ,α, d),‖ · ‖) =

nε2
n/σ

2 satisfies

C ≤ ε2
n

λ2(
√

nλ/σ)−4α/(2α+d) + (σ 2/n) log
(p
d

) ≤ C.

PROOF. Let ε1,M0,M1 be as in Lemma 6.2. Without loss of generality,
M0 ≤ 1 ≤ M1. Let δ2

n = λ2(
√

nλ/σ)−4α/(2α+d) + (σ 2/n) log
(p
d

)
and set N0 large

enough such that δn < ε1 for all n > N0. For the remainder of this proof, abbrevi-
ate �

p
S (λ,α, d) to �S . The arguments below mostly rest on the fact that ε-packing

entropy is nonincreasing in ε. Note that

C
(
M

1/2
1 δn,�S,‖ · ‖)≤ C

(
λ

(√
nλ

σ

)−2α/(2α+d)

,�S,‖ · ‖
)
≤ M1nδ2

n/σ
2,

where the second inequality follows by sticking in λ(
√

nλ/σ)−2α/(2α+d) as ε in
Lemma 6.2. Hence, εn ≤ M

1/2
1 δn. Also, by Lemma 6.2,

C

((
max

{
λ

(√
nλ

σ

)−2α/(2α+d)

,
σ√
n

log1/2
(

p

d

)})
,�S,‖ · ‖

)

≥ M0nmax
{
λ

(√
nλ

σ

)−2α/(2α+d)

,
σ√
n

log1/2
(

p

d

)}2/
σ 2

and hence ε2
n ≥ M0 max{λ(

√
nλ
σ

)−2α/(2α+d), σ√
n

log1/2 (p
d

)} ≥ M0δ
2
n/2. This proves

the result with C = M0/2 and C = M1. �

PROOF OF THEOREM 3.1. By Theorem 6 of [35], the minimax risk rn is

the solution to C(rn,�
p,k,d̄
A (λ,α, d),‖ · ‖Q) = nr2

n/σ 2. For 1 ≤ s ≤ k, let δns be
the solution to C(ε,�

ps

S (λs, αs, ds),‖ · ‖) = nε2/σ 2. From Lemma 5.1, there are
Ns > 0, 0 < Cs ≤ 1, such that for all n > Ns , δ2

ns ≥ Cs{λ2
s (
√

nλs/σ )−4αs/(2αs+ds)+
(σ 2/n) log

(ps

ds

)}. Denote δn = (δn1, . . . , δnk), n > N = maxs Ns . Then, by Theo-

rem 6.4, with b0 = q1/2�maxs αs+maxs ds/2,

C

(
b0‖δn‖

2
,�

p,k,d̄
A (λ,α, d),‖ · ‖Q

)
≥ 1

4

{
3

4
n
‖δn‖2

σ 2 − k log 2
}

(5.1)

≥ 1

16

n‖δn‖2

σ 2
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provided k log 2 ≤ n‖δn‖2/(2σ 2), and hence,

r2
n ≥ ‖δn‖2

16
≥ 1

16

{
k∑

s=1

Csλ
2
s

(√
nλs

σ

)−4αs/(2αs+ds)

+ σ 2

n
log
(

ps

ds

)}

≥ C

{
k∑

s=1

λ2
s

(√
nλs

σ

)−4αs/(2αs+ds)

+ σ 2

n

∑
s

ds logp

}
,

for some C.
Next, let εn = (εn1, . . . , εnk) where εns is the solution to C(εs,�

p
S (λs, αs, ds),

‖ · ‖) = nε2
s /σ

2, 1 ≤ s ≤ k. By Lemma 5.1, there are Ns > 0, Cs ≥ 1, such
that for all n > Ns , ε2

ns ≤ Cs{λ2
s (
√

nλs/σ )−4αs/(2αs+ds) + (σ 2/n) log
(p
ds

)}. Set

N = maxs Ns . By Theorem 6.4 again, C(4q̄1/2
√

B‖εn‖,�p,k,d̄
A (λ,α, d),‖ · ‖Q) ≤

n‖εn‖2/σ 2, and hence

r2
n ≤ 16q̄B‖εn‖2 ≤ C

{
k∑

s=1

λ2
s

(√
nλs

σ

)−4αs/(2αs+ds)

+ σ 2

n

∑
s

ds logp

}
,

completing the proof. �

5.2. Posterior contraction rates of add-GP. According to [10], Theorem 1 and
Section 7.7, and [29], the conclusion of Theorem 4.1 holds if for Q∞-almost every
x1 : ∞ there exist Fn ⊂ C(Rp), n ∈N, such that

�
(∥∥μ + f −μ∗ − f ∗∥∥

n ≤ εn

)≥ e−nε2
n,(5.2)

�(μ+ f /∈Fn) ≤ e−4nε2
n,(5.3)

logN
(
ε̄n,Fn,‖ · ‖∞)≤ nε̄2

n,(5.4)

where ε̄n = ε(logn)(1+D0)/2 and � denotes the add-GP prior on (μ,f,σ ). These
conditions map to one to one to concentration properties of the selective-rescaled
Gaussian processes underlying the add-GP formulation. Without loss of gener-
ality, we assume the prior density h on L is a folded Gaussian p.d.f., and that
a1 = a2 = 1.

Two important objects associated with any Gaussian process are its reproducing
kernel Hilbert space (RKHS) and concentration function. The RKHS of any GP
W = (Wx :x ∈X ), with X ⊂R

d , is defined to be the set H of all function h :X →
R that can be written as h(x) = EWxS for some S in the closure of the linear
span of the collection of random variables {Wx : t ∈ X } in L2 norm. The set H is
a Hilbert space with 〈EWS1,EWS2〉H = ES1S2. With W seen as an element in
C(X ), its concentration function at any w ∈ C(X ) is defined as

φw(ε) = inf
h∈H : ‖h−w‖∞≤ε

‖h‖2
H
− log�

(‖W‖∞ ≤ ε
)
, ε > 0.
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We make use of the following well-known inequalities involving the RKHS and
the concentration function:

e−φw(2ε) ≥ �
(‖W −w‖∞ ≤ 2ε

)≥ e−φw(ε),(5.5)

�(W /∈ MH1 + εB1) ≤ 1 −�
(
�−1(e−φ0(ε)

)+M
)
,(5.6)

V
(
ε,MH1,‖ · ‖∞)≤ 1/2 + φ0

(
ε

2M

)
.(5.7)

See Lemma 5.3 of [30] for a proof of (5.5). The inequality (5.6) is the well-
known Borell’s inequality [4], and the right-hand side can be further bounded
by exp{−M2/8} when M2/8 ≥ φ0(ε) since �−1(u) ≥ −√

2 log(1/u) for all u ∈
(0,1). Inequality (5.7) holds because the right-hand side gives an upper bound to
C(ε/(2M),H1,‖ · ‖∞), since, if h1, . . . , hN ∈H1 are ε/(2M)-separated in ‖ · ‖∞
then 1 ≥∑N

j=1 �(W ∈ hj +{ε/(2M)}B1) ≥ N exp{−1/2−φ0(ε/(2M))} by (5.5).

For any b ∈ {0,1}p , a > 0, let Ha,b and φa,b
w denote the RKHS and the con-

centration function of the selective-rescaled GP Wa,b introduced in Section 4.1.
By definition, Wa,b is isomorphic to a d dimensional, rescaled GP W̃ a with
W̃ ∼ GP(0,CSE) on R

d , whose RKHS and concentration function have been stud-
ied extensively in [31]. The following results, which are direct consequences of
Lemmas 4.3, 4.6, 4.7 and 4.8 of [31], are of particular interest to us:

w ∈ T bCα,|b| �⇒ φa,b
w (ε) ≤ G0a

|b|
(

log
a

ε

)1+|b|
,

(5.8)
∀a ≥ a0,∀ε < ε0 ∧ G1a

−α,

a
|b|/2
1 H

a1,b
1 ⊂ a

|b|/2
2 H

a2,b
1 ∀0 < a1 < a2,(5.9)

h ∈H
a,b
1 �⇒ ∣∣h(0)

∣∣≤ 1,
∥∥h− h(0)

∥∥∞ ≤ a|b|.(5.10)

In (5.8), the constants ε0, a0, G0,G1 depend only on w and |b|.
LEMMA 5.2. Suppose (εn, n ≥ 1) satisfies n−γ1 ≤ εn ≤ n−γ2 for some 0 <

γ1 < γ2 < 1/2 and K0 logp ≤ nε2
n. Then there exists a sequence of sets Fn ⊂

C[0,1]d satisfying

�(μ+ f /∈Fn) ≤ exp
(−4nε2

n

)
(5.11)

and

logN
(
ε̄n,Fn,‖ · ‖∞)≤ nε̄2

n(5.12)

with ε̄n � εn(logn)(1+D0)/2.

PROOF. Let Rn = K3nε2
n, where K3 is a large constant to be determined later,

and define

L̄2
n = Rn, M2

n = 8K4Rn(logn)1+D0, δn = εn

K0|b|L̄nMn

,



664 Y. YANG AND S. T. TOKDAR

for some constant K4. By (5.8), and the fact that φ
a,b
0 (ε) is nondecreasing in a, the

constant K4 can be chosen large enough so that

M2
n ≥ 8φ

a,b
0

(
εn

K0L̄n

)
∀b ∈ ⋃

d≤D0

Bp,d,∀a ≤ R1/|b|
n ,(5.13)

for all large n. Set N = �D0 log{Rn/δn}/(log 4) and take �n(b) := {δn4j/|b| : 1 ≤
j ≤ N}. For every r ∈ {0} ∪�n(b), define

F r,b
n = ⋃

a∈(0,δn]∪{r}\{0}
2L̄nMnH

a,b
1 + εn

K0
B1.

Consider the sieves

Fn := [−√
n,

√
n] ⊕ ⋃

1≤k≤K0

⋃
b1,...,bk∈⋃d≤D0

Bp,d ,

rs∈{0}∪�n(bs),1≤s≤k,∑
s r

|bs |
s ≤4Rn

F r1,b
1

n ⊕ · · · ⊕F rk,b
k

n ,

for n ∈N.
Fix any k ∈ {1, . . . ,K0}, b1, . . . , bk ∈ ⋃d≤D0

Bp,d and a ∈ R
k+ satisfying∑k

s=1 a
|bs |
s ≤ Rn. For 1 ≤ s ≤ k, if as ≤ δn set rs = 0, otherwise find rs ∈ �n(b

s)

such that rs4−1/|bs | < as ≤ rs . Then
∑k

s=1 r
|bs |
s ≤ 4Rn and by (5.9), L̄nMnH

as,b
s

1 +
(εn/K0)B1 ⊂F rs ,b

s

n for all 1 ≤ s ≤ k. Therefore,

�
{
μ+ f /∈Fn|K = k,

(
As,B

s)= (as, b
s),1 ≤ s ≤ k

}

≤ �
(|μ| > √

n
)+ k∑

s=1

�

{
LsW

as,b
s

/∈ L̄nMnH
as,b

s

1 + εn

K0
B1

}

≤ e−n/2 +
k∑

s=1

[
�(Ls > L̄n)+ �

{
Was,b

s

/∈ MnH
as,b

s

1 + εn

K0L̄n

B1

}]

≤ e−n/2 + k
{
e−L̄2

n + e−M2
n/8}

≤ 3ke−Rn

for all large n, by (5.6) and (5.13) and the fact Rn = o(n). Consequently,

�(μ+ f /∈Fn)

≤ max
1≤k≤K0,

b1,...,bk∈⋃d≤D0
Bp,d

⎧⎨
⎩�

⎛
⎝ k∑

s=1

A|bs |
s > Rn

∣∣∣∣Bs = bs, s = 1, . . . , k

⎞
⎠+ 3ke−Rn

⎫⎬
⎭

≤ �(G > Rn)+ 3K0e
−Rn
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with G ∼ Ga(K0,1). Notice �(G > Rn) ≤ exp{−Rn/2+K0 log 2}. Therefore, by
the assumption on K0, �(μ + f /∈Fn) is bounded by exp(−4nε2

n) for all large n,
provided K3 is chosen suitably large.

By (5.10), when r = 0, F r,b
n ⊂ 2L̄nMn · [−1,1] + (2εn/K0)B1, and hence

could be covered by �4L̄nMnK0/εn many or fewer balls of supremum norm ra-
dius 3εn/K0. When r > 0, by (5.7), at most another 1/2 + φ

r,b
0 (εn/(2L̄nMnK0))

many balls may be needed to maintain 3εn/K0 covering. Therefore, by (5.8),
V (3εn/K0,F r,b

n ,‖ · ‖∞) ≤ D1{r |b|(logn)1+D0 + logn} for every r ∈ {0} ∪�n(b),
for some constant D1 that depends only on D0, as long as |b| ≤ D0. Consequently,

V
(
4εn,Fn,‖ · ‖∞)≤ D1

{
Rn(logn)1+D0 +K0 logn

}+ logM,

where M is the size of the finite set {((r1, b
1), . . . , (rk, b

k)) : 1 ≤ k ≤ K0, b
s ∈⋃

d≤D0
Bp,d, rs ∈ {0} ∪ �n(b

s),1 ≤ s ≤ k}. This proves the result because of the
assumption on K0, since logM ≤ log[K0{pD0(N + 1)}K0] ≤ C6K0 logp for some
constant C6 that depends only on D0. �

LEMMA 5.3. Under the conditions of Theorem 4.1, for Q-almost every x1 : ∞,
�(‖μ+ f −μ∗ − f ∗‖n ≤ εn) ≥ exp(−nε2

n) for all large n where

ε2
n �

k∑
s=1

λ2
s

(√
nλs

σ ∗
)−4αs/(2αs+ds)

(logn)2qs + σ ∗2∑
s ds

n
logp

with qs = (1 + ds)/(2 + ds/αs), s = 1, . . . , k.

PROOF. By Lemma 6.6, with Fn as in (5.12), we only need to show �(‖μ +
f − μ∗ − f ∗‖Q ≤ εn,μ + f ∈Fn,‖μ + f − μ∗ − f ∗‖∞ ≤ 1) ≥ exp(−nε2

n). By
inequality (5.11) and the fact ‖ · ‖Q ≤ q̄1/2‖ · ‖ it suffices to show that

�
(∥∥μ+ f −μ∗ − f ∗∥∥≤ εn,

∥∥μ + f −μ∗ − f ∗∥∥∞ ≤ 1
)≥ exp

(−nε2
n

)
.

We can write f ∗ =∑k
s=1 λsT

bs
f ∗

s where bs ∈ Bp,ds , f ∗
s ∈ C

αs,ds

1 ∩ Zd , 1 ≤ s ≤
k and max1≤j≤p

∑k
s=1 bs

j ≤ d̄ . Let δns = λs(
√

nλs/σ )−2αs/(4αs+ds)(logn)qs , 1 ≤
s ≤ k and δn = (δn1, . . . , δnk). Set B = 1 + maxs ds(d̄ − 1).

For any a > 0, b ∈ {0,1}p define the Gaussian variable Ua,b = ∫ Wa,b
x dx. Then

the Gaussian process V a,b = Wa,b − E(Wa,b|Ua,b) satisfies
∫

V a,b
x dx = 0, and

is independent of the process E(Wa,b|Ua,b) = Zψa,b where Z ∼ N(0,1) and
ψa,b(x) = cov(Ua,b,Wa,b

x )/var1/2(Ua,b), x ∈ [0,1]p . By Cauchy–Schwarz in-
equality, ‖ψa.b‖∞ ≤ 1. Clearly, Wa,b decomposes as Wa,b = V a,b +Zψa,b.

Therefore, for any �, a ∈ R
k+ and given K = k, (Ls,As,B

s) = (�s, as, b
s), 1 ≤

s ≤ k, we can decompose the additive-GP process f as f =∑k
s=1 �sZsψ

as,b
s +∑k

s=1 f̄s , where Zs are independent N(0,1) variables, f̄s are mutually independent
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with probability laws same as those of �sV
as,bs , and these two sets of random

quantities are independent. Consequently, for large enough n,

�
{∥∥f − f ∗∥∥≤√

1 + 25B‖δn‖,
∥∥f − f ∗∥∥∞ ≤ 1/2

|K = k,
(
Ls,As,B

s)= (�s, as, b
s),1 ≤ s ≤ k

}
≥ �

(∥∥∥∥∑
s

�sZsψ
as,b

s
∥∥∥∥≤ ‖δn‖,

∥∥∥∥∑
s

�sZsψ
as,b

s
∥∥∥∥∞ ≤ 1/4

)

× �

{∥∥∥∥∑
s

(
f̄s − λsT

bs

f ∗
s

)∥∥∥∥≤ 5
√

B‖δn‖,
∥∥∥∥∑

s

(
f̄s − λsT

bs

f ∗
s

)∥∥∥∥∞ ≤ 1/4
∣∣∣∣

K = k,
(
Ls,As,B

s)= (�s, as, b
s),1 ≤ s ≤ k

}

≥ �

(∥∥∥∥∑
s

�sZsψ
as,b

s
∥∥∥∥≤ ‖δn‖,

∥∥∥∥∑
s

�sZsψ
as,b

s
∥∥∥∥∞ ≤ 1/4

)

×
k∏

s=1

�
(∥∥�sV

as,b
s − λsT

bs

f ∗
s

∥∥≤ 5δns,
∥∥�sV

as,b
s − λsT

bs

f ∗
s

∥∥∞ ≤ δns

)
,

because of Lemma 6.5, since by the assumption on f ∗
s and the construction of

f̄s , we have for every 1 ≤ s ≤ k, 〈f̄s − λsT
bs

f ∗
s , f̄t − λsT

bs
f ∗

s 〉R �= 0 for at most
rs = 1 + ds(d̄ − 1) many 1 ≤ t ≤ k.

If �s ∈ λs · [1,1 + δns], then {‖�sV
as,b

s − λsT
bs

f ∗
s ‖ ≤ 5δns} ⊃ {λs‖V as,b

s −
T bs

f ∗
s ‖∞ ≤ 4δns} ⊃ {λs‖Was,b

s − T bs
f ∗

s ‖∞ ≤ 2δns}. When a
ds
s ∈ (G1/δns)

ds/αs ·
[1,2], where G1 is as in (5.8), the last probability can be lower bounded by
exp{−G2(λs/δns)

ds/αs log(1/δns)
1+ds } ≥ exp{−G2nδ2

ns/σ
2} for some constant

G2, for all large n, by (5.5) and (5.8). For the same choices of �s, as , 1 ≤ s ≤ k,
�(‖∑s �sZsψ

as,b
s‖ ≤ ‖δn‖,‖∑s �sZsψ

as,b
s‖∞ ≤ 1/4) ≥ exp{−G3k logn} for

some constant G3, for all large n. Therefore, by the assumption on K0,

�
(∥∥f − f ∗∥∥≤√

1 + 25B‖δn‖,
∥∥f − f ∗∥∥∞ ≤ 1/2

)
≥ exp

(−G42n‖δn‖2/σ 2)�(K = k)

×
k∏

s=1

{
�
(
Ls ∈ λs · [1,1 + δns])�(Bs = bs)

× �
(
Ads

s ∈ (G1/δns)
ds/αs · [1,2]||Bs | = ds

)}
≥ G5 exp

{
−G6n

{
‖δn‖2 + σ 2∑

s ds

n
logp

}}

for all large n for some constants G5,G6 that depend only on maxs ds , mins λs ,
maxs λs , mins αs and maxs αs . This proves the result since μ is independent of f

and �(|μ−μ∗| ≤ min{‖δn‖,1/2}) ≥ exp{−G7 logn} for some constant G7. �
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PROOF OF THEOREM 4.1. Equations (5.2)–(5.4) are implied by Lemmas
5.3 and 5.2 with the εn given in Theorem 4.1. �

6. Auxiliary results. In this section, we provide a number of auxiliary results
on packing and covering entropies of regular, sparse and additive Hölder spaces.

LEMMA 6.1. For every α > 0, d ∈ N there exist ε0 > 0, M0 > 0 such that
for all ε < ε0 there are N ≥ exp{M0(1/ε)d/α} functions f0, . . . , fN ∈ C∞(Rd)

satisfying f0 ≡ 0 and

support(fi) ⊂ [0,1]d, fi |[0,1]d ∈ C
α,d
1 , 0 ≤ i ≤ N,(6.1) ∫

R

fi(u1, . . . , ud) duj = 0, 0 ≤ i ≤ N,1 ≤ j ≤ d,(6.2)

‖fi − fk‖ ≥ ε, 0 ≤ i < k ≤ N.(6.3)

PROOF. Our proof follows the calculations in [28], Section 2.6.2, suitably
adapted to handle L2 norm and condition (6.2). Let K ∈ C∞(Rd) such that

support(K) = [−1,1]d,

∫
K(u1, . . . , ud) duj = 0, j = 1, . . . , d.(6.4)

For example, one could take K(x1, . . . , xd) = ∏d
j=1 K0(xj ) where K0(t) =

te−1/(1−t2)I (|t | ≤ 1), t ∈R.
Fix an arbitrary h ∈ (0,1/2) and take m = �1/(2h) , M = md and a rect-

angular grid {xk :k = 1, . . . ,M} on [0,1]d consisting of the M grid points
(
j1−1/2

m
, . . . ,

jd−1/2
m

), (j1, . . . , jd) ∈ {1, . . . ,m}d . We assume h is small enough so
that M ≥ 8. For each 1 ≤ k ≤ M , the function φk defined as

φk(x) = 1

‖K‖Cα,d

hαK
(

x − xk

h

)
, x ∈ [0,1]d(6.5)

has support inside xk + [−h,h]d and belongs to C
α,d
1 . Let � = {0,1}M and for

each ω ∈ � define fω = ∑M
k=1 ωkφk . Clearly, each fω is supported on [0,1]d

and
∫

fω(u1, . . . , ud) duj = 0 for every j = 1, . . . , d . Also, since φk’s are shifted
copies of each other with disjoint supports, each fω ∈ C

α,d
1 and

‖fω − fω′‖ =
{

M∑
k=1

(
ωk −ω′

k

)2 ∫
φ2

k (x) dx

}1/2

(6.6)

= hα+d/2 ‖K‖
‖K‖Cα,d

ρ1/2(ω,ω′),
where ρ(ω,ω′) =∑M

k=1 I (ωk �= ω̃k) denotes the Hamming distance.
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By the Varshamov–Gilbert bound [28], Lemma 2.9, there are N ≥ 2M/8 binary
strings ω(0), . . . ,ω(N) ∈ �, with ω(0) = 0, satisfying ρ(ω(k),ω(k′)) ≥ M/8, 0 ≤
k < k′ ≤ N . Then fi := fω(i) , 0 ≤ i ≤ N , satisfy (6.1)–(6.2) and

‖fi − fk‖ ≥ hα+d/2 ‖K‖
‖K‖Cα,d

√
M

8
≥ M1h

α, 1 ≤ i < k ≤ N,

where M1 = ‖K‖/{2(d+3)/2‖K‖Cα,d } depends on only α and d . This proves
the result since with ε = M1h

α , which could be arbitrarily small, we get N ≥
exp{M(log 2)/8} ≥ exp{M0(1/ε)d/α} where M0 = (M

d/α
1 log 2)/2d+3 depends on

only d and α. �

LEMMA 6.2. For every α,L > 0, d ∈ N there exist ε1,M0,M1 > 0 such that
for any ε < ε1 and all p ∈N

M0(L/ε)d/α + log
(

p

d

)
≤ C

(
ε,�

p
S (λ,α, d),‖ · ‖)≤ M1(L/ε)d/α + log

(
p

d

)
,

and, an ε-packing set satisfying the above lower bound may be obtained entirely
with C∞(Rp) functions.

PROOF. It suffices to prove for L = 1 since C(ε,L�,‖ · ‖) = C(ε/L,�,‖ ·‖)
for any set �. By Lemma 6.1 there exist ε0,M0 such that for any ε < ε0 there
are functions f0 ≡ 0, f1, . . . , fN ∈ C∞(Rd) satisfying (6.1)–(6.3) with logN ≥
M0(1/ε)d/α . Therefore, the set

T α,d,p(ε) = ⋃
b∈{0,1}p
|b|=d

{
T bfi : 1 ≤ i ≤ N

}
(6.7)

is a subset of �
p
S (1, α, d). By (6.2), for any b �= b′ ∈ {0,1}p , 〈T bfi, T

b′fk〉 = 0 for
all 1 ≤ i, k ≤ N . Hence, T α,d,p(ε) is ε-separated in ‖ · ‖ since ‖T bfi − T b′fk‖ =
‖fi − fk‖ ≥ ε by (6.3) if b = b′ and ‖T bfi − T b′fk‖ = ‖fi‖ + ‖fk‖ ≥ ε by (6.3)
and the fact that f0 ≡ 0. This gives the lower bound on C(ε,�

p
S (1, α, d),‖ · ‖)

since the cardinality of T α,d,p is
(p
d

)
N .

It is well known that for every α > 0, d ∈ N there exist ε′0,M ′
0 > 0 such

that for all ε < ε′0, V (ε,C
α,d
1 ,‖ · ‖) ≤ M ′

0(1/ε)d/α [28], Section 2.6.1, and [16].
Since a union of sets is covered by the union of their covers, it follows that
V (ε,�

p
S (Lλ,α, d),‖ · ‖) ≤ M ′

0(1/ε)d/α + log
(p
d

)
for all 0 < ε < ε′0. Consequent-

ly, C(ε,�
p
S (λ,α, d),‖ · ‖) ≤ V (ε/2,�

p
S (λ,α, d),‖ · ‖) ≤ M ′

02d/α(1/ε)d/α +
log
(p
d

)
for all ε < ε′0. This proves the result with M1 = M ′

02d/α and ε1 =
min(ε0, ε

′
0). �
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LEMMA 6.3. Let H1, . . . ,Hk be mutually orthogonal subsets of a Hilbert
space (H,‖ · ‖H). Then, for any δ ∈R

k+ and c ∈ (0,1)

C

(
c‖δ‖,

k⊕
s=1

Hs,‖ · ‖H
)
≥ 1

4

{
1 − c2

C∗
k∑

s=1

C
(
δs,Hs,‖ · ‖H)− k log 2

}
,

where C∗ := sup1≤s,t≤k{δ−2
s C(δs,Hs,‖ · ‖H)}/{δ−2

t C(δt ,Ht ,‖ · ‖H)}.
PROOF. For every 1 ≤ s ≤ k, let Hs denote a maximal δs -packing set of Hs

with Cs := log |Hs | = C(δs,Hs,‖ · ‖H). Take � = H1 × · · · × Hk and let F =
(F1, . . . ,Fk) be a random element in � with the uniform probability distribution.
Fix an M ∈N such that

1

2

{
1 − c2

C∗
∑
s

Cs − k log 2
}

< 2 logM <
1 − c2

C∗
∑
s

Cs − k log 2,

and let Fj , j = 1, . . . ,M , be IID copies of F . If

P

{∥∥∥∥∑
s

F i
s −∑

s

F j
s

∥∥∥∥≥ c‖δ‖,∀1 ≤ i < j ≤ M

}
> 0,(6.8)

then � contains a subset �0 with at least M elements such that for any two
f,f ′ ∈ �, ‖∑s fs −∑s f ′

s‖ > c‖δ‖. This would prove the result.
The probability value in (6.8) is at least 1 − M(M − 1)/2 · P {‖∑s F 1

s −∑
s F 2

s ‖ < c‖δ‖}, and hence it suffices to show P {‖∑s F 1
s −∑

s F 2
s ‖ < c‖δ‖} ≤

1/M2. Define Zs = I (F 1
s �= F 2

s ), s = 1, . . . , k, which are independent binary vari-
ables with Zs ∼ Bernoulli(1 − e−Cs ). By orthogonality of H1, . . . ,Hk ,∥∥∥∥∑

s

F 1
s −∑

s

F 2
s

∥∥∥∥
2

=
k∑

s=1

∥∥F 1
s − F 2

s

∥∥2 ≥
k∑

s=1

δ2
s Zs,

and hence it suffices to show

P

(∑
s

δ2
s Zs < c2‖δ‖2

)
≤ 1/M2.(6.9)

By Markov’s inequality, for any λ > 0,

P

(∑
s

δ2
s Zs < c2‖δ‖2

)
≤ P

{
e−λ

∑
s δ2

s Zs > e−λc2‖δ‖2}

≤ eλc2‖δ‖2
k∏

s=1

E
{
e−λδ2

s Zs
}

≤ eλc2‖δ‖2
k∏

s=1

{
e−Cs + e−λδ2

s
}

= e−λ(1−c2)‖δ‖2
k∏

s=1

{
1 + eλδ2

s −Cs
}
.
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By the assumption on δ, Csδ
2
t /(δ

2
s C

∗) ≤ Ct ≤ C∗Csδ
2
t /(δ

2
s ) for every 1 ≤ s, t ≤ k,

and hence, δ2
s ≤ C∗Cs‖δ‖2/

∑
t Ct ≤ Cs/λ when we set λ = ∑

s Cs/(‖δ‖2C∗).
Consequently,

P

(∑
s

δ2
s Zs < c2‖δ‖2

)
≤ 2ke−λ(1−c2)‖δ‖2 = e−(1−c2)

∑
s Cs/C∗+k log 2 ≤ 1/M2,

which completes the proof. �

THEOREM 6.4. Suppose k maxs ds ≤ p and set ps = 
pds/
∑

t dt�, 1 ≤ s ≤ k.
Under Assumption Q, for any δ ∈R

k+,

C
(
q1/2�maxs (αs+ds/2)‖δ‖/2,�

p,k,d̄
A (λ,α, d),‖ · ‖Q

)

≥ 1

4

{
3

4C∗
k∑

s=1

C
(
δs,�

ps

S (λs, αs, ds),‖ · ‖)− k log 2

}
,

C
(
4q̄1/2

√
B‖δ‖,�p,k,d̄

A (λ,α, d),‖ · ‖Q

)≤ k∑
s=1

C
(
δs,�

p
S (λs, αs, ds),‖ · ‖)

with C∗ = sup1≤s,t≤k{δ−2
s C(δs,�

ps

S (λs, αs, ds),‖ · ‖)}/{δ−2
t C(δt ,�

pt (Lt , αt ,

dt ),‖ · ‖)} and B = 1 + maxs ds(d̄ − 1).

PROOF. Fix k mutually exclusive subsets B1, . . . ,Bk of {1, . . . , p} with |Bs | =
ps , 1 ≤ s ≤ p. Let �s denote the space of norm λs , αs -smooth regression func-
tions that select ds predictors from Bs and none from the other subsets, that is,
�s = ⋃

b∈{0,1}p,|b|=ds,support(b)⊂Bs
T b(λsC

αs,ds

1 ). These subsets are mutually or-
thogonal since f ∈ �s and f ′ ∈ �t , s �= t pick disjoint sets of predictors and

f,f ′ ∈Zp . Clearly,
⊕k

s=1 �s ⊂ �
p,k,d̄
A (λ,α, d). Let fi =∑k

s=1 fis , i = 1, . . . ,N ,
be a ‖δ‖/2-packing set of

⊕k
s=1 �s under ‖ · ‖. We must have

N ≥ 1

4

{
3

4C∗
k∑

s=1

C
(
δs,�

ps

S (λs, αs, ds),‖ · ‖)− k log 2

}
,(6.10)

by an application of Lemma 6.3 with c = 1/2, coupled with the fact that �s is
isomorphic with �

ps

S (λs, αs, ds). Also, by Lemma 6.1 and the packing set con-
struction used in the proof of Lemma 6.3, each fsi can be chosen to belong to
�s ∪ C∞(Rp). Define g1, . . . , gN as: gi(x) = �ᾱfi(x/�) where ᾱ = maxs αs .

Then each gi ∈ �
p,k,d̄
A (λ,α, d) and, ‖gi − gj‖Q ≥ q1/2�ᾱ+maxs ds/2‖fi − fj‖,

since every fis − fjs involve at most maxs ds many variables and they are orthog-
onal across s. This proves the first assertion of the theorem.

In light of the well-known relation V (ε,A,‖ · ‖) ≤ C(ε,A,‖ · ‖) ≤ V (ε/2,A,

‖ · ‖) between packing and covering entropies of subsets in a metric space, and the
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fact that ‖ · ‖Q ≤ q̄1/2‖ · ‖, the second assertion can be established by showing

V
(
2
√

B‖δ‖,�p,k,d̄
A (λ,α, d),‖ · ‖)≤ k∑

s=1

V
(
δs,�

p
S (λs, αs, ds),‖ · ‖).

For every 1 ≤ s ≤ k, let Cs be a minimal δs/λs -covering set of C
αs,ds

1 . For each s,
replace every element f ∈ Cs by its centered version f̄ = f − ∫ f (x) dx. The new
Cs remains a 2δs/λs -covering set of C

αs,ds

1 ∩Zds . Take

CA =
{
f =

k∑
s=1

λsT
bs

fs :fs ∈ Cs,1 ≤ s ≤ k,
(
b1, . . . , bk) ∈ Bp,k,d,d̄

}
.

Any f ∈ �
p,k,d̄
A (λ,α, d) equals f =∑s λsT

bs
fs for some fs ∈ C

αs,ds

1 ∩Zds , 1 ≤
s ≤ k and (b1, . . . , bk) ∈ Bp,k,d,d̄ . Find f ∗

s ∈ Cs such that ‖fs − f ∗
s ‖ ≤ 2δs/λs ,

1 ≤ s ≤ k and set f ∗ =∑
s λsT

bs
f ∗

s ∈ CA. Since every fs − f ∗
s ∈ Zds , we get

〈T bs
(fs −f ∗

s ), T bt
(ft −f ∗

t )〉 = 0 whenever
∑p

j=1 bs
j b

t
j = 0, that is, bs , bt have no

shared selection. By assumption on Bp,k,d,d̄ , for every s, there are at most ds(d̄ −
1) many t �= s with shared selection. Therefore, by Lemma 6.5, ‖f − f ∗‖2 ≤
B
∑k

s=1 λ2
s‖fs − f ∗

s ‖2 ≤ 4B‖δ‖2. Consequently, CA gives a (2
√

B‖δ‖)-covering

of �
p,k,d̄
A (λ,α, d). This completes the proof since V (δs,�

p
S (λs, αs, ds),‖ · ‖) ≥

log |Cs | for every 1 ≤ s ≤ k. �

LEMMA 6.5. Suppose f1, . . . , fk are elements of a Hilbert space (H,‖ · ‖H)

and for any 1 ≤ s ≤ k, let rs = |{1 ≤ t ≤ k : 〈fs, ft 〉H �= 0}|. Then ‖∑k
s=1 fs‖2

H
≤

maxs rs
∑k

s=1 ‖fs‖2
H

.

PROOF. Since 2〈f,g〉H ≤ ‖f ‖2
H
+ ‖g‖2

H
, we have∥∥∥∥∑

s

fs

∥∥∥∥
2

H

=∑
s,t

〈fs, ft 〉H ≤ 1

2

∑
〈fs,ft 〉H �=0

(‖fs‖2
H
+ ‖ft‖2

H

)

≤ max
s

rs
∑
s

‖fs‖2
H
. �

LEMMA 6.6. Suppose F ⊂ C(Rp) satisfies supf∈F ‖f ‖∞ ≤ 1. Then, for any

sequence δn satisfying nδ2
n ≥ 2N(δn,F,‖ · ‖∞) and

∑∞
n=1 e−nδ2

n < ∞,

Q∞({x1 : ∞ : sup
f∈F,‖f ‖Q≤δn

‖f ‖n ≥ 4δn infinitely often
})

= 0.

PROOF. Take f ∈ F and suppose that ‖f ‖Q ≤ δn and ‖f ‖n ≥ 4δn. Let
{f1, . . . , fN } form an minimal δn-covering of F under the sup-norm with
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2 logN ≤ nδ2
n. Then there exists some j0 ∈ {1, . . . ,N} such that ‖f −fj0‖∞ ≤ δn.

By the assumptions on f , we have ‖fj0‖n ≥ 3δn and ‖fj0‖Q ≤ 2δn, implying
|‖fj0‖2

n − ‖fj0‖2
Q| ≥ 5δ2

n. By Bernstein’s inequality, we have

P
{∣∣‖fj0‖2

n − ‖fj0‖2
Q

∣∣≥ 5δ2
n

}≤ 2 exp
[
−5

8
nδ2

n

]
.

Since there are at most N choices for j0, we get

P
{

sup
f∈F,‖f ‖Q≤δn

‖f ‖n ≥ 4δn

}
≤

N∑
j=1

P
{∣∣‖fj‖2

n − ‖fj‖2
Q

∣∣≥ 5δ2
n

}

≤ 2N exp
[
−5

8
nδ2

n

]
≤ 2 exp

[
−1

8
nδ2

n

]
,

from which the results follows by the Borel–Cantelli lemma. �
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