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This paper generalizes recent proposals of density forecasting models
and it develops theory for this class of models. In density forecasting, the
density of observations is estimated in regions where the density is not ob-
served. Identification of the density in such regions is guaranteed by structural
assumptions on the density that allows exact extrapolation. In this paper, the
structural assumption is made that the density is a product of one-dimensional
functions. The theory is quite general in assuming the shape of the region
where the density is observed. Such models naturally arise when the time
point of an observation can be written as the sum of two terms (e.g., onset
and incubation period of a disease). The developed theory also allows for a
multiplicative factor of seasonal effects. Seasonal effects are present in many
actuarial, biostatistical, econometric and statistical studies. Smoothing esti-
mators are proposed that are based on backfitting. Full asymptotic theory is
derived for them. A practical example from the insurance business is given
producing a within year budget of reported insurance claims. A small sample
study supports the theoretical results.

1. Introduction. In-sample density forecasting is in this paper defined as
forecasting a structured density in regions where the density is not observed. This
is possible when the density is structured in such a way that all entering com-
ponents are estimable in-sample. Let us, for example, assume that we have one
covariate X representing the start of something; it could be onset of some infec-
tion, underwriting of an insurance contract or the reporting of an insurance claim,
birth of a new member of a cohort or an employee losing his job in the labour mar-
ket. Let then Y represent the development or delay to some event from this starting
point. It could be incubation period of some disease, development of an insurance
claim, age of a cohort member or time spend looking for a new job. Then X +Y is
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the calendar time of the relevant event. This event is observed if and only if it has
already happened until a calendar time, say t0. The forecasting exercise is about
predicting the density of future events in calendar times after t0.

The most typical example of a structured density is a simple multiplicative form
studied by Mammen, Martínez-Miranda and Nielsen (2015). The multiplicative
density model assumes that X and Y are independent with smooth densities f

and g. When f and g are estimated by histograms, our in-sample forecasting ap-
proach could be formulated via a parametric model. This version of in-sample
density forecasting is omnipresent in academic studies as well as in business fore-
casting; see Martínez-Miranda et al. (2013) for more details and references in
insurance and in statistics of cohort models. Extensions of such parametric his-
togram type of models can often be understood as structured density models mod-
elled via histograms. A structured density is defined as a known function of lower-
dimensional unknown underlying functions; see Mammen and Nielsen (2003) for
a formal definition of generalised structured models. Under the assumption that the
model is true, our forecasts do not extrapolate any parameters or time series into
the future. We therefore call our methodology “in-sample density forecasting”:
a structured density estimator forecasting the future without further assumptions
or approximate extrapolations.

Our model is related to deconvolution, but there are two major differences. First,
in our model one observes not only X + Y but also the summands X and Y . Sec-
ond, X and Y are only observed if their sum lies in a certain set, for example, in an
interval (0, t0]. This makes X and Y be dependent and the estimation problem be
an inverse problem. We will see below that the first difference leads to rates of con-
vergence that coincide with rates for the estimation of one-dimensional functions
in the classical nonparametric regression and density settings. The reason is that
our model consists in a well-posed inverse problem. In contrast, deconvolution is
an ill-posed inverse problem and allows only poorer rates of convergence.

This paper adds three new contributions to the literature on in-sample density
forecasting. First of all, we define smoothing estimators based on backfitting and
we develop a complete asymptotic distribution theory for these estimators. Sec-
ond, we allow for a general class of regions for which the density is observed. The
leading example is a triangle. A triangle arises in the above examples where the
sum of two covariates is bounded by calendar time. The theoretical discussion in
Mammen, Martínez-Miranda and Nielsen (2015) was restricted to this case. But
there exist many other important support sets; see, for example, Kuang, Nielsen
and Nielsen (2008) for a detailed discussion. Third, we generalize the forecast-
ing model by modelling a seasonal component. This is done by introducing an
additional multiplicative seasonal factor into the model. Then we have three one-
dimensional density functions that enter the model and that can be estimated in
sample. Seasonal effects are omnipresent: onset of some disease could be more
likely in the winter than in the summer; new jobs might be less likely during the
summer or they may depend on the business cycle; more auto insurance claims
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are reported during the winter, but they might be bigger on average in the sum-
mer; cold winters or hot summers affect mortality. When a study is running over
a few years only and one or two of those years are not fully observed, data might
be too sparse to leave these two years out of the study. Leaving them in might
however generate bias. The inclusion of seasonality in this paper solves this type
of problems and allow us in general to do well when years are not fully observed.
An illustration producing a within-year budget of insurance claims is given in the
application section.

Classical actuarial methodology does not include seasonal effects. Budgets are
normally carried out manually by highly paid actuaries. The automatic adjustment
of seasonal effects offered by this paper is therefore potentially cost saving. In-
surance companies currently use the classical chain ladder technique when fore-
casting future claims. Classical chain ladder has recently been identified as being
the above mentioned multiplicative histogram in-sample forecasting approach; see
Martínez-Miranda et al. (2013). The seasonal adjustment suggested in this paper
is therefore directly implementable to working routines and processes used by to-
day’s nonlife insurance companies.

Recent updates of classical chain ladder include Kuang, Nielsen and Nielsen
(2009), Verrall, Nielsen and Jessen (2010), Martínez-Miranda et al. (2011) and
Martínez-Miranda, Nielsen and Verrall (2012). These papers re-interpreted classi-
cal chain ladder in modern mathematical statistical terms. The generalised struc-
tured nonparametric model of this paper is a multiplicative density with three ef-
fects. The third seasonal effect is a function of the covariates of the first two effects.
Estimation is carried out by projecting an unstructured local linear density estima-
tor, Nielsen (1999), down on the structure of interest. The seasonal addition to the
multiplicative density model of Mammen, Martínez-Miranda and Nielsen (2015)
is still a generalised additive structure, a simple special case of generalised struc-
tured models. Generalised structured models have historically been more studied in
regression than in density estimation. Future developments of our in-sample den-
sity approach will therefore naturally be related to fundamental regression models;
see Linton and Nielsen (1995), Nielsen and Linton (1998), Opsomer and Ruppert
(1997), Mammen, Linton and Nielsen (1999), Jiang, Fan and Fan (2010), Mammen
and Park (2005, 2006), Nielsen and Sperlich (2005), Mammen and Nielsen (2003),
Yu, Park and Mammen (2008), Lee, Mammen and Park (2010, 2012, 2014), Zhang,
Park and Wang (2013), among others.

The paper is structured as follows. Section 2 describes our structured in-sample
density forecasting model, and show that the model is identifiable (estimable) un-
der weak conditions. Section 3 explains a new approach to the estimation of the
model. Here, it is assumed that the data are observed in continuous time and non-
parametric smoothing methods are applied. Section 4 contains the theoretical prop-
erties of our method and Section 5 considers numerical examples and discusses the
performance of the new approach. The Appendix contains technical details.



IN-SAMPLE DENSITY FORECASTING 623

2. The model. We observe a random sample {(Xi, Yi) : 1 ≤ i ≤ n} from a
density f supported on a subset I of a rectangle [0,1]2. The density f (x, y) of
(Xi, Yi) is a multiplicative function of three univariate components, where the first
two are a function of the coordinate x and y, respectively, and the third is a func-
tion of the sum of the two coordinates, x + y, and is periodic. Specifically, we
consider the following multiplicative model:

f (x, y) = f1(x)f2(y)f3
(
mJ (x + y)

)
, (x, y) ∈ I,(2.1)

where mJ (t) = JmodJ (t), modJ (t) = t modulo 1/J for some J > 0, that is,
mJ (t) = J (t − l/J ) for l/J ≤ t < (l+1)/J , j = 0,1,2, . . . . Here, fj are unknown
nonnegative functions supported and bounded away from zero on their supports.
We note that mJ (t) always takes values in [0,1) as t varies on R

+, and that the
third component f3(mJ (·)) is a periodic function with period J−1.

We will prove the identifiability of the functions f1, f2 and f3 under the con-
straints that

∫ 1
0 f1(x) dx = ∫ 1

0 f2(y) dy = 1. We will do this for two scenarios. In
the first case, we assume that f1, f2 and f3 are smooth functions. Then identi-
fication follows by a simple argument. Our second result does not make use of
smoothness conditions of the component functions. It only requires conditions on
the shape of the set I . The second result is important for an understanding of our
estimation procedure that is based on a projection onto the model (2.1) without
using a smoothing procedure for the component functions.

Our first identifiability result makes use of the following conditions:

(A1) The projections of the set I onto the x- and y-axis equal [0,1].
(A2) For every z ∈ [0,1) there exists (x, y) in the interior of I with mJ (x +

y) = z. Furthermore, for every x, y ∈ (0,1) there exist x ′ and y′ with (x, y′) and
(x′, y) in the interior of I .

(A3) The functions f1, f2, f3 are bounded away from zero and infinity on their
supports.

(A4) The functions f1 and f2 are differentiable on [0,1]. The function f3 is
twice differentiable on [0,1).

(A5) There exist sequences x0 = 0 < x1 < · · · < xk = 1 and y0 = 1 > y1 >

· · · > yk = 0 with (x, yj ) ∈ I for xj ≤ x ≤ xj+1.

THEOREM 1. Assume that model (2.1) holds with (A1)–(A5). Then the func-
tions f1, f2, f3 are identifiable.

REMARK 1. Let T = max{x + y : (x, y) ∈ I}. We note that the functions
fj are not identifiable in case J < 1/T . To see this, we take f1(u) = f2(u) =
c1e

u, f3(u) = eu with the constant c1 > 0 chosen for f1 = f2 to satisfy the
constraint

∫ 1
0 fj (u) du = 1. Consider also g1(u) = g2(u) = c2e

(J+1)u, g3(u) =
c2

1/c
2
2 with the constants c2 > 0 chosen for g1 = g2 to satisfy the constraint∫ 1

0 gj (u) du = 1. In case J < 1/T , we have mJ (x + y) = J (x + y) for all
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(x, y) ∈ I . This implies that (f1, f2, f3) and (g1, g2, g3) give the same multiplica-
tive density. In fact, if J < 1/T , then the assumption (A2) is not fulfilled.

We now come to our second identifiability result that does not require smooth-
ness conditions for the functions f1, f2 and f3. This makes use of the follow-
ing conditions on the shape of the support set I . To introduce conditions on
the support set I , we let I1(y) = {x : (x, y) ∈ I}, I2(x) = {y : (x, y) ∈ I} and
I3l(z) = {x ∈ [0,1] : (x, (z + l)/J − x) ∈ I}. Below, we assume that these sets
change smoothly as y, x and z, respectively, move. Here, A�B denotes the sym-
metric difference of two sets A and B in R, and mes(A) the Lebesgue measure of
a set A ⊂ R. Recall the definition T = max{x +y : (x, y) ∈ I}, and with this define
L(J ) be the largest integer that is less than or equal to T J .

(A6) For j ∈ {1,2,3} there exist partitions 0 = a
j
0 < · · · < a

j
Lj

= 1 of [0,1]
and a function κ : [0,1] → R

+ with κ(x) → 0 for x → 0 such that (i) for
all u1, u2 ∈ (a

j
l−1, a

j
l ), mes[Ij (u1)�Ij (u2)] ≤ κ(|u1 − u2|), l = 1, . . . ,Lj ; j =

1,2; (ii) for all u1, u2 ∈ (a3
l−1, a

3
l ),

∑L(J )
k=0 mes[I3k(u1)�I3k(u2)] ≤ κ(|u1 −

u2|), l = 1, . . . ,L3. Furthermore, it holds that mes(I2(x)) > 0, mes(I1(y)) > 0
and

∑L(J )
l=0 mes[I3l(z)] > 0 for x, y ∈ (0,1) and for z ∈ [0,1).

Assumption (A6) will be used to prove the continuity of some relevant functions
that appear in the technical arguments. The continuity of a function γ implies that
γ (x) = 0 for all x if it is zero almost all x. The assumption allows a finite number
of jumps in Ij (u) for j = 1,2 and I3k(u) as u moves. For example, suppose that
I = {(x, y) : 0 ≤ x ≤ 1,0 ≤ y ≤ 1, x +y ≤ 5/4} and J = 2. In this case, L(J ) = 2,
and for k = 0,1 we have I3k(z) = [0, (z + k)/2] for all z ∈ [0,1), so that I3k

changes smoothly as z varies on [0,1). However, for k = 2 we get that I3k(z) =
[z/2,1] for z ∈ [0,1/2] and I3k(z) is empty for z ∈ (1/2,1), thus it changes dras-
tically at z = 1/2. In fact, limh→0

∑L(J )
k=0 mes[I3k(z + h)�I3k(z − h)] �= 0 for

z = 1/2. We note that in this case assumption (A6) holds if we split [0,1) into
two partitions, [0,1/2) and (1/2,1).

The assumptions (A1), (A2), (A5) and (A6) accommodate a variety of sets I
that arise in real applications. Figure 1 depicts some realistic examples of the set
I that satisfy the assumptions. In particular, those sets of the type in the panels (c)
and (e) satisfy (A2) and (A6) if the maximal vertical or horizontal thickness of the
stripe is larger than the period 1/J of the third component function f3(mJ (·)). In
the interpretation of the examples in Figure 1, we follow the equivalent discussion
from Keiding (1991) and Kuang, Nielsen and Nielsen (2008). The triangle in Fig-
ure 1(a) is typical for insurance or mortality when none of the underwriting years
or cohorts are fully run-off. The standard actuarial term “fully run-off” means that
all events from that underwriting year or cohort have been observed. In almost
all practical cases of estimating outstanding liabilities, actuaries stick to the tri-
angle format leaving out fully run-off underwriting years. While the triangle also
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FIG. 1. Shapes of possible support sets. The horizontal axis indicates the onset (x) and the vertical
the development (y).

appears in mortality studies, it is common here to leave the fully run-off cohorts
in the study resulting in the support shape given in Figure 1(b). The support in
Figure 1(c) arises when the data analyst only considers observations from the most
recent calendar years. While this approach is omnipresent in practical actuarial sci-
ence, there is no formal theory or mathematical models behind these procedures
in the actuarial literature. This paper is therefore an important step toward formal-
ising mathematically actuarial practise while at the same time improving it. The
support given in Figure 1(d) and (e) arises when there is a known time transforma-
tion such that time is running at another pace for different underwriting years or
cohort years. While this type of time transformations are well known in mortality
studies are often coined as versions of accelerated failure time models. Time trans-
formations are also well known in actuarial science coined as operational time.
However, the academic literature of actuarial science is still struggling to find a
formal definition of what operational time is. This paper offers one potential solu-
tion to this outstanding and important issue. The last Figure 1(f) is included to give
an impression of the generality of support structures one could deal with inside our
model approach. Data is missing in the beginning and end of the delay period, but
the model is still valid and in-sample forecasts can be constructed.

The model (2.1) has taken structured density forecasting into a new territory
by leaving the simple multiplicative model. If f3 above was constant (and there-
fore not in the model) then our model reduces to the simple multiplicative model
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analysed in Martínez-Miranda et al. (2013) and Mammen, Martínez-Miranda and
Nielsen (2015). These two papers point out that the simple multiplicative density
forecasting model is a continuous version of a widely used parametric approach
corresponding to a structured histogram version of in-sample density forecasting
based on the simple multiplicative model. The in-sample density forecasting model
under investigation in this paper generalizes the simple multiplicative approach in
an intuitive and simple way including seasonal effects.

In the following theorem, we show that, if there are two multiplicative repre-
sentations of the joint density f that agree on almost all points in I , then the
component functions also agree on almost all points in [0,1]. We will use this
result later in the asymptotic analysis of our estimation procedure.

THEOREM 2. Assume that model (2.1) holds with (A1)–(A3), (A5), (A6). Sup-
pose that (g1, g2, g3) is a tuple of functions that are bounded away from zero and
infinity with

∫ 1
0 g1(x) dx = ∫ 1

0 g2(y) dy = 1. Let μj = logfj − loggj . Assume that
μ1(x) + μ2(y) + μ3(mJ (x + y)) = 0 a.e. on I . Then μj ≡ 0 a.e. on [0,1].

3. Methodology. We describe the estimation method for the model (2.1). We
first note that the marginal densities of X,Y and mJ (X + Y) may be zero even
if we assume that the joint density is bounded away from zero. For example, the
marginal densities of X and Y at the point u = 1 are zero for the support set I
given in Figure 1(a). We estimate the multiplicative density model on a region
where we observe sufficient data. This means that we exclude the points (1,0) and
(0,1) in the estimation in the case of Figure 1(a), and the point (1,0) in the case of
Figure 1(b). Formally, for a set S ⊂ I , let J1 and J2 denote versions of I1 and I2,
respectively, defined by J1(y) = {x : (x, y) ∈ S} and J2(x) = {y : (x, y) ∈ S}, and
define J3l(z) = {x : (x, (z + l)/J − x) ∈ S}. We take an arbitrarily small number
δ > 0, and find the largest set S such that

mes
(
J2(x)

) ≥ δ, mes
(
J1(y)

) ≥ δ,

L(J )∑
l=0

mes
(
J3l

(
mJ (x + y)

)) ≥ δ for all (x, y) ∈ S,

where mes(A) for a set A denotes its length. Such a set is given by S = {(x, y) : 0 ≤
x ≤ 1 − δ,0 ≤ y ≤ 1 − δ, x + y ≤ 1} in the case of Figure 1(a), and S = {(x, y) ∈
I : 0 ≤ x ≤ 1 − δ} in the case of Figure 1(b), for example.

We estimate fj on S. Let S1 and S2 be the projections of S onto x- and y-axis,
that is, S1 = {x ∈ [0,1] : (x, y) ∈ S for some y ∈ [0,1]}, S2 = {y ∈ [0,1] : (x, y) ∈
S for some x ∈ [0,1]}, and S3 = {mJ (x + y) : (x, y) ∈ S}. In the case of Fig-
ure 1(a), S1 = S2 = [0,1 − δ], S3 = [0,1), but in the case of Figure 1(b), S1 =
[0,1 − δ], S2 = [0,1], S3 = [0,1). We put the following constraints on fj :∫

S1

f1(x) dx =
∫
S2

f2(y) = 1.
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This is only for convenience. Now, we define fw,1(x) = ∫
J2(x) f (x, y) dy,

fw,2(y) = ∫
J1(y) f (x, y) dx and fw,3(z) = ∑L(J )

l=0

∫
J3l (z)

f (x, (z + l)/J − x)dx.
Then the model (2.1) gives the following integral equations:

fw,1(x) = f1(x)

∫
J2(x)

f2(y)f3
(
mJ (x + y)

)
dy, x ∈ S1,

fw,2(y) = f2(y)

∫
J1(y)

f1(x)f3
(
mJ (x + y)

)
dx, y ∈ S2,(3.1)

fw,3(z) = f3(z)

L(J )∑
l=0

∫
J3l (z)

f1(x)f2
(
(z + l)/J − x

)
dx, z ∈ S3.

We note that the marginal functions on the left-hand sides of the above equations
are bounded away from zero on Sj . Specifically, infu∈Sj

fw,j (u) ≥
δ inf(x,y)∈I f (x, y) > 0 so that fj in the equations are well-defined.

Suppose that we are given a preliminary estimator of the joint density f . Call
it f̂ . We estimate fw,j by f̂w,j that are defined as fw,j , respectively, with f

being replaced by the preliminary estimator f̂ . Our proposed estimators of fj ,
for j = 1,2,3, are obtained by replacing fw,j in the integral equations (3.1)
by f̂w,j , respectively, and solving the resulting equations for the multiplica-
tive components. Let ϑ = ∫

S f (x, y) dx dy and ϑ̂ be its estimator defined by
ϑ̂ = n−1 ∑n

i=1 I [(Xi, Yi) ∈ S]. Putting the constraints∫
S1

f̂1(x) dx =
∫
S2

f̂2(y) dy = 1,

(3.2) ∫
S
f̂1(x)f̂2(y)f̂3

(
mJ (x + y)

)
dx dy = ϑ̂,

they are given as the solution of the following backfitting equations:

f̂1(x) = θ̂1 · f̂w,1(x)∫
J2(x) f̂2(y)f̂3(mJ (x + y)) dy

,

f̂2(y) = θ̂2 · f̂w,2(y)∫
J1(y) f̂1(x)f̂3(mJ (x + y)) dx

,(3.3)

f̂3(z) = θ̂3 · f̂w,3(z)∑L(J )
l=0

∫
J3l (z)

f̂1(x)f̂2((z + l)/J − x)dx
,

where θ̂j are chosen so that f̂j satisfy (3.2).
The solution of (3.3) is not given explicitly. The estimates are calculated by

an iterative algorithm with a starting set of function estimates f̂
[0]
1 and f̂

[0]
2 that

satisfy the constraints (3.2). With the initial estimates, we compute f̂
[0]
3 from the
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third equation at (3.3). Then we update f̂
[k−1]
j consecutively for j = 1,2,3 and

for k ≥ 1 by the equations at (3.3) until convergence. Specifically, we compute at
the kth cycle (k ≥ 1) of the iteration

f̂
[k]
1 (x) = θ̂

[k]
1 · f̂w,1(x)∫

J2(x) f̂
[k−1]
2 (y)f̂

[k−1]
3 (mJ (x + y)) dy

,

f̂
[k]
2 (y) = θ̂

[k]
2 · f̂w,2(y)∫

J1(y) f̂
[k]
1 (x)f̂

[k−1]
3 (mJ (x + y)) dx

,(3.4)

f̂
[k]
3 (z) = θ̂

[k]
3 · f̂w,3(z)∑L(J )

l=0

∫
J3l (z)

f̂
[k]
1 (x)f̂

[k]
2 ((z + l)/J − x)dx

,

where θ̂
[k]
j are chosen so that the resulting f̂

[k]
j satisfy (3.2).

We note that the naive two-dimensional kernel density estimator is not consis-
tent near the boundary region, which jeopardizes the properties of the solution of
the backfitting equation (3.3) at boundaries. For a preliminary estimator f̂ of the
joint density f , we take the local linear estimation technique. The local linear esti-
mator f̂ we consider here is similar in spirit to the proposal of Cheng (1997). Let
a(u, v;x, y) = (1, (u − x)/h1, (v − y)/h2)

� and define

A(x, y) =
∫
S

a(u, v;x, y)a(u, v;x, y)�h−1
1 h−1

2 K

(
u − x

h1

)
K

(
v − y

h2

)
dudv,

where (h1, h2) is the bandwidth vector and K is a symmetric univariate probability
density function. Also, define

b̂(x, y) = n−1
n∑

i=1

a(Xi, Yi;x, y)h−1
1 h−1

2 K

(
Xi − x

h1

)
K

(
Yi − y

h2

)
Wi,

where Wi = 1 if (Xi, Yi) ∈ S and 0 otherwise. The local linear density estimator
f̂ we consider in this paper is defined by η̂0, where η̂ = (η̂0, η̂1, η̂2) is given by

η̂(x, y) = A(x, y)−1b̂(x, y).(3.5)

It is alternatively defined as

η̂(x, y) = arg min
η

lim
b1,b2→0

∫
S

[
f̂b1,b2(u, v) − a(u, v;x, y)�η(x, y)

]2

× K

(
u − x

h1

)
K

(
v − y

h2

)
dudv,

where f̂b1,b2 be the standard two-dimensional kernel density estimator defined by

f̂b1,b2(x, y) = n−1
n∑

i=1

b−1
1 b−1

2 K

(
x − Xi

b1

)
K

(
y − Yi

b2

)
Wi
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for a bandwidth vector (b1, b2).
Before we close this section, we give two remarks. One is that, instead of inte-

grating the two-dimensional estimator f̂ , one may estimate fw,j directly from the
data. In particular, one may estimate fw,j by the one-dimensional kernel density
estimators

f̃w,1(x) = n−1h−1
1

n∑
i=1

K

(
Xi − x

h1

)
Wi,

f̃w,2(y) = n−1h−1
2

n∑
i=1

K

(
Yi − y

h2

)
Wi,

f̃w,3(z) = n−1h−1
3

n∑
i=1

K

(
mJ (Xi + Yi) − z

h3

)
Wi.

Our theory that we present in the next section is valid for this alternative esti-
mation procedure. The other thing we would like to remark is that one may be
also interested in an extension of the model (2.1) that arises when one observes
a covariate Ui ∈ R

d along with (Xi, Yi). A natural extension of the model (2.1)
in this case is that the conditional density of (X,Y ) given U = u has the form
f (x, y|u) = f1(x,u)f2(y,u)f3(mJ (x + y),u), (x, y) ∈ I , where the constraints
(B1) now applies to f1(·, z) and f2(·, z) for each z. The method and theory for this
extended model are easy to derive from those we present here.

4. Theoretical properties. Let S denote the space of function tuples g =
(g1, g2, g3) with square integrable univariate functions gj in the space L2[0,1].
Define nonlinear functionals Fj for 1 ≤ j ≤ 3 on S by

F1(g) = 1 −
∫
S1

g1(x) dx,

F2(g) = 1 −
∫
S2

g2(y) dy,

F3(g) = ϑ −
∫
S
g1(x)g2(y)g3

(
mJ (x + y)

)
dx dy.

Also, define nonlinear functionals Fj for 4 ≤ j ≤ 6, now on R
3 × S , by

F4(θ ,g)(x) =
∫
J2(x)

[
θ1f (x, y) − g1(x)g2(y)g3

(
mJ (x + y)

)]
dy,

F5(θ ,g)(y) =
∫
J1(y)

[
θ2f (x, y) − g1(x)g2(y)g3

(
mJ (x + y)

)]
dx,

F6(θ,g)(z) =
L(J )∑
l=0

∫
J3l (z)

[
θ3f

(
x, (z + l)/J − x

)

− g1(x)g2
(
(z + l)/J − x

)
g3(z)

]
dx,
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where θ = (θ1, θ2, θ3)
�. Then we define a nonlinear operator F :R3 × S �→

R
3 × S by F(θ ,g)(x, y, z) = (F1(g),F2(g),F3(g),F4(θ,g)(x),F5(θ ,g)(y),

F6(θ ,g)(z))�.
Now, we define nonlinear functionals F̂j for 1 ≤ j ≤ 3 on S and F̂j for 4 ≤ j ≤

6 on R
3 ×S as Fj in the above, with the joint density f being replaced by its esti-

mator f̂ and ϑ by ϑ̂ . Let F̂ :R3 ×S �→R
3 ×S be the nonlinear operator defined by

F̂(θ,g)(x, y, z) = (F̂1(g), F̂2(g), F̂3(g), F̂4(θ ,g)(x), F̂5(θ ,g)(y), F̂6(θ ,g)(z))�.
Our estimators f̂ = (f̂1, f̂2, f̂3) along with θ̂ = (θ̂1, θ̂2, θ̂3) are given as the solution
of the equation

F̂(θ̂ , f̂) = 0.(4.1)

From the definition of the nonlinear operator F , we also get F(1, f) = 0, where
1 = (1,1,1)� and f = (f1, f2, f3)

� for the true component functions fj .
We consider a theoretical approximation of f̂. Define a nonlinear opera-

tor by G(θ ,g) = F(1 + θ , f ◦ (1 + g)), where g1 ◦ g2 denotes the entry-
wise multiplication of the two function vectors g1 and g2. Then G(0,0) = 0.
Let G′(d, δ) denote the derivative of G(θ,g) at (θ ,g) = (0,0) to the direc-
tion (d, δ). We write fw(x, y, z) = (fw,1(x), fw,2(y), fw,3(z))

� and μ̂(x, y, z) =
(μ̂1(x), μ̂2(y), μ̂3(z))

�, where

μ̂1(x) = fw,1(x)−1
∫
J2(x)

[
f̂ (x, y) − f (x, y)

]
dy,

μ̂2(y) = fw,2(y)−1
∫
J1(y)

[
f̂ (x, y) − f (x, y)

]
dx,

(4.2)

μ̂3(z) = fw,3(z)
−1

L(J )∑
l=0

∫
J3l (z)

[
f̂

(
x, (z + l)/J − x

)

− f
(
x, (z + l)/J − x

)]
dx.

Let G′−1 :R3 × S �→ R
3 × S denote the inverse of G′, whose existence we will

prove in the Appendix. We define f̄ = (f̄1, f̄2, f̄3) along with θ̄ = (θ̄1, θ̄2, θ̄3) by(
θ̄ − 1

(f̄ − f)/f

)
= G′−1

(
0

−fw ◦ μ̂

)
,(4.3)

where g1/g2 denotes the entrywise division of the function g1 by g2.
It can be seen that δ = (δ1, δ2, δ3)

� = ((f̄1 − f1)/f1, (f̄2 − f2)/f2, (f̄3 −
f3)/f3)

� along with d = (d1, d2, d3)
� = (θ̄1 − 1, θ̄2 − 1, θ̄3 − 1)� are given as

the solution of the following system of integral equations:

δ1(x) = d1 + μ̂1(x) −
∫
J2(x)

δ2(y)
f (x, y)

fw,1(x)
dy

−
∫
J2(x)

δ3
(
mJ (x + y)

)f (x, y)

fw,1(x)
dy, x ∈ S1,(4.4)
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δ2(y) = d2 + μ̂2(y) −
∫
J1(y)

δ1(x)
f (x, y)

fw,2(y)
dx

−
∫
J1(y)

δ3
(
mJ (x + y)

)f (x, y)

fw,2(y)
dx, y ∈ S2,

δ3(z) = d3 + μ̂3(z) −
L(J )∑
l=0

∫
J3l (z)

δ1(x)
f (x, (z + l)/J − x)

fw,3(z)
dx

−
L(J )∑
l=0

∫
J3l (z)

δ2
(
(z + l)/J − x

)f (x, (z + l)/J − x)

fw,3(z)
dx, z ∈ S3,

subject to the constraints

0 =
∫
S1

f1(x)δ1(x) dx,

0 =
∫
S2

f2(y)δ2(y) dy,(4.5)

0 =
∫
S
f (x, y)

[
δ1(x) + δ2(y) + δ3

(
mJ (x + y)

)]
dx dy.

In the following theorem, we show that the approximation of f̂ by f̄ is good
enough. In the theorem, we assume that f̂ (x, y) − f (x, y) = Op(εn) uniformly
on S for some nonnegative sequence {εn} that converges to zero as n tends to
infinity. For the local linear estimator f̂ defined by (3.5) with h1 ∼ h2 ∼ n−1/5, we
have εn = n−3/10√logn. The theorem tells that the approximation errors of f̄j for
f̂j are of order Op(n−3/5 logn). In Theorem 4 below, we will show that f̄j − fj

have magnitude of order Op(n−2/5√logn) uniformly on Sj . This means that the
first-order properties of f̂j are the same as those of f̄j .

THEOREM 3. Assume that the conditions of Theorem 2 hold, and that the joint
density f is bounded away from zero and infinity on its support S with continuous
partial derivatives on the interior of S. If f̂ (x, y) − f (x, y) = Op(εn) uniformly
for (x, y) ∈ S, then it holds that |θ̂j − θ̄j | = Op(ε2

n) and supu∈Sj
|f̂j (u)− f̄j (u)| =

Op(ε2
n).

Next, we present the limit distribution of (f̄ − f)/f. In the next theorem, we
assume that h1 ∼ c1n

−1/5 and h2 ∼ c2n
−1/5 for some constants c1, c2 > 0. For

such constants, define

f̃ B(x, y) = 1

2

∫
u2K(u)du

[
c2

1
∂2

∂x2 f (x, y) + c2
2

∂2

∂y2 f (x, y)

]
.(4.6)
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Also, define μ̃B
j for j = 1,2,3 as μ̂j at (4.2) with the local linear estimator f̂ being

replaced by f̃ B . In the Appendix, we will show that the asymptotic mean of (f̄j −
fj )/fj equals n−2/5βj , where β = (β1, β2, β3) is the solution of the backfitting
equation (4.4) with μ̂ being replaced by μ̃B . Let f̃ A denote the centered version
of the naive two-dimensional kernel density estimator. Specifically,

f̃ A(x, y) = n−1
n∑

i=1

[
Kh1(Xi − x)Kh2(Yi − y)

(4.7)
− E

(
Kh1(Xi − x)Kh2(Yi − y)

)]
.

Here and below, we write Kh(u) = K(u/h)/h. Define μ̃A
j for j = 1,2,3 as μ̃B

j

with f̃ A taking the role of f̃ B . We will also show that the asymptotic variances of
(f̄j − fj )/fj equal those of μ̃A

j , respectively, and that they are given by n−4/5σ 2
j ,

where

σ 2
1 (x) = c−1

1 fw,1(x)−1
∫

K2(u) du,

σ 2
2 (y) = c−1

2 fw,2(y)−1
∫

K2(u) du,

σ 2
3 (z) = c−1

2 fw,3(z)
−1

∫ [
K ∗ K(u)

][
K ∗ K(c1u/c2)

]
du

= c−1
1 fw,3(z)

−1
∫ [

K ∗ K(u)
][

K ∗ K(c2u/c1)
]
du,

where K ∗ K denotes the two-fold convolution of the kernel K .
In the discussion of assumption (A6) in Section 2, we note that (A6) allows a

finite number of jumps in Ij (u) for j = 1,2 and I3l(u) as u changes. These jump
points are actually those where the marginal densities fw,j are discontinuous. At
these discontinuity points, the expression of the asymptotic distributions of the
estimators is complicate. For this reason, we consider only those points in the
partitions (a

j
k−1, a

j
k ),1 ≤ k ≤ Lj , for the asymptotic distribution of f̂j , where a

j
k

are the points that appear in assumption (A6). We denote by Sj,c the resulting

subset of Sj after deleting all a
j
k ,1 ≤ k ≤ Lj − 1. Note that fw,j is continuous on

Sj,c due to (A6). In the theorem below, we also denote by So
j the interiors of Sj ,

j = 1,2,3.
For the limit distribution of f̂j , we put an additional condition on the support set.

To state the condition, let J o
2 (u1;h2) be a subset of J2(u1) such that v ∈ J o

2 (u1;h2)

if and only if v − h2t ∈ J2(u1) for all t ∈ [−1,1]. The set J o
2 (u1;h2) is inside

J2(u1) at a depth h2. In the following assumption, a
j
k and κ are the points and the

function that appear in assumption (A6).

(A7) There exist constants C > 0 and α > 1/2 such that the following state-
ments hold: (i) for any sequence of positive numbers εn, J o

2 (u1;Cεα
n ) ⊂ J2(u2) for
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all u1, u2 ∈ (a1
k−1, a

1
k )∩S1 with |u1 −u2| ≤ εn, 1 ≤ k ≤ L1; J o

1 (u1;Cεα
n) ⊂ J1(u2)

for all u1, u2 ∈ (a2
k−1, a

2
k ) ∩ S2 with |u1 − u2| ≤ εn, 1 ≤ k ≤ L2; (ii) κ(t) ≤ C|t |α .

THEOREM 4. Assume that (A7) and the conditions of Theorem 3 hold, and
that the joint density f is twice partially continuously differentiable. Let the kernel
K be supported on [−1,1], symmetric and Lipschitz continuous. Let the band-
widths hj satisfy n1/5hj → cj for some constants cj > 0. Then, for fixed points
uj ∈ So

j ∩ Sj,c, it holds that n2/5(f̄j (uj ) − fj (uj ))/fj (uj ) are jointly asymp-

totically normal with mean (βj (uj ) : 1 ≤ j ≤ 3) and variance diag(σ 2
j (uj ) : 1 ≤

j ≤ 3). Furthermore, (f̄j (uj ) − fj (uj ))/fj (uj ) = Op(n−2/5√logn) uniformly
for uj ∈ Sj .

REMARK 2. In the case where the third component function f3 is constant,
that is, there is no periodic component, the above theorem continue to hold for the
component f1 and f2 without those conditions that pertain to the set S3 and the
function f3.

5. Numerical properties.

5.1. Simulation studies. We considered two densities on I = {(x, y) : 0 ≤
x, y ≤ 1, x + y ≤ 1}. Model 1 has the components f1 ≡ f2 ≡ 1 on [0,1],
and f3(u) = c1(sin(2πu) + 3/2), u ∈ [0,1], where c1 > 0 is chosen to make
f (x, y) = f1(x)f2(y)f3(mJ (x + y)) be a density on I . Model 2 has f1(u) =
3/2 − u,f2(u) = 5/4 − 3u2/4 and f3(u) = c2(u

3 − 3u2/2 + u/2 + 1/2) for some
constant c2 > 0. We took J = 2. We computed our estimates on a grid of band-
width choice h1 = h2. For model 1, we took {0.070 + 0.001 × j : 0 ≤ j ≤ 30} in
the range [0.070,0.100], and for model 2 we chose {0.40 + 0.02 × j : 0 ≤ j ≤ 20}
in the range [0.40,0.80]. In both cases, the ranges covered the optimal bandwidths.
We obtained MISEj = E

∫ 1
0 [f̂j (u)−fj (u)]2 du, ISBj = ∫ 1

0 [Ef̂j (u)−fj (u)]2 du

and IVj = E
∫ 1

0 [f̂j (u) − Ef̂j (u)]2 du, for 1 ≤ j ≤ 3, based on 100 pseudo sam-
ples. The sample sizes were n = 400 and 1000, but only the results for n = 400 are
reported since the lessons are the same.

Figure 2 is for model 1. It shows the boxplots of the values of MISEj , ISBj and
IVj computed using the bandwidths on the grid specified above, and thus gives
some indication of how sensitive our estimators are to the choice of bandwidth.
The bandwidth that gave the minimal value of MISE1 + MISE2 + MISE3 was
h1 = h2 = 0.089 in model 1, and h1 = h2 = 0.64 in model 2, for the sample size
n = 400. The values of MISEj along with ISBj and IVj for these optimal band-
widths are reported in Table 1. Although our primary concern is the estimation
of the component functions, it is also of interest to see how good the produced
two-dimensional density estimator f̂1(x)f̂2(y)f̂3(mJ (x + y)) behaves. For this,
we include in the table the values of MISE, ISB and IV of the two-dimensional
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FIG. 2. Boxplots for the values of MISE, ISB and IV of our estimates fj computed using various
bandwidth choices (model 1, n = 400).

estimates computed using the optimal bandwidth h1 = h2 = 0.089 in model 1, and
h1 = h2 = 0.64 in model 2. For comparison, we also report the results for the two-
dimensional local linear estimates defined at (3.5). For the local linear estimator,
we used its optimal choices h1 = h2 = 0.085 in model 1, and h1 = h2 = 0.48 in
model 2. We found that the initial local linear estimates had a large portion of mass
outside I , and thus behaved very poorly if they were not re-scaled to be integrated
to one on I . The reported values in Table 1 are for the adjusted local linear es-
timates. Overall, our two-dimensional estimator has better performance than the
local linear estimator, especially in model 2. Figure 3 depicts the true density of
model 1 and our two-dimensional estimate that has the median performance in
terms of ISE.

5.2. Data examples. The original data set we analyze in this section was col-
lected between the year 1990 to 2011 by the major global UK based nonlife insur-
ance company RSA. The dataset—and more details about it—is publicly available

TABLE 1
Mean integrated squared errors (MISE), integrated squared biases (ISB) and integrated variance

(IV) of the estimators

Component functions Joint density

f1 f2 f3 Our est. Local linear

Model 1 MISE 0.0756 0.0937 0.1283 0.2493 0.2537
ISB 0.0528 0.0752 0.0963 0.1844 0.2199
IV 0.0228 0.0184 0.0320 0.0649 0.0338

Model 2 MISE 0.0124 0.0057 0.0130 0.0475 0.0624
ISB 0.0120 0.0054 0.0127 0.0469 0.0607
IV 0.0004 0.0003 0.0003 0.0006 0.0017



IN-SAMPLE DENSITY FORECASTING 635

FIG. 3. The true density (left) and our estimated two-dimensional density function (right) computed
from the pseudo sample that gives the median performance in terms of ISE, for model 1 and n = 400.

via the Cass Business School web site together with the paper “Double Chain
Ladder” at the Cass knowledge site. The observations were the incurred counts of
large claims aggregated by months. During the 264 months, 1516 large claims
were made. The dataset is provided in the form of a classical run-off triangle
{Nkl : 1 ≤ k, l ≤ 264, k + l ≤ 265}, where Nkl denotes the number of large claims
incurred in the kth month and reported in the (k + l − 1)th month, that is, with
(l − 1) months delay. Since the data are grouped monthly, we need pre-smoothing
of the data to apply the model (2.1) that is based on data recorded over a continu-
ous time scale. A natural way of pre-smoothing is to perturb the data by uniform
random variables. Thus, we converted each claim (k, l) on the two-dimensional
discrete time scale {(k, l) : 1 ≤ k, l ≤ 264, k + l ≤ 265}, into (X,Y ) on the two-
dimensional continuous time scale I = {(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1}, by

X = k − 1 + U1

264
, Y = l − 1 + U2

264
,

where (U1,U2) is a two-dimensional uniform random variate on the unit square
[0,1]2. This gives a converted dataset {(Xi, Yi) : 1 ≤ i ≤ 1516}. We applied to this
dataset our method of estimating the structured density f of (X,Y ).

Since one month corresponds to an interval with length 1/264 on the [0,1]
scale, one year is equivalent to an interval with length 12/264 = 1/22 on the latter
scale. We let the periodic component f3(mJ (·)) in the model (2.1) reflect a possible
seasonal effect, so that we take one year in the real time to be the period of the
function. This means that we let the periodic component f3(mJ (·)) have 1/22 as
its period, and thus take J = 22. For the bandwidth, we took h1 = h2 = 0.01.
The chosen bandwidth may be considered to be too small for the estimation of f1
and f2. However, we took such a small bandwidth to detect possible seasonality.
Note that the bandwidth size 0.01 corresponds to 0.01 × 12 × 22 = 2.64 months.
We found that even with this small bandwidth the estimated curve f̂3 was nearly a
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constant function, which suggests that the large claim data do not have a seasonal
effect.

To see how well our method detects a possible seasonal effect in the data, we
augmented the dataset by adding a certain level of seasonal effect as follows. We
computed

N ′
kl = 2Nkl if k + l = 12m for some m = 1,2, . . . ,

N ′
kl = 3Nkl if k + l = 12m + 1 for some m = 1,2, . . . ,

N ′
kl = 5Nkl if k + l = 12m + 2 for some m = 0,1, . . . ,

N ′
kl = 3Nkl if k + l = 12m + 3 for some m = 0,1, . . . ,

N ′
kl = Nkl otherwise.

Since (k + l − 1 modulo 12) is the actual month of the claims reported, the aug-
mented dataset has added claims in November, December, January and February.
The augmentation resulted in increasing the total number of claims to 2606 from
1516. The increased counts of reported claims were 252 from 126 for Novem-
ber, 600 from 200 for December, 455 from 91 for January and 300 from 100 for
February.

In our estimation procedure, the bandwidths h1 and h2 control the smoothness
of the local linear estimate f̂ along the x- and y-axis, respectively. Consequently,
choosing small values for h1 and h2 would result in nonsmooth estimates of the
functions f1 and f2, which we observed in the pilot study with h1 = h2 = 0.01.
Nevertheless, in some cases setting these bandwidths to be small, relative to the
scales of X and Y , might be preferred when one needs to detect possible season-
ality, as is the case with the current dataset. In our dataset, the bandwidth size
1/264 = 0.0038 on the scale of [0,1] corresponds to one month in real time. Thus,
taking the bandwidths to be 0.015, for example, that corresponds to a period of
four months, forces the seasonal effect to almost vanish in the estimate of f3.

To achieve both aims of producing smooth estimates of f1 and f2, and of de-
tecting possible seasonal effect, we applied to the augmented dataset a two-stage
procedure that is based on our estimation method described in Section 3. In the
first stage, we got a local linear estimate f̂ with h1 = h2 = 0.01, and found an
estimate of f3 using the iteration scheme at (3.4). In the second stage, we recom-
puted a local linear estimate f̂ with larger bandwidths h1 = h2 = 0.05, and found
estimates of f1 and f2 using only the first two updating equations at (3.4) with
f̂

[k−1]
3 being replaced by the estimate of f3 obtained in the first stage.

The results of applying this two-stage procedure to the augmented dataset are
presented in Figure 4. Clearly, the seasonal effect of the augmented dataset was
well recovered in the estimate of f3, and at the same time smooth estimates of f1
and f2 were produced. The augmented data set indicate an increased number of
claims in the winter time. This is clearly reflected in the estimated results, where
the first part and the last part of the estimated effect is higher than the rest of
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FIG. 4. Estimated curves f̂j for the model (2.1) obtained by applying the two-stage procedure to
the augmented large claim data.

the curve. Imagine the realistic situation that a nonlife insurer on the first day of
November has to produce budget expenses for the rest of the year. The classical
multiplicative methodology is not able to reflect the two month perspective of such
a budget. Therefore, considerable work is being done manually in finance and actu-
arial departments of nonlife insurance companies to correct for such effects. With
our new seasonal correction, costly manual procedures can be replaced by cost
saving automatic ones eventually benefitting the prices all of us as end customers
have to pay for insurance products.

Figure 5 depicts the resulting two-dimensional joint density. Notice that this
two-dimensional density is clearly nonmultiplicative. The seasonal correction pro-
vides a visually deviation from the multiplicative shape. Also, note that while this
two-dimensional density is nonmultiplicative, the nature of this deviation is not
immediately clear to the eye. Whether the deviation is pure noise, a seasonal ef-
fect or some other effect is not easy to get from the full two-dimensional graph of
the local linear density estimate which is also presented in Figure 5. For the local

FIG. 5. Local linear joint density estimate (left) and our estimate (right) for the model (2.1) ob-
tained by applying the two-stage procedure to the augmented large claim data.
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linear estimate, we used h1 = h2 = 0.03. We tried other bandwidth choices such
as 0.01 and 0.05, but found that the smaller one gave too rough estimate and the
larger one produced too smooth a surface. Our two-dimensional density estimate
therefore illustrates why research into structured densities on nontrivial supports is
crucial to extract information beyond the classical and simple multiplicative one.

APPENDIX

A.1. Proof of Theorem 1. Suppose that (g1, g2, g3) is a tuple of functions
that are bounded away from zero and infinity with

∫ 1
0 g1(x) dx = ∫ 1

0 g2(y) dy = 1
and

f (x, y) = g1(x)g2(y)g3
(
mJ (x + y)

)
.

Furthermore, we assume that g1 and g2 are differentiable on [0,1] and that g3
is twice differentiable on [0,1). For j ∈ {1,2,3} define μj = logfj − loggj . By
assumption, we have

μ1(x) + μ2(y) + μ3
(
mJ (x + y)

) = 0.

For z ∈ [0,1), we choose (x, y) in the interior of I with mJ (x + y) = z. Then
we have that

0 = ∂2

∂x ∂y

[
μ1(x) + μ2(y) + μ3

(
mJ (x + y)

)] = μ′′
3(z).

Thus, μ3 is a linear function. Furthermore, we have that μ3(0) = μ3(1−). This
follows by noting that μ3(0) = −μ1(x) − μ2(y) for (x, y) ∈ I with mJ (x + y) =
0. Note that mJ (x +y) = 0 if and only if x +y = l/J for some l ≥ 1, if (x, y) is in
the interior of I . After slightly decreasing x and y to x + δx and y + δy with small
δx < 0, δy < 0, we have that μ3(1 + J (δx + δy)) = −μ1(x + δx) − μ2(y + δy)

since mJ (x + y + δx + δy) = 1 + J (δx + δy). Thus, μ3(0) = μ3(1−) follows from
continuity of μ1 and μ2. We conclude that μ3 must be a constant function. Thus,
μ1(x) + μ2(y) is a constant function.

From assumption (A5), we get that μ1(x) is constant on the intervals [xj , xj+1].
Because the union of these intervals is equal to [0,1] we conclude that μ1(x)

is constant on [0,1]. Using again (A5) we get that μ2(y) is constant on [0,1].
Because of the assumption that

∫ 1
0 g1(x) dx = ∫ 1

0 g2(y) dy = 1 and
∫ 1

0 f1(x) dx =∫ 1
0 f2(y) dy = 1 we get that f1 = g1, f2 = g2 and f3 = g3. This completes the

proof.

A.2. Proof of Theorem 2. We first argue that μ1, μ2 and μ3 are a.e. equal
to piecewise continuous functions on (0,1), with a finite number of pieces. To see
that μ1 is a.e. equal to a piecewise continuous function, we note that

μ1(x) = −
∫
I2(x)

[
μ2(y) + μ3

(
mJ (x + y)

)]
dy/mes

(
I2(x)

)
a.e. x ∈ (0,1).
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Here, because of (A3) and (A6), the right-hand side is a piecewise continuous
function. Thus, μ1 is a.e. equal to a piecewise continuous function. In abuse of
notation, we now denote the piecewise continuous function by μ1. By similar ar-
guments, one sees that μ2, and μ3 are piecewise continuous functions (or more
precisely a.e. equal to piecewise continuous functions). This implies that

μ1(x) + μ2(y) + μ3
(
mJ (x + y)

) = 0(A.1)

for (x, y,mJ (x + y)) /∈ {x1, . . . , xr1} × (0,1)2 ∪ (0,1) × {y1, . . . , yr2} × (0,1) ∪
(0,1)2 × {z1, . . . , zr3} for some values x1, . . . , xr1, y1, . . . , yr2, z1, . . . , zr3 ∈ (0,1).

We now argue that μ3 is continuous on [0,1). To see that μ3 is continuous at
z0 ∈ [0,1), we choose (x0, y0) in the interior of I such that mJ (x0 + y0) = z0.
This is possible because of assumption (A2). We can choose x0 and y0 such that
μ1 is continuous at x0 and μ2 is continuous at y0. Thus, we get from (A.1) that μ3
is continuous at z0. Similarly, one shows that μ1 and μ2 are continuous functions
on [0,1]. This gives that

μ1(x) + μ2(y) + μ3
(
mJ (x + y)

) = 0(A.2)

for all x, y ∈ (0,1).
For z0 ∈ [0,1), we choose (x0, y0) in the interior of I with mJ (x0 + y0) = z0.

Note that for δx and δy sufficiently small we get for z0 ∈ (0,1) that mJ (x0 + δx +
y0 + δy) = z0 + J (δx + δy). This gives for δx and δy sufficiently small that

μ1(x0 + δx) + μ2(y0 + δy) + μ3
(
z0 + J (δx + δy)

) = 0.

With δx , δ′
y and δy sufficiently small, we get that

μ2(y0 + δy) + μ3
(
z0 + J (δx + δy)

) = μ2
(
y0 + δ′

y

) + μ3
(
z0 + J

(
δx + δ′

y

))
.

With the special choice δx = −δy , this gives

μ2(y0 + δy) + μ3(z0) = μ2
(
y0 + δ′

y

) + μ3
(
z0 + J

(
δ′
y − δy

))
.

Let γ be a function defined by γ (u) = μ3(z0 + Ju) − μ3(z0). From the last two
equations taking u = δx + δy and v = δ′

y − δy , we get

γ (u + v) = γ (u) + γ (v)

for u, v sufficiently small. This implies that, with a constant cz0 depending on z0
we have γ (u) = cz0u for u sufficiently small; see Theorem 3 of Guillot, Khare and
Rajaratnam (2013). Thus, we obtain μ3(z) = az0 + bz0z with constants az0 and bz0

depending on z0 for z in a neighborhood Uz0 of z0. Because every interval [z′, z′′]
with 0 < z′ < z′′ < 1 can be covered by the union of finitely many Uz’s we get
that for each such interval it holds that μ3(z) = az′,z′′ + bz′,z′′z for z ∈ [z′, z′′] with
constants az′,z′′ and bz′,z′′ depending on the chosen interval [z′, z′′].

One can repeat the above arguments for z0 = 0. Then we have that mJ (x0 +δx +
y0 + δy) = 1+J (δx + δy) for δx + δy < 0 and mJ (x0 + δx +y0 + δy) = J (δx + δy)
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for δx + δy > 0. Arguing as above with δx + δy > 0 and δ′
y − δy > 0 we get that

μ3(z) = a+ +b+z for z ∈ (0, z+] for z+ > 0 small enough with some constants a+
and b+. Similarly, we get by choosing δx + δy < 0 and δ′

y − δy < 0 that μ3(z) =
a− + b−z for z ∈ (z−,1) for z− < 1 large enough with some constants a− and b−.
Thus, we get that μ3(z) = a + bz for z ∈ (0,1) with some constants a and b.

Furthermore, using continuity of μ1, μ2 and the relation μ3(mJ (x + y)) =
−μ1(x) − μ2(y) for z = mJ (x + y) with z in (1 − δ,1) and (0, δ) with δ > 0
small enough we get that μ3(0) = μ3(1−). Thus, we have b = 0 and we conclude
that μ3 is a constant function. This gives

μ1(x) + μ2(y) = −a

for all (x, y) ∈ I . Now arguing as in the proof of Theorem 1 we get that f1 = g1,
f2 = g2 and f3 = g3. This completes the proof.

A.3. Proof of Theorem 3. Let G′(θ ,g)(d, δ) denote the derivative G, defined
in Section 4, at (θ ,g) to the direction (d, δ). We note that we write G′(0,0)(d, δ)
simply as G′(d, δ) in Section 4. We use the sup-norm ‖(d, δ)‖∞ as a metric in the
space R

3 × S , defined by
∥∥(d, δ)

∥∥∞ = max
{
|d1|, |d2|, |d3|, sup

u∈S1

∣∣δ1(u)
∣∣, sup

u∈S2

∣∣δ2(u)
∣∣, sup

u∈S3

∣∣δ3(u)
∣∣}.

Define Ĝ(θ ,g) = F̂(1 + θ , f ◦ (1 + g)), where F̂ is defined in Section 4, and
let Ĝ′(θ ,g) denote the derivative of Ĝ at (θ ,g). In the setting where f̂ (x, y) −
f (x, y) = Op(εn) uniformly for (x, y) ∈ I , we claim:

(i) sup‖(d,δ)‖∞=1 ‖Ĝ′(0,0)(d, δ) − G′(0,0)(d, δ)‖∞ = Op(εn);
(ii) The operator G′(0,0) is invertible and has bounded inverse;

(iii) The operator Ĝ′ is Lipschitz continuous with probability tending to one,
that is, there exists constants r,C > 0 such that, with probability tending to one,

sup
‖(d,δ)‖∞=1

∥∥Ĝ′(θ1,g1)(d, δ) − Ĝ′(θ2,g2)(d, δ)
∥∥∞ ≤ C

∥∥(θ1,g1) − (θ2,g2)
∥∥∞

for all (θ1,g1), (θ2,g2) ∈ Br(0,0), where Br(θ ,g) is a ball with radius r > 0 in
R

3 × S centered at (θ ,g).

Theorem 3 basically follows from the above (i)–(iii). To prove the theorem using
(i)–(iii), we note that claim (ii) with the definitions of θ̄ and f̄ at (4.3) gives θ̄ −1 =
Op(εn) and (f̄ − f)/f = Op(εn). With (i) and (iii), this implies that

sup
‖(d,δ)‖∞=1

∥∥Ĝ′(θ̄ − 1, (f̄ − f)/f
)
(d, δ) − G′(0,0)(d, δ)

∥∥ = Op(εn).(A.3)

Now, from (ii) it follows that there exists a constant C > 0 such that the map Ĝ′(θ̄ −
1, (f̄ − f)/f) is invertible and ‖Ĝ′(θ̄ − 1, (f̄ − f)/f)−1(d, δ)‖∞ ≤ C‖(d, δ)‖∞ with
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probability tending to one. Also, (iii) is valid for all (θ1,g1), (θ2,g2) ∈ B2r (θ̄ −
1, (f̄−f)/f). Then we can argue that the solution of the equation Ĝ(θ ,g) = 0, which
is (θ̂ −1, (f̂− f)/f), is within Cαn distance from (θ̄ −1, (f̄− f)/f), with probability
tending to one, where C > 0 is a constant and αn = ‖Ĝ(θ̄ − 1, (f̄ − f)/f)‖∞. This
follows from an application of the Newton–Kantorovich theorem; see Deimling
(1985) or Yu, Park and Mammen (2008) for a statement of the theorem and related
applications. To compute αn, we note that

Ĝ
(
θ̄ − 1, (f̄ − f)/f

) = Ĝ(0,0) + Ĝ′(0,0)
(
θ̄ − 1, (f̄ − f)/f

) + Op

(
ε2
n

)
(A.4)

= Ĝ(0,0) + G′(0,0)
(
θ̄ − 1, (f̄ − f)/f

) + Op

(
ε2
n

)
.

For the first equation of (A.4), we have used (iii) and the facts that θ̄ − 1 = Op(εn)

and (f̄ − f)/f = Op(εn). The second equation of (A.4) follows from the inequality
∥∥Ĝ′(0,0)(d, δ) − G′(0,0)(d, δ)

∥∥∞ ≤ C sup
x,y∈S

∣∣f̂ (x, y) − f (x, y)
∣∣ · ∥∥(d, δ)

∥∥∞

for some constant C > 0. Now, Ĝ(0,0) = F̂(1, f) = (0�, (fw ◦ μ̂)�)�. From the
definition (4.3), we also get G′(0,0)(θ̄ − 1, (f̄ − f)/f) = (0�,−(fw ◦ μ̂)�)�. This
proves αn = Op(ε2

n), so that ‖(θ̂ − θ̄, (f̂ − f̄)/f)‖∞ = Op(ε2
n).

Claim (i) follows from the uniform convergence of f̂ to f that is assumed in
the theorem: sup(x,y)∈S |f̂ (x, y) − f (x, y)| = Op(εn). Below, we give the proofs
of claims (ii) and (iii).

PROOF OF CLAIM (ii). For this claim, we first prove that the map G′(0,0) is
one-to-one. Suppose that G′(0,0)(d, δ) = 0 for some d = (d1, d2, d3)

� and δ =
(δ1, δ2, δ3)

�. Then, by integrating the fourth component of G′(0,0)(d, δ), we find
that

0 =
∫
S
f (x, y)

[
δ1(x) + δ2(y) + δ3

(
mJ (x + y)

)]
dx dy = d1

∫
S
f (x, y) dx dy,

where the first equation holds since the right-hand side equals, up to sign change,
the third component of G′(0,0)(d, δ). Similarly, we get d2 = d3 = 0. Now, from
G′(0,0)(0, δ) = 0 we have

0 =
∫
S1×S2×S3

(
0�, δ(x, y, z)�

)
G′(0, δ)(x, y, z) dx dy dz

= −
∫
S
f (x, y)

[
δ1(x) + δ2(y) + δ3

(
mJ (x + y)

)]2
dx dy.

This implies

δ1(x) + δ2(y) + δ3
(
mJ (x + y)

) = 0 a.e. on S.(A.5)

Arguing as in the proof of Theorem 2 using the last three equations of
G′(0,0)(0, δ) = 0, we obtain δj ≡ 0 on Sj , 1 ≤ j ≤ 3.
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Next, we prove that the map G′(0,0) is onto. For a tuple (c,η) with c =
(c1, c2, c3)

� and η(x, y, z) = (η1(x), η2(y), η(z))�, suppose that 〈(c,η),

G′(0,0)(d, δ)〉 = 0 for all (d, δ) ∈R
3 × S . This implies

0 =
∫
S
f (x, y)η1(x) dx dy,

0 =
∫
S
f (x, y)η2(y) dx dy,

0 =
∫
S
f (x, y)η3

(
mJ (x + y)

)
dx dy,

0 =
∫
J2(x)

f (x, y)
[
η1(x) + η2(y) + η3

(
mJ (x + y)

)]
dy

+ c1f1(x) + c3fw,1(x),(A.6)

0 =
∫
J1(y)

f (x, y)
[
η1(x) + η2(y) + η3

(
mJ (x + y)

)]
dx

+ c2f2(y) + c3fw,2(y),

0 =
L(J )∑
l=0

∫
J3l (z)

f
(
x, (z + l)/J − x

)[
η1(x) + η2

(
(z + l)/J − x

) + η3(z)
]
dx

+ c3fw,3(z).

From the first three equations of (A.6), we get c1 + ϑc3 = 0 by integrating the
fourth equation. Similarly, we obtain c2 + ϑc3 = 0 and c3 = 0 by integrating the
fifth and the sixth equations. This establishes c1 = c2 = c3 = 0. Putting back these
constant values to (A.6), multiplying η1(x), η2(y) and η3(z) to the right-hand sides
of the fourth, fifth and sixth equations, respectively, and then integrating them give∫

S
f (x, y)

[
η1(x) + η2(y) + η3

(
mJ (x + y)

)]2
dx dy = 0.

Going through the arguments in the proof of G′(0,0) being one-to-one and now
using the first two equations of (A.6) give η1 = η2 = η3 ≡ 0. Note that the first two
equations can be written as

∫
S1

fw,1(x)η1(x) dx = 0 and
∫
S2

fw,2(y)η2(y) dy = 0,
and thus in the latter proof fw,j for j = 1,2 take the roles of fj in the former proof.
The foregoing arguments show that (0,0) is the only tuple that is perpendicular to
the range space of G′(0,0), which implies that G′(0,0) is onto.

To verify that the inverse map G′(0,0)−1 is bounded, it suffices to prove
that the bijective linear operator G′(0,0) is bounded, owing to the bounded in-
verse theorem. Indeed, it holds that there exists a constant C > 0 such that
‖G′(0,0)(d, δ)‖∞ ≤ C‖(d, δ)‖∞. This completes the proof of claim (ii). �

PROOF OF CLAIM (iii). We first note that Ĝ′(θ1,g1)(d, δ) − Ĝ′(θ2,g2) ×
(d, δ) = G′(θ1,g1)(d, δ) − G′(θ2,g2)(d, δ). From this, we get that, for each given
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r > 0,∥∥Ĝ′(θ1,g1)(d, δ) − Ĝ′(θ2,g2)(d, δ)
∥∥∞ ≤ 6(1 + r) max

1≤j≤3
sup
u∈Sj

fw,j (u)‖g2 − g1‖∞

for all (θ1,g1), (θ2,g2) ∈ Br(0,0) and for all (d, δ) with ‖(d, δ)‖∞ = 1. For this,
we used the inequality

sup
(x,y,z)∈S1×S2×S3

∣∣κ(x, y, z;g2, δ) − κ(x, y, z;g1, δ)
∣∣

≤ 3‖δ‖∞
(
2 + ‖g1‖∞ + ‖g2‖∞

)‖g2 − g1‖∞.

This completes the proof of (iii). �

A.4. Proof of Theorem 4. Let f̂ A(x, y) be the first entry of η̂A
(x, y), where

η̂A is defined as η̂ at (3.5) with b̂ being replaced by b̂ − Eb̂. Likewise, define
f̂ B(x, y) with b̂(x, y) being replaced by Eb̂(x, y) − (f (x, y), h1 ∂f (x, y)/∂x,

h2 ∂f (x, y)/∂y)�. Then f̂ (x, y) = f (x, y) + f̂ A(x, y) + f̂ B(x, y). Define μ̂A

and μ̂B as μ̂ at (4.2) with f̂ − f being replaced by f̂ A and f̂ B , respectively,
and f̄s/f = (f̄ s

1 /f1, f̄
s
2 /f2, f̄

s
3 /f3) along with θ̄

s − 1 = (θ̄ s
1 − 1, θ̄ s

2 − 1, θ̄ s
3 − 1) for

s = A and B as the solution of the backfitting equation (4.4) with μ̂ being replaced
by μ̂s , subject to the constraints (4.5). Since the backfitting equation (4.4) is linear

in μ̂, we get that f̄ = f + f̄A + f̄B and θ̄ = θ̄
A − 1 + θ̄

B
.

For simplicity, write the backfitting equation (4.4) as δ = d + μ̂ − Tδ with an

appropriate definition of the linear operator T. From the definitions of f̄A and θ̄
A

,

we have f̄A/f = θ̄
A − 1 + μ̂A − T(f̄A/f). From Lemma 1 below, we obtain

f̄A/f − μ̂A = θ̄
A − 1 − T

(
f̄A/f − μ̂A) + op

(
n−2/5)

uniformly on S1 × S2 × S3. This implies f̄A/f − μ̂A = op(n−2/5) uniformly on

S1 × S2 × S3 and θ̄
A − 1 = op(n−2/5).

Now, for the deterministic part f̄B , recall the definitions of f̃ B and μ̃B at (4.6)
and thereafter, respectively. Let rn = μ̂B − n−2/5μ̃B . According to Lemma 1,
rn = o(n−2/5) on S′

1 × S′
2 × S′

3, where S′
j is a subset of Sj with the property

that mes(Sj − S′
j ) = O(n−1/5). We also get rn = O(n−2/5) on S1 × S2 × S3. This

implies T(rn) = o(n−2/5), so that

f̄B/f − rn = θ̄
B − 1 + n−2/5μ̃B − T

(
f̄B/f − rn

) + op

(
n−2/5)

uniformly on S1 ×S2 ×S3. Thus, (f̄B/f, θ̄
B − 1) equals the solution of the backfit-

ting equation δ = d +n−2/5μ̃B − Tδ, up to an additive term whose j th component
has a magnitude of an order o(n−2/5) on S′

j and O(n−2/5) on the whole set Sj .

The asymptotic distribution of ((f̄j (uj ) − fj (uj ))/fj (uj ) : 1 ≤ j ≤ 3) for fixed
uj ∈ Sj,c ∩ So

j is then readily obtained from the above results. The asymptotic
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mean is given as the solution (δj (uj ) : 1 ≤ j ≤ 3) of the backfitting equation (4.4)
with μ̂j being replaced by n−2/5μ̃B

j , subject to the constraint (4.5). The asymptotic

variances are derived from those of μ̃A
j , where

μ̃A
1 (x) = fw,1(x)−1

∫
J2(x)

f̃ A(x, y) dy,

μ̃A
2 (y) = fw,2(y)−1

∫
J1(y)

f̃ A(x, y) dx,

μ̃A
3 (z) = fw,3(z)

−1
L(J )∑
l=0

∫
J3l (z)

f̃ A(
x, (z + l)/J − x

)
dx

and f̃ A(x, y) = n−1 ∑n
i=1[Kh1(Xi −x)Kh2(Yi −y)Wi −E(Kh1(Xi −x)Kh2(Yi −

y)Wi)]. This is due to (A.9), (A.10) and the corresponding property for μ̂A
3 in the

proof of Lemma 2 below.
To compute var(μ̃A

1 (u1)), we note that, due to the assumption (A7) and thus
from Lemma 1, we may find constants C > 0 and α > 1/2 such that J o

2 (u;Chα
1 +

h2) ⊂ J o
2 (u1;h2) for all u with |u − u1| ≤ h1, if n is sufficiently large. Note that

J o
2 (u;Chα

1 +h2) is inside J o
2 (u;h2) at a depth Chα

1 . Then it can be shown that, for
all (u, v) with |u − u1| ≤ h1 and v ∈ J o

2 (u;Chα
1 + h2), the set {(v − y)/h2 :y ∈

J2(u1)} covers the interval [−1,1], the support of the kernel K . This implies that
Kh1(u − u1)ν(u1, v) = Kh1(u − u1) for all (u, v) with |u − u1| ≤ h1 and v ∈
J o

2 (u;Chα
1 + h2), where ν(u1, v) = ∫

J2(u1)
Kh2(v − y)dy. Using this and the fact

that the Lebesgue measure of the set difference J2(u) − J o
2 (u;Chα

1 + h2) has a
magnitude of order n−min{1,α}/5, we get

var
(
μ̃A

1 (u1)
)

= fw,1(u1)
−2n−1h−1

1

∫
S

1

h1
K

(
u − u1

h1

)2

ν(u1, v)2f (u, v) dudv + O
(
n−1)

= fw,1(u1)
−2n−1h−1

1

∫
|u−u1|≤h1

∫
J o

2 (u;Chα
1 +h2)

1

h1
K

(
u − u1

h1

)2

ν(u1, v)2

× f (u, v) dv du

+ o
(
n−1h−1)

= fw,1(u1)
−2n−1h−1

1

∫
S

1

h1
K

(
u − u1

h1

)2

f (u, v) dudv + o
(
n−1h−1)

= n−1h−1
1 fw,1(u1)

−1
∫

K2(u) du + o
(
n−1h−1)

.

The last equation holds since u1 ∈ S1,c, so that fw,1 is continuous at u1, and it is a
fixed point in the interior of S1. Similarly, we obtain

var
(
μ̃A

2 (u2)
) = n−1h−1

2 fw,2(u2)
−1

∫
K2(u) du + o

(
n−1h−1)

.
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The calculation of the asymptotic variance of μ̃A
3 (u3) is more involved than

those of var(μ̃A
j (uj )) for j = 1,2. For this, we observe that, if l �= l′, then for any

given z ∈ [0,1] and (u, v) ∈ I we have

πl,l′
(
z,u, v, x, x ′)

≡ Kh1(u − x)Kh2

(
v − z + l

J
+ x

)
Kh1

(
u − x′)Kh2

(
v − z + l′

J
+ x′

)

= 0

for all x, x′ except the case (z + l)/J − x = (z + l′)/J − x′, if n is sufficiently
large. This implies that

var
(
μ̃A

3 (u3)
)

= fw,3(u3)
−2n−1

L(J )∑
l=0

∫
J3l (u3)

∫
J3l (u3)

∫
S
πl

(
u3, u, v, x, x′)f (u, v) dudv dx dx′

+ O
(
n−1)

,

where πl = πl,l . From Lemma 1 again, we may find constants C > 0 and α > 1/2
such that J o

2 (x;Chα
1 +h2) ⊂ J o

2 (u;h2) for all x,u ∈ (a1
k−1, a

1
k )∩S1 with |u−x| ≤

h1, 1 ≤ k ≤ L1. Define a subset J ′
3l(u3) of [0,1] such that x ∈ J ′

3l(u3) if and only
if x ∈ J3l(u3 + J (h2 + Chα

1 )t) for all t ∈ [−1,1]. Then, for a given u ∈ S1,c, it
follows that

[−1,1] ⊂
{
v − (u3 + l)/J + x

h2
:v ∈ J2(u)

}

for all x ∈ J ′
3l(u3) such that |x −u| ≤ h1 and x lies in the same partition (a1

k−1, a
1
k )

as u. This holds since x ∈ J3l(z) implies (z + l)/J − x ∈ J2(x). This entails that,
for x ∈ J ′

3l(u3) ∩ So
1,c(h1),

∫
S
πl

(
u3, u, v, x, x′)dudv

=
∫
[−1,1]2

K(t)K(s)h−1
1 K

(
t + x − x′

h1

)
h−1

2 K

(
s + x′ − x

h2

)
dt ds

= (K ∗ K)h1

(
x − x′)(K ∗ K)h2

(
x − x′),

where K ∗ K denotes the convolution of K defined by K ∗ K(u) = ∫
K(t)K(t +

u)dt . Here and below, So
j,c(h) for a small number h > 0 denotes the set of x ∈ Sj,c

such that x + ht belongs to Sj,c for all t ∈ [−1,1].
Because of the assumption (A7) and the fact that u3 is a fixed point in S3,c,

we get that
∑L(J )

l=0 mes[J3l(u3)�J ′
3l(u3)] is of order o(1). This and the foregoing
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arguments give

var
(
μ̃A

3 (u3)
)

= fw,3(u3)
−2n−1

L(J )∑
l=0

∫
J3l (u3)

∫
J ′

3l (u3)∩So
1,c(h1)

∫
S
πl

(
u3, u, v, x, x′)dudv

× f

(
x,

u3 + l

J
− x

)
dx dx′

+ o
(
n−4/5)

= fw,3(u3)
−2n−1

L(J )∑
l=0

∫
J3l (u3)

∫
J3l (u3)

(K ∗ K)h1

(
x − x′)(K ∗ K)h2

(
x − x′)

× f

(
x,

u3 + l

J
− x

)
dx dx′

+ o
(
n−4/5)

.

Let J o
3l(u3;2h1) denote a subset of J3l(u3) such that x ∈ J o

3l(u3;2h1) if and only
if x − 2h1t ∈ J3l(u3) for all t ∈ [−1,1]. Then

L(J )∑
l=0

∫
J3l (u3)

∫
J3l (u3)

(K ∗ K)h1

(
x − x′)(K ∗ K)h2

(
x − x′)

× f

(
x,

u3 + l

J
− x

)
dx′ dx

= h−1
2

L(J )∑
l=0

∫
J o

3l (u3;2h1)
f

(
x,

u3 + l

J
− x

)
dx

×
∫ 2

−2

[
K ∗ K(t)

][
K ∗ K(h1t/h2)

]
dt + O(1)

= h−1
2

L(J )∑
l=0

∫
J3l (u3)

f

(
x,

u3 + l

J
− x

)
dx

×
∫ 2

−2

[
K ∗ K(t)

][
K ∗ K(h1t/h2)

]
dt + O(1)

= h−1
2 fw,3(u3)

∫ 2

−2

[
K ∗ K(t)

][
K ∗ K(h1t/h2)

]
dt + O(1).

This with Lemma 3 below completes the proof of Theorem 4.

LEMMA 1. Under the condition (A7) with the constants C > 0 and α > 1/2,
it follows that (i) J o

2 (u1 :Chα
1 + h2) ⊂ J o

2 (u2;h2) for any u1, u2 ∈ (a1
k−1, a

1
k ) ∩
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S1 with |u1 − u2| ≤ h1, 1 ≤ k ≤ L1; (ii) J o
1 (u1 :Chα

2 + h1) ⊂ J o
1 (u2;h1) for any

u1, u2 ∈ (a2
k−1, a

2
k ) ∩ S2 with |u1 − u2| ≤ h2, 1 ≤ k ≤ L2.

PROOF. We apply (A7) to the choice εn = h1. Suppose a point y ∈ J o
2 (u1;

Chα
1 +h2). This implies y +h2t +Chα

1 s ∈ J2(u1) for all s, t ∈ [−1,1]. This holds
since |(h2t + Chα

1 s)/(h2 + Chα
1 )| ≤ 1 for all s, t ∈ [−1,1]. By (A7), y + h2t ∈

J o
2 (u1;Chα

1 ) ⊂ J2(u2) for all t ∈ [−1,1], so that we get y ∈ J o
2 (u2;h2). The proof

of (ii) is the same. �

LEMMA 2. Under the conditions of Theorem 4, It follows that Tμ̂A =
op(n−2/5) uniformly on S1 × S2 × S3. Furthermore, μ̂B = n−2/5μ̃B + o(n−2/5)

uniformly on So
1,c(h1) × So

2,c(h2) × So
3,c(C

′n−min{1,α}/5) for a sufficiently large

C′ > 0, and μ̂B
(u) = n−2/5μ̃B(u) + O(n−2/5) uniformly on S1 × S2 × S3.

PROOF. From the standard theory of kernel smoothing, it follows that

sup
(x,y)∈S

∣∣f̂ A(x, y)
∣∣ = Op

(
n−3/10

√
logn

)
.(A.7)

Also, we have A(x, y) = diag(1, ν2, ν2) for all (x, y) with x ∈ So
1,c(h1) and y ∈

J o
2 (x;Chα

1 + h2), where C > 0 and α > 1/2 are the constants in assumption (A7)
and ν2 = ∫

u2K(u)du. Define J = {(x, y) ∈ S :x ∈ So
1,c(h1), y ∈ J o

2 (x;Ch1 +
h2)}. From the simplification of A(x, y) on J , we get

f̂ A(x, y) = f̃ A(x, y), (x, y) ∈ J .(A.8)

From (A.7) and (A.8), we have

μ̂A
1 (x) = μ̃A

1 (x) + Op

(
n−(3+2r)/10

√
logn

)
(A.9)

uniformly for x ∈ So
1,c(h1),

where r = min{1, α}. Note that r > 1/2. Similarly, we get

μ̂A
2 (y) = μ̃A

2 (y) + Op

(
n−(3+2r)/10

√
logn

)
(A.10)

uniformly for y ∈ So
2,c(h2).

For the treatment of μ̂A
3 , we first note that A(x, (z + l)/J − x) = diag(1, ν2, ν2)

for all x ∈ J ′
3l(z) ∩ So

1,c(h1), where the set J ′
3l(z) is defined in the proof of Theo-

rem 4. In fact,(
x, (z + l)/J − x

) ∈ J if and only if x ∈ J ′
3l(z) ∩ So

1,c(h1).(A.11)

This implies that, for all 0 ≤ l ≤ L(J ),

f̂ A

(
x,

z + l

J
− x

)
= f̃ A

(
x,

z + l

J
− x

)
, x ∈ J ′

3l(z) ∩ So
1,c(h1).(A.12)
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Due to the condition (A7) we can take a constant C′ > 0 such that, uniformly
for z ∈ So

3,c(C
′n−r/5), we have

∑L(J )
l=0 mes[J3l(z)�J ′

3l(z)] = O(n−r/5). Then,
from (A.7) and (A.12) we have

L(J )∑
l=0

∫
J3l (z)

f̂ A(
x, (z + l)/J − x

)
dx

=
L(J )∑
l=0

∫
J ′

3l (z)∩So
1,c(h1)

f̃ A(
x, (z + l)/J − x

)
dx

+ Op

(
n−3/10

√
logn

) L(J )∑
l=0

mes
[
J3l(z)�(

J ′
3l(z) ∩ So

1,c(h1)
)]

=
L(J )∑
l=0

∫
J3l (z)

f̃ A(
x, (z + l)/J − x

)
dx + op

(
n−2/5)

uniformly for z ∈ So
3,c(C

′n−r/5). This implies μ̂A
3 (z) = μ̃A

3 (z) + op(n−2/5) uni-
formly for z ∈ So

3,c(C
′n−r/5). This together with (A.9), (A.10) and Lemma 3 gives

Tμ̂A = op(n−2/5) uniformly on S1 × S2 × S3, since Tμ̃A = op(n−2/5) uniformly
on the set and the Lebesgue measures of the set differences S1 − So

1,c(h1) and
S2 − So

2,c(h2) are of order n−1/5 and that of S3 − So
3,c(C

′n−r/5) is of order n−r/5.
To prove the second part of the lemma, recall that A(x, y) = diag(1, ν2, ν2)

on J . In fact, for (x, y) ∈ J
∫
S

(
u − x

h1

)j(
v − y

h2

)k

Kh1(u − x)Kh2(v − y)dudv = 0

whenever j or k is an odd integer. This implies f̂ B(x, y) = n−2/5f̃ B(x, y) +
o(n−2/5) uniformly for (x, y) ∈ J . We also get f̂ B(x, y) = O(n−2/5) uniformly
for (x, y) ∈ S. We apply the same arguments as in the proof of the first part, to
obtain

μ̂B
1 (x) = n−2/5μ̃B

1 (x) + o
(
n−2/5)

uniformly for x ∈ So
1,c(h1),

μ̂B
2 (y) = n−2/5μ̃B

2 (y) + o
(
n−2/5)

uniformly for y ∈ So
2,c(h2).

From (A.11), it follows that

f̂ B

(
x,

z + l

J
− x

)

= n−2/5f̃ B

(
x,

z + l

J
− x

)
+ o

(
n−2/5)
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for all (x, z) such that x ∈ J ′
3l(z) ∩ So

1,c(h1) and z ∈ S3. From this and the fact that∑L(J )
l=0 mes[J3l(z)�J ′

3l(z)] = o(1) uniformly for z ∈ So
3,c(C

′n−r/5), we obtain

μ̂B
3 (z) = n−2/5μ̃B

3 (z) + o
(
n−2/5)

uniformly for z ∈ So
3,c

(
C′n−r/5)

,

where C′ is the constant C′ in the proof of the first part. This completes the proof
of the lemma. �

LEMMA 3. Under the conditions of Theorem 4, it follows that

sup
u∈Sj

∣∣μ̂A
j (u)

∣∣ = Op

(
n−2/5

√
logn

)
, 1 ≤ j ≤ 3.

PROOF. We give the proof for μ̂A
1 only. The others are similar. For (x, y) with

x ∈ S1 and y ∈ J o
2 (x;Chα

1 + h2), we have

f̂ A(x, y) = ϕ1(x)â1(x, y) + ϕ2(x)â2(x, y) + ϕ3(x)â3(x, y),

where ϕj for j = 1,2,3 are some bounded functions, â1 = b̂00, â2 = b̂10 and â3 =
b̂01 with

b̂jk(x, y) = n−1
n∑

i=1

[(
Xi − x

h1

)j(
Yi − y

h2

)k

Kh1(Xi − x)Kh2(Yi − y)Wi

− E

(
Xi − x

h1

)j(
Yi − y

h2

)k

Kh1(Xi − x)Kh2(Yi − y)Wi

]
.

The lemma follows from (A.7) and using

sup
x∈S1

mes
[
J2(x) − J o

2
(
x;Chα

1 + h2
)] = Op

(
n−r/5)

,

sup
x∈S1

∣∣∣∣
∫
J2(x)

âj (x, y) dy

∣∣∣∣ = Op

(
n−2/5

√
logn

)
, 1 ≤ j ≤ 3. �
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