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ESTIMATING AND UNDERSTANDING EXPONENTIAL RANDOM
GRAPH MODELS

BY SOURAV CHATTERJEE1 AND PERSI DIACONIS2

Stanford University

We introduce a method for the theoretical analysis of exponential ran-
dom graph models. The method is based on a large-deviations approximation
to the normalizing constant shown to be consistent using theory developed
by Chatterjee and Varadhan [European J. Combin. 32 (2011) 1000–1017].
The theory explains a host of difficulties encountered by applied workers:
many distinct models have essentially the same MLE, rendering the problems
“practically” ill-posed. We give the first rigorous proofs of “degeneracy” ob-
served in these models. Here, almost all graphs have essentially no edges or
are essentially complete. We supplement recent work of Bhamidi, Bresler and
Sly [2008 IEEE 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS) (2008) 803–812 IEEE] showing that for many models, the
extra sufficient statistics are useless: most realizations look like the results of
a simple Erdős–Rényi model. We also find classes of models where the lim-
iting graphs differ from Erdős–Rényi graphs. A limitation of our approach,
inherited from the limitation of graph limit theory, is that it works only for
dense graphs.

1. Introduction. Graph and network data are increasingly common and a host
of statistical methods have emerged in recent years. Entry to this large literature
may be had from the research papers and surveys in Fienberg [21, 22]. One main-
stay of the emerging theory are the exponential families

pβ(G) = exp

(
k∑

i=1

βiTi(G) − ψ(β)

)
,(1.1)

where β = (β1, . . . , βk) is a vector of real parameters, T1, T2, . . . , Tk are functions
on the space of graphs (e.g., the number of edges, triangles, stars, cycles, . . .), and
ψ is the normalizing constant. In this paper, T1 is usually taken to be the number
of edges (or a constant multiple of it).

We review the literature of these models in Section 2.1. Estimating the param-
eters in these models has proved to be a challenging task. First, the normalizing
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constant ψ(β) is unknown. Second, very different values of β can give rise to
essentially the same distribution on graphs.

Here is an example: consider the model on simple graphs with n vertices,

pβ1,β2(G) = exp
(

2β1E + 6β2

n
� − n2ψn(β1, β2)

)
,(1.2)

where E, � denote the number of edges and triangles in the graph G. The normal-
ization of the model ensures nontrivial large n limits. Without scaling, for large n,
almost all graphs are empty or full. This model is studied by Strauss [54], Park and
Newman [45, 46], Häggstrom and Jonasson [30], and many others.

Theorems 3.1 and 4.1 will show that for n large and nonnegative β2,

ψn(β1, β2) � sup
0≤u≤1

(
β1u + β2u

3 − 1

2
u logu − 1

2
(1 − u) log(1 − u)

)
.(1.3)

The maximizing value of the right-hand side is denoted u∗(β1, β2). A plot of this
function appears in Figure 1. Theorem 4.2 shows that for any β1 ∈ R and β2 > 0,
with high probability, a pick from pβ1,β2 is essentially the same as an Erdős–Rényi
graph generated by including edges independently with probability u∗(β1, β2).
This phenomenon has previously been identified by Bhamidi et al. [6] and is dis-
cussed further in Section 2.1. Figure 2 shows the contour lines for Figure 1. All
the (β1, β2) values on the same contour line lead to the same Erdős–Rényi model
in the limit.

Our development uses the emerging tools of graph limits as developed by
Lovász and coworkers. We give an overview in Section 2.2. Briefly, a sequence
of graphs Gn converges to a limit if the proportion of edges, triangles, and other
small subgraphs in Gn converges. There is a limiting object and the space of all

FIG. 1. The plot of u∗ against (β1, β2). There is a discontinuity on the left where u∗ jumps from
near 0 to near 1; this corresponds to a phase transition. (Picture by Sukhada Fadnavis.)
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FIG. 2. Contour lines for Figure 1. All pairs (β1, β2) on the same contour line correspond to the
same value of u∗ and hence those models will correspond to the same Erdős–Rényi model in the limit.
The phase transition region is seen in the upper left-hand corner where all contour lines converge.
(Picture by Sukhada Fadnavis.)

these limiting objects serves as a useful compactification of the set of all graphs.
Our theory works for functions Ti(G) which are continuous in this topology. In
their study of the large deviations of Erdős–Rényi random graphs, Chatterjee and
Varadhan [15] derived the associated rate functions in the language of graph limit
theory. Their work is crucial in the present development and is reviewed in Sec-
tion 2.3.

Our main results are in Section 3 through Section 7. These sections contain only
the statements of the theorems; all proofs are given in Section 8.

Working with general exponential models, Section 3 gives an extension of the
approximation (1.3) for ψn (Theorem 3.1) and shows that, in the limit, almost
all graphs from the model (1.1) are close to graphs where a certain functional is
maximized. As will emerge, sometimes this maximum is taken on at a unique
Erdős–Rényi model.

The main statistical motivation of this paper comes from the formula for the
limit of the normalizing constant given in Theorem 3.1, since the normalizing con-
stant is crucial for the computation of maximum likelihood estimates. At present,
the computational tools used by practitioners to compute the normalizing constants
in exponential random graph models become prohibitively time-consuming even
for moderately large n. The theory initiated in this paper hopes to circumvent this
problem by providing analytical formulas. As mentioned in the abstract, the limi-
tation of our approach is that as of now, it applies only to dense graphs.
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Incidentally, in a recent meeting at the American Institute of Mathematics,
computer-intensive calculations carried out by Mark Handcock and David Hunter
indicated that the formula given in Theorem 3.1 is actually a pretty good approxi-
mation to the exact value of the normalizing constant even for n as small as 20.

Section 4 studies the problem for the model (1.1) when β2, . . . , βk are posi-
tive (β1 may have any sign). When the Ti ’s are subgraph counts, positive βi ’s were
originally intentioned (e.g., in [24]) to “encourage” the presence of the correspond-
ing subgraphs. It is shown that the large-deviations approximation for ψn can be
easily calculated as a one-dimensional maximization (Theorem 4.1). Further, am-
plifying the results of Bhamidi et al. [6], it is shown that in these cases, almost all
realizations of the model (1.1) are close to an Erdős–Rényi graph (or perhaps a fi-
nite mixture of Erdős–Rényi graphs) (Theorem 4.2). These mixture cases actually
occur for natural parameter values. Section 5 also gives a careful account of the
phase transitions and near-degeneracies observed in the edge-triangle model (1.3).

Sections 6 and 7 investigate cases where βi is allowed to be negative. While the
general case remains open (and appears complicated), in Section 6 it is shown that
Theorems 4.1 and 4.2 hold as stated if (βi)2≤i≤k are sufficiently small in magni-
tude. This requires a careful study of associated Euler–Lagrange equations. Sec-
tion 7 shows how the results change for the model containing edges and triangles
when β2 is negative. For sufficiently large negative β2, typical realizations look
like a random bipartite graph (where “random” means that the two parts, of equal
size, are chosen uniformly at random from all possible choices). This is very dif-
ferent from the Erdős–Rényi model. The result generalizes to other models via an
interesting analogy with the Erdős–Stone theorem from extremal graph theory.

A longer version of this paper with more pictures and additional results is avail-
able as “version 3” on arXiv (http://arxiv.org/pdf/1102.2650v3.pdf).

2. Background. This section gives needed background and notation in three
areas. Exponential graph models (Section 2.1), graph limits (Section 2.2), and large
deviations (Section 2.3).

2.1. Exponential random graphs. Let Gn be the space of all simple graphs on
n labeled vertices (“simple” means undirected, with no loops or multiple edges).
Thus, Gn contains 2(n

2) elements. A variety of models in active use can be presented
in exponential form

pβ(G) = exp

(
k∑

i=1

βiTi(G) − ψ(β)

)
,(2.1)

where β = (β1, . . . , βk) is a vector of real parameters, T1, T2, . . . , Tk are real-
valued functions on Gn, and ψ(β) is a normalizing constant. Usually, Ti are taken
to be counts of various subgraphs, for example, T1(G) = # edges in G, T2(G) = #

http://arxiv.org/pdf/1102.2650v3.pdf
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triangles in G, . . . . The main results of Section 3 work for more general “contin-
uous functions” on graph space, such as the degree sequence or the eigenvalues
of the adjacency matrix. This allows models with sufficient statistics of the form∑n

i=1 βidi(G) with di(G) the degree of vertex i. See, for example, [14].
These exponential models were used by Holland and Leinhardt [32] in the di-

rected case. Frank and Strauss [24] developed them, showing that if Ti are cho-
sen as edges, triangles, and stars of various sizes, the resulting random graph
edges form a Markov random field. A general development is in Wasserman and
Faust [57]. Newer developments, consisting mainly of new sufficient statistics and
new ranges for parameters that give interesting and practically relevant structures,
are summarized in Snijders et al. [53]. Finally, Rinaldo et al. [49] develop the ge-
ometric theory for this class of models with extensive further references.

A major problem in this field is the evaluation of the constant ψ(β) which is
crucial for carrying out maximum likelihood and Bayesian inference. As far as
we know, there is no feasible analytic method for approximating ψ when n is
large. Physicists have tried the technique of mean-field approximations; see Park
and Newman [45, 46] for the case where T1 is the number of edges and T2 is the
number of two-stars or the number of triangles. Mean-field approximations have
no rigorous foundation, however, and are known to be unreliable in related models
such as spin glasses [55]. For exponential graph models, Chatterjee and Dey [13]
prove that they work for some restricted ranges of {βi}: values where the graphs
are shown to be essentially Erdős–Rényi graphs (see Theorem 4.2 below and [6]).

A host of techniques for approximating the normalizing constant using vari-
ous Monte Carlo schemes have been proposed. These include the MCMLE pro-
cedure of Geyer and Thompson [29]. The bridge sampling approach of Gelman
and Meng [28] also builds on techniques suggested by physicists to estimate free
energy [ψ(β) in our context]. The equi-energy sampler of Kou et al. [36] can also
be harnessed to estimate ψ .

Alas, at present writing these procedures seem useful only for relatively small
graphs. For bigger graphs, the run-time of the Monte Carlo algorithms become
unpleasantly long. Snijders [52] and Handcock [31] demonstrate this empirically
with further discussion in [53]. One theoretical explanation for the poor perfor-
mance of these techniques comes from the work of Bhamidi et al. [6]. Most of the
algorithms above require a sample from the model (2.1). This is most often done
by using a local Markov chain based on adding or deleting edges via Metropolis
or Glauber dynamics (Gibbs sampling). These authors show that if the parameters
are nonnegative, then for large n,

• either the pβ model is essentially the same as an Erdős–Rényi model (in which
case the Markov chain mixes in n2 logn steps);

• or the Markov chain takes exponential time to mix.

Thus, in cases where the model is not essentially trivial, the Markov chains re-
quired to carry MCMLE procedures cannot be usefully run to stationarity.
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Two other approaches to estimation are worth mentioning. The pseudo-
likelihood approach of Besag [5] is widely used because of its ease of implemen-
tation. Its properties are at best poorly understood: it does not directly maximize
the likelihood and in empirical comparisions (see, e.g., [17]), has appreciably
larger variability than the MLE. Comets and Janžura [16] prove consistency and
asymptotic normality of the maximum pseudo-likelihood estimator in certain
Markov random field models. Chatterjee [12] shows that it is consistent for es-
timating the temperature parameter of the Sherrington–Kirkpatrick model of spin
glasses. The second approach is Snijders’ [52] suggestion to use the Robbins–
Monro optimization procedure [50] to compute solutions to the moment equations
Eβ(T (G)) = T (G∗) where G∗ is the observed graph. While promising, the ap-
proach requires generating points from pβ for arbitrary β . The only way to do this
at present is by MCMC and the results of [6] suggest this may be impractical.

2.2. Graph limits. In a sequence of papers [9–11, 25, 37–43], Laszlo Lovász
and coauthors V. T. Sós, B. Szegedy, C. Borgs, J. Chayes, K. Vesztergombi,
A. Schrijver, and M. Freedman have developed a beautiful, unifying theory of
graph limits. (See also the related work of Austin [3] and Diaconis and Janson [18]
which traces this back to work of Aldous [1], Hoover [33] and Kallenberg [35].)
This body of work sheds light on various graph-theoretic topics such as graph ho-
momorphisms, Szemerédi’s regularity lemma, quasi-random graphs, graph testing
and extremal graph theory, and has even found applications in statistics and related
areas (see, e.g., [14]). Their theory has been developed for dense graphs (number
of edges comparable to the square of number of vertices) but parallel theories for
sparse graphs are beginning to emerge [7].

Lovász and coauthors define the limit of a sequence of dense graphs as follows.
We quote the definition verbatim from [40] (see also [10, 11, 18]). Let Gn be a
sequence of simple graphs whose number of nodes tends to infinity. For every
fixed simple graph H , let |hom(H,G)| denote the number of homomorphisms of
H into G [i.e., edge-preserving maps V (H) → V (G), where V (H) and V (G) are
the vertex sets]. This number is normalized to get the homomorphism density

t (H,G) := |hom(H,G)|
|V (G)||V (H)| .(2.2)

This gives the probability that a random mapping V (H) → V (G) is a homomor-
phism.

Note that |hom(H,G)| is not the count of the number of copies of H in G, but is
a constant multiple of that if H is a complete graph. For example, if H is a triangle,
|hom(H,G)| is the number of triangles in G multiplied by six. On the other hand
if H is, say, a 2-star (i.e., a triangle with one edge missing) and G is a triangle,
then the number of copies of H in G is zero, while |hom(H,G)| = 33 = 27.

Suppose that the graphs Gn become more and more similar in the sense that
t (H,Gn) tends to a limit t (H) for every H . One way to define a limit of the
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sequence {Gn} is to define an appropriate limit object from which the values t (H)

can be read off.
The main result of [40] (following the earlier equivalent work of Aldous [1] and

Hoover [33]) is that indeed there is a natural “limit object” in the form of a function
h ∈ W , where W is the space of all measurable functions from [0,1]2 into [0,1]
that satisfy h(x, y) = h(y, x) for all x, y.

Conversely, every such function arises as the limit of an appropriate graph se-
quence. This limit object determines all the limits of subgraph densities: if H is a
simple graph with V (H) = [k] = {1, . . . , k}, let

t (H,h) =
∫
[0,1]k

∏
{i,j}∈E(H)

h(xi, xj ) dx1 · · ·dxk.(2.3)

Here E(H) denotes the edge set of H . A sequence of graphs {Gn}n≥1 is said to
converge to h if for every finite simple graph H ,

lim
n→∞ t (H,Gn) = t (H,h).(2.4)

Intuitively, the interval [0,1] represents a “continuum” of vertices, and h(x, y)

denotes the probability of putting an edge between x and y. For example, for the
Erdős–Rényi graph G(n,p), if p is fixed and n → ∞, then the limit graph is
represented by the function that is identically equal to p on [0,1]2. Clearly, this
framework is therefore useful only when p does not tend to zero when n → ∞,
that is, in the case of dense Erdős–Rényi graphs.

These limit objects, that is, elements of W , are called “graph limits” or
“graphons” in [10, 11, 40]. A finite simple graph G on {1, . . . , n} can also be
represented as a graph limit f G is a natural way, by defining

f G(x, y) =
{

1, if
(	nx
, 	ny
) is an edge in G,

0, otherwise.
(2.5)

The definition makes sense because t (H,f G) = t (H,G) for every simple graph
H and therefore the constant sequence {G,G, . . .} converges to the graph limit f G.
Note that this allows all simple graphs, irrespective of the number of vertices, to
be represented as elements of a single abstract space, namely W .

With the above representation, it turns out that the notion of convergence in
terms of subgraph densities outlined above can be captured by an explicit metric
on W , the so-called cut distance (originally defined for finite graphs by Frieze and
Kannan [26]). Start with the space W of measurable functions f (x, y) on [0,1]2

that satisfy 0 ≤ f (x, y) ≤ 1 and f (x, y) = f (y, x). Define the cut distance

d�(f, g) := sup
S,T ⊆[0,1]

∣∣∣∣∫
S×T

[
f (x, y) − g(x, y)

]
dx dy

∣∣∣∣.(2.6)

Introduce in W an equivalence relation: let � be the space of measure preserving
bijections σ : [0,1] → [0,1]. Say that f (x, y) ∼ g(x, y) if f (x, y) = gσ (x, y) :=
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g(σx,σy) for some σ ∈ �. Denote by g̃ the closure in (W, d�) of the orbit {gσ }.
The quotient space is denoted by W̃ and τ denotes the natural map g → g̃. Since
d� is invariant under σ one can define on W̃ , the natural distance δ� by

δ�(f̃ , g̃) := inf
σ

d�(f, gσ ) = inf
σ

d�(fσ , g) = inf
σ1,σ2

d�(fσ1, gσ2)

making (W̃, δ�) into a metric space. To any finite graph G, we associate f G as in
(2.5) and its orbit G̃ = τf G = f̃ G ∈ W̃ .

The papers by Lovász and coauthors establish many important properties of
the metric space W̃ and the associated notion of graph limits. For example, W̃
is compact. A pressing objective is to understand what functions from W̃ into
R are continuous. Fortunately, it is an easy fact that the homomorphism density
t (H, ·) is continuous for any finite simple graph H [10, 11]. There are other, more
complicated functions that are continuous. For example, the degree distribution is
continuous with respect to this topology, as is the distribution of eigenvalues. See
[3, 4] for further discussions.

2.3. Large deviations for random graphs. Let G(n,p) be the random graph
on n vertices where each edge is added independently with probability p. This
model has been the subject of extensive investigations since the pioneering work
of Erdős and Rényi [19], yielding a large body of literature (see [8, 34] for partial
surveys).

Recently, Chatterjee and Varadhan [15] formulated a large deviation principle
for the Erdős–Rényi graph, in the same way as Sanov’s theorem [51] gives a large
deviation principle for an i.i.d. sample. The formulation and proof of this result
makes extensive use of the properties of the topology described in Section 2.2.

Let Ip : [0,1] → R be the function

Ip(u) := 1

2
u log

u

p
+ 1

2
(1 − u) log

1 − u

1 − p
.(2.7)

The domain of the function Ip can be extended to W as

Ip(h) :=
∫ 1

0

∫ 1

0
Ip

(
h(x, y)

)
dx dy.(2.8)

The function Ip can be defined on W̃ by declaring Ip(h̃) := Ip(h) where h is
any representative element of the equivalence class h̃. Of course, this raises the
question whether Ip is well defined on W̃ . It was proved in [15] that the function Ip

is indeed well defined on W̃ and is lower semicontinuous under the cut metric δ�.
The random graph G(n,p) induces probability distributions Pn,p on the space

W through the map G → f G and P̃n,p on W̃ through the map G → f G → f̃ G =
G̃. The large deviation principle for P̃n,p on (W̃, δ�) is the main result of [15].
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THEOREM 2.1 (Chatterjee and Varadhan [15]). For each fixed p ∈ (0,1), the
sequence P̃n,p obeys a large deviation principle in the space W̃ (equipped with
the cut metric) with rate function Ip defined by (2.8). Explicitly, this means that for
any closed set F̃ ⊆ W̃ ,

lim sup
n→∞

1

n2 log P̃n,p(F̃ ) ≤ − inf
h̃∈F̃

Ip(h̃)(2.9)

and for any open set Ũ ⊆ W̃ ,

lim inf
n→∞

1

n2 log P̃n,p(Ũ) ≥ − inf
h̃∈Ũ

Ip(h̃).(2.10)

3. The main result. Let T : W̃ → R be a bounded continuous function on
the metric space (W̃, δ�). Fix n and let Gn denote the set of simple graphs on n

vertices. Then T induces a probability mass function pn on Gn defined as

pn(G) := en2(T (G̃)−ψn).

Here G̃ is the image of G in the quotient space W̃ as defined in Section 2.2 and
ψn is a constant such that the total mass of pn is 1. Explicitly,

ψn = 1

n2 log
∑

G∈Gn

en2T (G̃).(3.1)

The coefficient n2 is meant to ensure that ψn tends to a nontrivial limit as n → ∞.
(Note that T does not vary with n.) To describe this limit, define a function
I : [0,1] → R as

I (u) := 1
2u logu + 1

2(1 − u) log(1 − u)

and extend I to W̃ in the usual manner:

I (h̃) =
∫ ∫

[0,1]2
I
(
h(x, y)

)
dx dy,(3.2)

where h is a representative element of the equivalence class h̃. As mentioned
before, it follows from a result of [15] that I is well defined and lower semi-
continuous on W̃ . The following theorem is the first main result of this paper.

THEOREM 3.1. If T : W̃ → R is a bounded continuous function and ψn and
I are defined as above, then

ψ := lim
n→∞ψn = sup

h̃∈W̃

(
T (h̃) − I (h̃)

)
.
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We will see later that the supremum on the right-hand side is actually a maxi-
mum, that is, there is some h̃ where the supremum is attained. This is significant
because such maximizing h̃’s describe the structure of the random graph in the
large n limit.

As mentioned in the Introduction, evaluation of the normalizing constant is one
of the key problems in statistical applications of exponential random graphs. In-
cidentally, even the existence of the limit in Theorem 3.1 has an important con-
sequence. Suppose that a computer program can evaluate the exact value of the
normalizing constant for moderate sized n. Then if n is large, one can choose a
“scaled down” model with a smaller number of nodes, and use the exact value
of the normalizing constant in the scaled down model as an approximation to the
normalizing constant in the larger model.

Theorem 3.1 gives an asymptotic formula for ψn. However, it says nothing
about the behavior of a random graph drawn from the exponential random graph
model. Some aspects of this behavior can be described as follows. Let F̃ ∗ be the
subset of W̃ where T (h̃) − I (h̃) is maximized. By the compactness of W̃ , the
continuity of T and the lower semi-continuity of I , F̃ ∗ is a nonempty compact set.
Let Gn be a random graph on n vertices drawn from the exponential random graph
model defined by T . The following theorem shows that for n large, G̃n must lie
close to F̃ ∗ with high probability. In particular, if F̃ ∗ is a singleton set, then the
theorem gives a weak law of large numbers for Gn.

THEOREM 3.2. Let F̃ ∗ and Gn be defined as in the above paragraph. Let P

denote the probability measure on the underlying probability space on which Gn

is defined. Then for any η > 0 there exist C,γ > 0 such that for any n,

P
(
δ�

(
G̃n, F̃

∗)
> η

) ≤ Ce−n2γ .

4. An application. Let H1, . . . ,Hk be finite simple graphs, where H1 is the
complete graph on two vertices (i.e., just a single edge), and each Hi contains at
least one edge. Let β1, . . . , βk be k real numbers. For any h ∈ W , let

T (h) :=
k∑

i=1

βit (Hi, h),(4.1)

where t (Hi, h) is the homomorphism density of Hi in h, defined in (2.3). Note that
there is nothing special about taking H1 to be a single edge; if we do not want H1
in our sufficient statistic, we just take β1 = 0; all theorems would remain valid.

As remarked in Section 2.2, T is continuous with respect to the cut distance
on W , and hence admits a natural definition on W̃ . Note that for any finite simple
graph G that has at least as many nodes as the largest of the Hi ’s,

T (G̃) =
k∑

i=1

βit (Hi,G).
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For example, if k = 2, and H2 is a triangle, and G has at least 3 nodes, then

T (G̃) = 2β1(#edges in G)

n2 + 6β2(#triangles in G)

n3 .

Let ψn be as in (3.1), and let Gn be the n-vertex exponential random graph with
sufficient statistic T . Theorem 3.1 gives a formula for limn→∞ ψn as the solution
of a variational problem. Surprisingly the variational problem is explicitly solvable
if β2, . . . , βk are nonnegative.

THEOREM 4.1. Let T , ψn and H1, . . . ,Hk be as above. Suppose β2, . . . , βk

are nonnegative. Then

lim
n→∞ψn = sup

0≤u≤1

(
k∑

i=1

βiu
e(Hi) − I (u)

)
,(4.2)

where I (u) = 1
2u logu + 1

2(1 − u) log(1 − u) and e(Hi) is the number of edges
in Hi . Moreover, each solution of the variational problem of Theorem 3.1 for this
T is a constant function, where the constant solves the scalar maximization prob-
lem (4.2).

Theorem 4.1 gives the limiting value of ψn if β2, . . . , βk are nonnegative. The
next theorem describes the behavior of the exponential random graph Gn under
this condition if n is large.

THEOREM 4.2. For each n, let Gn be an n-vertex exponential random graph
with sufficient statistic T defined in (4.1). Assume that β2, . . . , βk are nonnegative.
Then:

(a) If the maximization problem in (4.2) is solved at a unique value u∗, then Gn

is indistinguishable from the Erdős–Rényi graph G(n,u∗) in the large n limit, in
the sense that G̃n converges to the constant function u∗ in probability as n → ∞.

(b) Even if the maximizer is not unique, the set U of maximizers is a finite subset
of [0,1] and

min
u∈U

δ�(G̃n, ũ) → 0 in probability as n → ∞,

where ũ denotes the image of the constant function u in W̃ . In other words, Gn

behaves like an Erdős–Rényi graph G(n,u) where u is picked randomly from some
probability distribution on U .

It may be noted here that the conclusion of Theorem 4.2 was proved earlier by
Bhamidi et al. [6] under certain restrictions on the parameters that they called a
“high temperature condition.” This is in analogy with spin systems, since random
graphs may be interpreted as systems of particles (corresponding to edges) each
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having spin 0 or 1 (i.e., closed or open). With this interpretation, it is straight-
forward to check that when β2, . . . , βk are nonnegative, the model defined above
satisfies the so-called FKG property [23]. Stated simply, the FKG property means
that if f and g are monotone functions of the random graph (i.e., functions whose
values cannot decrease if more edges are added to the graph), then f and g are
positively correlated random variables. The FKG property has important conse-
quences; for instance, it implies that the expected value of t (Hi,G) is an increas-
ing function of βj for any i and j . We will see some further consequences of the
FKG property in our proof of Theorem 5.1 in the next section.

5. Phase transitions and near-degeneracy. To illustrate the results of the
previous section, recall the exponential random graph model (1.2) with edges and
triangles as sufficient statistics:

T (G̃) = 2β1
#edges in G

n2 + 6β2
#triangles in G

n3
(5.1)

= β1t (H1,G) + β2t (H2,G),

where H1 is a single edge and H2 is a triangle. Fix β1 and β2 and let

�(u) := β1u + β2u
3 − I (u),(5.2)

where I (u) = 1
2u logu + 1

2(1 − u) log(1 − u), as usual. Let U be the set of max-
imizers of �(u) in [0,1]. Theorem 4.2 describes the limiting behavior of Gn in
terms of the set U . In particular, if U consists of a single point u∗ = u∗(β1, β2),
then Gn behaves like the Erdős–Rényi graph G(n,u∗) when n is large.

It is likely that u∗(β1, β2) does not have a closed form expression, other than
when β2 = 0, in which case

u∗(β1,0) = e2β1

1 + e2β1
.

It is, however, quite easy to numerically approximate u∗(β1, β2). Figure 3 plots
u∗(β1, β2) versus β2 for four different fixed values of β1, namely, β1 = 0.2,
−0.35,−0.45, and −0.8. The figures show that u∗ is a continuous function of
β2 as long as β1 is not too far down the negative axis.

But for β1 below a threshold (e.g., when β1 = −0.45), u∗ shows a single jump
discontinuity in β2, signifying a phase transition. In physical terms, this is a first
order phase transition, by the following logic. By Theorem 4.2, our random graph
behaves like G(n,u∗) when n is large. On the other hand, by a standard computa-
tion the expect number of triangles is the first derivative of the free energy ψn with
respect to β2. Therefore in the large n limit, a discontinuity in u∗ as a function of
β2 signifies a discontinuity in the derivative of the limiting free energy, which is
the physical definition of a first order phase transition.

At the point of discontinuity, �(u) is maximized at two values of u, that is, the set
U consists of two points. Lastly, as β1 goes down the negative axis, the model starts



2440 S. CHATTERJEE AND P. DIACONIS

FIG. 3. Plot of u∗(β1, β2) on y-axis vs β2 on x-axis for different fixed values of β1. Part (c)
demonstrates a phase transition. Part (d) demonstrates near-degeneracy.

to exhibit “near-degeneracy” in the sense of Handcock [31] (see also [45]) as seen
in the last frame of Figure 3. This means that when β1 is a large negative number,
then as β2 varies, the model transitions from being a very sparse graph for low
values of β2, to a very dense graph for large values of β2, completely skipping all
intermediate structures. If this sentence is confusing, please see Theorem 5.1 below
for a precise statement. This theorem gives a simple mathematical description of
this phenomenon and hence the first rigorous proof of the degeneracy observed in
exponential graph models. Related results are in Häggstrom and Jonasson [30].

THEOREM 5.1. Let Gn be an exponential random graph with sufficient statis-
tic T defined in (5.1) and let P be the probability measure on the underlying prob-
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ability space on which Gn is defined. Fix any β1 < 0. Let

c1 := eβ1

1 + eβ1
, c2 := 1 + 1

2β1
.

Suppose |β1| is so large that c1 < c2. Let e(Gn) be the number of edges in Gn and
let f (Gn) := e(Gn)/

(n
2

)
be the edge density. [Note that f (Gn) = n

n−1 t (H1,Gn),
where H1 is a single edge.]

Then there exists q = q(β1) ∈ [0,∞) such that if −∞ < β2 < q , then

lim
n→∞ P

(
f (Gn) > c1

) = 0,

and if β2 > q , then

lim
n→∞P

(
f (Gn) < c2

) = 0.

In other words, if β1 is a large negative number, then Gn is either sparse (if β2 < q)
or nearly complete (if β2 > q).

The difference in the values of c1 and c2 can be quite striking even for relatively
small values of β1. For example, β1 = −5 gives c1 � 0.007 and c2 = 0.9. Signifi-
cant extensions of Theorem 5.1 have been made in the recent manuscripts [2, 47,
48, 58].

6. The symmetric phase, symmetry breaking, and the Euler–Lagrange
equations. The purpose of this section is to extend the analysis of the model
from Section 4 beyond the case of nonnegative parameters. We begin with a stan-
dard approach to solving variational problems.

6.1. Euler–Lagrange equations. We return to the exponential random graph
model with sufficient statistic T defined in (4.1) in terms of the densities of k fixed
graphs H1, . . . ,Hk , where H1 is a single edge. Theorems 4.1 and 4.2 analyze this
model when β2, . . . , βk are nonnegative. What if they are not? One can still try to
derive the Euler–Lagrange equations (or Euler’s equation; see [27]) for the related
variational problem of maximizing T (h̃) − I (h̃). The following theorem presents
the outcome of this effort.

For a finite simple graph H , let V (H) and E(H) denote the sets of vertices
and edges of H . Given a symmetric measurable function h : [0,1]2 → R, for each
(r, s) ∈ E(H) and each pair of points xr, xs ∈ [0,1], define

�H,r,sh(xr , xs) :=
∫
[0,1]|V (H)\{r,s}|

∏
(r ′,s′)∈E(H)

(r ′,s′) �=(r,s)

h(xr ′, xs′)
∏

v∈V (H)

v �=r,s

dxv.

For x, y ∈ [0,1] define

�Hh(x, y) := ∑
(r,s)∈E(H)

�H,r,sh(x, y).(6.1)
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For example, when H is a triangle, then V (H) = {1,2,3} and

�H,1,2h(x, y) = �H,1,3h(x, y) = �H,2,3h(x, y) =
∫ 1

0
h(x, z)h(y, z) dz

and therefore �Hh(x, y) = 3
∫ 1

0 h(x, z)h(y, z) dz. When H contains exactly one
edge, define �Hh ≡ 1 for any h, by the usual convention that the empty product
is 1. The following theorem gives the Euler–Lagrange equations for the optimizer
h of Theorem 3.1 in terms of these �Hh’s.

THEOREM 6.1. Let T : W̃ → R be defined as in (4.1) and the operator �H

be defined as in (6.1). If h̃ ∈ W̃ maximizes T (h̃) − I (h̃), then any representative
element h ∈ h̃ must satisfy for almost all (x, y) ∈ [0,1]2,

h(x, y) = e2
∑k

i=1 βi�Hi
h(x,y)

1 + e2
∑k

i=1 βi�Hi
h(x,y)

.

Moreover, any maximizing function must be bounded away from 0 and 1.

Unfortunately, these equations may have many solutions and therefore do not
uniquely identify the optimizer. The next subsection gives a sufficient condition
under which the solution in unique.

6.2. The replica symmetric phase. Borrowing terminology from spin glasses,
we define the replica symmetric phase or simply the symmetric phase of a vari-
ational problem like maximizing T (h) − I (h) as the set of parameter values for
which all the maximizers are constant functions. When the parameters are such
that all maximizers are nonconstant functions we say that the parameter vector is
in the region of broken replica symmetry, or simply broken symmetry. There may
be another situation, where some optimizers are constant while others are noncon-
stant, although we do not know of such examples. (This third region may be called
a region of partial symmetry.)

Statistically, the exponential random graph behaves like an Erdős–Rényi graph
in the symmetric region of the parameter space, while such behavior breaks down
in the region of broken symmetry. This follows easily from Theorem 3.2.

Theorem 4.2 shows that for the sufficient statistic T defined in (4.1), each
(β1, β2, . . . , βk) in R×R

k−1+ falls in the replica symmetric region. Does symmetry
hold only when β2, . . . , βk are nonnegative? The following theorem (proven with
the aid of the Euler–Lagrange equations of Theorem 6.1), shows that this is not
the case; (β1, . . . , βk) is in the replica symmetric region whenever |β2|, . . . , |βk|
are small enough. Of course, this does not supersede Theorem 4.2 since it does not
cover large positive values of β2, . . . , βk . However, it proves replica symmetry for
small negative values of β2, . . . , βk , which is not covered by Theorem 4.2.



EXPONENTIAL RANDOM GRAPH MODELS 2443

THEOREM 6.2. Consider the exponential random graph with sufficient statis-
tic T defined in (4.1). Suppose β1, . . . , βk are such that

k∑
i=2

|βi |e(Hi)
(
e(Hi) − 1

)
< 2,

where e(Hi) is the number of edges in Hi . Then the conclusions of Theorems 4.1
and 4.2 hold true for this value of the parameter vector (β1, . . . , βk).

6.3. Symmetry breaking. Theorems 4.2 and 6.2 establish various regions of
symmetry in the exponential random graph model with sufficient statistic T de-
fined in (4.1). That leaves the question: is there a region where symmetry breaks?
We specialize to the simple case where k = 2 and H2 is a triangle, that is, the ex-
ample of Section 5. In this case, it turns out that replica symmetry breaks whenever
β2 is less than a sufficiently large negative number depending on β1.

THEOREM 6.3. Consider the exponential random graph with sufficient statis-
tic T defined in (5.1). Then for any given value of β1, there is a positive constant
C(β1) sufficiently large so that whenever β2 < −C(β1), T (h) − I (h) is not max-
imized at any constant function. Consequently, if Gn is an n-vertex exponential
random graph with this sufficient statistic, then there exists ε > 0 such that

lim
n→∞ P

(
δ�(G̃n, C̃) > ε

) = 1,

where C̃ is the set of constant functions. In other words, Gn does not look like an
Erdős–Rényi graph in the large n limit.

For interesting recent developments about symmetry breaking in exponential
random graph models, see Lubetzky and Zhao [44].

6.4. A completely solvable case. A j -star is an undirected graph with one
“root” vertex and j other vertices connected to the root vertex, with no edges
between any of these j vertices. Let Hj be a j -star for j = 1, . . . , k. Let T be the
sufficient statistic

T (G) =
k∑

j=1

βj t (Hj ,G).(6.2)

Theorems 4.1 and 4.2 describe the behavior of this model when β2, . . . , βk are all
nonnegative. The following theorem completely solves this model for all values of
β2, . . . , βk . The proof of this theorem was suggested by the anonymous referee,
improving upon the version of the result given in an earlier draft.

THEOREM 6.4. For the sufficient statistic T defined in (6.2), the conclusions
of Theorems 4.1 and 4.2 hold for any β1, . . . , βk ∈ R.
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7. Extremal behavior. In the sections above, we have been assuming that
β2, . . . , βk are positive or barely negative. In this section, we investigate what hap-
pens when k = 2 and β2 is large and negative. The limits are describable but far
from Erdős–Rényi. Our work here is inspired by related results of Sukhada Fad-
vanis who has a different argument (using Turán’s theorem [56]) for the case of
triangles.

Suppose H is any finite simple graph containing at least one edge. Let T be the
sufficient statistic

T (G̃) = 2β1
#edges in G

n2 + β2t (H,G).

Let Gn be the exponential random graph on n vertices with this sufficient statis-
tic and let ψn be the associated normalizing constant as defined in (3.1). Then
Theorem 3.1 gives

lim
n→∞ψn = sup

h∈W

(
T (h) − I (h)

) =: ψ,

where I is defined in (3.2). We also know (by Theorem 3.2) that

δ�
(
G̃n, F̃

∗) → 0 in probability as n → ∞,

where F̃ ∗ is the subset of W̃ where T − I is maximized. (Note that F̃ ∗ is a closed
set since T − I is an upper semicontinuous map.)

We can compute F̃ ∗ and ψ when β2 is positive, or negative with small mag-
nitude. We are unable to carry out the explicit computation in the case of large
negative β2, unless H is a convenient object like a j -star. However, a qualitative
description can still be given by analyzing the behavior of F̃ ∗ and ψ as β2 → −∞.
Fixing β1, we consider these objects as functions of β2 and write F̃ ∗(β2), ψ(β2)

and Tβ2 instead of F̃ ∗, ψ and T . Recall that the chromatic number of a graph is the
minimum number of colors required to color the edges so that no two neighbors
get the same color.

THEOREM 7.1. Fixing H and β1, let F̃ ∗(β2) and ψ(β2) be as above. Let
χ(H) be the chromatic number of H , and define

g(x, y) :=
{

1, if
[(

χ(H) − 1
)
x
] �= [(

χ(H) − 1
)
y
]
,

0, otherwise,
(7.1)

where [x] denotes the integer part of a real number x. Let p = e2β1/(1 + e2β1).
Then

lim
β2→−∞ sup

f̃ ∈F̃ ∗(β2)

δ�(f̃ ,pg̃) = 0

and

lim
β2→−∞ψ(β2) = (χ(H) − 2)

2(χ(H) − 1)
log

1

1 − p
.
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FIG. 4. A simulated realization of the exponential random graph model on 20 nodes with edges
and triangles as sufficient statistics, where β1 = 120 and β2 = −400. (Picture by Sukhada Fadnavis.
Gibbs sampling used in simulations. We are unsure about the convergence of the MCMC algorithm
used to generate these grapgs, but the structure of the simulated graphs match the predictions of
Theorem 7.1.)

Intuitively, the above result means that if β2 is a large negative number and n

is large, then an exponential random graph Gn with sufficient statistic T looks
roughly like a complete (χ(H)−1)-equipartite graph with 1−p fraction of edges
randomly deleted, where p = e2β1/(1 + e2β1). In particular, if H is bipartite, then
Gn must be very sparse, since a 1-equipartite graph has no edges. Figure 4 gives a
simulation result for the triangle model with large negative β2.

Theorem 7.1 is closely related to the Erdős–Stone theorem [20] from extremal
graph theory (or equivalently, Turán’s theorem in the case of triangles as in the
work of Fadnavis). Indeed, it may be possible to prove some parts of our theorem
using the Erdős–Stone theorem, but we prefer a bare-hands argument given in
Section 8. Due to this connection with extremal graph theory, we refer to behavior
of the graph in the “large negative β2” domain as extremal behavior.

8. Proofs.

PROOF OF THEOREM 3.1. For each Borel set Ã ⊆ W̃ and each n, define

Ãn := {h̃ ∈ Ã : h̃ = G̃ for some G ∈ Gn}.
Let Pn,p be the Erdős–Rényi measure defined in Section 2.3. Note that Ãn is a
finite set and

|Ãn| = 2n(n−1)/2
Pn,1/2(Ãn) = 2n(n−1)/2

Pn,1/2(Ã).

Thus, if F̃ is a closed subset of W̃ then by Theorem 2.1

lim sup
n→∞

log |F̃n|
n2 ≤ log 2

2
− inf

h̃∈F̃
I1/2(h̃)

(8.1)
= − inf

h̃∈F̃
I (h̃).
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Similarly if Ũ is an open subset of W̃ ,

lim inf
n→∞

log |Ũn|
n2 ≥ − inf

h̃∈Ũ
I (h̃).(8.2)

Fix ε > 0. Since T is a bounded function, there is a finite set R such that the
intervals {(a, a + ε) :a ∈ R} cover the range of T . For each a ∈ R, let F̃ a :=
T −1([a, a + ε]). By the continuity of T , each F̃ a is closed. Now,

en2ψn ≤ ∑
a∈R

en2(a+ε)
∣∣F̃ a

n

∣∣ ≤ |R| sup
a∈R

en2(a+ε)
∣∣F̃ a

n

∣∣.
By (8.1), this shows that

lim sup
n→∞

ψn ≤ sup
a∈R

(
a + ε − inf

h̃∈F̃ a
I (h̃)

)
.

Each h̃ ∈ F̃ a satisfies T (h̃) ≥ a. Consequently,

sup
h̃∈F̃ a

(
T (h̃) − I (h̃)

) ≥ sup
h̃∈F̃ a

(
a − I (h̃)

) = a − inf
h̃∈F̃ a

I (h̃).

Substituting this in the earlier display gives

lim sup
n→∞

ψn ≤ ε + sup
a∈R

sup
h̃∈F̃ a

(
T (h̃) − I (h̃)

)
(8.3)

= ε + sup
h̃∈W̃

(
T (h̃) − I (h̃)

)
.

For each a ∈ R, let Ũa := T −1((a, a + ε)). By the continuity of T , Ũa is an open
set. Note that

en2ψn ≥ sup
a∈R

en2a
∣∣Ũa

n

∣∣.
Therefore by (8.2), for each a ∈ R

lim inf
n→∞ ψn ≥ a − inf

h̃∈Ũa
I (h̃).

Each h̃ ∈ Ũa satisfies T (h̃) < a + ε. Therefore,

sup
h̃∈Ũa

(
T (h̃) − I (h̃)

) ≤ sup
h̃∈Ũa

(
a + ε − I (h̃)

) = a + ε − inf
h̃∈Ũa

I (h̃).

Together with the previous display, this shows that

lim inf
n→∞ ψn ≥ −ε + sup

a∈R

sup
h̃∈Ũa

(
T (h̃) − I (h̃)

)
(8.4)

= −ε + sup
h̃∈W̃

(
T (h̃) − I (h̃)

)
.

Since ε is arbitrary in (8.3) and (8.4), this completes the proof. �
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PROOF OF THEOREM 3.2. Take any η > 0. Let

Ã := {
h̃ : δ�

(
h̃, F̃ ∗) ≥ η

}
.

It is easy to see that Ã is a closed set. By compactness of W̃ and F̃ ∗, and upper
semi-continuity of T − I , it follows that

2γ := sup
h̃∈W̃

(
T (h̃) − I (h̃)

) − sup
h̃∈Ã

(
T (h̃) − I (h̃)

)
> 0.

Choose ε = γ and define F̃ a and R as in the proof of Theorem 3.1. Let Ãa :=
Ã ∩ F̃ a . Then

P(Gn ∈ Ã) ≤ e−n2ψn
∑
a∈R

en2(a+ε)
∣∣Ãa

n

∣∣ ≤ e−n2ψn |R| sup
a∈R

en2(a+ε)
∣∣Ãa

n

∣∣.
While bounding the last term above, it can be assumed without loss of generality
that Ãa is nonempty for each a ∈ R, for the other a’s can be dropped without
upsetting the bound. By (8.1) and Theorem 3.1 (noting that Ãa is compact), the
above display gives

lim sup
n→∞

log P(Gn ∈ Ã)

n2 ≤ sup
a∈R

(
a + ε − inf

h̃∈Ãa
I (h̃)

)
− sup

h̃∈W̃

(
T (h̃) − I (h̃)

)
.

Each h̃ ∈ Ãa satisfies T (h̃) ≥ a. Consequently,

sup
h̃∈Ãa

(
T (h̃) − I (h̃)

) ≥ sup
h̃∈Ãa

(
a − I (h̃)

) = a − inf
h̃∈Ãa

I (h̃).

Substituting this in the earlier display gives

lim sup
n→∞

log P(Gn ∈ Ã)

n2 ≤ ε + sup
a∈R

sup
h̃∈Ãa

(
T (h̃) − I (h̃)

) − sup
h̃∈W̃

(
T (h̃) − I (h̃)

)
= ε + sup

h̃∈Ã

(
T (h̃) − I (h̃)

) − sup
h̃∈W̃

(
T (h̃) − I (h̃)

)
.

= ε − 2γ = −γ.

This completes the proof. �

PROOF OF THEOREM 4.1. By Theorem 3.1,

lim
n→∞ψn = sup

h∈W

(
T (h) − I (h)

)
.(8.5)

By Hölder’s inequality,

t (Hi, h) ≤
∫ ∫

[0,1]2
h(x, y)e(Hi) dx dy.
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Thus, by the nonnegativity of β2, . . . , βk ,

T (h) ≤ β1t (H1, h) +
k∑

i=2

βi

∫ ∫
[0,1]2

h(x, y)e(Hi) dx dy

=
∫ ∫

[0,1]2

k∑
i=1

βih(x, y)e(Hi) dx dy.

On the other hand, the inequality in the above display becomes an equality if h is
a constant function. Therefore, if u is a point in [0,1] that maximizes

k∑
i=1

βiu
e(Hi) − I (u),

then the constant function h(x, y) ≡ u solves the variational problem (8.5). To see
that constant functions are the only solutions, assume that there is at least one i

such that the graph Hi has at least one vertex with two or more neighbors. The
above steps show that if h is a maximizer, then for each i,

t (Hi, h) =
∫ ∫

[0,1]2
h(x, y)e(Hi) dx dy.(8.6)

In other words, equality holds in Hölder’s inequality. Suppose that Hi has vertex
set {1,2, . . . , k} and vertices 2 and 3 are both neighbors of 1 in Hi . Recall that

t (Hi, h) =
∫
[0,1]k

∏
{j,l}∈E(Hi)

h(xj , xl) dx1 · · ·dxk.

In particular, the integrand contains the product h(x1, x2)h(x1, x3). From this
and the criterion for equality in Hölder’s inequality, it follows that h(x1, x2) =
h(x1, x3) for almost every (x1, x2, x3). Using the symmetry of h one can now eas-
ily conclude that h is almost everywhere a constant function.

If the condition does not hold, then each Hi is a union of vertex-disjoint edges.
Assume that some Hi has more than one edge. Then again by (8.6) it follows that
h must be a constant function.

Finally, if each Hi is just a single edge, then the maximization problem (8.5)
can be explicitly solved and the solutions are all constant functions. �

PROOF OF THEOREM 4.2. The assertions about graph limits in this theorem
are direct consequences of Theorems 3.2 and 4.1. Since

∑k
i=1 βiu

e(Hi) is a polyno-
mial function of u and I (u) is sufficiently well-behaved, showing that U is a finite
set is a simple analytical exercise. �

PROOF OF THEOREM 5.1. Fix β1 < 0 such that c1 < c2. As a preliminary
step, let us prove that for any β2 > 0,

lim
n→∞ P

(
f (Gn) ∈ (c1, c2)

) = 0.(8.7)
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Fix β2 > 0. Let u be any maximizer of �. Then by Theorem 4.2, it suffices to prove
that either u < eβ1/(1 + eβ1) or u > 1 + 1/2β1. This is proved as follows. Define
a function g : [0,1] → R as

g(v) := �
(
v1/3)

.

Then � is maximized at u if and only if g is maximized at u3. Since � is a bounded
continuous function and �′(0) = ∞, �′(1) = −∞, � cannot be maximized at 0 or 1.
Therefore, the same is true for g. Let v be a point in (0,1) at which g is maximized.
Then g′′(v) ≤ 0. A simple computation shows that

g′′(v) = 1

9v5/3

(
−2β1 + log

v1/3

1 − v1/3 − 1

2(1 − v1/3)

)
.

Thus, g′′(v) ≤ 0 only if

log
v1/3

1 − v1/3 ≤ β1 or − 1

2(1 − v1/3)
≤ β1.

This shows that a maximizer u of � must satisfy u ≤ c1 or u ≥ c2. Now, if u = c1,
then u < c2, and therefore the above computations show that g′′(v) > 0, where
v = u3. Similarly, if u = c2 then u > c1 and again g′′(v) > 0. Thus, we have proved
that u < c1 or u > c2. By Theorem 3.2, this completes the proof of (8.7) when
β2 > 0.

Now notice that as β2 → ∞, supu≤a �(u) ∼ β2a
3 for any fixed a ≤ 1. This

shows that as β2 → ∞, any maximizer of � must eventually be larger than 1 +
1/2β1. Therefore, for sufficiently large β2,

lim
n→∞P

(
f (Gn) < c2

) = 0.(8.8)

Next consider the case β2 ≤ 0. Let F̃ ∗ be the set of maximizers of T (h̃) − I (h̃).
Take any h̃ ∈ F̃ ∗ and let h be a representative element of h̃. Let p = e2β1/(1 +
e2β1). An easy verification shows that

T (h) − I (h) = β2t (H2, h) − Ip(h) − 1
2 log(1 − p),

where Ip(h) is defined as in (2.8). Define a new function

h1(x, y) := min
{
h(x, y),p

}
.

Since the function Ip defined in (2.7) is minimized at p, it follows that for all
x, y ∈ [0,1], Ip(h1(x, y)) ≤ Ip(h(x, y)). Consequently, Ip(h1) ≤ Ip(h). Again,
since β2 ≤ 0 and h1 ≤ h everywhere, β2t (H2, h1) ≥ β2t (H2, h). Combining these
observations, we see that T (h1)− I (h1) ≥ T (h)− I (h). Since h maximizes T − I

it follows that equality must hold at every step in the above deductions, from which
it is easy to conclude that h = h1 a.e. In other words, h(x, y) ≤ p a.e. This is true
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for every h̃ ∈ F̃ ∗. Since p < c1, the above deduction coupled with Theorem 3.2
proves that when β2 ≤ 0,

lim
n→∞ P

(
f (Gn) > c1

) = 0.(8.9)

Recalling that β1 is fixed, define

an(β2) := P
(
f (Gn) > c1

)
, bn(β2) := P

(
f (Gn) < c2

)
.

Let An and Bn denote the events in brackets in the above display. A simple com-
putation shows that

a′
n(β2) = 6

n
Cov

(
1An,�(Gn)

)
and b′

n(β2) = 6

n
Cov

(
1Bn,�(Gn)

)
,

where �(Gn) is the number of triangles in Gn. As noted at the end of Section 4,
the exponential random graph model with β2 ≥ 0 satisfies the FKG criterion [23].
Therefore, the above identities show that on the nonnegative axis, an is a nonde-
creasing function and bn is a nonincreasing function.

Let q1 := sup{x ∈ R : limn→∞ an(x) = 0}. By equation (8.8), q1 < ∞ and by
equation (8.9) q1 ≥ 0. Similarly, if q2 := inf{x ∈ R : limn→∞ bn(x) = 0}, then
0 ≤ q2 < ∞. Also, clearly, q1 ≤ q2 since an + bn ≥ 1 everywhere. We claim that
q1 = q2. This would complete the proof by the monotonicity of an and bn.

To prove that q1 = q2, suppose not. Then q1 < q2. Then for any β2 ∈ (q1, q2),
lim supan(β2) > 0 and lim supbn(β2) > 0. Now,

0 ≤ an(β2) + bn(β2) − 1 = P
(
f (Gn) ∈ (c1, c2)

)
.

Therefore by (8.7),

lim
n→∞

(
an(β2) + bn(β2) − 1

) = 0.

Thus, for any β2 ∈ (q1, q2), lim sup(1 − bn(β2)) > 0. By Theorem 4.2, this im-
plies that the function � has a maximum in [c2,1]. Similarly, for any β2 ∈ (q1, q2),
lim sup(1 − an(β2)) > 0 and therefore the function � has a maximum in [0, c1].
Now fix q1 < β2 < β̃2 < q2, and let � and �̃ denote the two �-functions corre-
sponding to β2 and β̃2, respectively. That is,

�(u) = β1u + β2u
3 − I (u), �̃(u) = β1u + β̃2u

3 − I (u).

By the above argument, � attains its maximum at some point u1 ∈ [0, c1] and at
some point u2 ∈ [c2,1]. (There may be other maxima, but that is irrelevant for us.)
Note that

max
u≤c1

�̃(u) = max
u≤c1

(
�(u) + (β̃2 − β2)u

3) ≤ �(u1) + (β̃2 − β2)c
3
1.

On the other hand

max
u≥c2

�̃(u) ≥ �̃(u2) = �(u2) + (β̃2 − β2)u
3
2 ≥ �(u2) + (β̃2 − β2)c

3
2.
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Since �(u1) = �(u2), β̃2 > β2 and c2 > c1, this shows that

max
u≤c1

�̃(u) < max
u≥c2

�̃(u),

contradicting our previous deduction that �̃ has maxima in both [0, c1] and [c2,1].
This proves that q1 = q2. �

PROOF OF THEOREM 6.1. Let g be a symmetric bounded measurable func-
tion from [0,1] into R. For each u ∈ R, let

hu(x, y) := h(x, y) + ug(x, y).

Then hu is a symmetric bounded measurable function from [0,1] into R. First,
suppose that h is bounded away from 0 and 1. Then hu ∈ W for every u sufficiently
small in magnitude. Since h maximizes T (h) − I (h) among all elements of W ,
therefore under the above assumption, for all u sufficiently close to zero,

T (hu) − I (hu) ≤ T (h) − I (h).

In particular,

d

du

(
T (hu) − I (hu)

)∣∣∣∣
u=0

= 0.(8.10)

It is easy to check that T (hu) − I (hu) is differentiable in u for any h and g. In
particular, the derivative is given by

d

du

(
T (hu) − I (hu)

) =
k∑

i=1

βi

d

du
t (Hi, hu) − d

du
I (hu).

Now,
d

du
I (hu) =

∫ ∫
d

du
I
(
h(x, y) + ug(x, y)

)
dy dx

= 1

2

∫ ∫
g(x, y) log

hu(x, y)

1 − hu(x, y)
dy dx.

Consequently,

d

du
I (hu)

∣∣∣∣
u=0

= 1

2

∫ ∫
g(x, y) log

h(x, y)

1 − h(x, y)
dy dx.

Next, note that
d

du
t (Hi, hu)

=
∫
[0,1]V (H)

∑
(r,s)∈E(Hi)

g(xr , xs)
∏

(r ′,s′)∈E(Hi)

(r ′,s′) �=(r,s)

hu(xr ′, xs′)
∏

v∈V (H)

dxv

=
∫ ∫

g(x, y)�Hi
hu(x, y) dy dx.
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Combining the above computations and (8.10), we see that for any symmetric
bounded measurable g : [0,1] → R,∫ ∫

g(x, y)

(
k∑

i=1

βi�Hi
h(x, y) − 1

2
log

h(x, y)

1 − h(x, y)

)
dy dx = 0.

Taking g(x, y) equal to the function within the brackets (which is bounded since
h is assumed to be bounded away from 0 and 1), the conclusion of the theorem
follows.

Now note that the theorem was proved under the assumption that h is bounded
away from 0 and 1. We claim that this is true for any h that maximizes T (h)−I (h).
To prove this claim, take any such h. Fix p ∈ (0,1). For each u ∈ [0,1], let

hp,u(x, y) := h(x, y) + u
(
p − h(x, y)

)
+.

In other words, hp,u is simply hu with g = (p − h)+. Then certainly, hp,u is a
symmetric bounded measurable function from [0,1]2 into [0,1]. Note that

d

du
hp,u(x, y) = (

p − h(x, y)
)
+.

Using this, an easy computation as above shows that

d

du

(
T (hp,u) − I (hp,u)

)∣∣∣∣
u=0

=
∫ ∫ (

k∑
i=1

βi�Hi
h(x, y) − 1

2
log

h(x, y)

1 − h(x, y)

)(
p − h(x, y)

)
+ dy dx

≥
∫ ∫ (

−C − 1

2
log

h(x, y)

1 − h(x, y)

)(
p − h(x, y)

)
+ dy dx,

where C is a positive constant depending only on β1, . . . , βk and H1, . . . ,Hk (and
not on p or h). When h(x, y) = 0, the integrand is interpreted as ∞, and when
h(x, y) = 1, the integrand is interpreted as 0.

Now, if p is so small that

−C − 1

2
log

p

1 − p
> 0,

then the previous display proves that the derivative of T (hp,u) − I (hp,u) with
respect to u is strictly positive at u = 0 if h < p on a set of positive Lebesgue mea-
sure. Hence, h cannot be a maximizer of T − I unless h ≥ p almost everywhere.
This proves that any maximizer of T − I must be bounded away from zero. A sim-
ilar argument with g = −(h − p)+ shows that it must be bounded away from 1,
and hence completes the proof of the theorem. �

PROOF OF THEOREM 6.2. It suffices to prove that the maximizer of T (h) −
I (h) as h varies over W is unique. This is because: if h is a maximizer, then so
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is hσ (x, y) := h(σx,σy) for any measure preserving bijection σ : [0,1] → [0,1].
The only functions that are invariant under such transforms are constant functions.

Let �H be the operator defined in Section 6.1. Let ‖ · ‖∞ denote the L∞ norm
on W (i.e., the essential supremum of the absolute value). Let h and g be two
maximizers of T − I . For any finite simple graph H , a simple computation shows
that

‖�Hh − �Hg‖∞ ≤ ∑
(r,s)∈E(H)

‖�H,r,sh − �H,r,sg‖∞

≤ e(H)
(
e(H) − 1

)‖h − g‖∞.

Using the above inequality, Theorem 6.1 and the inequality∣∣∣∣ ex

1 + ex
− ey

1 + ey

∣∣∣∣ ≤ |x − y|
4

(easily proved by the mean value theorem) it follows that for almost all x, y,

∣∣h(x, y) − g(x, y)
∣∣ =

∣∣∣∣ e2
∑k

i=1 βi�Hi
h(x,y)

1 + e2
∑k

i=1 βi�Hi
h(x,y)

− e2
∑k

i=1 βi�Hi
g(x,y)

1 + e2
∑k

i=1 βi�Hi
g(x,y)

∣∣∣∣
≤ 1

2

k∑
i=1

|βi |‖�Hi
h − �Hi

g‖∞

≤ 1

2
‖h − g‖∞

k∑
i=1

|βi |e(Hi)
(
e(Hi) − 1

)
.

If the coefficient of ‖h−g‖∞ in the last expression is strictly less than 1, it follows
that h must be equal to g a.e. �

PROOF OF THEOREM 6.3. Fix β1. Let p = e2β1/(1 + e2β1) and γ := −β2, so
that for any h ∈ W ,

T (h) − I (h) = −γ t (H2, h) − Ip(h) − 1
2 log(1 − p).

Assume without loss of generality that β2 < 0. Suppose u is a constant such that
the function h(x, y) ≡ u maximizes T (h) − I (h), that is, minimizes γ t (H2, h) +
Ip(h). Note that

γ t (H2, h) + Ip(h) = γ u3 + Ip(u).

Clearly, the definition of u implies that γ u3 + Ip(u) ≤ γ x3 + Ip(x) for all x ∈
[0,1]. This implies that u must be in (0,1), because the derivative of x �→ γ x3 +
Ip(x) is −∞ at 0 and ∞ at 1. Thus,

0 = d

dx

(
γ x3 + Ip(x)

)∣∣∣∣
x=u

= 3γ u2 + 1

2
log

u

1 − u
− 1

2
log

p

1 − p
,
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which shows that u ≤ c(γ ), where c(γ ) is a function of γ such that

lim
γ→∞ c(γ ) = 0.

This shows that

lim
γ→∞ min

0≤x≤1

(
γ x3 + Ip(x)

) = Ip(0) = 1

2
log

1

1 − p
.(8.11)

Next, let g be the function

g(x, y) :=
{

0, if x, y on same side of 1/2,
p, if not.

Clearly, for almost all (x, y, z), g(x, y)g(y, z)g(z, x) = 0. Thus, t (H2, g) = 0.
A simple computation shows that

Ip(g) = 1

4
log

1

1 − p
.

Thus, γ t (H2, g) + Ip(g) = 1
4 log 1

1−p
. This shows that if γ is large enough (de-

pending on p and hence β1), then T − I cannot be maximized at a constant func-
tion. The rest of the conclusion follows easily from Theorem 3.2 and the compact-
ness of W̃ . �

PROOF OF THEOREM 6.4. Take any h ∈ W . Note that

t (Hj ,h) =
∫
[0,1]j

h(x1, x2)h(x1, x3) · · ·h(x1, xj ) dx1 · · ·dxj

=
∫ 1

0
M(x)j dx,

where

M(x) =
∫ 1

0
h(x, y) dy.

Since I is a convex function,∫ 1

0
I
(
h(x, y)

)
dy ≥ I

(
M(x)

)
with equality if and only if h(x, y) is the same for almost all y. Thus, putting

P(u) :=
k∑

j=1

βju
j ,

we get

T (h) − I (h) =
∫ 1

0
P

(
M(x)

)
dx − I (h) ≤

∫ 1

0

(
P

(
M(x)

) − I
(
M(x)

))
dx
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with equality if and only if for almost all x, (a) h(x, y) is constant as a function
of y, and (b) M(x) equals a value u∗ that maximizes P(u) − I (u). By the sym-
metry of h, the condition (a) implies that h is constant almost everywhere. The
condition (b) gives the set of possible values of this constant. The rest follows as
in the proofs of Theorems 4.1 and 4.2. �

LEMMA 8.1. Let r be any integer ≥ χ(H). Let Kr be the complete graph on
r vertices. Then for any symmetric measurable h : [0,1]2 → {0,1}, if t (Kr, h) > 0
then t (H,h) > 0.

PROOF. Let hn(x, y) be the average value of h in the dyadic square of width
2−n containing the point (x, y). A standard martingale argument implies that the
sequence of functions {hn}n≥1 converges to h almost everywhere. For any positive
integer u, let Ku

r denote the complete r-partite graph on ru vertices, where each
partition consists of u vertices (so that K1

r = Kr ). Since r ≥ χ(H), it is easy to see
that there exists u so large that H is a subgraph of Ku

r [i.e., V (H) ⊆ V (Ku
r ) and

E(H) ⊆ E(Ku
r )]. Fix such a u.

By the almost everywhere convergence of hn to h and the assumption that
t (Kr, h) > 0, there is a set of r distinct points x1, . . . , xr ∈ [0,1] that do
not lie on the boundary of any dyadic interval, such that h(xi, xj ) > 0 and
limn→∞ hn(xi, xj ) = h(xi, xj ) for each 1 ≤ i �= j ≤ r . Since h is {0,1}-valued,
h(xi, xj ) = 1 for each i �= j . Choose n so large that for each i �= j ,

hn(xi, xj ) ≥ 1 − ε,

where ε = 1/2r2u2. Let (Xs
i )1≤i≤r,1≤s≤u be independent random variables, where

Xs
i is uniformly distributed in the dyadic interval of width 2−n containing xi . Then

for each 1 ≤ i �= j ≤ r , 1 ≤ q, s ≤ u,

P
(
h
(
X

q
i ,Xs

j

) = 1
) = hn(xi, xj ) ≥ 1 − ε.

Therefore,

P
(
h
(
X

q
i ,Xs

j

) = 1 for all 1 ≤ i �= j ≤ r,1 ≤ q, s ≤ u
) ≥ 1 − r2u2ε = 1/2.

Let (Y s
i )1≤i≤r,1≤s≤u be independent random variables uniformly distributed in

[0,1]. Conditional on the event that Y s
i belongs to the dyadic interval of width

2−n containing xi , Y s
i has the same distribution as Xs

i . As a consequence of the
last display, this shows that

t
(
Ku

r ,h
) = P

(
h
(
Y

q
i , Y s

j

) = 1 for all 1 ≤ i �= j ≤ r,1 ≤ q, s ≤ u
)

≥ 2−nru
P

(
h
(
X

q
i ,Xs

j

) = 1 for all 1 ≤ i �= j ≤ r,1 ≤ q, s ≤ u
)
> 0.

Since H is a subgraph of Ku
r , therefore t (H,h) > 0. �
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THEOREM 8.2. Let g be the function defined in (7.1). Take any p ∈ (0,1). If
f is any element of W that minimizes Ip(f ) among all f satisfying t (H,f ) = 0,
then f̃ = pg̃.

PROOF. Take any minimizer f . (Minimizers exist due to the Lovász–Szegedy
compactness theorem [41], Theorem 5.1, and the lower semicontinuity of Ip .)
First, note that f ≤ p almost everywhere: if not, then Ip(f ) can be decreased
by replacing f with min{f,p}, which retains the condition t (H,f ) = 0.

Next, note that for almost all x, y, f (x, y) = 0 or p. If not, then redefine f to
be equal to p wherever f was positive. This decreases the entropy while retaining
the condition t (H,f ) = 0.

Let h = f/p. Then h takes value 0 or 1 almost everywhere and h min-
imizes Ip(ph) among all symmetric measurable h : [0,1]2 → {0,1} satisfying
t (H,h) = 0. Equivalently, h maximizes

∫∫
h(x, y) dx dy among all symmetric

measurable h : [0,1]2 → {0,1} satisfying t (H,h) = 0. Our goal is to show that
h̃ = g̃.

Let r := χ(H). Let X0,X1,X2, . . . be a sequence of i.i.d. random variables
uniformly distributed in [0,1]. Let

R := {
i :h(Xi,Xj ) = 1 for all 1 ≤ j < i

}
,

and let R := |R|. Let λ(x) := ∫
h(x, y) dy, so that for any given i,

P
(
h(Xi,Xj ) = 1 for all 1 ≤ j < i

) = E
(
λ(Xi)

i−1) = E
(
λ(X0)

i−1)
.

Thus,

E(R) =
∞∑
i=1

P
(
h(Xi,Xj ) = 1 for all 1 ≤ j < i

)

=
∞∑
i=1

E
(
λ(X0)

i−1)
(8.12)

≥
∞∑
i=1

(
Eλ(X0)

)i−1 = 1

1 − Eλ(X0)
= 1

1 − ∫∫
h(x, y) dx dy

.

Let g be the function defined in (7.1). Suppose the vertex set of H is {1, . . . , k} for
some integer k. If t (H,g) > 0, then there exist x1, . . . , xk such that g(xi, xj ) = 1
whenever {i, j} is an edge in H . By the definition of g, this implies that H can
be colored by r − 1 colors so that no two adjacent vertices receive the same color;
since this is false, therefore t (H,g) must be zero. By the optimality property of h,
this gives ∫ ∫

h(x, y) dx dy ≥
∫ ∫

g(x, y) dx dy = 1 − 1

r − 1
.
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Therefore by (8.12),

E(R) ≥ r − 1.

Again by Lemma 8.1, t (Kr, h) = 0. Therefore, R ≤ r −1 almost surely. Combined
with the above display, this shows that equality must hold in (8.12) and R = r − 1
almost surely. In particular, E(λ(X0)

2) = (Eλ(X0))
2 and Eλ(X0) = 1−1/(r −1),

which shows that

λ(x) = 1 − 1

r − 1
a.e.

For each x, let A(x) := {y :h(x, y) = 0}. Then |A(x)| = 1/(r − 1) a.e., where
|A(x)| denotes the Lebesgue measure of A(x).

Define a random graph G on {0,1,2, . . .} by including the edge (i, j) if and only
if h(Xi,Xj ) = 1. Since t (Kr, h) = 0, G cannot contain any copy of Kr . Thus, with
probability 1, h(X0,Xi) = 0 for some i ∈ R. In other words,

⋃
i∈R A(Xi) cover

almost all of [0,1]. Again, |A(Xi)| = 1/(r − 1) for all i ∈ R and |R| = r − 1
almost surely. All this together imply that with probability 1, A(Xi) ∩ A(Xj ) has
Lebesgue measure zero for all i �= j ∈ R, since∑

i,j∈R,i<j

∣∣A(Xi) ∩ A(Xj )
∣∣ ≤ ∑

i∈R

∣∣A(Xi)
∣∣ − ∣∣∣∣ ⋃

i∈R
A(Xi)

∣∣∣∣ = 0.

Let Y1, Y2, . . . and Z1,Z2, . . . be i.i.d. random variables uniformly distributed in
[0,1], that are independent of the sequence X1,X2, . . . . Since t (Kr, h) = 0, with
probability 1 there cannot exist l and a set B of integers of size r − 2 such that
h(Yl,Xi) = h(Zl,Xi) = 1 for all i ∈ B , h(Xi,Xj ) = 1 for all i �= j ∈ B , and
h(Yl,Zl) = 1.

Now fix a realization of X1,X2, . . . . This fixes the set R. Take any i ∈ R. Let I

be the smallest integer such that both YI and ZI are in A(Xi). Clearly YI and ZI

are independent and uniformly distributed in A(Xi), conditional on the sequence
X1,X2, . . . and our choice of i ∈ R. By the observation from the preceding para-
graph, h(YI ,ZI ) = 0 with probability 1, since the set R \ {i} serves the role of B .

This shows that given X1,X2, . . . , the sets A(Xi) have the property that for
almost all y, z ∈ A(Xi), h(y, z) = 0. Since λ(x) = 1−1/(r −1) a.e. and |A(Xi)| =
1/(r − 1), this shows that for almost all y ∈ A(Xi) and almost all z /∈ A(Xi),
h(y, z) = 1.

The properties of (A(Xi))i∈R that we established can be summarized as fol-
lows: the sets A(Xi) are disjoint up to errors of measure zero; each A(Xi) has
Lebesgue measure 1/(r − 1) and together they cover the whole of [0,1]; for al-
most all y, z ∈ [0,1], h(y, z) = 0 if they belong to the same A(Xi), and h(y, z) = 1
if y ∈ A(Xi) and z ∈ A(Xj ) for some i �= j . These properties immediately show
that h is the same as the function g up to a rearrangement; the formal argument
can be completed as follows.

Given X1,X2, . . . , let u : [0,1] → [0,1] be the map defined as

u(x) := minimum i ∈ R such that x ∈ A(Xi).
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Note that with probability 1, for almost all x there is a unique i ∈ R such that
x ∈ A(Xi). Let σ : [0,1] → [0,1] be a measure-preserving bijection such that
x �→ u(σx) is a nonincreasing (we omit the construction). Then σ maps the in-
tervals [0,1/(r − 1)], [1/(r − 1),2/(r − 1)], . . . , [(r − 2)/(r − 1),1] onto the sets
(A(Xi))i∈R up to errors of measure zero. By the properties of A(Xi) established
above, this shows that h(σx,σy) is the same as g(x, y) up to an error of measure
zero. �

PROOF OF THEOREM 7.1. First, note that

Tβ2(h) − I (h) = β2t (H,h) − Ip(h) − 1
2 log(1 − p),

where p = e2β1/(1 + e2β1). Take a sequence β
(n)
2 → −∞, and for each n, let h̃n

be an element of F̃ ∗(β(n)
2 ). Let h̃ be a limit point of h̃n in W̃ . If t (H,h) > 0, then

by the continuity of the map t (H, ·) and the boundedness of Ip ,

lim
n→∞ψ

(
β

(n)
2

) = −∞.

But this is impossible since ψ(β
(n)
2 ) is uniformly bounded below, as can be easily

seen by considering the function g defined in (7.1) as a test function in the vari-
ational problem. Thus, t (H,h) = 0. If f is a function such that t (H,f ) = 0 and
Ip(f ) < Ip(h), then for all sufficiently large n,

T
β

(n)
2

(hn) − I (hn) < T
β

(n)
2

(f ) − I (f )

contradicting the definition of F̃ ∗(β2). Thus, if f is a function such that
t (H,f ) = 0, then Ip(f ) ≥ Ip(h). By Theorem 8.2, this shows that h̃ = pg̃. The
compactness of W̃ now proves the first part of the theorem.

For the second part, first note that

lim inf
n→∞ ψ

(
β

(n)
2

) ≥ lim
n→∞

(
T

β
(n)
2

(pg) − I (pg)
) = −Ip(pg) − 1

2
log(1 − p)

= (χ(H) − 2)

2(χ(H) − 1)
log

1

1 − p
.

Next, note that by the lower-semicontinuity of Ip and the fact that β
(n)
2 is eventually

negative,

lim sup
n→∞

ψ
(
β

(n)
2

) = lim sup
n→∞

(
β

(n)
2 t (H,hn) − Ip(hn)

) − 1

2
log(1 − p)

≤ lim sup
n→∞

(−Ip(hn)
) − 1

2
log(1 − p)

≤ −Ip(pg) − 1

2
log(1 − p).

The proof is complete. �
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