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MATRIX ESTIMATION BY UNIVERSAL SINGULAR
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Consider the problem of estimating the entries of a large matrix, when
the observed entries are noisy versions of a small random fraction of the orig-
inal entries. This problem has received widespread attention in recent times,
especially after the pioneering works of Emmanuel Candès and collaborators.
This paper introduces a simple estimation procedure, called Universal Singu-
lar Value Thresholding (USVT), that works for any matrix that has “a little bit
of structure.” Surprisingly, this simple estimator achieves the minimax error
rate up to a constant factor. The method is applied to solve problems related
to low rank matrix estimation, blockmodels, distance matrix completion, la-
tent space models, positive definite matrix completion, graphon estimation
and generalized Bradley–Terry models for pairwise comparison.

1. Introduction. Consider a statistical estimation problem where the un-
known parameter is not a single value or vector, but an m × n matrix M . Given
an estimator M̂ , one choice for a measure of the error in estimation is the mean-
squared error, defined as

MSE(M̂) := E

[
1

mn

m∑
i=1

n∑
j=1

(m̂ij − mij )
2

]
.(1)

Here, m̂ij and mij denote the (i, j)th elements of M̂ and M , respectively. If we
have a sequence of such problems, and Mn and M̂n denote the parameter and the
estimator in the nth problem, then by usual statistical terminology we may say that
the sequence of estimators M̂n is consistent if

lim
n→∞ MSE(M̂n) = 0.

The problem of estimating the entries of a large matrix from incomplete and/or
noisy entries has received widespread attention ever since the proliferation of large
data sets. Early work using spectral analysis was done by a number of authors in
the engineering literature, for example, by Azar et al. [10] and Achlioptas and
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McSherry [1]. This was followed by a sizable body of work on spectral methods,
the main pointers to which may be found in the important recent papers of Kesha-
van, Montanari and Oh [62, 63]. Nonspectral methods also appeared, for example,
in [83].

In a different direction, statisticians have worked on matrix completion prob-
lems under a variety of modeling assumptions. Possibly the earliest works are due
to Fazel [45] and Rudelson and Vershynin [87]. The emergence of compressed
sensing [27, 43] has led to an explosion in activity in the field of matrix estimation
and completion, beginning with the work of Candès and Recht [26]. The pioneer-
ing works of Emmanuel Candès and his collaborators [24–26, 28] introduced the
technique of matrix completion by minimizing the nuclear norm under convex con-
straints, which is a convex optimization problem tractable by standard algorithms.
This method has the advantage of exactly, rather than approximately, recovering
the entries of the matrix when a suitable low rank assumption is satisfied, together
with a certain other assumption called “incoherence.”

Since the publication of [26], a number of statistics papers have attacked the
matrix completion problem from various angles. Some notable examples are [38,
64, 65, 73, 76, 84]. In a different direction, a paper that seems to have a close
bearing on the analytical aspects of this paper is a manuscript of Oliveira [79].

In addition to the theoretical advances, a large number of algorithms for matrix
completion and estimation have emerged. The main ones are nicely summarized
and compared in [73].

The purpose of this paper is to introduce a new estimator that is capable of solv-
ing a variety of matrix estimation problems that are not tractable by existing tools
(at least in a mathematically provable sense). The estimator and its properties are
described in this introductory section. Section 2 focuses on applications, which in-
clude applications to low rank matrices, stochastic blockmodels, distance matrices,
latent space models, positive definite matrices, graphons and generalized Bradley–
Terry models. All proofs are in Section 3. An expanded version (version 5) of the
paper containing more theorems, examples and simulation results is available on
arXiv at the URL: http://arxiv.org/pdf/1212.1247v5.pdf.

For interesting new developments that appeared after the first draft of this paper
was posted on arXiv, see [35, 47, 75]. Further references and citations are given in
subsequent sections.

1.1. The setup. Suppose that we have a m×n matrix M , where m ≤ n and the
entries of M are bounded by 1 in absolute value. Let X be a matrix whose elements
are independent random variables, and E(xij ) = mij for all i and j [where, as
usual, xij and mij denote the (i, j)th entries of X and M , resp.]. Assume that the
entries of X are also bounded by 1 in absolute value, with probability one. A matrix
such as X will henceforth be called a “data matrix with mean M .” The matrix M

will sometimes be called the “parameter matrix.” Let p be a real number belonging

http://arxiv.org/pdf/1212.1247v5.pdf
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to the interval [0,1]. Suppose that each entry of X is observed with probability p,
and unobserved with probability 1 − p, independently of the other entries.

The above model will henceforth be referred to as the “asymmetric model.” The
“symmetric model” is defined in a similar manner: Take any n and let M be a
symmetric matrix of order n, whose entries are bounded by 1 in absolute value.
Let X be a symmetric random matrix of order n whose elements on and above
the diagonal are independent, and E(xij ) = mij for all 1 ≤ i ≤ j ≤ n. As before,
assume that the entries of X are almost surely bounded by 1 in absolute value.
Take any p ∈ [0,1] and suppose that each entry of X on and above the diagonal is
observed with probability p, and unobserved with probability 1−p, independently
of the other entries.

Similarly, one can define the “skew-symmetric model,” where the difference
X −M is skew-symmetric, with independence on and above the diagonal as in the
symmetric model. This model is used for analyzing the nonparametric Bradley–
Terry model in Section 2.7.

1.2. The USVT estimator. In the above models, we construct an estimator M̂

of M based on the observed entries of X along the following steps. Tentatively,
I call this the Universal Singular Value Thresholding (USVT) algorithm.

1. For each i, j , let yij = xij if xij is observed, and let yij = 0 if xij is unob-
served. Let Y be the matrix whose (i, j)th entry is yij .

2. Let Y = ∑m
i=1 siuiv

T
i be the singular value decomposition of Y . (In the sym-

metric and skew-symmetric models, m = n.)
3. Let p̂ be the proportion of observed values of X. In the symmetric and skew-

symmetric models, let p̂ be the proportion of observed values on and above the
diagonal.

4. Choose a small positive number η ∈ (0,1) and let S be the set of “thresholded
singular values,” defined as

S := {
i : si ≥ (2 + η)

√
np̂

}
.

[Note: (a) In simulations, the method described below seemed to work even if
η was taken to be exactly equal to zero; but the mathematical proof that I have
requires η to be positive. In practice, one may choose η a priori to be some arbitrary
small positive number, say, 0.01; but a data-dependent choice is not allowed. (b) If
it is known that Var(xij ) ≤ σ 2 for all i, j , where σ is a known constant ≤ 1, then
the threshold (2 + η)

√
np̂ may be improved to (2 + η)

√
nq̂ , where q̂ := p̂σ 2 +

p̂(1 − p̂)(1 − σ 2).]
5. Define

W := 1

p̂

∑
i∈S

siuiv
T
i .
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6. Let wij denote the (i, j)th element of W . Define

m̂ij :=
⎧⎨
⎩

wij , if − 1 ≤ wij ≤ 1,
1, if wij > 1,
−1, if wij < −1.

7. Let M̂ be the matrix whose (i, j)th entry is m̂ij .
8. If the entries of M and X are known to belong to an interval [a, b] instead

of [−1,1], then subtract (a + b)/2 from each entry of X and divide by (b − a)/2,
so that the entries are forced to lie in [−1,1], then apply the above procedure, and
finally multiply the end-result by (b − a)/2 and add (a + b)/2 to get the estimate
of M .

9. If m > n, then one should work with MT and XT instead of M and X, so
that the number of rows is forced to be ≤ the number of columns.

1.3. Main result. Recall that the nuclear norm of M , written ‖M‖∗, is defined
as the sum of the singular values of M . Recall also the definition (1) of the mean
squared error of a matrix estimator. The following theorem gives an error bound
for the estimator M̂ in terms of the nuclear norm of M . This is the main result of
this paper.

THEOREM 1.1. Let M̂ and M be as above. Let MSE(M̂) be defined as in (1).
Suppose that p ≥ n−1+ε for some ε > 0. Then

MSE(M̂) ≤ C min
{ ‖M‖∗
m

√
np

,
‖M‖2∗
mn

,1
}

+ C(ε)e−cnp,

where C and c are positive constants that depend only on the choice of η and
C(ε) depends only on ε and η. The same result holds for the symmetric and skew-
symmetric models, after putting m = n.

Moreover, if in the same setting as above, we know that Var(xij ) ≤ σ 2 for all
i, j for some known σ 2 ≤ 1, and the threshold is set at (2 + η)

√
nq̂ (see step 4 of

the algorithm), the same result holds under the condition that q ≥ n−1+ε , where
q := pσ 2+p(1−p)(1−σ 2). In this case the exponential term in the error changes
to C(ε)e−cnq and the term ‖M‖∗/(m

√
np) improves to ‖M‖∗

√
q/(m

√
np).

Incidentally, the proof shows that the condition p > n−1+ε may be improved to
p > n−1(logn)6+ε (see Theorem 3.4), but I prefer to retain the present version for
aesthetic reasons, especially considering that it is not a real improvement from any
practical point of view.

It should be emphasized that although singular value thresholding has been
used in a number of papers on matrix completion and estimation (see, e.g.,
[1, 10, 24, 62, 63] and references therein), the above algorithm has the unique fea-
ture that the threshold is universal. In the literature, it is usually assumed that the
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matrix M has a rank r that is known, and uses the value of r while thresholding.
The USVT algorithm manages to cut off the singular values at the “correct” level,
depending on the structure of the unknown parameter matrix. The adaptiveness
of the USVT threshold is somewhat similar in spirit to that of the SureShrink al-
gorithm of Donoho and Johnstone [44]. SureShrink performs function estimation
by estimating Fourier coefficients in some suitable basis, and then thresholds the
coefficients at a threshold that automatically adapts to the smoothness of the un-
known function. Analogously, the USVT algorithm computes the eigenvalues of
the observed matrix, and then thresholds the eigenvalues at a universal threshold
that is automatically adaptive in nature, because it picks out as much “structure” as
is available and throws out all the randomness. This point will become more clear
from the examples discussed in Section 2.

One limitation of USVT is the requirement that the entries should lie in a
bounded interval. One may relax this requirement by assuming, for example, that
the errors xij − mij are distributed as normal random variables with mean zero
and variance σ 2. If σ 2 is known, then I believe that one can modify the USVT
algorithm by thresholding at (2 + η)σ

√
n and obtain the same theorems. The ra-

tionale behind this belief is as follows: if A is a large symmetric random matrix
whose entries on and above the diagonal are independent, have zero mean, and are
bounded by 1 in absolute value, then the spectral norm of A is less than 2 + η with
high probability. This is the key ingredient in the proof of Theorem 1.1. But such
a result continues to be true, after replacing 2 + η with (2 + η)σ , if the entries
are normally distributed with mean zero and variance bounded by σ 2. Therefore,
it is conceivable that the proof of Theorem 1.1 may be modified to accommodate
this altered situation. However, if σ 2 is unknown, I do not know how to proceed.
In reality, σ 2 will not be known; this is why I have not worked with the normal-
ity assumption. Also, the situation of normally distributed entries but with a large
proportion missing, seems to be trickier.

1.4. Minimax lower bound. It is not difficult to prove that for an m × n ma-
trix M with entries bounded by 1 in absolute value, where m ≤ n, the nuclear
norm is bounded by m

√
n. Given a number δ ∈ [0,m

√
n], one may take an ar-

bitrary estimator M̃ and try to find the M among all M satisfying ‖M‖∗ ≤ δ for
which MSE(M̃) is maximum. Recall that an estimator that minimizes this max-
imum error is classically known as a minimax estimator. The following theorem
shows that our estimator M̂ is minimax up to a constant multiplicative factor and
an exponentially small additive discrepancy.

THEOREM 1.2. Consider the general matrix estimation problem outlined in
the beginning of this section. Given any estimator M̃ and any δ ∈ [0,m

√
n], there

exists M satisfying ‖M‖∗ ≤ δ and a data matrix X with mean M , such that for this
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M and X, the estimator M̃ satisfies

MSE(M̃) ≥ c min
{

δ

m
√

np
,

δ2

mn
,1

}
,

where c is a positive universal constant. Moreover, if p < 1/2 then X and M may
be chosen such that X = M . The same lower bound holds in the symmetric case
and in the skew-symmetric case.

It is worth noting that the exponentially small discrepancy is necessary. For
example, if δ = 0, then the minimax error is obviously zero. However, there is still
an exponentially small chance that M̂ may be nonzero. It is also worth noting that
if δ is not too small (e.g., if δ >

√
m/p), then the exponential discrepancy does not

matter, and the combination of Theorems 1.1 and 1.2 gives the correct minimax
error up to a universal multiplicative constant.

An examination of the proof of Theorem 1.1 indicates that with slight modifi-
cations, one may obtain bounds on tail probabilities instead of an upper bound on
the mean squared error. I have retained the present version for aesthetic reasons.

Incidentally, two notable recent papers, namely, Koltchinskii et al. [65] and Dav-
enport et al. [38], have suggested matrix estimation by nuclear norm penalization
and proved minimax optimality results that match up to logarithmic factors. Dav-
enport et al. [38], Theorem 3, show (in the notation of our Theorem 1.2) that if
the entries of X belong to {−1,1} and if δ ≥ 4

√
mn, then the minimax error is

bounded below by a universal constant times min{δ/(m√
np),1}, provided that

this quantity is bigger than δ2/(m2n). This is almost the same as the conclusion
of Theorem 1.2, except that it does not cover the case of δ smaller than 4

√
mn.

Section 3.1 of [38] gives a matrix estimation algorithm based on nuclear norm pe-
nalization that achieves this minimax rate up to a logarithmic factor. However, the
implementation of this algorithm requires that the user has a reasonable estimate
for the nuclear norm of the unknown matrix M , since that is used as the regular-
ization parameter. USVT has no such requirement. Another advantage that USVT
has over the algorithm of [38] is that it may be easier to implement, especially for
very large matrices, because it does not involve convex optimization.

The estimator of Koltchinskii et al. [65] is also based on nuclear norm penal-
ization: translating to our notation, they estimate M by minimizing ‖X − M̂‖2

F +
λ‖M̂‖∗ over all M̂ , where ‖ · ‖F is Frobenius norm, ‖ · ‖∗ is nuclear norm, and
λ is a regularization parameter. It is shown in [65] that this problem is actually
equivalent to soft singular value thresholding, where the threshold depends on the
parameter λ. A conservative choice of λ (albeit with an unspecified constant) and
a minimax lower bound that matches the upper bound up to a logarithmic factor
are given in [65]. The minimax bound is computed over the set of all matrices
with rank less than a given number and, therefore, is not directly comparable to
the minimax bound in Theorem 1.2. With a suitable choice of λ—but again with
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unspecified constants—the upper bound in [65], Theorem 3, becomes (up to a log-
arithmic factor) essentially equal to ‖M‖∗/(m

√
np). Note that this is the same as

the main term in Theorem 1.1. However, if we additionally know that M has low
rank, then the upper bound in [65], Theorem 3, becomes substantially better (see
Section 2.1).

1.5. Practical issues and warnings. I do not consider the USVT algorithm as
presented above to be in a form that may implemented “as is.” This is mainly for
the following reasons:

(a) USVT is minimax optimal only up to a constant factor. In fact, it is very
likely that one may be able to build a better estimator by taking into account the
ratio m/n, and getting improved bounds when this ratio is small. Although Theo-
rem 1.2 shows that the improvement will be limited to multiplication by a constant
factor, such an improvement may be important for practical purposes. The recent
paper [47] has explored the issue of attaining the minimax error all the way up to
the correct constant.

(b) The number η is a “tuning parameter” for this algorithm, that may be chosen
by the implementer. The theorem is valid with any choice of η in the interval
(0,1), although the constants in the error bounds blow up as η tends to zero. I have
noticed in simulations that taking η = 0 works quite well, but I do not know how
to prove that. Choosing η to be a small but fixed positive number such as 0.01 is
consistent with the requirements of Theorem 1.1 and seemed to give good results
in simulations. Choosing η in a data-dependent manner is, however, not covered
by Theorem 1.1.

(c) Note that in practice, any data matrix may be centered and scaled so that
the entries are forced to lie in the interval [−1,1]. However, if the centering and
scaling are done in a data-dependent manner, then the assertion of Theorem 1.1 is
no longer guaranteed to be true.

1.6. An impossibility theorem for error estimates. Theorem 1.1 gives an upper
bound on the mean squared error of M̂ . The estimate involves the nuclear norm of
parameter matrix M . A natural question is: Is it possible to estimate the true MSE
of M̂ from the data?

A straightforward approach is to use parametric bootstrap. Having estimated M

using M̂ , one may choose a large number K , generate K copies of the data using
M̂ as the parameter matrix, compute the estimates M̂(i), i = 1, . . . ,K for the K

simulations, and estimate the MSE of M̂ using the bootstrap estimator

M̂SEBS(M̂) = 1

K

K∑
i=1

‖M̂(i) − M̂‖2
F

mn
.

For the validity of the bootstrap estimate of the MSE, it is essential that the original
M̂ is an accurate estimate of M . In other words, we need to know a priori that
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MSE(M̂) is small to be able to claim that the bootstrap estimator of MSE(M̂) is
accurate. Theorem 1.1 implies that if we know that ‖M‖∗ is small enough from
assumptions, this is true.

But is it possible to somehow determine whether MSE(M̂) is small or not from
the data, if we do not make any assumption about M to start with? We will now
show that it is impossible to do so, not only for the estimator M̂ but for any “non-
trivial” estimator M̃ .

The definition of a nontrivial estimator is as follows. Given a parameter matrix
M and a data matrix X satisfying the conditions of Section 1, the trivial estimator
of M based on X is simply X itself. We will denote the trivial estimator as M̂Trv.
Now suppose we are given some estimator M̃ . We will say that the estimator M̃

is nontrivial if there exists a sequence of parameter matrices Mn and data matrices
Xn such that

MSE
(
M̂Trv

n

) 
→ 0 as n → ∞,

but limn→∞ MSE(M̃n) = 0. In other words, M̃n solves a nontrivial estimation
problem. The USVT estimator is clearly nontrivial, as demonstrated by the ex-
amples from Section 2.

Suppose that we have a nontrivial estimator M̃ and a procedure P that gives
an estimate M̂SEP(M̃) of the MSE of M̃ . The MSE estimate is computed using
only the data. The procedure will be called “good” if the following two conditions
hold:

(a) Whenever Mn is a sequence of parameter matrices and Xn is a sequence
of data matrices such that MSE(M̃n) tends to zero, the estimate M̂SEP(M̃n) also
tends to zero in probability.

(b) Whenever Mn is a sequence of parameter matrices and Xn is a sequence of
data matrices such that MSE(M̃n) does not tend to zero, M̂SEP(M̃n) also does not
tend to zero in probability.

In the above setting, the following theorem establishes the impossibility of the
existence of a good estimator for the MSE.

THEOREM 1.3. There cannot exist a good procedure for estimating the mean
squared error of a nontrivial estimator.

2. Applications. Throughout this section, m, n, M , X, p and M̂ will be as
in Section 1. Just to remind the reader, M is an m × n matrix where 1 ≤ m ≤ n.
The entries of M are assumed to be bounded by 1 in absolute value. The matrix
X is a random matrix whose entries are independent, and the (i, j)th element xij

has expected value equal to mij , the (i, j)th entry of M . Moreover, they satisfy
|xij | ≤ 1 with probability one. In particular, X may be exactly equal to M , with no
randomness. Each entry of X is observed with probability p and unobserved with
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probability 1 − p, independently of other entries. Occasionally, we will assume
the symmetric model, where m = n, and the matrices M and X are symmetric. In
the special case of the Bradley–Terry model in Section 2.7, we will assume the
skew-symmetric model, where X − M is skew-symmetric.

We will now work out various specific cases where Theorem 1.1 gives useful
results.

2.1. Low rank matrices. Estimating low rank matrices has been the focus of
the vast majority of prior work [1, 10, 24–26, 28, 45, 62–65, 73, 76, 83, 87]. The-
orem 1.1 works for low rank matrices. The following theorem, which is a simple
corollary of Theorem 1.1, shows that M̂ is a good estimate whenever the rank of
M is small compared to mp (after assuming, as in Theorem 1.1, that p ≥ n−1+ε).

THEOREM 2.1. Suppose that M has rank r . Suppose that p ≥ n−1+ε for some
ε > 0. Then

MSE(M̂) ≤ C min
{√

r

mp
,1

}
+ C(ε)e−cnp,

where C and c depend only on η and C(ε) depends only on ε and η. Moreover, the
same result holds when M and X are symmetric.

The term 1/np in the error bound is necessary to take care of the case r = 0.
Even if M is identically zero, the estimator M̂ will incur some error due to the
(possible) randomness in X.

Let us now inspect how the condition r � mp compares with available bounds.
In a notable sequence of papers, Keshavan, Montanari and Oh [62, 63] obtain
the same condition but only if m and n are comparable and the rank is known.
Theorem 2.1, on the other hand, works even for “very rectangular” matrices where
m � n and the rank is unknown.

Candès and Tao [28] obtain the condition r � mp with an extra poly-
logarithmic term in the error. Moreover, they too require that m and n be compara-
ble, and additionally they need the so-called “incoherence condition”. However, as
noted before, the incoherence condition allows exact recovery, while our approach
only gives approximate recovery.

The recent important work of Davenport et al. [38] gives an estimator with an
error bound that is almost the same as that given by Theorem 2.1, but with a com-
plicated optimization algorithm.

Theorem 2.1, however, is probably not an optimal result. It has been shown by
Koltchinskii et al. [65], Theorems 3 and 5, that the true minimax error rate for a
closely related problem is actually r/mp, up to a logarithmic factor.

The following theorem shows that the condition r � mp is necessary for esti-
mating M .
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THEOREM 2.2. Given any estimator M̃ , there exists an m × n matrix M of
rank r with entries bounded between −1 and 1, such that when the data is sampled
from M ,

MSE(M̃) ≥ C(1 − p)[m/r],

where C is a positive universal constant and [m/r] is the integer part of m/r .

2.2. The stochastic blockmodel. Consider an undirected graph on n vertices.
A stochastic blockmodel assumes that the vertices 1, . . . , n are partitioned into k

blocks, and the probability that vertex i is connected to vertex j by an edge de-
pends only on the blocks to which i and j belong. As usual, edges are independent
of each other. Let M be the matrix whose (i, j)th element is the probability of an
edge existing between vertices i and j . The matrix X here is the adjacency matrix
of the observed graph. Here, all elements of X are observed, so p = 1.

This is commonly known as the stochastic blockmodel. It was introduced by
Holland, Laskey and Leinhardt [56] as a simple stochastic model of social net-
works. It has become one of the most successful and widely used models for com-
munity structure in networks, especially after the advent of large data sets.

Early analysis of the stochastic blockmodel was carried out by Snijders and
Nowicki [77, 91], who provided consistent parameter estimates when there are
exactly two blocks. This was extended to a finite but fixed number of blocks of
equal size by Condon and Karp [37]. Bickel and Chen [16] were the first to give
consistent estimates for finite number of blocks of unequal size. It was observed
by Leskovec et al. [67] that in real data, the number of blocks often seem to grow
with the number of nodes. This situation was rigorously analyzed for the first time
in Rohe et al. [85], and was followed up shortly thereafter by [17, 34, 36, 74] with
more advanced results.

However, all in all, I am not aware of any estimator for the stochastic block-
model that works whenever the number of blocks is small compared to the number
of nodes. The best result till date is in the very recent manuscript of Rohe et al. [86],
who prove that a penalized likelihood estimator works whenever k is comparable
to n “up to log factors.” The following theorem says that the USVT estimator M̂

gives a complete solution to the estimation problem in the stochastic blockmodel
if k � n, with no further conditions required. (The method will not work very well
for sparse graphs, however; for recent advances on estimation in sparse graphs, see
[7].)

THEOREM 2.3. For a stochastic blockmodel with k blocks,

MSE(M̂) ≤ C

√
k

n
,

where C is a constant that depends only on our choice of η.
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Note that estimating the stochastic blockmodel is a special case of low rank
matrix estimation with noise. It is not difficult to prove that the estimation problem
is impossible when k is of the same order as n. We will not bother to write down a
formal proof.

2.3. Distance matrices. Suppose that K is a compact metric space with met-
ric d . Let x1, . . . , xn be arbitrary points from K , and let M be the n × n matrix
whose (i, j)th entry is d(xi, xj ). Such matrices are called “distance matrices”.
Since K is a compact metric space, the diameter of K with respect to the metric d

must be finite. Scaling d by a constant factor, we may assume without loss of gen-
erality that the diameter is bounded by 1, so that the entries of M are bounded by
1 as required by Theorem 1.1.

Completing a distance matrix with missing entries has been a popular problem
in the engineering and social sciences for a long time; see, for example, [6, 11, 18,
89, 90, 92]. It has become particularly relevant in engineering problems related to
sensor networks. It is also an important issue in multidimensional scaling [19]. For
some recent theoretical advances, see [60, 78].

In general, distance matrices need not be of low rank. Therefore, much of the
literature on matrix estimation and completion does not apply to distance matri-
ces. Surprisingly, Theorem 1.1 gives a complete solution of the distance matrix
completion and estimation problem.

THEOREM 2.4. Suppose that p ≥ n−1+ε for some ε > 0. If M is a distance
matrix as above, then

MSE(M̂) ≤ C(K,d,n)√
p

+ C(ε)e−cnp,

where c depends only on η, C(ε) depends only on ε and η, and C(K,d,n) is
a number depending only on K , d , n and η such that

lim
n→∞C(K,d,n) = 0.

The above theorem is not wholly satisfactory, since it does not indicate how
fast p can go to zero as n → ∞ so that M̂ is still consistent. To understand that,
we need to know more about the structure of the space K . The following theorem
gives a quantitative estimate.

THEOREM 2.5. Suppose that for each δ > 0, N(δ) is a number such that K

may be covered by N(δ) open d-balls of radius δ. Then

MSE(M̂) ≤ C inf
δ>0

min
{
δ + √

N(δ/4)/n√
p

,1
}

+ C(ε)e−cnp,

where C and c depend only on η and C(ε) depends only on ε and η.
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To see how Theorem 2.5 may be used, suppose that K is a compact subset of
the real line and d is the usual distance on R, scaled by a factor to ensure that
the diameter of K is ≤1. Then N(δ) increases like 1/δ as δ → 0. Consequently,
given n, the optimal choice of δ is of the order n−1/3, which gives the bound

MSE(M̂) ≤ Cn−1/3

√
p

.

(Note that the exponential term need not appear because the main term is bounded
below by a positive constant if p < n−2/3.) Thus, M̂ is a consistent estimate as
long as p goes to zero slower than n−2/3 as n → ∞.

2.4. Latent space models. Suppose that β1, . . . , βn are vectors belonging to
some bounded closed set K ⊆ Rk , where k is some arbitrary but fixed dimension.
Let f :K → [−1,1] be a continuous function. Let M be the n × n matrix whose
(i, j)th element is f (βi, βj ). Then our data matrix X has the form

xij = f (βi, βj ) + εij ,

where εij are independent errors with zero mean, satisfying the restriction that
|xij | ≤ 1 almost surely. For example, X may be the adjacency matrix of a ran-
dom graph where the probability of an edge existing between vertices i and j is
f (βi, βj ). This is one context where latent space models are widely used, starting
with the work of Hoff, Raftery and Handcock [55]. A large body of work applying
the latent space approach to real data has grown in the last decade. On the theo-
retical side, it was observed in [16, 17] that the latent space model arises naturally
from an exchangeability assumption due to the Aldous–Hoover theorem [5, 57].
Note that distance matrices and stochastic blockmodels are both special cases of
latent space models.

There have been various attempts to estimate parameters in the latent space
models (e.g., [4, 53, 55]). Almost all of these approaches rely on heuristic argu-
ments and justification through simulations. The problem is that in addition to the
vectors β1, . . . , βn, the function f itself is an unknown parameter. If either βi ’s
are known, or f is known, the estimation problem is tractable. For example, when
f (x, y) is of the form ex+y/(1 + ex+y), the problem was solved in [31]. However,
when both f and βi ’s are unknown, the problem becomes seemingly intractable.
In particular, there is an identifiability issue because f (x, y) may be replaced by
h(x, y) := f (g(x), g(y)) and βi by g−1(βi) for any invertible function g without
altering the model.

In view of the above discussion, it is a rather surprising consequence of Theo-
rem 1.1 that it is possible to estimate the numbers f (βi, βj ), i, j = 1, . . . , n from
a single realization of the data matrix, under no additional assumptions than the
stated ones.
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THEOREM 2.6. Suppose that p ≥ n−1+ε . If M is as above, then

MSE(M̂) ≤ C(K,k,f,n)√
p

+ C(ε)e−cnp,

where c depends only on η, C(ε) depends only on ε and η, and C(K,k,f,n)

depends only on K , k, f , n and η such that

lim
n→∞C(K,k,f,n) = 0.

The problem with Theorem 2.6, just like Theorem 2.4 in Section 2.3, is that it
does not give an explicit error bound, which makes it impossible to determine how
fast p can go to zero with n so that consistency holds. Again, this is easy to fix
by assuming smoothness properties of f and applying Lemma 3.6. As a particular
example, suppose that f is Lipschitz with Lipschitz constant L, in the sense that∣∣f (x, y) − f

(
x′, y′)∣∣ ≤ L

∥∥x − x′∥∥ + L
∥∥y − y′∥∥

for all x, y, x′, y′ ∈ K .

THEOREM 2.7. In the above setting,

MSE(M̂) ≤ C(K,k,L)
n−1/(k+2)

√
p

,

where C(K,k,L) is a constant depending only on K , k, L and η.

2.5. Positive definite matrices. Assume that m = n and M is positive semi-
definite. (In the statistical context, this is the same as saying that M is a covariance
matrix. When the diagonal entries are all 1, M is a correlation matrix.)

Completing positive definite matrices with missing entries has received a lot of
attention in the linear algebra literature [15, 51, 61], although most of the tech-
niques are applicable only for relatively small matrices or when a sizable fraction
of the entries are observed. In the engineering sciences, estimation of covariance
matrices from a small subset of observed entries arises in the field of remote sens-
ing (see [25, 26, 28] for brief discussions).

The statistical matrix completion literature cited in Section 1 applies only to low
rank positive definite matrices. It is therefore quite a surprise that the completion
problem may be solved for any positive definite matrix whenever we get to observe
a large number of entries from each row.

THEOREM 2.8. Suppose that m = n and M is positive semi-definite. Suppose
that p ≥ n−1+ε . Then

MSE(M̂) ≤ C√
np

+ C(ε)e−cnp,

where C and c depend only on η and C(ε) depends only on ε and η.
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What if p is of order 1/n or less? The following theorem shows that it is im-
possible to estimate M in this situation.

THEOREM 2.9. Given any estimator M̃ , there exists a correlation matrix M

such that when the data is sampled from M ,

MSE(M̃) ≥ C(1 − p)n,

where C is a positive universal constant.

2.6. Graphon estimation. A graphon is a measurable function f from [0,1]2

into [0,1] that satisfies f (x, y) ≡ f (y, x). The term “graphon” was coined by
Lovász and coauthors in the growing literature on limits of dense graphs [20–22,
68, 69]. Such functions also arise in the related study of weakly exchangeable
random arrays [5, 9, 42, 57]. They have also appeared recently in large deviations
[32, 33, 70] and mathematical statistics [30, 81].

In the graph limits literature, graphons arise as limits of graphs with increasing
number of nodes. Conversely, graphons are often used to generate random graphs
in a natural way. Take any n and let U1, . . . ,Un be i.i.d. Uniform[0,1] random
variables. Construct a random undirected graph on n vertices by putting an edge
between vertices i and j with probability f (Ui,Uj ), doing this independently for
all 1 ≤ i < j ≤ n. This procedure is sometimes called “sampling from a graphon”
(see [21], Section 4.4).

The statistical question is the following: Suppose that we have a random graph
on n vertices that is sampled from a graphon. Is it possible to estimate the graphon
from a single realization of the graph? More precisely, is it possible to accurately
estimate the numbers f (Ui,Uj ), 1 ≤ i < j ≤ n, from a single realization of the
random graph? The question is similar to the one investigated in Section 2.3, but
the difference is that here we are not allowed to assume any regularity on f except
measurability.

Taking things back to our usual setting, let M be the matrix whose (i, j)th ele-
ment is f (Ui,Uj ). Note that unlike our previous examples, M is now random. So
the definition of MSE should be modified to take expectation over M as well.

THEOREM 2.10. In the above setting,

MSE(M̂) ≤ C(f,n),

where C(f,n) is a constant depending only on f , n and η, such that

lim
n→∞C(f,n) = 0.

Incidentally, after the first version of this paper was put up on arXiv, several
papers (e.g., [95, 96]) on graphon estimation, advocating a number of different
techniques and demonstrating applications in the statistical study of networks, have
appeared in the literature.
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2.7. Nonparametric Bradley–Terry model. Suppose there are n teams playing
against each other in a tournament. Every team plays against every other team at
least once (often, exactly once). Suppose that pij is the probability that team i

wins against team j in a match between i and j . Then pji = 1 − pij .
The Bradley–Terry model [23], originally proposed by Zermelo [97], assumes

that pij is of the form ai/(ai + aj ) for some unknown nonnegative numbers
a1, . . . , an. It is known how to estimate the parameters a1, . . . , an if we assume
that the outcomes of all games are independent—which, in this case, is a reason-
able assumption.

The Bradley–Terry model has found great success among practitioners. For an
old survey of the literature on the model dating back to 1976, see [40]. Numerous
extensions and applications have been proposed, for example, [3, 54, 58, 71, 72,
80, 82]. The monographs of David [39] and Diaconis [41], Chapter 9, explain
the statistical foundations of these models. More recently, several authors have
proposed to perform Bayesian inference for (generalized) Bradley–Terry models
[2, 29, 48–50, 52].

For the basic Bradley–Terry model, it is possible to find the maximum likeli-
hood estimate of the ai ’s using a simple iterative procedure [59, 66, 97]. The max-
imum likelihood estimate was shown to be jointly consistent for all n parameters
by Simons and Yao [88].

We now generalize the Bradley–Terry model as follows. Suppose, as before,
that pij is the probability that team i beats team j . Suppose that the teams have a
particular ordering in terms of strength that is unknown to the observer. Assume
that if team i is stronger than team j , then pik ≥ pjk for all k 
= i, j . Do not
assume anything else about the pij ’s; in particular, do not assume any formula for
the pij ’s in terms of hidden parameters. This is what we may call a “nonparametric
Bradley–Terry model.” Note that the usual Bradley–Terry model is a special case
of the nonparametric version.

In the nonparametric Bradley–Terry model, is it possible to estimate all the pij ’s
from a tournament where every team plays against every other exactly once? Is it
possible to estimate the pij ’s if only a randomly chosen fraction of the games are
played? How small can this fraction be, so that accurate estimation is still possible?
The following theorem provides some answers.

THEOREM 2.11. Consider the nonparametric Bradley–Terry model defined
above. Let M be the matrix whose (i, j)th entry is pij if i 
= j and 0 if i = j .
Let X be the data matrix whose (i, j)th entry is 1 if team i won over team j , 0
if team j won over team i and recorded as missing if team i did not play versus
team j . If team i has played against team j multiple times, let the (i, j)th entry of
X be the proportion of times that i won over j . (Draws are not allowed.) Let all
diagonal entries of X be zero. Given p ∈ [0,1], suppose that for each i and j , the
game between i and j takes place with probability p and does not take place with
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probability 1 − p, independent of other games. Let M̂ be the estimate of M based
on the data matrix X. Then

MSE(M̂) ≤ Cn−1/4

√
p

,

where C depends only on our choice of η. In particular, the estimation problem is
solvable whenever p � n−1/2.

A natural question is whether the threshold p � n−1/2 is sharp. I do not know
the answer to this question.

3. Proofs.

3.1. Proof of Theorem 1.1 (Main result). We need to recall some background
material before embarking on the proof of Theorem 1.1.

Matrix norms. Let A = (aij )1≤i≤m,1≤j≤n be an m×n real matrix with singular
values σ1, . . . , σk , where k = min{m,n}. The following matrix norms are widely
used in this proof.

The nuclear norm or the trace norm of A is defined as

‖A‖∗ :=
k∑

i=1

σi.

The Frobenius norm, also called the Hilbert–Schmidt norm, is defined as

‖A‖F :=
(

m∑
i=1

n∑
j=1

a2
ij

)1/2

= (
Tr

(
AT A

))1/2 =
(

k∑
i=1

σ 2
i

)1/2

.

By the Cauchy–Schwarz inequality,

‖A‖∗ ≤ √
rank(A)‖A‖F .(2)

The sup-norm is defined as

‖A‖∞ := max
i,j

|aij |.

The spectral norm or the operator norm of A is defined as

‖A‖ := max
1≤i≤k

|σi |.

The spectral norm may be alternatively expressed as

‖A‖ = max
x∈Sm−1,y∈Sn−1

xT Ay,(3)
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where Sm−1 and Sn−1 are the Euclidean unit spheres in Rm and Rn, respectively.
The above representation implies that the spectral norm satisfies the triangle in-
equality. Consequently, for any two m × n matrices A and B ,∣∣‖A‖ − ‖B‖∣∣ ≤ ‖A − B‖ ≤ ‖A − B‖F .

In particular, the spectral norm is a Lipschitz function of the matrix entries (with
Lipschitz constant 1), if the entries are collectively considered as a vector of
length mn.

The triangle inequality for the spectral norm also implies that the map A �→ ‖A‖
is convex. Indeed, for any 0 ≤ t ≤ 1,∥∥tA + (1 − t)B

∥∥ ≤ t‖A‖ + (1 − t)‖B‖.
For more on matrix norms, see [14].

Perturbation of singular values. The following perturbative result from matrix
analysis is used several times in this manuscript. Let A and B be two m × n ma-
trices. Let k = min{m,n}. Let σ1, . . . , σk be the singular values of A in decreasing
order and repeated by multiplicities, and let τ1, . . . , τk be the singular values of B

in decreasing order and repeated by multiplicities. Let δ1, . . . , δk be the singular
values of A − B , in any order but still repeated by multiplicities.

THEOREM 3.1. For any 1 ≤ p < ∞,
k∑

i=1

|σi − τi |p ≤
k∑

i=1

|δi |p

and

max
1≤i≤k

|σi − τi | ≤ max
1≤i≤k

|δi |.

The above result follows, for example, from a combination of Theorem III.4.4
and Exercise II.1.15 in [14]. It may also be derived as a consequence of
Wielandt’s minimax principle [14], Section III.3, or Lidskii’s theorem [14], Ex-
ercise III.4.3. The case p = 2 is sometimes called the Hoffman–Wielandt theorem
[8], Lemma 2.1.19 and Remark 2.1.20, and the inequality involving the maximum
is sometimes called Weyl’s perturbation theorem [14], Corollary III.2.6.

Bernstein’s inequality. The following inequality is known as “Bernstein’s in-
equality.”

THEOREM 3.2. Suppose that X1, . . . ,Xn are independent random variables
with zero mean, and M is a constant such that |Xi | ≤ M with probability one for
each i. Let S := ∑n

i=1 Xi and v := Var(S). Then for any t ≥ 0,

P
(|S| ≥ t

) ≤ 2 exp
(
− 3t2

6v + 2Mt

)
.
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This inequality was proved by Bernstein [13]. For a discussion of Bernstein’s
inequality and improvements, see Bennett [12].

Talagrand’s concentration inequality. Recall that a median m of a random
variable Y is a real number such that P(Y ≤ m) ≥ 1/2 and P(Y ≥ m) ≥ 1/2. The
median may not be unique.

The following concentration inequality is one of the several striking inequalities
that are collectively known as “Talagrand’s concentration inequalities.”

THEOREM 3.3. Suppose that f : [−1,1]n → R is a convex Lipschitz function
with Lipschitz constant L. Let X1, . . . ,Xn be independent random variables taking
value in [−1,1]. Let Y := f (X1, . . . ,Xn) and let m be a median of Y . Then for
any t ≥ 0,

P
(|Y − m| ≥ t

) ≤ 4e−t2/16L2
.

For a proof of Theorem 3.3, see [93], Theorem 6.6.
It is easy to modify Theorem 3.3 to have concentration around the mean instead

of the median. Just observe that by Theorem 3.3, E(Y −m)2 ≤ 64L2. Since E(Y −
m)2 ≥ Var(Y ), this shows that Var(Y ) ≤ 64L2. Thus, by Chebychev’s inequality,

P
(∣∣Y −E(Y )

∣∣ ≥ 16L
) ≤ 1

4 .

By the definition of a median, this shows that E(Y ) − 16L ≤ m ≤ E(Y ) + 16L.
Together with Theorem 3.3, this implies that for any t ≥ 0,

P
(∣∣Y −E(Y )

∣∣ ≥ 16L + t
) ≤ 4e−t2/2L2

.(4)

The above inequality has a number of uses in the proof of Theorem 1.1.

Spectral norms of random matrices. The following bound on spectral norms
of random matrices is a crucial ingredient for this paper. The proof follows from
a combinatorial argument of Vu [94] (which is itself a refinement of a classical
argument of Füredi and Komlós [46]), together with Talagrand’s inequality (4).

THEOREM 3.4. Take any two numbers m and n such that 1 ≤ m ≤ n. Suppose
that A = (aij )1≤i≤m,1≤j≤n is a matrix whose entries are independent random vari-
ables that satisfy, for some σ 2 ∈ [0,1],

E(aij ) = 0, E
(
a2
ij

) ≤ σ 2 and |aij | ≤ 1 a.s.

Suppose that σ 2 ≥ n−1+ε for some ε > 0. Then for any η ∈ (0,1),

P
(‖A‖ ≥ (2 + η)σ

√
n
) ≤ C1(ε)e

−C2σ
2n,
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where C1(ε) depends only on ε and η and C2 depends only on η. The same
result is true when m = n and A is symmetric or skew-symmetric, with inde-
pendent entries on and above the diagonal, all other assumptions remaining the
same. Lastly, all results remain true if the assumption σ 2 ≥ n−1+ε is changed to
σ 2 ≥ n−1(logn)6+ε .

PROOF. First assume that m = n and A is symmetric. Note that for any even
number k,

E‖A‖k ≤ E
(
Tr

(
Ak)) = ∑

1≤i1,...,ik≤n

E(ai1i2ai2i3 · · ·aik−1ik aiki1).(5)

Consider i1, i2, . . . , ik−1, ik, i1 as a closed tour of a subset of the vertices of the
complete graph on n vertices (with self-edges included). From the given assump-
tions about the aij ’s, it follows that the term E(ai1i2ai2i3 · · ·aiki1) is zero if there is
an edge that is traversed exactly once. Suppose that each edge in the tour is tra-
versed at least twice. Let p be the number of distinct vertices visited by the tour.
Then the number of distinct edges traversed by the tour is at least p − 1. Since
σ 2 ≤ 1, |aij | ≤ 1, and E|aij |l ≤ σ 2 for any l ≥ 2, this shows that∣∣E(ai1i2ai2i3 · · ·aiki1)

∣∣ ≤ σ 2p−2.(6)

Thus, if W(n, k,p) is the number of tours of length k that visit exactly p vertices
and traverse each of its edges at least twice, then

E‖A‖k ≤
k∑

p=1

σ 2p−2W(n, k,p).(7)

Vu [94], equation (5), proves that if p > k/2 then W(n, k,p) = 0 and if p ≤ k/2
then

W(n, k,p) ≤ n(n − 1) · · · (n − p + 1)

(
k

2p − 2

)
p2(k−2p+2)22p−2.

Using this bound, one can proceed as in [94], Section 2, to arrive at the conclusion
that if k is largest even number ≤ σ 1/3n1/6, then

E‖A‖k ≤ 2n(2σ
√

n)k.

Consequently,

E‖A‖ ≤ (
E‖A‖k)1/k ≤ (2n)1/k2σ

√
n.

This shows that if σ 2 ≥ n−1+ε [or if σ 2 ≥ n−1(logn)6+ε], then there is a constant
C(ε) depending only on ε and η such that if n ≥ C(ε) then

E‖A‖ ≤ (2 + η/4)σ
√

n.(8)

Since aij are independent and |aij | ≤ 1 almost surely for all i, j , and the spectral
norm is a convex Lipschitz function of matrix entries with Lipschitz constant 1
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(by the discussion about matrix norms at the beginning of this section), therefore
one can apply Talagrand’s inequality [Theorem 3.3 and inequality (4)] together
with (8) and the assumption that σ 2 ≥ n−1+ε to conclude that there is a constant
C(ε) such that if n ≥ C(ε) then

P
(‖A‖ ≥ (2 + η/2)σ

√
n
) ≤ C1e

−C2σ
2n,(9)

where C1 and C2 depend only on η. Replacing C1 by a large enough constant
C1(ε), the condition n ≥ C(ε) may be dropped. It is clear from the argument that
it goes through in the skew-symmetric case as well.

Let us now drop the assumption of symmetry, but retain the assumption that
m = n. Let a′

ij := aji . Then inequality (5) must be modified to say that for any
even k,

E‖A‖k ≤ E
(
Tr

((
AT A

)k/2))
= ∑

1≤i1,...,ik≤n

E
(
a′
i1i2

ai2i3a
′
i3i4

ai4i5 · · ·a′
ik−1ik

aiki1

)
.

As before, the term inside the sum is zero for any tour that traverses an edge exactly
once. (In fact, there are more terms that are zero now; a term may be zero even if
a tour traverses all of its edges at least twice.) Similarly, inequalities (6) and (7)
continue to hold and, therefore, so does the rest of the argument.

Lastly, consider the case m < n. Augment the matrix A by adding an extra
n − m rows of zeros to make it an n × n matrix that satisfies all the conditions of
the theorem. Clearly, the new matrix has the same spectral norm as the old one.
This completes the proof. �

The key lemma. Suppose that A and B are two m × n matrices, where m ≤ n.
Let aij be the (i, j)th entry of A and bij be the (i, j)th entry of B . It is easy to see
from definition that

1

mn

m∑
i=1

n∑
j=1

(aij − bij )
2 = 1

mn
‖A − B‖2

F ≤ 1

n
‖A − B‖2.

Thus, if ‖A − B‖ is small enough, then the entries of A are approximately equal
to the entries of B , on average. In other words, the matrix A is an estimate of the
matrix B .

The goal of this section is to show that if in addition to the smallness of ‖A−B‖,
we also know that the nuclear norm ‖B‖∗ is not too large, it is possible to get a
better estimate of B based on A.

LEMMA 3.5. Let A = ∑m
i=1 σixiy

T
i be the singular value decomposition of A.

Fix any δ > 0 and define

B̂ := ∑
i : σi>(1+δ)‖A−B‖

σixiy
T
i .
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Then

‖B̂ − B‖F ≤ K(δ)
(‖A − B‖‖B‖∗

)1/2
,

where K(δ) = (4 + 2δ)
√

2/δ + √
2 + δ.

PROOF. Let B = ∑m
i=1 τiuiv

T
i be the singular value decomposition of B .

Without loss of generality, assume that σi ’s and τi’s are arranged in decreasing
order. Let S be the set of i such that σi > (1 + δ)‖A − B‖. Define

G := ∑
i∈S

τiuiv
T
i .

Note that by the definition of B̂ , the largest singular value of A − B̂ is bounded
above by (1 + δ)‖A − B‖. In other words,

‖A − B̂‖ ≤ (1 + δ)‖A − B‖.(10)

On the other hand, by Theorem 3.1,

max
1≤i≤m

|σi − τi | ≤ ‖A − B‖.
In particular, for i /∈ S,

τi ≤ σi + ‖A − B‖ ≤ (2 + δ)‖A − B‖,(11)

and for i ∈ S,

τi ≥ σi − ‖A − B‖ ≥ δ‖A − B‖.(12)

By (11),

‖B − G‖ ≤ (2 + δ)‖A − B‖.(13)

By (10) and (13), we have

‖B̂ − G‖ ≤ ‖B̂ − A‖ + ‖A − B‖ + ‖B − G‖ ≤ (4 + 2δ)‖A − B‖.(14)

Since B̂ and G both have rank ≤ |S|, the difference B̂ − G has rank at most 2|S|.
Using this and (14), we have

‖B̂ − G‖F ≤ √
2|S|‖B̂ − G‖ ≤ (4 + 2δ)

√
2|S|‖A − B‖.(15)

Next, observe that by (11),

‖B − G‖2
F = ∑

i /∈S

τ 2
i ≤ (2 + δ)‖A − B‖∑

i /∈S

τi ≤ (2 + δ)‖A − B‖‖B‖∗.(16)

Combining (15) and (16), we have

‖B̂ − B‖F ≤ ‖B̂ − G‖F + ‖B − G‖F
(17)

≤ (4 + 2δ)
√

2|S|‖A − B‖ + (
(2 + δ)‖A − B‖‖B‖∗

)1/2
.
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Next, note that by (12),

‖B‖∗ ≥ ∑
i∈S

τi ≥ δ|S|‖A − B‖,

and thus

|S| ≤ ‖B‖∗
δ‖A − B‖ .(18)

Combining (17) and (18), the proof is complete. �

Finishing the proof of Theorem 1.1. We will prove the theorem only for the
asymmetric model. The only difference in the proofs for the symmetric model
and the skew-symmetric model is that we need to use the symmetric and skew-
symmetric parts of Theorem 3.4 instead of the asymmetric part.

Throughout this proof, C(ε) will denote any constant that depends only on ε

and η, and C and c will denote constants that depend only on η. The values of
C(ε), C and c may change from line to line or even within a line. We will use the
fact that η ∈ (0,1) without mention on many occasions.

Note that for all i and j ,

E(yij ) = pmij

and

Var(yij ) ≤ E
(
y2
ij

) = pE
(
x2
ij

) ≤ p.(19)

Let p̂ be the proportion of observed entries. Define two events E1 and E2 as

E1 := {‖Y − pM‖ ≤ (2 + η/2)
√

np
}
,

E2 := {|p̂ − p| ≤ ηp/20
}
.

By Theorem 3.4,

P(E1) ≥ 1 − C(ε)e−cnp.(20)

By Bernstein’s inequality (Theorem 3.2), for any t ≥ 0,

P
(|p̂ − p| ≥ t

) ≤ 2 exp
(
− 3mnt2

6p(1 − p) + 2t

)
.

In particular,

P(E2) ≥ 1 − 2e−cmnp.(21)

Let δ be defined by the relation

(1 + δ)‖Y − pM‖ = (2 + η)

√
np̂.

If E1 and E2 both happen, then

1 + δ ≥ (2 + η)
√

np̂

(2 + η/2)
√

np
≥ (2 + η)

√
(1 − η/20)np

(2 + η/2)
√

np
≥ 1 + η/5.
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Let K(δ) be the constant in the statement of Lemma 3.5. It is easy to see that there
is a constant C depending only on η such that if δ ≥ η/5, then K(δ) ≤ C

√
1 + δ.

Therefore, by Lemma 3.5, if E1 and E2 both happen, then

‖p̂W − pM‖2
F ≤ C(1 + δ)‖Y − pM‖‖pM‖∗

≤ C

√
np̂‖pM‖∗(22)

≤ Cn1/2p3/2‖M‖∗.

By the definition of M̂ , it is obvious that |m̂ij − mij | ≤ |wij − mij | for all i and j .
Together with (22), this shows that under E1 ∩ E2,

p2‖M̂ − M‖2
F ≤ p2‖W − M‖2

F

≤ Cp̂2‖W − M‖2
F

≤ C‖p̂W − pM‖2
F + C(p̂ − p)2‖M‖2

F

≤ Cn1/2p3/2‖M‖∗ + C(p̂ − p)2mn.

Note that E(p̂ − p)2 = p(1 − p)/mn and that ‖M̂ − M‖2
F ≤ 4mn. Thus, by (20)

and (21),

E‖M̂ − M‖2
F ≤ Cn1/2p−1/2‖M‖∗ + Cp−1 + Cmn

(
1 − P(E1 ∩ E2)

)
≤ Cn1/2p−1/2‖M‖∗ + Cp−1 + C(ε)mne−cnp.

Dividing throughout by mn, we arrive at the inequality

1

mn
E‖M̂ − M‖2

F ≤ C‖M‖∗
m

√
np

+ C

np
+ C(ε)e−cnp.(23)

The next goal is to show that

1

mn
E‖M̂ − M‖2

F ≤ C‖M‖2∗
mn

+ C(ε)e−cnp.(24)

First, suppose that ‖M‖∗ > η
√

n/p/20. Then

‖M‖∗
m

√
np

+ 1

np
≤ C‖M‖2∗

mn
,

and so (24) follows from (23). Therefore, assume that ‖M‖∗ ≤ η
√

n/p/20. Then
in particular, ‖M‖ ≤ η

√
n/p/20. Therefore, if E1 ∩ E2 happens, then

‖Y‖ ≤ ‖Y − pM‖ + ‖pM‖
≤ (2 + η/2 + η/20)

√
np

≤ (2 + 11η/20)
√

np̂

1 − η/20
≤ (2 + 13η/20)

√
np̂.
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This implies that there is no singular value of Y that exceeds (2 + η)
√

np̂, and
therefore M̂ = 0. Consequently,

‖M̂ − M‖2
F = ‖M‖2

F ≤ ‖M‖2∗.

Thus, if ‖M‖∗ ≤ η
√

n/p/20, then by (20) and (21),

1

mn
E‖M̂ − M‖2

F ≤ ‖M‖2∗
mn

+ C
(
1 − P(E1 ∩ E2)

) ≤ ‖M‖2∗
mn

+ C(ε)e−cnp.

Combining the above steps and observing that MSE(M̂) ≤ 1 due to the bounded-
ness of the entries of M and M̂ , we get

MSE(M̂) ≤ C min
{ ‖M‖∗
m

√
np

+ 1

np
,
‖M‖2∗
mn

,1
}

+ C(ε)e−cnp.

To remove the 1/np term, note that if that term indeed matters, then we are in a
situation where

‖M‖∗
m

√
np

≤ ‖M‖2∗
mn

.

But this inequality, on the other hand, implies that

‖M‖∗
m

√
np

≥ 1

mp
≥ 1

np
.

Therefore, the 1/np term can be removed from the above bound. This completes
the proof of Theorem 1.1 if no nontrivial bound on Var(xij ) is known.

If σ 2 ≤ 1 is a known constant such that Var(xij ) ≤ σ 2 for all i, j , then the
estimate (19) may be improved to

Var(yij ) = p Var(xij ) + p(1 − p)m2
ij ≤ max

(a,b)∈R

(
pb + p(1 − p)a

)
,

where R is the quadrilateral region{
(a, b) : 0 ≤ a ≤ 1,0 ≤ b ≤ σ 2,0 ≤ a + b ≤ 1

}
.

The maximum must be attained at one of the four vertices of R. An easy verifica-
tion shows that the maximum is always attained at the vertex (1 − σ 2, σ 2), which
gives the upper bound

Var(yij ) ≤ q := pσ 2 + p(1 − p)
(
1 − σ 2)

.

This allows us to replace the threshold (2 + η)
√

np̂ by (2 + η)
√

nq̂ , where q̂ =
p̂σ 2 + p̂(1 − p̂)(1 − σ 2). As before, we need that q ≥ n−1+ε . The rest of the
proof goes through with the following modifications: Replace

√
np by

√
nq in the

definition of E1, keep E2 the same, and define an event E3 = {|q̂ − q| ≤ ηq/20}.
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By Theorem 3.4, P(E1) ≥ 1 − C(ε)e−cnq , P(E2) ≥ 1 − 2e−cmnp ≥ 1 − 2e−cmnq ,
and P(E3) ≥ 1−2e−cmnq since |q̂ −q| ≤ |p̂−p| and q ≥ p(1−p) and, therefore,

P
(
Ec

3
) ≤ P

(|p̂ − p| > ηq/20
) ≤ 2 exp

(
− cmnq2

6p(1 − p) + ηq/10

)
≤ 2e−cmnq.

If E1 ∩E2 ∩E3 happens, then the subsequent steps remain the same, but with some
suitable modifications that replace the term ‖M‖∗/(m

√
np) by the improved term

‖M‖∗
√

q/(m
√

np).

3.2. Proof of Theorem 1.2 (Minimax optimality). Throughout this proof,
C will denote any positive universal constant, whose value may change from line
to line.

Take any δ ∈ [0,m
√

n] and let θ := δ/(m
√

n). We will first work out the proof
under the assumption that p < 1/2. Under this assumption, three situations are
considered. First, suppose that

θ/
√

p ≤ 1 and mθ
√

p ≥ 1.(25)

Let k := [mθ
√

p]. Clearly, k ≤ m. Let M be an m×n random matrix whose first k

rows consist of i.i.d. Uniform[−1,1] random variables, and copy this block [1/p]
times. This takes care of k[1/p] rows. [This is okay, since k/p ≤ mθ/

√
p ≤ m by

(25).] Declare the remaining rows, if any, to be zero. Then note that M has rank
≤ k ≤ mθ

√
p. Therefore, by inequality (2),

‖M‖∗ ≤ (mθ
√

p)1/2‖M‖F ≤ (mθ
√

p)1/2(mnθ/
√

p)1/2 = m
√

nθ.

Let X = M . Let D be our data, that is, the observed values of X. One can imagine
D as a matrix whose (i, j)th entry is xij if xij is observed, and a question mark if
xij is unobserved. For any (i, j) belonging to the nonzero portion of the matrix M ,
M contains [1/p] copies of mij . Since the X-value at the location of each copy
is observed with probability p, independent of the other copies, and p < 1/2,
therefore, the chance that none of these copies are observed is bounded below
by a positive universal constant. If none of the copies are observed, then the data
contains no information about mij . Using this, it is not difficult to write down a
formal argument that shows

E
(
Var(mij |D)

) ≥ C.

On the other hand, since m̃ij is a function of D, the definition of variance implies
that

E
(
(m̃ij − mij )

2|D) ≥ Var(mij |D).

Combining the last two displays, we see that

E‖M̃ − M‖2
F ≥

k[1/p]∑
i=1

n∑
j=1

E(m̃ij − mij )
2

(26)

≥ Ck[1/p]n ≥ Cmnθ√
p

.
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The argument that led to the above lower bound is a typical example of the classical
Bayesian argument for obtaining minimax lower bounds, and will henceforth be
referred to as the “standard minimax argument” to avoid repetition of details.

Next, assume that

θ/
√

p ≤ 1 and mθ
√

p < 1.(27)

Let M be an m × n matrix whose first row consists of i.i.d. random variables
uniformly distributed over the interval [−mθ

√
p,mθ

√
p], and this row is copied

[1/p] times, and all other rows are zero. Then M has rank ≤ 1, and therefore by
inequality (2),

‖M‖∗ ≤ ‖M‖F ≤ mθ
√

p

√
n

p
= mθ

√
n.

On the other hand, a standard minimax argument as before implies that for any
estimator M̃ ,

E‖M̃ − M‖2
F ≥ (mθ

√
p)2 n

p
= nm2θ2.

In particular, under (27), there exists M with ‖M‖∗ ≤ δ such that

MSE(M̂) ≥ Cδ2

mn
.

Finally, suppose that

θ/
√

p > 1.(28)

Let M be an m × n matrix whose first [mp] rows consist of i.i.d. random variables
uniformly distributed over [−1,1], and this block is copied [1/p] times. Then the
rank of M is ≤ [mp], and so by (28) and (2),

‖M‖∗ ≤ √
mp‖M‖F ≤ m

√
np ≤ θm

√
n.

Again by a standard minimax argument, it is easy to conclude that for any estimator
M̃ , there exists M with ‖M‖∗ ≤ δ such that

MSE(M̃) ≥ C.

This completes the proof when p < 1/2. Next, suppose that p ≥ 1/2. The only
place where the assumption p < 1/2 was used previously was for proving that
E(Var(mij |D)) ≥ C. This can be easily taken care of by inserting some ran-
domness into the data matrix X, as follows. First, replace M by 1

2M in all
three cases above. This retains the condition ‖M‖∗ ≤ δ. Given M , let X be the
data matrix whose (i, j)th entry xij is uniformly distributed over the interval
[mij − 1/2,mij + 1/2], whenever (i, j) is the “main block” of M ; and this value
of xij is copied [1/p] times in the appropriate places.
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Since the entries of M are now guaranteed to be in [−1/2,1/2], this ensures
that the entries of X are in [−1,1]. Now note that even if xij or one of its copies
is observed, it gives only limited information about mij . In particular, it is easy to
prove that E(Var(mij |D)) ≥ C and complete the proof as before.

This complete the proof of Theorem 1.2 for the asymmetric model. For the
symmetric model, simply observe that the singular values of any square matrix M

are the same as those of the symmetric matrix[
0 M

MT 0

]

with multiplicity doubled. It is now clear how the minimax arguments for the
asymmetric model may be carried over to the symmetric case by considering the
same Bayesian models for M and working with the corresponding symmetrized
matrices. For the skew-symmetric case, replace the MT by −MT in the above
matrix.

3.3. Proof of Theorem 1.3 (Impossibility of error estimation). Suppose that a
good procedure P exists. By the definition of nontriviality of the estimator M̃ , there
exists a sequence of parameter matrices Mn and data matrices Xn such that

MSE
(
M̂Trv

n

) 
→ 0 as n → ∞,(29)

but

lim
n→∞ MSE(M̃n) = 0.(30)

Then by the definition of goodness,

M̂SEP(M̃n) → 0 in probability as n → ∞.

Suppose, without loss of generality, that all the data matrices are defined on the
same probability space. Then taking a subsequence if necessary, we may assume
that in addition to (29) and (30), we also have

P
(

lim
n→∞ M̂SEP(M̃n) = 0

)
= 1.(31)

Let M ′
n := Xn and X′

n := Xn for all n. Consider M ′
n as a (random) parameter

matrix and X′
n as its data matrix. Given M ′

n, the expected value of X′
n is M ′

n; so it
is okay to treat M ′

n as a parameter matrix and X′
n as its data matrix. We will denote

the estimate of M ′
n constructed using X′

n as M̃ ′
n. Note that since M ′

n is random, the
mean squared error of M̃ ′

n is a random variable.
Now, since the estimator M̃ ′

n is computed using the data matrix only, and X′
n =

Xn, it is clear that M̃ ′
n = M̃n. There is no randomness in M̃ ′

n when M ′
n is given,
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since X′
n = M ′

n. Thus, if rn and cn denote the number of rows and columns of Mn,
then

MSE
(
M̃ ′

n

) = 1

rncn

∥∥M̃ ′
n − M ′

n

∥∥2
F

= 1

rncn

‖M̃n − Xn‖2
F

= 1

rncn

∥∥M̃n − M̂Trv
n

∥∥2
F

≥ 1

2rncn

∥∥M̂Trv
n − Mn

∥∥2
F − 1

rncn

‖M̃n − Mn‖2
F ,

where the last step follows from the inequality (a + b)2 ≤ 2a2 + 2b2 and the tri-
angle inequality for the Frobenius norm. Taking expectation on both sides gives

E
(
MSE

(
M̃ ′

n

)) ≥ 1
2 MSE

(
M̂Trv

n

) − MSE(M̃n).

Therefore, by (29) and (30),

E
(
MSE

(
M̃ ′

n

)) 
→ 0 as n → ∞.

In particular, since mean squared errors are uniformly bounded by 1,

P
(
MSE

(
M̃ ′

n

) 
→ 0 as n → ∞)
> 0.(32)

Again since M̂SEP is computed using the data matrix only, therefore, for all n,

M̂SEP(M̃n) = M̂SEP
(
M̃ ′

n

)
.

Therefore, by (31),

P
(

lim
n→∞ M̂SEP

(
M̃ ′

n

) = 0
)

= 1.(33)

Equations (32) and (33) demonstrate the existence of a sequence of parameter
matrices M ′

n and data matrices X′
n such that MSE(M̃ ′

n) 
→ 0 but M̂SEP(M̃ ′
n) → 0

in probability. This contradicts the goodness of M̂SEP.

3.4. Proof of Theorem 2.1 (Upper bound for low rank matrix estimation). In-
equality (2) implies that

‖M‖∗ ≤ √
rank(M)‖M‖F ≤ √

rmn.

The result now follows from Theorem 1.1.
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3.5. Proof of Theorem 2.2 (Lower bound for low rank matrix estimation). Let
M be an m × n random matrix whose first r rows consist of i.i.d. Uniform[−1,1]
random variables, and copy this block [m/r] times. Declare the remaining rows, if
any, to be zero. Then note that M has rank ≤ r .

Let D be our data, that is, the observed values of M . One can imagine D as a
matrix whose (i, j)th entry is mij if mij is observed, and a question mark if mij

is unobserved. For any (i, j) belonging to the nonzero portion of the matrix M ,
M contains [m/r] copies of mij . Since the M-value at the location of each copy
is observed with probability p, independent of the other copies, the chance that
none of these copies are observed is equal to (1 − p)[m/r]. If none of the copies
are observed, then the data contains no information about mij . Using this, it is not
difficult to write down a formal argument that shows

E
(
Var(mij |D)

) ≥ C(1 − p)[m/r],

where C is some universal constant. On the other hand, since m̃ij is a function
of D, the definition of variance implies that

E
(
(m̃ij − mij )

2|D) ≥ Var(mij |D).

Combining the last two displays, we see that

E‖M̃ − M‖2
F ≥ Cmn(1 − p)[m/r].

This completes the proof.

3.6. Proof of Theorem 2.3 (Block model estimation). If two vertices i and j

are in the same block, then the ith and j th rows of M are identical. Therefore,
M has at most k distinct rows and so the rank of M is ≤ k. An application of
Theorem 2.1 completes the proof.

3.7. Proofs of Theorems 2.4 and 2.5 (Distance matrix estimation). The proofs
of Theorems 2.4 and 2.5 follow from a more general lemma that will also be useful
later for other purposes. Suppose that S = {x1, . . . , xn} is a finite set and f :S ×
S → [−1,1] is an arbitrary function. Suppose that for each δ > 0, there exists a
partition P(δ) of S such that whenever x, y, x′, y′ are four points in S such that
x, x′ ∈ P for some P ∈ P(δ) and y, y′ ∈ Q for some Q ∈ P(δ), then |f (x, y) −
f (x′, y′)| ≤ δ. Let M be the n × n matrix whose (i, j)th element is f (xi, xj ).

LEMMA 3.6. In the above setting,

MSE(M̂) ≤ C inf
δ>0

min
{

δ + √|P(δ)|/n√
p

,1
}

+ C(ε)e−cnp,

where C and c depend only on η, and C(ε) depends only on ε and η.
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PROOF. Fix some δ > 0. Let T be a subset of S consisting of exactly one point
from each member of P(δ). For each x ∈ S, let p(x) be the unique element of T

such that x and p(x) belong to the same element of P(δ). Let N be the matrix
whose (i, j)th element is f (p(xi),p(xj )). Then

‖M − N‖2
F =

n∑
i,j=1

(
f (xi, xj ) − f

(
p(xi),p(xj )

))2 ≤ n2δ2.

By the triangle inequality for the nuclear norm, the inequality (2) and the above
inequality,

‖M‖∗ ≤ ‖M − N‖∗ + ‖N‖∗
≤ √

n‖M − N‖F + ‖N‖∗
≤ n3/2δ + ‖N‖∗.

Now, if xi and xj belong to the same element of P(δ), then p(xi) = p(xj ), and
hence the ith and j th rows of N are identical. This shows that N has at most |P(δ)|
distinct rows and, therefore, has rank ≤ |P(δ)|. Therefore, by the inequality (2),

‖N‖∗ ≤
√∣∣P(δ)

∣∣‖N‖F ≤
√∣∣P(δ)

∣∣n.

The proof is completed by applying Theorem 1.1. �

Using Lemma 3.6, it is easy to prove Theorems 2.4 and 2.5.

PROOF OF THEOREM 2.5. Let all notation be as in Theorem 2.5. To apply
Lemma 3.6, let S be the set {x1, . . . , xn}. From the definition of N(δ), it is easy to
see that there is a partition P(δ) of S of size ≤ N(δ/4), such that any two points
belonging to the same element of the partition are at distance ≤ δ/2 from each
other. Consequently, if x, x′ ∈ P and y, y′ ∈ Q for some P,Q ∈ P(δ), then by the
triangle inequality for the metric d ,∣∣d(x, y) − d

(
x′, y′)∣∣ ≤ ∣∣d(x, y) − d

(
x′, y

)∣∣ + ∣∣d(
x′, y

) − d
(
x′, y′)∣∣

≤ d
(
x, x′) + d

(
y, y′) ≤ δ.

Putting f = d in Lemma 3.6, the proof is complete. �

PROOF OF THEOREM 2.4. Since K is compact, there exists a finite number
N(δ) for each δ > 0 such that K may be covered by N(δ) open d-balls of radius δ.
By Theorem 2.5, this shows that for any sequence δn decreasing to zero,

MSE(M̂) ≤ C min
{
δn + √

N(δn/4)/n√
p

,1
}

+ C(ε)e−cnp.

To complete the proof, choose δn going to zero so slowly that N(δn/4) = o(n) as
n → ∞. �
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3.8. Proof of Theorem 2.6 (Latent space models: General case). We will apply
Lemma 3.6. Let S be the set {β1, . . . , βn}. Since f is continuous on K and K is
compact, f must be uniformly continuous. This shows that for each δ > 0 we can
find a partition P(δ) of S satisfying the condition required for Lemma 3.6, such
that the size of P(δ) may be bounded by a constant N(δ) depending only on K ,
k, f and δ. Choosing δn → 0 slowly enough so that N(δn/4) = o(n) and applying
Lemma 3.6 completes the proof.

3.9. Proof of Theorem 2.7 (Latent space models: Lipschitz functions). Let
S = {β1, . . . , βn}. Take any δ > 0. From the Lipschitzness condition, it is easy
to see that we can find a partition P(δ) of S whose size may be bounded by
C(K,k,L)δ−k , where C(K,k,L) depends only on K , k and L. Choosing δ =
n−1/(k+2) and applying Lemma 3.6 completes the proof. Note that the exponential
term need not appear since the main term is bounded below by a positive constant
if p < n−2/(k+2).

3.10. Proof of Theorem 2.8 (Upper bound for positive definite matrix estima-
tion). Since M is positive semi-definite, ‖M‖∗ = Tr(M). Since the entries of M

are bounded by 1, Tr(M) ≤ n. The proof now follows from an application of The-
orem 1.1.

3.11. Proof of Theorem 2.9 (Lower bound for positive definite matrix esti-
mation). Throughout this proof, C will denote any positive universal constant,
whose value may change from line to line.

Let U1, . . . ,Un be i.i.d. Uniform[0,1] random variables. Let M be the random
matrix whose (i, j)th element mij is equal to UiUj if i 
= j and 1 if i = j . It is easy
to verify that M is a correlation matrix. Suppose that we observe each element of
M on and above the diagonal with probability p, independent of each other. Let D

be our data, represented as follows: D is a matrix whose (i, j)th element is mij if
the element is observed, and a question mark otherwise.

Now, the probability that no element from the ith row and the ith column is
observed is exactly equal to (1 − p)n. If we do not observe any element from the
ith row and ith column, we have no information about the value of Ui . From this,
it is not difficult to write down a formal argument to prove that for any j 
= i,

Var
(
mij |D,(Uk)k 
=i

) = U2
j Var

(
Ui |D,(Uk)k 
=i

) ≥ C(1 − p)nU2
j .

If M̃ is any estimator, then m̃ij is a function of D. Therefore, by the above inequal-
ity and the definition of variance,

E
(
(m̃ij − mij )

2|D,(Uk)k 
=i

) ≥ C(1 − p)nU2
j ,

and thus

E(m̃ij − mij )
2 ≥ C(1 − p)n.

Since this is true for all i 
= j , the proof is complete.
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3.12. Proof of Theorem 2.10 (Graphon estimation). Here, all entries of the
adjacency matrix are visible, so p = 1. Define a sequence of functions f1, f2, . . .

according the following standard construction. For each k, let Pk be the kth level
dyadic partition of [0,1)2, that is, the partition of the unit square into sets of the
form [(i − 1)/2k, i/2k) × [(j − 1)/2k, j/2k). Let fk be the function that is equal
to the average value of f within each square of the partition Pk . If Fk denotes
the sigma-algebra of sets generated by the partition Pk , then the sequence fk is
a martingale with respect to the filtration Fk . Moreover, fk = E(f |Fk). Finally,
observe that the sequence fk is uniformly bounded in L2. Combining all these
observations, it is evident that fk → f in L2.

Now fix some ε > 0 and an integer n. Take a large enough k = k(ε) such that
‖f − fk‖L2 ≤ ε. Let N be the n × n matrix whose (i, j)th element is fk(Ui,Uj ).
Then

E‖M − N‖2
F =

n∑
i,j=1

E
(
f (Ui,Uj ) − fk(Ui,Uj )

)2

≤ n + n2E
(
f (U1,U2) − fk(U1,U2)

)2(34)

= n + n2‖f − fk‖2
L2 ≤ n + n2ε2.

Now note that if Ui and Uj belong to the same dyadic interval [r/2k, (r + 1)/2k),
then the ith and j th rows of N are identical. Hence, N has at most 2k distinct rows,
and therefore has rank ≤ 2k . Therefore, by (2),

‖N‖∗ ≤ 2k/2‖N‖F ≤ 2k/2n.

Consequently, by the inequality (2),

‖M‖∗ ≤ ‖M − N‖∗ + ‖N‖∗
(35)

≤ √
n‖M − N‖F + 2k/2n.

Combining (34) and (35) gives

E‖M‖∗ ≤ (
2k/2 + 1

)
n + n3/2ε.

Choosing a sequence εn going to zero so slowly that 2k(εn)/2 = o(n−1/2), we can
now apply Theorem 1.1 to complete the proof.

3.13. Proof of Theorem 2.11 (Bradley–Terry models). Throughout the proof
C will denote any constant that depends only on η, whose value may change from
line to line.

Recall that the definition of the skew-symmetric model stipulates that X −M is
skew-symmetric, which is true for the nonparametric Bradley–Terry model. There
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is nothing to prove if p < n−2/3, so assume that p ≥ n−2/3. This allows us to drop
the exponential term in Theorem 1.1 and conclude that

MSE(M̂) ≤ C‖M‖∗
n3/2√p

.(36)

Let k be an integer less than n, to determined later. For each i, let

ti :=
n∑

j=1

pij .

Note that each ti belongs to the interval [0, n]. For l = 1, . . . , k, let Tl be the set of
all i such that ti ∈ [n(l − 1)/k, nl/k). Additionally, if ti = n, put i in Tk .

For each l, let r(l) be a distinguished element of Tl . For each 1 ≤ i, j ≤ n, if
i ∈ Tl and j ∈ Tm, let nij := pr(l)j . Let N be the matrix whose (i, j)th element
is nij . Note that if i, i ′ ∈ Tl for some l, then nij = ni′j for all j . In particular, N

has at most k distinct rows and therefore has rank ≤ k. Thus, by inequality (2),

‖N‖∗ ≤ √
k‖N‖F ≤ n

√
k.(37)

Now take any 1 ≤ i ≤ n. Suppose that i ∈ Tl . Let i ′ = r(l). Suppose that team i ′ is
weaker than team i. Then pi′j ≤ pij for all j 
= i, i′. Thus,

n∑
j=1

(pij − nij )
2 =

n∑
j=1

(pij − pi′j )
2 ≤

n∑
j=1

|pij − pi′j |

= ∑
j 
=i,i′

(pij − pi′j ) + pii′ + pi′i(38)

≤ ti − ti′ + 2 ≤ n

k
+ 2 ≤ 3n

k
.

Similarly, if team i′ is stronger than team i,

n∑
j=1

(pij − nij )
2 ≤ ti′ − ti + 2 ≤ 3n

k
.(39)

By (37), (38), (39) and (2) we have

‖M‖∗ ≤ ‖M − N‖∗ + ‖N‖∗
≤ √

n‖M − N‖F + n
√

k

≤ 3n3/2
√

k
+ n

√
k.

Choosing k = [n1/2], we get ‖M‖∗ ≤ Cn5/4. Combined with (36), this proves the
claim.
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