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EMPIRICAL LIKELIHOOD ON THE FULL PARAMETER SPACE

BY MIN TSAO1 AND FAN WU

University of Victoria

We extend the empirical likelihood of Owen [Ann. Statist. 18 (1990)
90–120] by partitioning its domain into the collection of its contours and
mapping the contours through a continuous sequence of similarity transfor-
mations onto the full parameter space. The resulting extended empirical like-
lihood is a natural generalization of the original empirical likelihood to the
full parameter space; it has the same asymptotic properties and identically
shaped contours as the original empirical likelihood. It can also attain the
second order accuracy of the Bartlett corrected empirical likelihood of DiCi-
ccio, Hall and Romano [Ann. Statist. 19 (1991) 1053–1061]. A simple first
order extended empirical likelihood is found to be substantially more accurate
than the original empirical likelihood. It is also more accurate than available
second order empirical likelihood methods in most small sample situations
and competitive in accuracy in large sample situations. Importantly, in many
one-dimensional applications this first order extended empirical likelihood is
accurate for sample sizes as small as ten, making it a practical and reliable
choice for small sample empirical likelihood inference.

1. Introduction. Since the seminal work of Owen (1988, 1990), there have
been many advances in empirical likelihood method that have brought applications
of the method to virtually every area of statistical research. It has been widely ob-
served [e.g., Corcoran, Davison and Spady (1995), Hall and La Scala (1990), Liu
and Chen (2010), Owen (2001), Qin and Lawless (1994)] that empirical likeli-
hood ratio confidence regions can have poor accuracy, especially in small sample
and multidimensional situations. In particular, there is a persistent undercover-
age problem in that coverage probabilities of empirical likelihood ratio confidence
regions tend to be lower than the nominal levels. In this paper, we tackle a fun-
damental problem underlying the poor accuracy and undercoverage, that is, the
empirical likelihood is defined on only a part of the parameter space. We call this
the mismatch problem between the domain of the empirical likelihood and the pa-
rameter space. We solve this problem through a geometric approach that expands
the domain to the full parameter space. Our solution brings about substantial im-
provements in accuracy of the empirical likelihood inference and is particularly
useful for small sample and multidimensional situations.
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To see the mismatch problem, consider the example of empirical likelihood
for the mean based on n observations X1, . . . ,Xn of a random vector X ∈ R

d .
The underlying parameter space � is R

d itself. But for a given θ ∈ R
d , when the

convex hull of the (Xi − θ) does not contain 0, the empirical likelihood L(θ), the
empirical likelihood ratio R(θ) = nnL(θ) and the empirical log-likelihood ratio
l(θ) = −2 logR(θ) are all undefined. When this occurs, an established convention
assigns L(θ) = 0, and technically L(θ), R(θ) and l(θ) are now defined over the
full parameter space. Nevertheless, to highlight the difference between the natural
domain of the empirical likelihood and the parameter space, we define the common
domain of L(θ), R(θ) and l(θ) as

�n = {
θ : θ ∈ � and l(θ) < +∞}

.(1.1)

With this definition, the mismatch can now be expressed as �n ⊂ �. For the mean,
�n is the interior of the convex hull of the Xi , which is indeed a proper subset of
� = R

d . The mismatch �n ⊂ � holds for empirical likelihoods in general as the
basic formulation common to all empirical likelihoods has a convex hull constraint
on the origin, such as the one for the mean above, which may be violated by some
θ values in the parameter space �.

The convex hull constraint violation underlying the mismatch is well known in
the empirical likelihood literature. It was first noted in Owen (1990) for the case
of the mean. See also Owen (2001). To assess its impact on coverage probabilities
of empirical likelihood ratio confidence regions, Tsao (2004) investigated bounds
on coverage probabilities resulting from the convex hull constraint. To bypass this
constraint, Bartolucci (2007) introduced a penalized empirical likelihood (PEL)
for the mean which removes the convex hull constraint in the formulation of the
original empirical likelihood (OEL) of Owen (1990, 2001) and replaces it with
a penalizing term based on the Mahalanobis distance. For parameters defined by
general estimating equations, Chen, Variyath and Abraham (2008) introduced an
adjusted empirical likelihood (AEL) which retains the formulation of the OEL but
adds a pseudo-observation to the sample. The AEL is just the OEL defined on the
augmented sample. But due to the clever construction of the pseudo-observation,
the convex hull constraint will never be violated by the AEL. Emerson and Owen
(2009) showed that the AEL statistic has a boundedness problem which may lead
to trivial 100% confidence regions. They proposed an extension of the AEL in-
volving adding two pseudo-observations to the sample to address the boundedness
problem. Chen and Huang (2013) also addressed the boundedness problem by
modifying the adjustment factor in the pseudo-observation. Liu and Chen (2010)
proved a surprising result that under a certain level of adjustment, the AEL con-
fidence region achieves the second order accuracy of the Bartlett corrected em-
pirical likelihood (BEL) region by DiCiccio, Hall and Romano (1991). Recently,
Lahiri and Mukhopadhyay (2012) showed that under certain dependence struc-
tures, a modified PEL for the mean works in the extremely difficult case of large
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dimension and small sample size. The PEL and the AEL are both defined on R
d ,

and are thus free from the mismatch problem.
In this paper, we propose a new extended empirical likelihood (EEL) that is also

free from the mismatch problem. We derive this EEL through the domain expan-
sion method of Tsao (2013) which expands the domain of the OEL but retains its
important geometric characteristics. This EEL makes effective use of the dimen-
sion information in the data and can attain the second order accuracy of the BEL.
The most important aspect of this EEL, however, is that there is an easy-to-use first
order version which is substantially more accurate than the OEL. This first order
EEL is also more accurate than available second order empirical likelihood meth-
ods in most small sample and multidimensional applications and is comparable in
accuracy to the latter when the sample size is large. The focus of the present paper
is on the construction of EEL for the mean through which we introduce the basic
idea of and important tools for expanding the OLE domain to the full parameter
space. Under certain conditions, EEL for other parameters may also be constructed
but this will be discussed elsewhere.

For brevity, we will use “OEL l(θ)” and “EEL l∗(θ)” to refer to the original and
extended empirical log-likelihood ratios for the mean, respectively. Throughout
this paper, we assume that the parameter space � is R

d . The case where � is a
known subset of R

d can be handled by finding EEL l∗(θ) defined on R
d first and

then, for θ /∈ � only, redefine it as l∗(θ) = +∞.

2. Preliminaries. We review several key results and assumptions for devel-
oping the EEL defined on the full parameter space.

2.1. Empirical likelihood for the mean. Let X ∈ R
d be a random vector with

mean θ0 and covariance matrix �0. Two assumptions we will need are:

(A1) �0 is a finite covariance matrix with full rank d; and
(A2) lim sup‖t‖→∞ |E[exp{itT X}]| < 1 and E‖X‖15 < +∞.

These are also assumptions under which the OEL for the mean is Bartlett cor-
rectable [DiCiccio, Hall and Romano (1988), Chen and Cui (2007)].

Let X1, . . . ,Xn be independent copies of X where n > d . Let �n be the col-
lection of points in the interior of the convex hull of the Xi . For a θ ∈ R

d , Owen
(1990) defined the empirical likelihood ratio R(θ) as

R(θ) = sup

{
n∏

i=1

nwi

∣∣∣ n∑
i=1

wi(Xi − θ) = 0,wi ≥ 0,

n∑
i=1

wi = 1

}
.(2.1)

It may be verified that 0 < R(θ) ≤ 1 iff θ ∈ �n. Also, R(θ) = 0 if θ /∈ �n. Hence,
the domain of the OEL l(θ) = −2 logR(θ) is �n. For a θ ∈ �n, the method of
Lagrange multipliers may be used to show that

l(θ) = 2
n∑

i=1

log
{
1 + λT (Xi − θ)

}
,(2.2)
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where the multiplier λ = λ(θ) ∈ R
d satisfies

n∑
i=1

Xi − θ

1 + λT (Xi − θ)
= 0.(2.3)

Under assumption (A1), Owen (1990) showed that OEL l(θ) satisfies

l(θ0)
D−→ χ2

d as n → +∞.(2.4)

For an α ∈ (0,1), let c be the (1 − α)th quantile of the χ2
d distribution. Then, the

100(1 − α)% OEL confidence region for θ0 is given by

C1−α = {
θ : θ ∈ �n and l(θ) ≤ c

}
.(2.5)

Under assumptions (A1) and (A2), DiCiccio, Hall and Romano (1988, 1991)
showed that the coverage error of C1−α is O(n−1), that is,

P(θ0 ∈ C1−α) = P
(
l(θ0) ≤ c

) = P
(
χ2

d ≤ c
) + O

(
n−1)

.(2.6)

More importantly, they showed that the empirical likelihood is Bartlett correctable.
To give a brief account of this surprising result, let

C′
1−α = {

θ : l(θ)
(
1 − bn−1) ≤ c

}
(2.7)

be the Bartlett corrected empirical likelihood ratio confidence region where b is
the Bartlett correction constant and (1 − bn−1) is the Bartlett correction factor,
DiCiccio, Hall and Romano (1988, 1991) showed that C′

1−α has a coverage error
of only O(n−2), that is,

P
(
θ0 ∈ C′

1−α

) = P
[
l(θ0)

(
1 − bn−1) ≤ c

] = P
(
χ2

d ≤ c
) + O

(
n−2)

.(2.8)

In practice, the Bartlett correction constant b cannot be determined since it depends
on the moments of X which are not available in the nonparametric setting of the
empirical likelihood. However, replacing the Bartlett correction factor in (2.8) with
[1 − bn−1 + Op(n−3/2)] does not affect the O(n−2) term in its right-hand side,
that is,

P
{
l(θ0)

[
1 − bn−1 + Op

(
n−3/2)] ≤ c

} = P
(
χ2

d ≤ c
) + O

(
n−2)

.(2.9)

This allows us to replace b in (2.7) and (2.8) with a
√

n-consistent estimate b̂

without invalidating (2.8). See DiCiccio, Hall and Romano (1991) and Hall and
La Scala (1990) for detailed discussions on Bartlett correction.

2.2. Extended empirical likelihood. The OEL confidence region C1−α in (2.5)
is confined to the OEL domain �n. This is a main cause of the undercoverage prob-
lem associated with C1−α [Tsao (2004)]. To alleviate the problem, Tsao (2013)
proposed to expand �n which will lead to larger EL confidence regions. Let
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hn : Rd → R
d be a bijective mapping and define a new empirical log-likelihood

ratio l∗(θ) through the OEL l(θ) as follows:

l∗(θ) = l
(
h−1

n (θ)
)

for θ ∈ R
d .(2.10)

Then the domain for the new empirical log-likelihood ratio is �∗
n = hn(�n). Here,

hn plays the role of reassigning or extending the OEL values of points in �n to
points in �∗

n. Because of this, Tsao (2013) named l∗(θ) the extended empirical
log-likelihood ratio or simply EEL. In particular, Tsao (2013) used the following
θ̃ -centred similarity mapping h∗

n : Rd → R
d

h∗
n(θ) = θ̃ + γn(θ − θ̃ ),(2.11)

where θ̃ is the sample mean and γn ∈ R
1 is a constant (which we will refer to as

the expansion factor) satisfying γn ≥ 0 and γn → 1 as n → +∞. If we choose
γn > 1, then �n ⊂ �∗

n ⊂ R
d , and �∗

n alleviates the mismatch problem of �n. The
EEL confidence region for θ0 is given by

C∗
1−α = {

θ : θ ∈ �∗
n and l∗(θ) ≤ c

}
.(2.12)

The advantages of the EEL based on h∗
n in (2.11) are: (1) the EEL confidence

regions are similarly transformed OEL confidence regions, as such they retain the
natural centre and shape of the OEL confidence regions, (2) the EEL can be applied
to empirical likelihood inference for a wide range of parameters, and (3) with
a properly selected constant γn, EEL confidence regions can achieve the second
order accuracy of O(n−2).

Nevertheless, the EEL based on h∗
n is only a partial solution to the mismatch

problem because the domain of this EEL �∗
n is also a proper subset of R

d . A sec-
ond order version of this EEL has been found to have good accuracy in one- and
two-dimensional problems. But it also tends to undercover and no accurate first
order version of this EEL is available. These motivated us to consider an EEL
defined on the full parameter space.

3. Extended empirical likelihood on the full parameter space. Consider a
bijective mapping from the OEL domain to the parameter space, hn :�n → � =
R

d . Under such a mapping, the EEL l∗(θ) given by (2.10) is well defined through-
out R

d and is thus free from the mismatch problem. In this section, we first con-
struct such a mapping using h∗

n in (2.11). We call it the composite similarity map-
ping and denote it by hC

n :�n → R
d . We then study the asymptotic properties of

the EEL l∗(θ) based on hC
n .

3.1. The composite similarity mapping. The simple similarity mapping h∗
n in

(2.11) maps OEL domain �n onto a similar but bounded region in R
d . If we think

of �n as a region consisting of distinct and nested contours of the OEL, then h∗
n

expands all contours with the same constant expansion factor γn. In order to map
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�n onto the full R
d , we need to expand contours on the outside more and more so

that the images of the contours will fill up the entire R
d . To achieve this, consider

level-τ contour of the OEL l(θ),

c(τ ) = {
θ : θ ∈ �n and l(θ) = τ

}
,(3.1)

where τ ≥ 0. The contours form a partition of the OEL domain,

�n = ⋃
τ∈[0,+∞)

c(τ ).(3.2)

In light of (3.2), the centre of �n is c(0) = {θ̃} and the outwardness of a c(τ ) with
respect to the centre is indexed by τ ; the larger the τ value, the more outward c(τ )

is. If we allow the expansion factor γn to be a continuous monotone increasing
function of τ and allow γn to go to infinity when τ goes to infinity, then (such a
variation of) h∗

n will map �n onto R
d . Hence, we define the composite similarity

mapping hC
n :�n → R

d as follows:

hC
n (θ) = θ̃ + γ

(
n, l(θ)

)
(θ − θ̃ ) for θ ∈ �n,(3.3)

where γ (n, l(θ)) is given by

γ
(
n, l(θ)

) = 1 + l(θ)

2n
.(3.4)

Function γ (n, l(θ)) is the new expansion factor which depends continuously on
θ through the value of l(θ) or τ = l(θ). For convenience, we will emphasis the
dependence of γ (n, l(θ)) on l(θ) instead of θ or τ . This new expansion factor has
the two desired properties discussed above:

for a fixed n, if l(θ1) < l(θ2), then γ
(
n, l(θ2)

)
< γ

(
n, l(θ2)

)
; and(3.5)

for a fixed n, γ
(
n, l(θ)

) → +∞ as l(θ) → +∞.(3.6)

The inclusion of the denominator 2n in (3.4) ensures that the expansion factor con-
verges to 1, reflecting the fact that there is no need for domain expansion for large
sample sizes. Also, the constant 2 in the denominator provides extra adjustment to
the speed of expansion and may be replaced with other positive constants (see Fig-
ure 1). We choose to use 2 here as the corresponding γ (n, l(θ)) in (3.4) is asymp-
totically equivalent to a likelihood based expansion factor γ (n,L(θ)) = L(θ)−1/n

which we had first considered and was found to give accurate numerical results.
The definition of γ (n, l(θ)) in (3.4) uses l(θ) instead of L(θ) because of conve-
nience for theoretical investigations. A more general form of γ (n, l(θ)) will be
considered later.

Theorem 3.1 below summarizes the key properties of the composite similarity
mapping hC

n . Its proof and that of subsequent theorems and lemmas may all be
found in the Appendix.



2182 M. TSAO AND F. WU

FIG. 1. (a) Contours of the OEL l(θ) (for which the expansion factor is 1.0); (b) contours of the
EEL l∗(θ) with expansion factor γ (11, l(θ)) = 1 + l(θ)/3n; (c) contours of the EEL l∗(θ) with
γ (11, l(θ)) = 1 + l(θ)/2n; (d) contours of the EEL l∗(θ) with γ (11, l(θ)) = 1 + l(θ)/n. All four
plots are based on the same random sample of 11 points shown in small circles. The star in the
middle is the sample mean. The expansion factor increases as we go from plot (b) to plot (d), and
correspondingly the EEL contours also become bigger in scale from plot (b) to (d). But the centre
and shapes of contours are the same in all plots.

THEOREM 3.1. Under assumption (A1), the composite similarity mapping
hC

n :�n → R
d defined by (3.3) and (3.4) satisfies:

(i) it has a unique fixed point at the mean θ̃ ;
(ii) it is a similarity mapping for each individual c(τ ); and

(iii) it is a bijective mapping from �n to R
d .
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Because of (ii) above, we call hC
n the composite similarity mapping as it may

be viewed as a continuous sequence of simple similarity mappings from R
d to

R
d indexed by τ = l(θ) ∈ [0,+∞). The “τ th” mapping from this sequence has

expansion factor γ (n, l(θ)) = γ (n, τ ). It is just the simple similarity mapping h∗
n

in (2.11) with γn = γ (n, τ ), and is used exclusively to map the “τ th” OEL contour
c(τ ). The latter has been implicitly built into hC

n since for all θ ∈ c(τ ), l(θ) = τ

which implies the corresponding expansion factor of hC
n is the constant γ (n, τ )

that defines the “τ th” mapping.
It should be noted that hC

n is not a similarity mapping from R
d to R

d itself due
to the dependence of the expansion factor γ (n, l(θ)) on θ and its domain �n which
is only a bounded subset of R

d .

3.2. The extended empirical likelihood under the composite similarity mapping.
By Theorem 3.1, hC

n :�n → R
d is bijective. Hence, it has an inverse which we

denote by h−C
n : Rd → �n. The EEL l∗(θ) under hC

n is

l∗(θ) = l
(
h−C

n (θ)
)

for θ ∈ R
d ,

which is defined throughout R
d . The contours of l∗(θ) are larger in scale but have

the same centre and identical shape as that of OEL l(θ). Figure 1 compares their
contours with a sample of 11 two-dimensional observations. It shows that geomet-
rically, mapping hC

n is anchored at the sample mean θ̃ as it is the fixed point of
hC

n that is not moved. From this anchoring point, the mapping pushes out/expands
each OEL contour c(τ ) proportionally in all directions at an expansion factor of
γ (n, τ ) to form an EEL contour. The boundary points of �n are all pushed out to
the infinity.

In the following, we will use θ ′ to denote the image of a θ ∈ R
d under the

inverse transformation h−C
n , that is, h−C

n (θ) = θ ′ ∈ �n. Of particular interest is the
image of the unknown true mean θ0,

h−C
n (θ0) = θ ′

0.(3.7)

Because the inverse transformation h−C
n does not have an analytic expression, that

for θ ′
0 is also not available. Nevertheless, Lemma 3.2 gives an asymptotic assess-

ment on its distance to θ0. The proof of Lemma 3.2 will need Lemma 3.1 below
which shows that inside �n, the OEL l(θ) is a “monotone increasing” function
along each ray originating from the mean θ̃ .

LEMMA 3.1. Under assumption (A1), for a fixed point θ ∈ �n and any value
α ∈ [0,1] the OEL l(θ) satisfies

l
(
θ̃ + α(θ − θ̃ )

) ≤ l(θ).

Denote by [θ̃ , θ0] the line segment connecting θ̃ and θ0. Lemma 3.2 below
shows that θ ′

0 is on [θ̃ , θ0] and is asymptotically very close to θ0.
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LEMMA 3.2. Under assumption (A1), point θ ′
0 defined by equation (3.7) sat-

isfies (i) θ ′
0 ∈ [θ̃ , θ0] and (ii) θ ′

0 − θ0 = Op(n−3/2).

Using θ ′
0, the EEL l∗(θ0) can now be expressed as

l∗(θ0) = l
(
h−C

n (θ0)
) = l

(
θ ′

0
) = l

(
θ0 + (

θ ′
0 − θ0

))
.(3.8)

The following theorem gives the asymptotic distribution of l∗(θ0):

THEOREM 3.2. Under assumption (A1) and with the composite similarity
mapping hC

n defined by (3.3) and (3.4), the EEL l∗(θ) satisfies

l∗(θ0)
D−→ χ2

d as n → +∞.(3.9)

The proof of Theorem 3.2 is based on the observation that ‖θ ′
0 − θ0‖ is asymp-

totically very small. This and (3.8) imply that l∗(θ0) = l(θ0) + op(1). This proof
demonstrates an advantage of the EEL: it has the simple relationship with the OLE
shown in (3.8) through which we make use of known asymptotic properties of
the OEL to study the EEL. Our derivation of a second order EEL below further
explores this advantage.

3.3. Second order extended empirical likelihood. It may be verified that The-
orems 3.1 and 3.2 also hold under any composite similarity mapping defined by
(3.3) and the following general form of the expansion factor,

γ
(
n, l(θ)

) = 1 + κ[l(θ)]δ(n)

nm
,(3.10)

where κ and m are both positive constants and δ(n) is a bounded function of n sat-
isfying εn < δ(n) ≤ a for some constants a > εn > 0. The availability of a whole
family of γ (n, l(θ)) functions for the construction of the EEL provides an oppor-
tunity to optimize our choice of this function to achieve the second order accuracy.
Theorem 3.3 below gives the optimal choice.

THEOREM 3.3. Assume (A1) and (A2) hold and denote by l∗s (θ) the EEL
under the composite similarity mapping (3.3) with expansion factor

γs

(
n, l(θ)

) = 1 + b

2n

[
l(θ)

]δ(n)
,(3.11)

where δ(n) = O(n−1/2) and b is the Bartlett correction constant in (2.7). Then

l∗s (θ0) = l(θ0)
[
1 − bn−1 + Op

(
n−3/2)]

(3.12)

and

P
(
l∗s (θ0) ≤ c

) = P
(
χ2

d ≤ c
) + O

(
n−2)

.(3.13)



EXTENDED EMPIRICAL LIKELIHOOD 2185

In our subsequent discussions, we will refer to an l∗s (θ) defined by the expansion
factor γs(n, l(θ)) in (3.11) as a second order EEL on the full parameter space. The
EEL l∗(θ) defined by γ (n, l(θ)) in (3.4) will henceforth be referred to as the first
order EEL on the full parameter space.

The utility of the δ(n) in γs(n, l(θ)) is to provide an extra adjustment for the
speed of the domain expansion which ensures that l∗s (θ) will behave asymptoti-
cally like the BEL and hence will have the second order accuracy of the BEL. For
convenience, we set δ(n) = n−1/2. The resulting second order EEL turns out to be
competitive in accuracy to the BEL and the second order AEL. For small sample
and/or high dimension situations, confidence regions based on this second order
EEL can have undercoverage problems like those based on the OEL and BEL.
Fine-tuning of δ(n) for such situations is needed and methods of fine-tuning are
discussed in Wu (2013).

Finally, we noted after Theorem 3.2 that the first order EEL l∗(θ0) can be ex-
pressed in terms of the OLE l(θ0) as l∗(θ0) = l(θ0) + op(1). The op(1) term can
be improved and in fact we have l∗(θ0) = l(θ0) + Op(n−1). See the proof of The-
orem 3.2 in the Appendix. An even stronger connection between l∗(θ0) and l(θ0)

is given by Corollary 3.1 below.

COROLLARY 3.1. Under assumptions (A1) and (A2), the first order EEL
l∗(θ) satisfies

l∗(θ0) = l(θ0)
[
1 − l(θ0)n

−1 + Op

(
n−3/2)]

.(3.14)

The proof of Corollary 3.1 follows from that for Theorem 3.3. This result pro-
vides a partial explanation for the remarkable numerical accuracy of confidence
regions based on the first order EEL l∗(θ).

4. Numerical examples and comparisons. We now present a simulation
study comparing the EEL with the OEL, BEL and AEL. Throughout this section,
we use l∗1(θ) or EEL1 to denote the first order EEL with expansion factor (3.4),
and use l∗2(θ) or EEL2 to denote the second order EEL given by expansion factor
(3.11) where δ(n) = n−1/2.

4.1. Low-dimensional examples. Tables 1 and 2 contain simulated coverage
probabilities of confidence regions for the mean based on first order methods OEL,
EEL1 and second order methods BEL, AEL, EEL2, BEL∗, AEL∗ and EEL∗

2. Here,
BEL, AEL and EEL2 are based on the theoretical Bartlett correction constant b,
and BEL∗, AEL∗ and EEL∗

2 are based on b̃n which is a bias corrected estimate for
b given by Liu and Chen (2010).

Table 1 gives four one-dimensional (1-d) examples. Table 2 contains four bivari-
ate (BV or 2-d) examples; the first three were taken from Liu and Chen (2010), the
fourth is a “2-d chi-square”, and here are the details:
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TABLE 1
Simulated coverage probabilities for one-dimensional examples

n Level OEL EEL1 BEL AEL EEL2 BEL∗ AEL∗ EEL∗
2

N(0,1) 10 0.90 0.8506 0.8914 0.8753 0.8788 0.8813 0.8767 0.8867 0.8824
0.95 0.9039 0.9452 0.9246 0.9294 0.9317 0.9242 0.9352 0.9324
0.99 0.9580 0.9867 0.9677 0.9753 0.9738 0.9656 0.9771 0.9734

30 0.90 0.8920 0.9071 0.9007 0.9008 0.9022 0.9017 0.9019 0.9030
0.95 0.9398 0.9548 0.9461 0.9461 0.9476 0.9466 0.9468 0.9474
0.99 0.9866 0.9925 0.9882 0.9883 0.9885 0.9883 0.9884 0.9884

50 0.90 0.8941 0.9024 0.8995 0.8996 0.9003 0.8992 0.8993 0.9000
0.95 0.9447 0.9541 0.9481 0.9479 0.9486 0.9483 0.9484 0.9490
0.99 0.9880 0.9920 0.9892 0.9892 0.9892 0.9894 0.9894 0.9895

t5 10 0.90 0.8277 0.8765 0.9226 0.9979 0.9209 0.8520 0.8873 0.8782
0.95 0.8882 0.9394 0.9599 1.000 0.9651 0.9036 0.9367 0.9307
0.99 0.9556 0.9851 0.9820 1.000 0.9887 0.9499 0.9798 0.9751

30 0.90 0.8690 0.8852 0.8999 0.9028 0.9017 0.8852 0.8885 0.8882
0.95 0.9265 0.9436 0.9476 0.9509 0.9502 0.9385 0.9428 0.9420
0.99 0.9797 0.9888 0.9875 0.9901 0.9886 0.9831 0.9863 0.9861

50 0.90 0.8862 0.8967 0.9040 0.9048 0.9052 0.8977 0.8983 0.8987
0.95 0.9410 0.9491 0.9515 0.9518 0.9518 0.9465 0.9471 0.9474
0.99 0.9861 0.9918 0.9907 0.9913 0.9913 0.9881 0.9882 0.9886

χ2
1 10 0.90 0.7764 0.8174 0.8726 1.000 0.8634 0.6792 0.8456 0.8291

0.95 0.8314 0.8781 0.9068 1.000 0.9030 0.7239 0.8918 0.8779
0.99 0.8973 0.9378 0.9417 1.000 0.9461 0.7677 0.9391 0.9253

30 0.90 0.8594 0.8759 0.8887 0.8901 0.8890 0.8658 0.8847 0.8829
0.95 0.9115 0.9249 0.9319 0.9343 0.9330 0.9105 0.9278 0.9272
0.99 0.9659 0.9764 0.9759 0.9786 0.9769 0.9565 0.9735 0.9733

50 0.90 0.8722 0.8833 0.8936 0.8941 0.8943 0.8887 0.8912 0.8909
0.95 0.9318 0.9411 0.9441 0.9458 0.9459 0.9388 0.9419 0.9415
0.99 0.9779 0.9847 0.9837 0.9845 0.9845 0.9804 0.9831 0.9830

0.3N(0,1) 10 0.90 0.8470 0.8908 0.8551 0.8556 0.8569 0.8761 0.8826 0.8821
+ 0.7N(2,1) 0.95 0.9036 0.9433 0.9094 0.9097 0.9127 0.9215 0.9299 0.9285

0.99 0.9564 0.9867 0.9592 0.9601 0.9631 0.9657 0.9760 0.9741
30 0.90 0.8930 0.9054 0.8956 0.8956 0.8960 0.9016 0.9013 0.9017

0.95 0.9438 0.9582 0.9455 0.9455 0.9460 0.9501 0.9501 0.9507
0.99 0.9873 0.9943 0.9883 0.9883 0.9884 0.9901 0.9901 0.9909

50 0.90 0.8965 0.9048 0.8989 0.8988 0.8990 0.9014 0.9014 0.9016
0.95 0.9465 0.9556 0.9475 0.9476 0.9477 0.9494 0.9496 0.9499
0.99 0.9876 0.9911 0.9879 0.9877 0.9879 0.9883 0.9883 0.9886

(BV1): X1|D ∼ N(0,D2) and X2|D ∼ Gamma(D−1,1).
(BV2): X1|D ∼ Poisson(D) and X2|D ∼ Poisson(D−1).
(BV3): X1|D ∼ Gamma(D,1) and X2|D ∼ Gamma(D−1,1).
(BV4): X1 and X2 are independent copies of a χ2

1 random variable.
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TABLE 2
Simulated coverage probabilities for two-dimensional examples

n Level OEL EEL1 BEL AEL EEL2 BEL∗ AEL∗ EEL∗
2

BV1 10 0.90 0.7134 0.8118 0.7965 0.9777 0.8212 0.7561 0.8350 0.7989
0.95 0.7717 0.8758 0.8407 1.000 0.8718 0.8000 0.8941 0.8478
0.99 0.8484 0.9422 0.8945 1.000 0.9268 0.8570 0.9680 0.9083

30 0.90 0.8549 0.8888 0.8824 0.8856 0.8872 0.8786 0.8813 0.8822
0.95 0.9120 0.9426 0.9313 0.9348 0.9361 0.9296 0.9336 0.9337
0.99 0.9689 0.9868 0.9772 0.9798 0.9796 0.9757 0.9783 0.9779

50 0.90 0.8699 0.8917 0.8869 0.8874 0.8894 0.8859 0.8869 0.8886
0.95 0.9259 0.9428 0.9354 0.9361 0.9374 0.9344 0.9351 0.9363
0.99 0.9806 0.9908 0.9846 0.9852 0.9856 0.9839 0.9848 0.9851

BV2 10 0.90 0.7513 0.8521 0.8035 0.8573 0.8282 0.7942 0.8451 0.8229
0.95 0.8061 0.9095 0.8627 0.9397 0.8861 0.8499 0.9103 0.8833
0.99 0.8879 0.9693 0.9202 1.000 0.9430 0.9116 0.9721 0.9405

30 0.90 0.8714 0.9019 0.8864 0.8872 0.8897 0.8864 0.8881 0.8906
0.95 0.9256 0.9549 0.9406 0.9413 0.9428 0.9403 0.9409 0.9432
0.99 0.9789 0.9907 0.9823 0.9826 0.9838 0.9820 0.9829 0.9836

50 0.90 0.8826 0.9037 0.8935 0.8937 0.8954 0.8938 0.8939 0.8952
0.95 0.9348 0.9528 0.9423 0.9426 0.9438 0.9423 0.9425 0.9435
0.99 0.9839 0.9914 0.9862 0.9864 0.9871 0.9861 0.9864 0.9864

BV3 10 0.90 0.7001 0.7979 0.7979 1.000 0.8162 0.7333 0.8363 0.7911
0.95 0.7608 0.8581 0.8374 1.000 0.8624 0.7765 0.8922 0.8375
0.99 0.8331 0.9263 0.8817 1.000 0.9151 0.8286 0.9639 0.8942

30 0.90 0.8429 0.8775 0.8749 0.8789 0.8788 0.8719 0.8780 0.8764
0.95 0.9015 0.9363 0.9266 0.9326 0.9319 0.9221 0.9282 0.9280
0.99 0.9648 0.9817 0.9740 0.9776 0.9760 0.9709 0.9750 0.9740

50 0.90 0.8619 0.8836 0.8807 0.8820 0.8836 0.8787 0.8801 0.8808
0.95 0.9212 0.9403 0.9351 0.9364 0.9379 0.9325 0.9346 0.9347
0.99 0.9758 0.9848 0.9810 0.9816 0.9817 0.9802 0.9806 0.9810

BV4 10 0.90 0.6408 0.7371 0.7882 1.000 0.7940 0.6240 0.8382 0.7596
0.95 0.7030 0.8027 0.8212 1.000 0.8377 0.6637 0.8896 0.8051
0.99 0.7788 0.8808 0.8580 1.000 0.8914 0.7129 0.9576 0.8602

30 0.90 0.8229 0.8595 0.8709 0.8820 0.8760 0.8598 0.8738 0.8681
0.95 0.8857 0.9191 0.9215 0.9329 0.9255 0.9079 0.9212 0.9170
0.99 0.9520 0.9734 0.9689 0.9819 0.9717 0.9591 0.9696 0.9667

50 0.90 0.8494 0.8707 0.8758 0.8783 0.8783 0.8716 0.8755 0.8740
0.95 0.9060 0.9251 0.9256 0.9287 0.9282 0.9221 0.9259 0.9251
0.99 0.9675 0.9807 0.9781 0.9797 0.9793 0.9753 0.9778 0.9765

The D in BV1, BV2 and BV3 is a uniform random variable on [1,2] which
is used to induce dependence between X1 and X2. We included n = 10,30,50
representing, respectively, small, medium and large sample sizes. Each entry in
the tables is based on 10,000 random samples of size n, shown in column 2, from
the distribution in column 1. Here are our observations:
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(1) BEL, AEL and EEL2: For n = 30 and 50, these three theoretical second
order methods are extremely close in terms of coverage accuracy. This is to be
expected as their coverage errors are all O(n−2) which is very small for medium
or large sample sizes.

For n = 10, the AEL statistic suffers from a boundedness problem [Emerson
and Owen (2009)] which may lead to trivial 100% confidence regions or inflated
coverage probabilities. This explains the 1.000’s in various places in the AEL col-
umn and renders the AEL unsuitable for such small sample sizes. Between BEL
and EEL2, the latter is more accurate, especially for the 2-d examples.

Overall, EEL2 is the most accurate theoretical second order method.
(2) BEL∗, AEL∗ and EEL∗

2: For n = 30 and 50, the AEL∗ and EEL∗
2 are slightly

more accurate than the BEL∗, especially in 2-d examples.
For n = 10, the AEL∗ has higher coverage probabilities but these are inflated

by and unreliable due to the boundedness problem. Also, EEL∗
2 is more accurate

than BEL∗. For the “2-d chi-square” in example BV4, EEL∗
2 is at least 12% more

accurate than the BEL∗.
Overall, EEL∗

2 is the most reliable and accurate among the three.
(3) OEL and EEL1: These first order methods are simpler than the second order

methods as they do not require computation of the theoretical or estimated Bartlett
correction factor. The EEL1 is consistently and substantially more accurate than
the OEL. In particular, for 2-d examples with n = 10, the EEL1 is more accurate
by about 10%.

(4) EEL1 versus EEL∗
2: These are the most accurate practical first and second

order methods, respectively. Surprisingly, EEL1 turns out to be slightly more accu-
rate than EEL∗

2. Only the (impractical) theoretical second order EEL2 is compara-
ble to EEL1 in accuracy. This intriguing observation may be partially explained by
Corollary 3.1 where it was shown that l∗1 (θ0) = l(θ0)[1 + l(θ0)n

−1 + O(n−3/2)],
which resembles the Bartlett corrected OEL in (2.9) with the constant b replaced
by l(θ0). However, this does not account for its good accuracy for small sample
sizes, which is due to the fact that EEL1 makes good use of the dimension in-
formation through the composite similarity mapping. We will further elaborate on
this in Section 4.2.

(5) EEL1: Overall, it is the most accurate among the eight methods that we have
compared. Importantly, it is not just accurate in relative terms. It is sufficiently ac-
curate in absolute terms for practical applications in most 1-d examples, including
cases of n = 10. It is also quite accurate for 2-d examples when n = 30,50.

4.2. High-dimensional examples. Table 3 contains simulated coverage prob-
abilities for the mean of three high-dimensional multivariate normal distributions
(d = 5,10,15). Our main interest here is to probe the small sample behaviour of
all methods in high-dimension situations. Because of this, we have included only
combinations of n and d where n/d , which we will refer to as the effective sample
size, is very small (2 ≤ n/d ≤ 10). The following are our observations based on
Table 3:
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TABLE 3
Simulated coverage probabilities for the mean of d-dimensional multivariate normal distributions

n Level OEL EEL1 BEL AEL EEL2 BEL∗ AEL∗ EEL∗
2

d = 5 10 0.90 0.3007 0.5897 0.3839 1.000 0.5306 0.3691 1.000 0.5005
0.95 0.3368 0.6794 0.4135 1.000 0.5842 0.4028 1.000 0.5500
0.99 0.3946 0.7984 0.4498 1.000 0.6642 0.4422 1.000 0.6287

30 0.90 0.7790 0.8862 0.8258 0.8554 0.8455 0.8273 0.8585 0.8468
0.95 0.8497 0.9436 0.8880 0.9208 0.9047 0.8884 0.9256 0.9052
0.99 0.9337 0.9881 0.9532 0.9889 0.9629 0.9539 0.9899 0.9634

50 0.90 0.8476 0.9036 0.8752 0.8803 0.8820 0.8757 0.8808 0.8825
0.95 0.9089 0.9522 0.9297 0.9341 0.9349 0.9297 0.9349 0.9354
0.99 0.9728 0.9913 0.9804 0.9833 0.9830 0.9804 0.9839 0.9831

d = 10 20 0.90 0.1889 0.5367 0.2845 1.000 0.4297 0.2823 1.000 0.4235
0.95 0.2281 0.6260 0.3209 1.000 0.4905 0.3191 1.000 0.4824
0.99 0.2895 0.7708 0.3747 1.000 0.5783 0.3727 1.000 0.5717

30 0.90 0.4689 0.7752 0.5944 1.000 0.6750 0.5954 1.000 0.6752
0.95 0.5432 0.8594 0.6627 1.000 0.7492 0.6635 1.000 0.7480
0.99 0.6698 0.9442 0.7670 1.000 0.8514 0.7675 1.000 0.8527

50 0.90 0.7097 0.8806 0.7921 0.9531 0.8189 0.7933 0.9582 0.8198
0.95 0.7959 0.9393 0.8577 0.9968 0.8827 0.8588 0.9974 0.8838
0.99 0.9027 0.9864 0.9392 1.000 0.9546 0.9396 1.000 0.9549

d = 15 30 0.90 0.1224 0.4850 0.2199 1.000 0.3581 0.2196 1.000 0.3569
0.95 0.1513 0.5761 0.2504 1.000 0.4130 0.2502 1.000 0.4124
0.99 0.2155 0.7490 0.3100 1.000 0.5077 0.3099 1.000 0.5054

50 0.90 0.4769 0.7983 0.6177 1.000 0.6883 0.6191 1.000 0.6894
0.95 0.5665 0.8776 0.6971 1.000 0.7630 0.6985 1.000 0.7646
0.99 0.7065 0.9600 0.8097 1.000 0.8682 0.8103 1.000 0.8686

100 0.90 0.7696 0.9031 0.8325 0.9309 0.8472 0.8328 0.9341 0.8484
0.95 0.8484 0.9514 0.8985 0.9852 0.9086 0.8989 0.9865 0.9096
0.99 0.9405 0.9900 0.9639 1.000 0.9693 0.9641 1.000 0.9692

(1) For these high-dimension examples, EEL1 is the most accurate, surpassing
even the theoretical second order EEL2. Whereas the OEL uses dimension d only
once through the degrees of freedom in the chi-square calibration, EEL1 uses d

twice. The expansion factor for EEL1 is 1 + l(θ)/2n which implicitly depends
on d; the 100(1 − α)% EEL1 confidence region is just the 100(1 − α)% OEL
confidence region expanded by a factor of 1 + χ2

d,1−α/2n. Hence, EEL1 uses d

through the chi-square calibration of the OEL region and the expansion factor.
For a fixed α ∈ (0,1), the chi-square quantile χ2

d,1−α and consequently the EEL1

expansion factor 1 + χ2
d,1−α/2n are increasing functions of d . Hence at a fixed n,

EEL1 automatically provides higher degrees of expansion for higher dimensions
where this is indeed needed.

(2) For multivariate normal means, Table 3 shows that EEL1 is accurate when
the effective sample size satisfies n/d ≥ 5. However, when the underlying distribu-
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tion is heavily skewed, the effective sample size needed to achieve similar accuracy
needs to be 15 or larger. See Table 2 for some 2-d examples to this effect.

(3) The AEL and AEL∗ broke down in most cases with 100% coverage proba-
bilities. This further illustrates the observation that AEL methods may not be suit-
able when the effective sample size is small. Among OEL, BEL, EEL2 and EEL∗

2,
the two EEL methods are consistently more accurate but they are not sufficiently
accurate for practical applications except for the case of (d, n) = (5,50).

4.3. Confidence region size comparison. For the 1-d examples in Table 1, we
computed the average interval lengths of the five practical methods OEL, EEL1,
BEL∗, AEL∗ and EEL∗

2. Table 4 gives the average length of 1000 intervals of each
method and n combination for the N(0,1) case. For n = 10, the average for AEL∗
is not available due to occurrences of unbounded intervals; the number beside the
N/A is the proportion of times where this occurred. Not surprisingly, intervals
with higher coverage probabilities in Table 1 have larger average lengths. That of
EEL1 is the largest but it is not excessive relative to averages of other methods.
As such, length is not a big disadvantage for EEL1 as other methods have lower
coverage probabilities.

For d > 1, sizes of the confidence regions are difficult to determine. But the
relative size of an EEL region to the corresponding OEL region can be measured
by the expansion factor. Table 5 contains values of the expansion factor for 95%
EEL1 regions at some combinations of n and d . The expansion factor increases
when d goes up but decreases when n goes up, responding to the need for more
expansion in higher dimension situations and the need for less expansion when the
sample size is large.

Finally, we briefly comment on the computation concerning the EEL l∗1(θ). To
compute l∗1 (θ) at a given θ ∈ R

d which is just OEL l(θ ′) where θ ′ satisfies equation
hC

n (θ ′) = θ , we need to find the multivariate root for function f (θ ′) = hC
n (θ ′) −

TABLE 4
Average lengths of EL confidence intervals for N(0,1) mean

n Level OEL EEL1 BEL∗ AEL∗ EEL∗
2

10 0.90 0.965 1.096 1.044 N/A (0.026) 1.077
0.95 1.149 1.370 1.242 N/A (0.058) 1.298
0.99 1.499 1.996 1.615 N/A (0.172) 1.731

30 0.90 0.589 0.616 0.606 0.606 0.608
0.95 0.706 0.752 0.726 0.727 0.731
0.99 0.940 1.044 0.967 0.969 0.976

50 0.90 0.460 0.473 0.467 0.468 0.468
0.95 0.551 0.572 0.560 0.560 0.561
0.99 0.732 0.780 0.744 0.744 0.747
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TABLE 5
Values of expansion factor for 95% EEL1 confidence regions

n d = 1 d = 2 d = 3 d = 5 d = 10 d = 15

10 1.192 1.299 1.390 1.553 N/A N/A

15 1.128 1.199 1.260 1.369 1.610 N/A

20 1.096 1.149 1.195 1.276 1.457 1.624
30 1.064 1.099 1.130 1.184 1.305 1.416
50 1.038 1.059 1.078 1.110 1.183 1.249

θ . This is seen as a nonlinear multivariate problem but it is easily reduced to a
simpler univariate problem due to the fact that θ ′ ∈ [θ̃ , θ ] (see Lemma 3.2 and its
proof). When using l∗1 (θ) for hypothesis testing or when simulating the coverage
probabilities of the EEL confidence regions, we may use the fact that l∗1(θ) ≤ l(θ).
Hence, we can compute l(θ) first and if it is smaller than the critical value, then
there is no need to compute l∗1(θ) because it must also be smaller than the critical
value. Incorporating these observations, our R code for computing the EEL runs
quite fast.

5. Concluding remarks. The geometric motivation of the domain expansion
method is simple: since the OEL confidence region tends to be too small, an expan-
sion of the OEL confidence region should help to ease its undercoverage problem.
What needed to be determined then are the manner in which the expansion should
take place and the amount of expansion that would be appropriate. The compos-
ite similarity mapping of the present paper is an effective way to undertake the
expansion as it solves the mismatch problem and retains all important geometric
characteristics of the OEL contours. With the impressive numerical accuracy of
the EEL1, the particular amount of expansion represented by its expansion factor
(3.4) would be appropriate for general applications of the EEL method.

The EEL is readily constructed for parameters defined by general estimating
equations. For such parameters, we use the maximum empirical likelihood estima-
tor (MELE) θ̃ to define the composite similarity mapping in (3.3). Under certain
conditions on the estimating function which also guarantee the

√
n-consistency of

the MELE, Lemma 3.2 and all three theorems of this paper remain valid. A de-
tailed treatment of the EEL in this setting may be found in a technical report by
Tsao and Wu (2013). See also Tsao (2013) for an EEL for estimating equations
under the simple similarity transformation (2.11). For parameters outside of the
standard estimating equations framework, the EEL on full parameter space may
also be defined through a composite similarity mapping centred on the MELE, but
its asymptotic properties need to be investigated for each case separately.

To conclude, the simple first order EEL1 is a practical and reliable method that is
remarkably accurate when the effective sample size is not too small. It is also easy
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to use. Hence, we recommend it for real applications of the empirical likelihood
method. An intriguing question that remains largely unanswered is why this first
order method has such good accuracy relative to the OEL and the second order
methods. Corollary 3.1 and the first remark in Section 4.2 suggested, respectively,
possible asymptotic and finite sample reasons, but a more convincing theoretical
explanation is needed.

APPENDIX

We give proofs for lemmas and theorems below.

PROOF OF THEOREM 3.1. Assumption (A1) and n > d imply that, with prob-
ability 1, the convex hull of the Xi is nondegenerate. This implies the OEL l(θ)

has an open domain �n ⊂ R
d , a condition that is required for the implementation

of OEL domain expansion via composite similarity mapping. Subsequent proofs
all require this condition which, hereafter, is assumed whenever (A1) is, and for
brevity will not be explicitly restated.

Part (i) is a simple consequence of the observation that γ (n, l(θ)) ≥ 1. To
show (ii), let n and τ be fixed, and consider the level-τ OEL contour c(τ ) de-
fined by (3.1). For θ ∈ c(τ ), l(θ) = τ . Thus, the composite similarity mapping hC

n

simplifies to hC
n (θ) = θ̃ + γn(θ − θ̃ ) for θ ∈ c(τ ) where γn = γ (n, τ ) is constant.

This is the simple similarity mapping in (2.11).
To prove (iii), we need to show that hC

n :�n → R
d is both surjective and in-

jective. We first show it is surjective, that is, for any given θ ′ ∈ R
d , there exists a

θ ′′ ∈ �n such that hC
n (θ ′′) = θ ′. Consider the ray originating from θ̃ and through θ ′.

Introduce a univariate parametrization of this ray,

θ = θ(ζ ) = θ̃ + ζ 
θ,

where 
θ is the unit vector (θ ′ − θ̃ )/‖θ ′ − θ̃‖ in the direction of the ray and ζ ∈
[0,∞) is the distance between θ (a point on the ray) and θ̃ . Define

ζb = inf
{
ζ : ζ ∈ [0,+∞) and θ(ζ ) /∈ �n

}
.

Then, θ(ζ ) ∈ �n for all ζ ∈ [0, ζb). But θ(ζb) /∈ �n because �n is open. It follows
that ζb > 0 as it represents the distance between θ̃ , an interior point of the open �n,
and θ(ζb) which is a boundary point of �n.

Now, consider the following univariate function defined on [0, ζb):

f (ζ ) = γ
(
n, l

(
θ(ζ )

))
ζ.

We have f (0) = γ (n, l(θ̃ )) × 0 = γ (n,0) × 0 = 0. Also, by (3.6),

lim
ζ→ζb

f (ζ ) = lim
ζ→ζb

γ
(
n, l

(
θ(ζ )

))
ζ = ζb lim

ζ→ζb

γ
(
n, l

(
θ(ζ )

)) = +∞.

Hence, by the continuity of f (ζ ), for ζ ′ = ‖θ ′ − θ̃‖ ∈ [0,+∞), there exists a ζ ′′ ∈
[0, ζb) such that f (ζ ′′) = ζ ′. Let θ ′′ = θ(ζ ′′). Then θ ′′ ∈ �n since ζ ′′ ∈ [0, ζb).
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Also, hC
n (θ ′′) = θ̃ + γ (n, l(θ ′′))(θ ′′ − θ̃ ) = θ ′. Hence, θ ′′ is the desired point in �n

that satisfies hC
n (θ ′′) = θ ′ and hC

n is surjective.
To show that hC

n is also injective, first note that for a given OEL contour c(τ ), the
mapping hC

n : c(τ ) → c∗(τ ) is injective because for θ ∈ c(τ ), hC
n is equivalent to

the similarity mapping in (2.11) which is bijective from R
d to R

d . By the partition
of the OEL domain �n in (3.2), two different points θ1, θ2 from �n are either [a]
on the same contour c(τ ) where τ = l(θ1) = l(θ2) or [b] on two separate contours
c(τ1) and c(τ2), respectively, where τ1 = l(θ1) �= l(θ2) = τ2. Under [a], hC

n (θ1) �=
hC

n (θ2) because hC
n : c(τ ) → c∗(τ ) is injective. Under [b], hC

n (θ1) �= hC
n (θ2) also

holds as (3.5) implies c∗(τ1) ∩ c∗(τ2) = ∅. �

PROOF OF LEMMA 3.1. For a fixed θ ∈ �n, l(θ) is a fixed quantity in
[0,+∞). Define an OEL confidence region for the mean using l(θ) as follows:

Cθ = {
θ ′ : θ ′ ∈ R

d and l
(
θ ′) ≤ l(θ)

}
.(A.1)

Then, Cθ is a convex set in R
d . See Owen (1990) and Hall and La Scala (1990).

Since l(θ̃ ) = 0 and l(θ) ≥ 0, θ̃ is in Cθ . Further, by construction, θ itself is also
in Cθ . It follows from the convexity of Cθ that for any α ∈ [0,1],

θ∗ = (1 − α)θ̃ + αθ = θ̃ + α(θ − θ̃ )

must also be in Cθ . By (A.1), l(θ∗) ≤ l(θ). Thus, l(θ̃ + α(θ − θ̃ )) ≤ l(θ). �

PROOF OF LEMMA 3.2. Since θ0 = hC
n (θ ′

0) = θ̃ + γ (n, l(θ ′
0))(θ

′
0 − θ̃ ),

θ0 − θ̃ = γ
(
n, l

(
θ ′

0
))(

θ ′
0 − θ̃

)
.(A.2)

Noting that γ (n, l(θ)) ≥ 1, (A.2) implies θ ′
0 is on the ray originating from θ̃ and

through θ0 and ‖θ0 − θ̃‖ ≥ ‖θ ′
0 − θ̃‖. Hence, θ ′

0 ∈ [θ̃ , θ0].
Without loss of generality, we assume that θ0 ∈ �n. See Owen (1990). By the

convexity of �n, [θ̃ , θ0] ⊂ �n. It follows from Lemma 3.1 that

0 = l(θ̃ ) ≤ l
(
θ ′

0
) ≤ l(θ0).

This and the fact that l(θ0) = Op(1) imply l(θ ′
0) = Op(1). Hence,

γ
(
n, l

(
θ ′

0
)) = 1 + l(θ ′

0)

2n
= 1 + Op

(
n−1)

.(A.3)

Replacing (θ ′
0 − θ̃ ) in (A.2) with (θ ′

0 − θ0 + θ0 − θ̃ ), we obtain[
1 − γ

(
n, l

(
θ ′

0
))]

(θ0 − θ̃ ) = γ
(
n, l

(
θ ′

0
))(

θ ′
0 − θ0

)
.(A.4)

By θ̃ − θ0 = Op(n−1/2), (A.3) and (A.4), we have θ ′
0 − θ0 = Op(n−3/2). �

It may be verified using the same steps in the above proof that if the ex-
pansion factor γ (n, l(θ)) in (3.4) is replaced with a more general γ (n, l(θ)) =
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1 + Op(n−m) such as that in (3.10) where m > 0, then Lemma 3.2(i) still holds
and (ii) becomes θ ′

0 − θ0 = Op(n−m−1/2). In particular, under expansion factor
γs(n, l(θ)) in (3.11), we also have θ ′

0 − θ0 = Op(n−3/2).

PROOF OF THEOREM 3.2. Differentiating both sides of (2.2), we obtain
∂l(θ)/∂θ = −2nλT . By (ii) in Lemma 3.2, θ ′

0 − θ0 = Op(n−3/2). Applying Tay-
lor’s expansion to l∗(θ0) = l(θ0 + (θ ′

0 − θ0)) in (3.8), we have

l∗(θ0) = l(θ0) − 2nλ(θ0)
T (

θ ′
0 − θ0

) + op

(∥∥(
θ ′

0 − θ0
)∥∥)

.(A.5)

By Owen (1990), λ(θ0) = Op(n−1/2). This and (A.5) imply that l∗(θ0) = l(θ0) +
Op(n−1), which together with (2.4), imply Theorem 3.2. �

For cases where θ ′
0 −θ0 = op(n−1/2), we have l∗(θ0) = l(θ0)+op(1) which also

implies Theorem 3.2. Since θ ′
0 − θ0 = op(n−1/2) under expansion factor (3.10),

Theorem 3.2 also holds for EEL defined by expansion factor (3.10).

PROOF OF THEOREM 3.3. First, note that γs(n, l(θ)) in (3.11) satisfies con-
ditions (3.5) and (3.6). Thus it may be verified that Theorem 3.1, Lemma 3.2 and
Theorem 3.2 hold under the composite similarity mapping given by γs(n, l(θ)).
In particular, the EEL corresponding to this composite similarity mapping, l∗s (θ0),
converges in distribution to a χ2

d random variable.
Since δ(n) = O(n−1/2) and l(θ ′

0) = l∗s (θ0) = Op(1), we have[
l
(
θ ′

0
)]δ(n) = 1 + Op

(
n−1/2)

.(A.6)

With expansion factor γs(n, l(θ)) in (3.11), equation (A.2) becomes

θ0 − θ̃ = γs

(
n, l

(
θ ′

0
))(

θ ′
0 − θ̃

)
.

This implies

θ ′
0 − θ0 = b[l(θ ′

0)]δ(n)

2n

(
θ̃ − θ ′

0
)

(A.7)

= b[l(θ ′
0)]δ(n)

2n
(θ̃ − θ0) + b[l(θ ′

0)]δ(n)

2n

(
θ0 − θ ′

0
)
.

It follows from (A.6), (A.7) and θ ′
0 − θ0 = Op(n−3/2) that

θ ′
0 − θ0 = b[l(θ ′

0)]δ(n)

2n
(θ̃ − θ0) + Op

(
n−5/2) = b

2n
(θ̃ − θ0) + Op

(
n−2)

.(A.8)

By assumptions (A1) and (A2), the OEL l(θ0) has expansion

l(θ0) = n(θ̃ − θ0)
T �−1

0 (θ̃ − θ0) + Op

(
n−1/2)

,(A.9)

and the Lagrange multipliers λ at θ0 can be written as

λ = λ(θ0) = �−1
0 (θ̃ − θ0) + Op

(
n−1)

.(A.10)
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See Hall and La Scala (1990) and DiCiccio, Hall and Romano (1991). By (A.8),
(A.10) and the Taylor expansion (A.5), we have

l∗s (θ0) = l
(
θ0 + (

θ ′
0 − θ0

))
= l(θ0) − 2nλ(θ0)

T (
θ ′

0 − θ0
) + op

(∥∥(
θ ′

0 − θ0
)∥∥)

(A.11)

= l(θ0) − 2nλ(θ0)
T b

2n
(θ̃ − θ0) + Op

(
n−3/2)

.

It follows from (A.9), (A.10), (A.11) and θ̃ − θ0 = Op(n−1/2) that

l∗s (θ0) = l(θ0) − b

n

{
n
[
(θ̃ − θ0)

T �−1
0 + Op

(
n−1)]

(θ̃ − θ0)
}

+ Op

(
n−3/2)

(A.12)

= l(θ0)
[
1 − bn−1 + Op

(
n−3/2)]

.

This proves (3.12) and shows that l∗s (θ0) is equivalent to the BEL in the left-hand
side of (2.9). Finally, (3.13) follows from (3.12) and (2.9). �

PROOF OF COROLLARY 3.1. It is convenient to view the expansion factor of
the first order EEL as a special case of that for the second order EEL (3.11) where
b = 1 and δ(n) = 1. The condition of δ(n) = O(n−1/2) imposed on the δ(n) in
(3.11) is not needed here. Noting that l∗(θ0) = l(θ0)+Op(n−1) and l(θ ′

0) = l∗(θ0),
equation (A.6) in the proof Theorem 3.3 is now

l
(
θ ′

0
) = l(θ0) + Op

(
n−1)

.

Thus equation (A.8) becomes

θ ′
0 − θ0 = l(θ0)

2n
(θ̃ − θ0) + Op

(
n−5/2)

.

Using the above equation and following the steps given by (A.9) to (A.12), we
obtain Corollary 3.1. �
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