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RATES OF CONVERGENCE OF THE ADAPTIVE LASSO
ESTIMATORS TO THE ORACLE DISTRIBUTION AND HIGHER

ORDER REFINEMENTS BY THE BOOTSTRAP

BY A. CHATTERJEE1 AND S. N. LAHIRI2

Indian Statistical Institute and North Carolina State University

Zou [J. Amer. Statist. Assoc. 101 (2006) 1418–1429] proposed the Adap-
tive LASSO (ALASSO) method for simultaneous variable selection and es-
timation of the regression parameters, and established its oracle property. In
this paper, we investigate the rate of convergence of the ALASSO estimator
to the oracle distribution when the dimension of the regression parameters
may grow to infinity with the sample size. It is shown that the rate critically
depends on the choices of the penalty parameter and the initial estimator,
among other factors, and that confidence intervals (CIs) based on the oracle
limit law often have poor coverage accuracy. As an alternative, we consider
the residual bootstrap method for the ALASSO estimators that has been re-
cently shown to be consistent; cf. Chatterjee and Lahiri [J. Amer. Statist. As-
soc. 106 (2011a) 608–625]. We show that the bootstrap applied to a suitable
studentized version of the ALASSO estimator achieves second-order correct-
ness, even when the dimension of the regression parameters is unbounded.
Results from a moderately large simulation study show marked improvement
in coverage accuracy for the bootstrap CIs over the oracle based CIs.

1. Introduction. Consider the regression model

yi = x′
iβ + εi, i = 1, . . . , n,(1.1)

where yi is the response, xi = (xi,1, . . . , xi,p)′ is a p dimensional covariate vector,
β = (β1, . . . , βp)′ is the regression parameter and {εi : i = 1, . . . , n} are indepen-
dent and identically distributed (i.i.d.) errors. Let β̃n denote a root-n consistent
estimator of β , such as the ordinary least squares (OLS) estimator of β . The Adap-
tive Lasso (ALASSO) estimator of β is defined as the minimizer of the weighted
�1-penalized least squares criterion function,

β̂n = argmin
u∈Rp

n∑
i=1

(
yi − x′

iu
)2 + λn

p∑
j=1

|uj |
|β̃j,n|γ

,(1.2)
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where λn > 0 is a regularization parameter, γ > 0 and β̃j,n is the j th compo-
nent of β̃n. The ALASSO provides an improvement over the LASSO and related
bridge estimators that often require strong regularity conditions on the design vec-
tors xi ’s for consistent variable selection and that have nontrivial bias in the se-
lected nonzero components; cf. Knight and Fu (2000), Fan and Li (2001), Yuan
and Lin (2007), Zhao and Yu (2006). To highlight some of the key properties of
the ALASSO, suppose for the time being, that the first p0 components of the true
regression parameter β are nonzero and the last (p − p0) components are zero,
where 1 ≤ p0 < p. Let Ĩn = {j : 1 ≤ j ≤ p, β̂j,n �= 0} denote the variables selected
by the ALASSO, where β̂j,n is the j th component of β̂n. Zou (2006) showed that
under some mild regularity conditions, for fixed p, as n → ∞,

P(Ĩn = In) → 1 and
√

n
(
β̂

(1)

n − β(1)) d→ N
(
0, σ 2C−1

11

)
,(1.3)

where In = {1, . . . , p0}, β̂
(1)

n = (β̂1,n, . . . , β̂p0,n), β(1) = (β1, . . . , βp0) and C11
is the upper left p0 × p0 submatrix of C ≡ limn→∞ n−1 ∑n

i=1 xix′
i . Thus, the

ALASSO method enjoys the oracle property [cf. Fan and Li (2001)], that is, it
can correctly identify the set of nonzero components of β , with probability tend-
ing to 1 and at the same time, estimate the nonzero components accurately, with
the same precision as that of the OLS method, in the limit.

Although the oracle property of the ALASSO estimators allows one to carry
out statistical inference on the nonzero regression parameters, following variable
selection, accuracy of of the resulting inference remains unknown. In this paper,

we investigate the rate of convergence of
√

n(β̂
(1)

n − β(1)) to the oracle limit and
show that the penalization term in (1.2) induces a substantial amount of bias which,
although vanishes asymptotically, can lead to a poor rate of convergence. As a re-
sult, large sample inference based on the oracle distribution is not very accurate.
As an alternative, we consider the bootstrap method or more precisely, the residual
bootstrap method [cf. Efron (1979), Freedman (1981)], that is, the most common
version of the bootstrap in a regression model like (1.1). Recently, Chatterjee and
Lahiri (2010, 2011a) showed that while the residual bootstrap drastically fails for
the LASSO. Rather surprisingly, it provides a valid approximation to the distribu-
tion of the centered and scaled ALASSO-estimator. Notwithstanding its success in
capturing the first order limit, the accuracy of the bootstrap for the ALASSO re-
mains unknown. In this paper, we also study the rate of bootstrap approximation to
the distribution of the ALASSO estimators, with and without studentization, and
develop ways to improve it, all in the more general framework where the number
of regression parameters p = pn is allowed to go to infinity with the sample size
n.

To describe the main findings of the paper, consider (1.1) where p, xi ’s and β
are allowed to depend on n (but we often suppress the subscript n to ease no-
tation) and let Tn = √

nDn(β̂n − β), where Dn is a known q × p matrix with
tr(DnD′

n) = O(1) and q ∈ N = {1,2, . . .} is an integer, not depending on n. Thus,
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Tn is the vector of q linear functions of n1/2(β̂n − β). Under the regularity con-
ditions of Section 3, {Tn :n ≥ 1} is asymptotically normal with mean zero and
q × q asymptotic variance �n (say). We consider the error of oracle-based normal
approximation,

�n ≡ sup
B∈Cq

∣∣P(Tn ∈ B) − 	(B;�n)
∣∣,

where, for k ≥ 1, Ck is the collection of all convex measurable subsets of R
k and

	(·;A) is the Gaussian measure on R
k with mean zero and k × k covariance ma-

trix A. Theorem 3.1 below gives an upper bound on �n,

�n ≤ const
[
n−1/2 + ‖bn‖ + cn

]
,(1.4)

where bn is a bias term that results from the penalization scheme in (1.2) and
where cn ∈ (0,∞) is determined by the initial

√
n-consistent estimator β̃n and the

tuning parameter γ in (1.2). The magnitude of both these terms critically depend
on the choice of the penalization parameter λn and the exponent γ , and either of
them can make the error rate sub-optimal, that is, worse than the rate O(n−1/2)

that is attained by the oracle based OLS estimator. Further, Theorem 3.2 shows
that under some additional mild conditions, the rate in (1.4) is exact, that is, �n

is also bounded below by a constant multiple of the sum of the three terms on the
right-hand side of (1.4). Therefore, it follows that although the ALASSO estimator
converges to the oracle distribution in the limit, the convergence rate can be sub-
optimal. A direct implication of this result is that large sample tests and CIs based
on the normal limit law of the ALASSO estimator may perform poorly, depending
on the choice of the regularization parameters λn and γ . The simulation results of
Section 6 confirm this finite samples.

Next we consider properties of bootstrap approximations to the distributions of
Tn and Rn, a computationally simple studentized version of Tn, given by Rn = Tn

σ̂n
,

where σ̂ 2
n is the sample variance of the ALASSO based residuals. Here we use a

scalar studentizing factor instead of the usual matrix factor [cf. Lahiri (1994)] to
reduce the computational burden. Fortunately, this does not impact the accuracy
of the bootstrap approximation as σ 2 is the only unknown population parameter
in the limit distribution of Tn. Theorem 4.1 below shows that under fairly gen-
eral conditions, the rate of bootstrap approximation to the distribution of Tn is
Op(n−1/2). Thus, the bootstrap corrects for the effects of ‖bn‖ and cn in (1.4), and
produces a more “accurate” approximation to the distribution of Tn than the oracle
based normal approximation. As a consequence, bootstrap percentile CIs based on
the ALASSO have a better performance compared to the large sample normal CIs
based on the oracle.

The results on the studentized statistic Rn are more encouraging. Theorem 4.2
shows that the bootstrap applied to Rn has an error rate of op(n−1/2) which out-
performs the best possible rate, namely O(n−1/2) of normal approximation, irre-
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spective of the order of the terms ‖bn‖ and cn in (1.4). Thus, the bootstrap ap-
plied to the studentized statistic Rn achieves second order correctness. In con-
trast, the normal approximation to the distribution of Rn has an error of the order
O(n−1/2 + ‖bn‖ + cn), as in the case of Tn. As a result, bootstrap percentile-t CIs
based on Rn are significantly more accurate than their counterparts based on nor-
mal critical points. This observation is also corroborated by the simulation results
of Section 6.

In Section 4.4, a further refinement is obtained. A more careful analysis of the
op(n−1/2)-term in Theorem 4.2 shows that although it outperforms the normal ap-
proximation over the class Cq , this rate does not always match the “optimal” level,
namely Op(n−1) that is attained by the bootstrap in the more classical setting of
estimation of regression parameters by the OLS method with a fixed p. Exploit-
ing the higher order analysis in the proof of Theorem 4.2, we carefully construct
a modified studentized version R̆n of β̂n. Theorem 4.3 shows that under slightly
stronger regularity conditions (compared to those in Theorem 4.2), the rate of boot-
strap approximation for the modified pivot R̆n is Op(n−1). This appears to be a
remarkable result because, even with a diverging p and with the regularization
step, the specially constructed pivotal quantity R̆n attains the same optimal rate
Op(n−1) as in the classical set up of linear regression with a fixed p.

The key technical tool used in the proofs of the results in Sections 3 and 4 is an
Edgeworth expansion (EE) result for the ALASSO estimator and its studentized
version, given in Theorem 7.2 of Section 7, which may be of independent interest.
The derivation of the EE critically depends on the choice of the initial estimator
in (1.2). In Sections 3 and 4, the initial estimator is chosen to be the OLS, which
necessarily requires p ≤ n. However, in many applications, it is important to al-
low p > n. In such situations, one may use a bridge estimator [cf. Knight and Fu
(2000)] in place of the OLS as the initial estimator. In Section 5, we show that
under some suitable regularity conditions, the bootstrap approximation to the dis-
tributions of Rn and R̆n continue to be second order correct even for p > n. Here,
p is allowed to grow at polynomial rates in n. More precisely, we allow p = O(na)

for any given a > 1, provided (in addition to certain other conditions) E|ε1|r < ∞
for a sufficiently large r , depending on a. Thus, the allowable growth rate of p

depends on the rate of decay of the tails of the error distribution.
The rest of the paper is organized as follows. We conclude this section with

a brief literature review. In Section 2, we introduce the theoretical framework and
state the regularity conditions. Results on the rate of convergence to the oracle limit
law is given in Section 3. The main results on the bootstrap are given in Section 4
for the p ≤ n case and in Section 5 for the p > n case. Section 6 presents the
results from a moderately large simulation study and it also gives two real data
examples. An outline of the proofs of the main results is given in Section 7 and
their detailed proofs are relegated to a supplementary material file; cf. Chatterjee
and Lahiri (2013).
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The literature on penalized regression in high dimensions has been growing
very rapidly in recent years; here we give only a modest account of the work that is
most related to the present paper due to space limitation. In two important papers,
Tibshirani (1996) introduced the LASSO, as an estimation and variable selection
method and Zou (2006) introduced the ALASSO method as an improvement over
the LASSO and established its oracle property. Other popular penalized estimation
and variable selection methods are given by the SCAD [Fan and Li (2001)] and
the Dantzig Selector [Candes and Tao (2007)]. Properties of the ALASSO and
the related methods have been investigated by many authors, including Knight
and Fu (2000), Meinshausen and Bühlmann (2006), Wainwright (2006), Bunea,
Tsybakov and Wegkamp (2007), Bickel, Ritov and Tsybakov (2009), Huang, Ma
and Zhang (2008), Huang, Horowitz and Ma (2008), Zhang and Huang (2008),
Meinshausen and Yu (2009), Pötscher and Schneider (2009), Chatterjee and Lahiri
(2011b), Gupta (2012) among others. Fan and Li (2001) introduced the important
notion of “oracle property” in the context of penalized estimation and variable
selection by the SCAD. Post model selection inference, including the bootstrap and
its variants have been investigated by Bach (2009), Chatterjee and Lahiri (2010,
2011a), Minnier, Tian and Cai (2011) and Berk et al. (2013), among others.

2. Preliminaries and the regularity conditions.

2.1. Theoretical set up. For deriving the theoretical results, we consider a gen-
eralized version of (1.1), where p = pn is allowed to depend on the sample size n.
To highlight this, we shall denote the true parameter value by βn and redefine

Tn = √
nDn(β̂n − βn),

where, as in Section 1, Dn is a q × pn (known) matrix satisfying tr(DnD′
n) =

O(1), and q does not depend on n. Also, for the p ≤ n case, that is, in Sections 3
and 4, we shall take the initial estimator β̃n to be the OLS of βn, given by β̃n =
[∑n

i=1 xix′
i]−1 ∑n

i=1 xiyi .
Let In = {j : 1 ≤ j ≤ pn,βj,n �= 0} be the (population) set of nonzero regres-

sion coefficients, where βj,n is the j th component of βn. The ALASSO yields an
estimator În ≡ {j : 1 ≤ j ≤ pn, β̂j,n �= 0} of In. For notational simplicity, we shall
assume that In = {1, . . . , p0n} and also suppress the dependence on n in pn, p0n,
etc., when there is no chance of confusion.

2.2. Conditions. Let Cn = n−1 ∑n
i=1 xix′

i . Write Cn = ((ci,j,n)) and C−1
n =

((c
i,j
n )), when it exists. Partition Cn as

Cn =
[

C11,n,C12,n

C21,n,C22,n

]
,
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where C11,n is p0 ×p0. Similarly, let D(1)
n is the q ×p0 submatrix of Dn, consisting

of the first p0 columns of Dn. Let x̄n = n−1 ∑n
i=1 xi and let x̄(1)

n denote the first p0
components of x̄n. Define

�(0)
n =

[
D(1)

n C−1
11,n

(
D(1)

n

)′σ 2 D(1)
n C−1

11,nx̄(1)
n · E

(
ε3

1

)
(
x̄(1)

)′C−1
11,n

(
D(1)

n

)′ · E
(
ε3

1

)
Var

(
ε2

1

)
]

,

which is used in condition (C.3) below. Let Ai· and A·j , respectively, denote the
ith row and the j th column of a matrix A, and let A′ denote the transpose of A. For
x, y ∈ R, let x ∨ y = max{x, y}, x+ = max{x,0} and sgn(x) = −1,0,1 according
as x < 0, x = 0 and x > 0. Let ι = √−1. Unless otherwise stated, limits in the
order symbols are taken by letting n → ∞.

We shall make use of the following conditions:

(C.1) There exists δ ∈ (0,1), such that for all n > δ−1,(
x′C12,ny

)2 ≤ δ2(
x′C11,nx

) · (
y′C22,ny

)
for all x ∈ R

p0 , y ∈ R
p−p0 .

(C.2) Let ηn and η11,n denote the smallest eigen-values of Cn and C11,n, respec-
tively.
(i) η11,n > Kn−a for some K ∈ (0,∞) and a ∈ [0,1].

(ii) max{n−1 ∑n
i=1(|xi,j |r + |x̃i,j |r ) : 1 ≤ j ≤ p} = O(1), where x̃i,j is the

j th element of (x′
iC

−1
n ) (for p ≤ n) and r ≥ 3 is an integer (to be speci-

fied in the statements of theorems).
(C.3) There exists a δ ∈ (0,1) such that for all n > δ−1:

(i) sup{x′D(1)
n C−1

11,n(D
(1)
n )

′
x : x ∈ R

q,‖x‖ = 1} < δ−1.

(ii) inf{x′D(1)
n C−1

11,n(D
(1)
n )′x : x ∈ R

q,‖x‖ = 1} > δ.

(ii)′ inf{t′�(0)
n t : t ∈ R

q+1,‖t‖ = 1} > δ.
(C.4) max{|βj,n| : j ∈ In} = O(1) and min{|βj,n| : j ∈ In} ≥ Kn−b, for some K ∈

(0,∞) and b ∈ [0,1/2), such that a + 2b ≤ 1, where a is as in (C.2)(i):
(C.5) (i) E(ε1) = 0, E(ε2

1) = σ 2 ∈ (0,∞) and E|ε1|r < ∞, for some r ≥ 3.
(ii) ε1 satisfies Cramér’s condition: lim sup|t |→∞ |E(exp(ιtε1))| < 1.

(ii)′ (ε1, ε
2
1) satisfies Cramér’s condition,

lim sup
‖(t1,t2)‖→∞

∣∣E exp
(
ι · (

t1ε1 + t2ε
2
1
))∣∣ < 1.

(C.6) There exists δ ∈ (0,1) such that for all n ≥ δ−1,

λn√
n

≤ δ−1n−δ min
{
n−bγ

p0
,
n−bγ−a/2

√
p0

, n−a

}
and

λn√
n

· nγ/2 ≥ δnδ max
{
nap0,p

3/2
0 nb(1−γ )+}

.
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We now comment on the conditions. Condition (C.1) is equivalent to saying that
the multiple correlation between relevant variables (with βj,n �= 0) and the spuri-
ous variables (βj,n = 0) is strictly less than one, in absolute value. This condition
is weaker than assuming orthogonality of the two sets of variables. Variants of this
condition has been used in the literature, particularly in the context of the Lasso;
see Meinshausen and Yu (2009), Huang, Horowitz and Ma (2008), Chatterjee and
Lahiri (2011a), and the references therein.

Condition (C.2) gives the regularity conditions on the design matrix that are
needed for establishing an (r − 2)th order EE for the ALASSO estimator and its
bootstrap versions. (C.2)(i) requires a lower bound on the smallest eigen-value
of the submatrix C11,n corresponding to the relavent variables (with βj,n �= 0),
in the increasing dimensional case. When p is bounded, Cn → C (elementwise)
and C is nonsingular, this condition holds with a = 0. Condition (C.2)(ii) is a uni-
form bound on the �r -norms of the sequences {xi,j }ni=1, {x̃i,j }ni=1, that are needed
for obtaining a uniform bound on the r th order moments of the weighted sums∑n

i=1 xi,j εi and
∑n

i=1 x̃i,j εi , for 1 ≤ j ≤ p. Note that for r = 2, the condition
max{n−1 ∑n

i=1 |xi,j |r : 1 ≤ j ≤ p} = O(1) is equivalent to requiring that the diag-
onal elements of the p × p matrix Cn be uniformly bounded. Similarly, for r = 2,

n−1
n∑

i=1

|x̃i,j |r = (
C−1

n

)
j ·

(
n−1

n∑
i=1

xix′
i

)(
C−1

n

)
·j

= (
C−1

n

)
j ·Cn

(
C−1

n

)
·j = (Ip)

j ·
(
C−1

n

)
·j = cj,j

n ,

where Ip denotes the identity matrix of order p. Thus, for r = 2,

max

{
n−1

n∑
i=1

|x̃i,j |r : 1 ≤ j ≤ p

}
= O(1),(2.1)

if and only if the diagonal elements of C−1
n are uniformly bounded. Condi-

tion (C.2)(ii) is a stronger version of these conditions with r ≥ 3, dictated by the
order of the EE one is interested in.

Conditions (C.3)(i) and (C.3)(ii) require that the maximum and the minimum
eigen-values of the q × q matrix D(1)

n C−1
11,n(D

(1)
n )′ be bounded away from zero

and infinity, respectively. A sufficient condition is the existence of a nonsingular
limit of D(1)

n C−1
11,n(D

(1)
n )′, which we do not assume. (C.3)(ii)′ is a stronger form

of (C.3)(ii) that is needed for the studentized case only. Note that (C.3) rules out
inference on individual zero components of βn (as D(1)

n = 0 in this case). The
main results of the paper are valid only for linear combinations of the ALASSO
estimator that put nontrivial weights on at least one nonzero component of βn.

Next consider condition (C.4) which makes it possible to separate out the signal
from the noise by the ALASSO. It requires the minimum of the nonzero coeffi-
cients to be of coarser order than O(n−1/2), so that the coefficients are not masked
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by the estimation error, which is of the order Op(n−1/2). It is worth pointing out
that the results of the paper remain valid if the requirement a + 2b ≤ 1 in condi-
tion (C.4) is replaced by a somewhat weaker condition na+2b = O(np0). Condi-
tion (C.5) is a moment and smoothness condition on the error variables. These are
required for the validity of an (r − 2)th order EE, r ≥ 3, where (C.5)(ii) is used for
Tn and its stronger version (C.5)(ii)′ for the studentized cases, respectively.

Finally, consider condition (C.6). When p0, the number of nonzero components
of βn is fixed (but the total number of parameters p may tend to ∞), we may
suppose that βn = β for all n ≥ 1 and hence, the nonzero components of βn are
bounded away from zero. If, in addition, the submatrix C11,n converges elemen-
twise to a p0 × p0 nonsingular matrix C, then a = b = 0. In this case, condi-
tion (C.6) is equivalent to

λn√
n

+
[

λn√
n

· nγ/2
]−1

= O
(
n−δ)

for some δ > 0. This condition may be compared to the condition

λn√
n

+
[

λn√
n

· nγ/2
]−1

= o(1),

that was imposed by Zou (2006) to establish the asymptotic distribution (and the
oracle property) of the ALASSO, further assuming that p itself is fixed. Thus,
for a regression problem with finitely many nonzero regression parameters and a
nice design matrix, the EE results hold under a slight strengthening of the Zou
(2006) conditions on λn and γ . It is interesting to note that the growth rate of
the zero components (p − p0) (or p itself) does not have a direct impact on λn

and γ in condition (C.6). However, when either p0 → ∞ or some of the nonzero
components of βn become small, the choices of λn and γ start to depend on the
associated rates. A similar behavior ensues for a nearly singular submatrix C11,n.
Further, note that for any given values of a ∈ [0,1] and b ∈ [0,1/2), we may allow
p0 = O(n) (with p0 ≤ n), by choosing λn and γ −1 suitably small. See Remark 1
in Section 3 for more details on the implications of these conditions.

3. Rates of convergence to the oracle distribution. The main results of this
section give upper and lower bounds on the accuracy of approximation by the
limiting oracle distribution for the ALASSO. To describe the terms in the bounds,
let bn = D(1)

n C−1
11,ns(1)

n · λn√
n
, where s(1)

n is a p0 ×1 vector with j th component sj,n =
sgn(βj,n)|βj,n|−γ ,1 ≤ j ≤ p0. Also let �n = D(1)

n C−1
11,n�

(1)
n C−1

11,n(D
(1)
n )

−1
where

�(1)
n is a diagonal matrix with (j, j)th element given by sgn(βj,n)|βj,n|−(γ+1),

1 ≤ j ≤ p0. Also, for a k × k nonnegative definite matrix �, let 	(· :�) denote
the Gaussian measure on R

k with zero mean and covariance matrix �.
Then we have the following result:
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THEOREM 3.1. Suppose that conditions (C.1)–(C.6) hold with r = 4 and that
β̃n is the OLS of βn. Then

�n ≡ sup
B∈Cq

∣∣P(Tn ∈ B) − 	
(
B :σ 2D(1)

n C−1
11,n

(
D(1)

n

)′)∣∣
= O

(
n−1/2 + ‖bn‖ + λn

n
· na+b(γ+1)

)
.

Theorem 3.1 gives a precise description of the quantities that determine the rate
of convergence to the normal limit. In particular, the ALASSO estimator has a bias
that may lead to an inferior rate of convergence to the limiting normal distribution
[compared to the standard O(n−1/2) rate], depending on the choice of the penalty
constant λn, the exponent γ and the rate of decay of the smallest of the regression
parameters. In addition, there is a third term, of the order a3,n ≡ λn ·n−1+a+b(γ+1)

that results from the use of the initial estimator β̃n in the ALASSO penalization
scheme and that can also lead to a sub-n−1/2-rate of convergence to the normal
limit.

We next show that under some mild conditions, the bound given in Theorem 3.1
is precise in the sense that, in general, it cannot be improved upon.

THEOREM 3.2. Suppose that the conditions of 3.1 hold and that Eε3
1 �= 0,

lim infn→∞
∑

|α|=3 |(D(1)
n C−1

11,nx̄(1)
n )

α| �= 0, na+b(γ+1) = O(tr(�n)) and nbγ =
O(‖D(1)

n C−1
11,ns(1)

n ‖). Then

�n 
[
n−1/2 + λn√

n
· nbγ + λn

n
· na+b(γ+1)

]
,

where we write an  bn if an = O(bn) and bn = O(an) as n → ∞.

Note that under the additional conditions of Theorem 3.2, the co-efficients of
the first and the third terms on the right-hand side of the display above are non-
negligible in the limit and ‖bn‖ ≥ K λn√

n
· nbγ for some constant K ∈ (0,∞). As a

result, the leading terms in the EE for Tn that determine the upper bound in The-
orem 3.1 are also bounded from below by constant multiples of the three factors
appearing in Theorem 3.2. As a consequence, the exact rate of approximation by
the oracle distribution to the centered and scaled ALASSO estimator Tn is given
by the maximum of these three terms. In Remark 1 below, we discuss in more de-
tails the effects of the choices of the penalty constant λn, the exponent γ , etc. on
the accuracy of the oracle based normal approximation.

REMARK 1. Suppose that λn ∼ Knc for some K ∈ (0,∞) and c ∈ R and
let ‖C−1/2

11,n s(1)
n ‖ = O(nγb). Then ‖bn‖ ≤ ‖D(1)

n C−1/2
11,n ‖ · ‖C−1/2

11,n s(1)
n ‖λn/

√
n =
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O(λnn
−1/2+γ b). Hence, under the conditions of Theorem 3.1, the rate of normal

approximation for Tn is given by

max
{
n−1/2, nc+bγ−1/2, na+b(γ+1)+c−1}

.

Here, a sub-optimal rate results if either bγ + c > 0 or a + b(1 + γ ) + c > 1/2.
Further, the bias term is the leading sub-optimal term whenever

a + b < 1/2 and bγ + c > 0.(3.1)

In this case, using the EE results from Section 7 [cf. Theorem 7.2(a)], one can
conclude that, for a linear function of βn (i.e., for a 1 × p vector Dn with q = 1),
the errors in coverage probabilities of both one and two-sided confidence intervals
(CIs) based on the oracle normal critical points are O(n−1/2+(bγ+c)). This rate is
much worse than the available optimal rates, particularly in the two-sided case.

By a similar reasoning, the third term is the dominant sub-optimal term when-
ever

a + b > 1/2 and a + b(γ + 1) + c ∈ (1/2,1).(3.2)

In this case, Theorem 7.2(a) shows that one-sided CIs based on the oracle distri-
bution r has a sub-optimal error. However, as the corresponding term in the EE
for Tn is even, it no longer contributes to the error of coverage probability in the
two-sided case.

Finally the optimal rate of convergence in Theorem 3.2 holds, provided

c + bγ ≤ 0 and a + b(γ + 1) + c ≤ 1/2.

Since a ≥ 0, b ≥ 0 and γ > 0, the first inequality requires c ≤ 0, that is, λn = O(1).
Further, for ab > 0, that is, when both the smallest eigen-value η11,n of C11,n

and the minimum of the nonzero components (say βmin
1n ) of the regression vector

βn tend to zero, these inequalities require that c be chosen to be a sufficiently
big negative number (and thus, λn to be a small positive number). This in turn
leads to an inferior performance of the ALASSO for variable selection. In the next
section, we show that the bootstrap attains the optimal rate of approximation to the
distribution of Tn without requiring such unreasonable conditions on the choice
of λn.

4. Accuracy of the bootstrap.

4.1. The residual bootstrap. For the sake of completeness, we now briefly
describe the residual bootstrap [cf. Freedman (1981)]. Let ei = yi − x′

i β̂n, i =
1, . . . , n denote the residuals based on the ALASSO estimator, and let ěi = ei − ēn,
i = 1, . . . , n, where ēn = n−1 ∑n

i=1 ei . Next, select a random sample of size n with
replacement from {ě1, . . . , ěn}, and denote it by {e∗

1, . . . , e
∗
n}. Define the residual

bootstrap observations

y∗
i = x′

i β̂n + e∗
i , i = 1, . . . , n.
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Note that the centering step ensures the model requirement Eε1 = 0 for the boot-
strap error variable e∗

1. The bootstrap version of a statistic is defined by replacing
{(yi,x′

i ) : i = 1, . . . , n} with {(y∗
i ,x′

i ) : i = 1, . . . , n} and βn with β̂n. For example,
the bootstrap version ALASSO estimator is given by

β∗
n = argmin

u∈Rp

n∑
i=1

(
y∗
i − x′

iu
)2 + λn

p∑
j=1

|uj |
|β̃∗

j,n|
γ ,(4.1)

where β̃
∗
n = (β̃∗

1,n, . . . , β̃
∗
p,n)

′ is the bootstrap version of the initial estimator β̃n

(which is given by the OLS in this section), obtained by replacing the yi ’s with
y∗
i ’s. The bootstrap version of Tn is then defined as T∗

n = √
nDn(β

∗
n − β̂n). Simi-

larly, define R∗
n and R̆∗

n.

4.2. Rates of bootstrap approximation for Tn. The following result shows that
the bootstrap approximation to the distribution of Tn attains the rate Op(n−1/2)

under regularity conditions (C.1)–(C.6).

THEOREM 4.1. If conditions (C.1)–(C.6) hold with r = 4, then

sup
B∈Cq

∣∣P∗
(
T∗

n ∈ B
) − P(Tn ∈ B)

∣∣ = Op

(
n−1/2)

.

A comparison of Theorem 4.1 and the results of Section 3 shows that the boot-
strap approximation attains the optimal rate Op(n−1/2), irrespective of the order
of magnitudes of the bias term ‖bn‖ and of the third term a3,n in Theorem 3.1. In
particular, this rate is attainable even when the smallest eigen-value η11,n of C11,n

or the minimum of the nonzero components (say βmin
1n ) of the regression vector βn

tend to zero. Most importantly, the bootstrap approximation to the ALASSO esti-
mator attains the same level of accuracy in increasing dimensions as in the simpler
case of the OLS of regression parameters when the dimension p of the regression
parameter is fixed and no penalization is used. Thus, the bootstrap approximation
for Tn is in a way immune to the effects of high dimensions.

4.3. Rates of bootstrap approximation for Rn. As is well known in the fixed p

case [cf. Hall (1992)], the bootstrap gives a more accurate approximation when it
is applied to a pivotal quantity, such as a studentized version of a statistic, rather
than to its nonpivotal version, like Tn. Here we consider the following studentized
version of the ALASSO estimator:

Rn = Tn/σ̂n,

where σ̂ 2
n = n−1 ∑n

i=1 ě2
i and ě1, . . . , ěn are the centered residuals (cf. Section 4.1).

As explained in Section 1, this differs from the standard version of the studentized
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statistic R̃n = V̂−1/2
n Tn where V̂n is an estimator of the asymptotic covariance ma-

trix Vn = σ 2D(1)
n C−1

11,n(D
(1)
n )′ of Tn given by the oracle limit distribution; cf. The-

orem 3.1. Note that this studentized version of Tn can be computationally highly
demanding, particularly for repeated bootstrap computation, when p0 is large. In
comparison, the proposed studentized version of Tn that we consider here is based
only on a scalar factor and hence, computationally simpler.

The following result gives the rate of bootstrap approximation to the distribution
of Rn. For notational compactness, in the rest of this section, we shall write (C.1)′–
(C.6)′, to denote conditions (C.1)–(C.6), when (C.3) and (C.6) are defined with
part (ii)′ instead of part (ii).

THEOREM 4.2. If conditions (C.1)′–(C.6)′ hold with r = 6, then

sup
B∈Cq

∣∣P∗
(
R∗

n ∈ B
) − P(Rn ∈ B)

∣∣ = op

(
n−1/2)

.

Theorem 4.2 shows that under conditions (C.1)′–(C.6)′, the bootstrap approxi-
mation to the distribution of Rn is second-order-correct, as it corrects for the effects
of the leading terms in the EE of Rn. From the proof of Theorem 7.2, it follows
that the bootstrap not only captures the usual O(n−1/2) term in the EE, but it also
corrects for the effects of the second and the third terms in the upper bound of The-
orem 3.1 that result from the penalization step in the definition of the ALASSO.
The accuracy level op(n−1/2) for the bootstrap holds even when the actual magni-
tudes of these terms are coarser than n−1/2 which, in turn, leads to a poor rate of
approximation by the limiting normal distribution. A practical implication of this
result is that percentile-t bootstrap CIs based on Rn will be more accurate than
the CIs based on the large sample normal critical points. Indeed, the finite sample
simulation results presented in Section 6 show that the CIs based on normal crit-
ical points are practically useless in moderate samples and improvements in the
coverage accuracy achieved by the bootstrap CIs based on Rn are spectacular.

4.4. A modified pivot and higher order correctness. Although the residual
bootstrap approximation for the studentized statistic Rn is second order correct,
a more careful analysis shows that it may fail to achieve the same optimal rate,
namely, Op(n−1) as in the traditional fixed and finite dimensional regression prob-
lems. The main reason behind this is the effect of the bias term ‖bn‖ in Theo-
rem 3.1, which can be coarser than n−1/2. While the second order correctness is
a desirable property for the one-sided CIs, the higher level of accuracy, namely
Op(n−1), is important for two-sided CIs; cf. Hall (1992). To that end, we now
define a modified pivotal quantity

R̆n =
√

nDn(β̂n − βn) + b̆n

σ̆n

,(4.2)
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where b̆n = D̆(1)
n C̆−1

11,ns̆(1)
n · λn√

n
, D̆(1)

n and C̆(1)
11,n are, respectively, q ×|În| and |În|×

|În| submatrices of Dn and Cn with columns (and also rows, in case of C̆11,n) in
În = {j : 1 ≤ j ≤ p, β̂j,n �= 0}, and similarly, s̆(1)

n is the |În| × 1 vector with j th

element sgn(β̂j,n)|β̃j,n|−γ
, j ∈ În. Here σ̆ 2

n is defined as

σ̆ 2
n = 1

n

n∑
i=1

(ε̆i − ¯̆εn)
2
,

where ε̆i = yi − x′
i β̆n, andβ̆j,n = β̃j,n · 1(j ∈ În),1 ≤ j ≤ p. Note that R̆n is ob-

tained by applying a specially designed bias-correction term to Tn and by a suitable
rescaling, which are suggested by the form of the third order EE of Theorem 7.2.
Also, it is interesting to note that for both of these estimators, we only use the
sub-vectors of the design vectors xi ’s and components of the initial estimator that
correspond to the (random) set of variables selected by the ALASSO. Next, define
R̆∗

n, the bootstrap version of R̆n, by replacing {y1, . . . , yn} and β by {y∗
1 , . . . , y∗

n}
and β̂n, respectively. Then we have the following result:

THEOREM 4.3. If conditions (C.1)′–(C.6)′ hold with r = 8, then

sup
B∈Cq

∣∣P∗
(
R̆∗

n ∈ B
) − P(R̆n ∈ B)

∣∣ = Op

(
n−1)

.

Theorem 4.3 asserts that under appropriate regularity conditions, the rate of
bootstrap approximation to the modified pivotal quantity R̆n attains the the “opti-
mal” level of accuracy irrespective of the magnitude of ‖bn‖. An immediate con-
sequence of this result is that symmetric bootstrap confidence regions based on the
modified pivot attains the higher rate O(n−1) of convergence accuracy even when
the magnitude of ‖bn‖ is coarser than n−1/2. As explained in Remark 1, the coarser
magnitude of ‖bn‖ can occur quite naturally in a variety of situations whenever a
combination of values of the underlying regression parameters, the design matrix
and the choice of the penalty constant satisfy (3.1). In such cases, bootstrap CIs
based on R̆n gives a marked improvement over normal critical points based CIs
where the accuracy is sub-O(n−1/2) for both one- and two-sided CIs.

5. Results for the p > n case. In many applications, p is much larger than n,
and post variable selection inference on the regression parameters is an even more
challenging problem. In this section, we study properties of the bootstrap approx-
imation to the studentized ALASSO estimator in the p > n case. Note that for
p > n, the p × p matrix n−1 ∑n

i=1 xix′
i is always singular and hence the OLS of

βn is no longer uniquely defined. In the literature, a popular choice of the initial
root-n consistent estimator β̃n for p > n is the LASSO estimator, although other
bridge estimators of βn [cf. Knight and Fu (2000)] can also be used. Let β̂n be the
ALASSO estimator defined by (1.2), with a root-n consistent initial estimator β̃n.
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Also define the studentized version of β̂n (cf. Section 4.3) by Rn = σ̂−1
n Tn where

σ̂ 2
n is the average of squared centered residuals ĕ1, . . . , ĕn, from the ALASSO fit,

and define the bias corrected version R̆n as in (4.2).
To prove the results in the p > n case, we need the following condition:
(C.7) There exists K ∈ (0,∞) such that

P
(

max
1≤j≤p

∣∣√n(β̃j,n − βj,n)
∣∣ > K

√
logn

)
= o

(
n−1/2)

,

(5.1)
P∗

(
max

1≤j≤p

∣∣√n
(
β̃∗

j,n − β̂j,n

)∣∣ > K
√

logn
)

= op

(
n−1/2)

.

We also need the following modified version of (C.2)(ii):
(C.2)(ii)′

max
1≤j≤p

{
n−1

n∑
i=1

|xi,j |r
}

+ max
1≤j≤p0

{
c
j,j
11,n

} = O(1),

where c
j,j
11,n is the (j, j)th element of C−1

11,n.
We now briefly discuss the conditions. Condition (C.7) is a high-level condition

that requires the initial estimator β̃n and its bootstrap version not only to be
√

n-
consistent, but also to satisfy a suitable form of moderate deviation bound. For esti-
mators β̃n, such that

√
n(β̃j,n−βj,n) can be closely approximated by

∑n
i=1 hj,i,nεi

for some {hj,i,n} ⊂ R with
∑n

i=1 h2
j,i,n = O(1), (C.7) holds if Eε4

1 < ∞ and∑n
i=1 h4

j,i,n = o(n−1/2). See Proposition 8.4 [Chatterjee and Lahiri (2013)] for an

example. Condition (C.2)(ii)′ drops the condition max{n−1 ∑n
i=1 |x̃i,j |r : 1 ≤ j ≤

p} = O(1), in (C.2)(ii), which can no longer hold in the p > n case, as C−1
n does

not exist. Instead, it requires existence of C−1
11,n, which is of dimension p0 × p0.

Thus, we must have p0 ≤ n (in addition to other conditions) for the validity of the
results in the p > n case.

Let R∗
n and R̆∗

n denote the (residual) bootstrap versions of Rn and R̆n, respec-
tively. Then, we have the following result:

THEOREM 5.1. Suppose that p > n and conditions (C.1), (C.2)(i), (C.2)(ii)′,
(C.3)–(C.7) hold with b = 0. Then

sup
B∈Cq

∣∣P(Rn ∈ B) − P∗
(
R∗

n ∈ B
)∣∣ = op

(
n−1/2)

and

sup
B∈Cq

∣∣P(R̆n ∈ B) − P∗
(
R̆∗

n ∈ B
)∣∣ = op

(
n−1/2)

.

Thus, under the conditions of Theorem 5.1, the bootstrap approximations based
on the pivots Rn and R̆n are both second-order accurate, even in the case where
p > n. In comparison, the oracle based normal approximation admits the sub-
optimal bounds of Section 3, and therefore, it is significantly less accurate than the
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bootstrap approximations. This conclusion is also supported by the finite sample
simulation results of Section 6 for the p > n cases considered therein.

REMARK 2. Note that in Theorem 5.1, the bound on the accuracy of the boot-
strap approximations to R̆n is just op(n−1/2) for the p > n case. This is not as
precise as the bound in the p ≤ n case where it is Op(n−1). It would be possible
to derive a similar bound for the p > n case for R̆n if we are willing to make some
strong additional assumptions on the initial estimator [e.g., existence of an EE for
the joint distribution of Tn, n−1 ∑n

i=1 (εk
i − Eεk

i ), with k = 1,2 and suitable linear
combinations of

√
n(β̃n − βn), which are not known at this stage]. As a result, we

do not pursue such refinements here.

REMARK 3. Although we do not explicitly impose any growth conditions
on p as a function of n, there is, however, an implicit requirement through con-
dition (C.7). Indeed, if the leading terms in

√
n(β̃j,n − βj,n) can be expressed as∑n

i=1 hji,nεi for some hj1,n, . . . , hjn,n ∈ R with
∑n

i=1 h2
ji,n = O(1), then for (C.7)

to hold, arguments in the proof of Lemma 7.1(iii) require that, for some integer
r ≥ 3, E|ε1|r < ∞ and p · n−(r−2)/2 = o(n−1/2). This implies that p can grow at
a polynomial rate p ∼ Kna , for some K > 0 and a > 1, provided E|ε1|r < ∞ for
some r > 2a + 3. Thus, the allowable growth rate of p depends on the lightness of
the tails of the error distribution.

REMARK 4. As pointed out by a referee, the use of β̃n in place of β̃
∗
n in the

bootstrap computation of the ALASSO estimator in (4.1) will yield a computation-
ally more efficient algorithm. It can be shown that with this modification, conclu-
sions of Theorems 4.2, 4.3 and 5.1 remain valid, with the error bound op(n−1/2)

only.

6. Simulation results. In this section we study the finite sample performance
of the proposed bootstrap methods. The following cases corresponding to different
choices of βn were studied:

(a) (n,p) = (60,10): with p0 = 5 and βn = (4,−1.5,−8,0.9,−3,0, . . . ,0)′.
(b) (n,p) = (60,100): with p0 = 5 and βn same as in case (a) above, except

that last 95 components are zeros.
(c) (n,p) = (200,80): with p0 = 10 and with the last 70 components being

zeros,

βn = (4,2.5,0.8,−1.5,−2,−5,−7.5,5,1.5,−3,0, . . . ,0)′.

(d) (n,p) = (200,500): with p0 = 10 and βn same as in case (c) above, except
that the last 490 components are zeros.
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TABLE 1
Comparison of empirical coverage probabilities and average lengths (in parentheses) for 90% CIs
for the underlying parameter β1(= 4) in cases (a)–(d). In all cases λ2,n = 2n1/4 and in cases (b)

and (d), λ1,n = 0.5n1/2

One-sided Two-sided (with average lengths)

Case Rn R̆n Oracle Rn R̆n Oracle

(a) 0.898 0.904 0.668 0.918 0.900 0.158
(0.407) (0.392) (0.05)

(b) 0.894 0.930 0.740 0.894 0.894 0.154
(0.536) (0.530) (0.064)

(c) 0.912 0.844 0.518 0.928 0.994 0.064
(0.252) (0.247) (0.017)

(d) 0.892 0.878 0.622 0.880 0.890 0.098
(0.253) (0.261) (0.017)

Cases (b) and (d) correspond to the p > n case. In all cases, the design vec-
tors (xi,1, . . . , xi,p0)

′ are independently generated from a normal population with
mean 0 and covariance matrix ((ηi,j )) with ηi,j = (0.3)|i−j | and the remaining
(p − p0) covariates are i.i.d. N(0,1). The errors {εi} are i.i.d. N(0,1). We fix
γ = 1. In the high-dimensional case, since there is no unique least squares estima-
tor, we have used the LASSO estimator as the initial estimator β̃n, with associated
tuning parameter λ1,n. In the ALASSO step, the penalty parameter is λ2,n and to

avoid division by zero, we used weights (|β̃j,n| + an)
−1 with an = n−1/2, to define

the weighted �1 penalty in (1.2).

6.1. Comparison of oracle based normal CIs and bootstrap CIs. As sug-
gested from Table 1, in all cases when the underlying true parameter value is large
enough, the bootstrap based CIs clearly superior to the oracle based method. For
moderately small underlying true parameters, results in Table 2 suggest that the
bootstrap-based methods are still better than the Oracle method for both one and
two-sided CIs, even when p > n. The improvement is most significant for the 2-
sided CIs.

6.2. Comparison with a perturbation based method. In the p ≤ n case,
Minnier, Tian and Cai (2011) suggested a perturbation-based approach for con-
struction of CIs of underlying regression parameters, including the zero parame-
ters. We compare the performance of our proposed bootstrap-based method with
their approach. We use (n = 100,p = 10). The design vectors xi are independently
selected from a normal population with mean 0, unit variances and pairwise covari-
ances equal to 0.2. The errors εi are i.i.d. N(0, σ 2). We considered two choices,
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TABLE 2
Comparison of empirical coverage probabilities and average lengths (in parentheses) for 90% CIs

for the underlying parameter β4(= 0.9) in cases (a) and (b). In both cases λ2,n = 2n1/4 and in case
(b), λ1,n = 0.5n1/2

One-sided Two-sided (with average lengths)

Case Rn R̆n Oracle Rn R̆n Oracle

(a) 0.868 0.946 0.840 0.902 0.944 0.086
(0.598) (0.529) (0.061)

(b) 0.908 0.944 0.904 0.886 0.942 0.072
(0.607) (0.652) (0.058)

σ = 1 and 5. The true regression parameter is β = (2,−2,0.5,−0.5,0, . . . ,0)′.
This is very similar to the setup used in Minnier, Tian and Cai (2011). Among
the different types of CIs they proposed, we focus on (i) the usual normal type CI
(which has been modified by a thresholding approach to handle underlying zero
parameters) and denoted by CR∗N and (ii) CIs directly based on the quantiles of
the perturbed regression estimates, denoted by CR∗Q. As suggested in their paper,
we used a BIC-based choice for λ2,n for the simulations; cf. Minnier, Tian and Cai
(2011).

As shown in Table 3 and somewhat contrary to the findings of Minnier, Tian and
Cai (2011), we found that the CR∗N based CIs have poor coverage for both zero
and nonzero regression parameters. However, the CR∗Q method performs much
better, particularly when the error variance is high. In comparison, the bootstrap-
based methods are uniformly superior in all cases. We also noted that compared to
the the CR∗Q method, the coverage accuracy of the bootstrap CIs is more sensitive
to the choice of the smoothing parameter for the zero parameters; see Section 6.3
below.

TABLE 3
Comparison of empirical coverage probabilities for 90% two-sided CIs using the perturbation

based approach by Minnier, Tian and Cai (2011), the oracle and the bootstrap based methods. For
the Oracle and Bootstrap methods, the penalty parameter is λ2,n = 0.5 · n1/4 and for the

perturbation based approach the BIC based choice of λ2,n was used

Perturbation Bootstrap

Parameter σ CR∗N CR∗Q Oracle Rn R̆n

β1 = 4 1 0.012 0.306 0.132 0.916 0.898
5 0.122 0.876 0.124 0.916 0.914

β5 = 0 1 1.0 1.0 0 0.894 0.936
5 0.288 0.902 0 0.932 0.918
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TABLE 4
Comparison of empirical coverage probabilities for 90% CIs for different parameters, using CV

based and theoretical choices of λ2,n in case (a). The optimal CV based
λ2,n = 0.049 ≈ 0.017 · 601/4. For the zero parameter case an additional (theoretical) choice of

λ2,n = 0.25 ∗ n1/4 is compared

One-sided Two-sided

Parameter Method Rn R̆n Oracle Rn R̆n Oracle

β1 = 4 CV 0.892 0.894 0.588 0.938 0.890 0.162
Th. 0.894 0.898 0.668 0.922 0.894 0.158

β4 = 0.9 CV 0.882 0.882 0.566 0.924 0.882 0.156
Th. 0.872 0.944 0.840 0.940 0.864 0.138

β6 = 0 CV 0.888 0.886 0.428 0.942 0.902 0
Th. 0.004 0.004 0.004 0 0 0

Th.a 0.896 0.850 0.180 0.944 0.884 0

aAt λ2,n = 0.25 ∗ n1/4.

6.3. Choice of tuning parameter. For penalized regression techniques, the
cross validation (CV) has been a popular method for choosing the tuning parame-
ters, in both low and high-dimensional cases. We compare the performance of cross
validation (CV) based and theoretical choices of tuning parameters. Based on the
theoretical rates, we use λ2,n = 2n1/4 (for the ALASSO stage) and in the p > n

case, the tuning parameter λ1,n, used for the LASSO stage, is set at λ1,n = 0.5n1/2.
When using CV, the initial tuning parameter λ1,n is selected by 5-fold CV (only in
the p > n case) and kept fixed. Using this fixed value and again using 5-fold CV,
the tuning parameter λ2,n for the ALASSO stage is selected. When the underlying
true parameter is zero, an additional theoretical choice of λ2,n = 0.25 ·n1/4 is used
for comparison.

As seen from Table 4, in case (a) (with p < n), using the CV-based choice of
λ2,n leads to very good empirical coverage probabilities for all choices of underly-
ing regression parameters, including zero parameters. The theoretical choice also
performs comparably for all parameters, except the zero parameter case, where a
smaller value of λ2,n performs comparably. The results in Table 5, for case (b) (in
the p > n setup), show that there is an overall decrease in the empirical coverage
probabilities for both choices. Unlike the results in case (a) (cf. Table 4), the per-
formance is very poor for the zero parameters irrespective of the method used for
selecting the tuning parameters.

6.4. Real data analysis for the low dimensional case. In this section we apply
the bootstrap based methods on a prostrate cancer data-set, available from a clin-
ical study and used in Tibshirani (1996) [originally available from Stamey et al.
(1989)]. In this clinical study, a total of n = 97 observations were available and
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TABLE 5
Comparison of empirical coverage probabilities for 90% CIs for different parameters, using CV
based and theoretical choices of λ1,n and λ2,n in case (b). The optimal CV based choices were

λ1,n = 0.124 ≈ 0.016 · (60)1/2 and λ2,n = 0.639 ≈ 0.229 · (60)1/4

One-sided Two-sided

Parameter Method Rn R̆n Oracle Rn R̆n Oracle

β1 = 4 CV 0.81 0.838 0.730 0.636 0.506 0.104
Th. 0.894 0.930 0.740 0.894 0.894 0.154

β4 = 0.9 CV 0.798 0.854 0.748 0.656 0.488 0.104
Th. 0.908 0.944 0.904 0.886 0.942 0.072

β6 = 0 CV 0.384 0.398 0.194 0.216 0.116 0.00
Th. 0.016 0.016 0.016 0 0 0
Th.a 0.348 0.332 0.176 0.224 0.112 0

aAt λ2,n = 0.25 ∗ n1/4.

the variable of interest was log(prostrate specific antigen) (lpsa) and eight dif-
ferent predictors (p = 8) were used to study the behavior of this quantity. The
predictors were log(cancer volume) (lcavol), log(prostrate weight) (lweight),
age, log(benign prostratic hyperplasia amount) (lbph), seminal vesicle invasion
(svi), log(capsular penetration) (lcp), Gleason score (gleason) and percent-
age Gleason scores 4 or 5 (pgg45). The columns of the design matrix are cen-
tered and scaled to have unit norm. We use the following theoretical choice for the
penalty parameter: λ2,n = n1/4. Table 6 shows CIs for estimated nonzero coeffi-
cients. Note that in more than one instance, the estimated values of βj,n fall outside
the bootstrap CIs. This can be explained by considering that the histograms of the
bootstrap replicates which showed that the distributions of R∗

n and R̆∗
n are heav-

ily skewed and far from the oracle normal distribution. This is reflected by the
endpoints of the corresponding CIs in Table 6.

TABLE 6
Analysis of prostrate cancer data from Tibshirani (1996). The penalty parameter used is λ2 = n1/4.
ALASSO estimates and resultant 90% two-sided CIs for estimated nonzero components are shown

Predictor (j) ̂βj,n Rn R̆n Oracle

lcavol 0.688 (0.520, 0.822) (0.616, 0.944) (0.636, 0.741)
lweight 0.112 (0.140, 0.235) (0.162, 0.395) (0.067, 0.156)
svi 0.167 (0.138, 0.352) (0.178, 0.487) (0.115, 0.219)

∗Obtained from http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data.

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data
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TABLE 7
Analysis of microarray data with n = 30 and p = 545 (after initial screening step). All six

predictors with nonzero ALASSO coefficients and corresponding 90% two-sided CIs based on the
bootstrap and oracle methods

aPredictor (j) ̂βj,n Rn R̆n Oracle

G709 −0.066 (−0.146,−0.120) (−0.490,−0.331) (−0.127,−0.005)

G2272 0.095 (0.087,0.207) (0.376,0.619) (0.010,0.180)

G3655 0.475 (0.250,0.759) (0.749,1.309) (0.375,0.575)

G4322 −0.021 (−0.047,−0.041) (−0.443,−0.432) (−0.091,0.048)

G5904 0.240 (0.161,0.507) (0.495,0.900) (0.168,0.311)

G6252 0.112 (0.029,0.241) (0.414,0.687) (0.030,0.193)

aData available from supplementary material of Hall and Miller (2009).

6.5. Real data analysis for the high-dimensional case. The data, available
from a microarray experiment was collected from Hall and Miller (2009) and
originally used in Segal, Dahlquist and Conklin (2003). The data consisted of ob-
servations from n = 30 specimens on the Ro1 expression level (y), and genetic
expression levels x = (x1, . . . , xp)′ for 6319 genes. The absolute value of the cor-
relation between y and each covariate xi was used as an initial screening tool and
only those covariates with absolute correlation value ≥0.5 were selected for further
study. This resulted in a smaller set of p = 545 covariates. The columns of the de-
sign matrix were centered and scaled (by the columnwise standard deviation) and
the response vector y was also transformed by centering and scaling. The selected
tuning parameters were λ1 = 0.5 ·n1/2 and λ2 = 0.5 ·n1/4. After the initial LASSO
step, twenty covariates are selected and after the ALASSO step only six covariates
(genes) were selected (shown in Table 7). The residual sum of squares divided by
(n-number of nonzero parameters) provides the following: for the initial LASSO
estimate 0.1082 (equivalent to a R2 value of 0.888) and for the ALASSO esti-
mate we obtain 0.092 (equivalent to R2 = 0.904). This suggests that the extra 14
variables, present in the LASSO estimator provide very little information about
the response. Note that here also the estimated values of βj,n’s often fall outside
the bootstrap CIs based on the bias corrected pivot R̆n. This suggests that the true
values of the nonzero parameters are probably much larger in absolute value than
suggested by their ALASSO point estimates.

7. Proofs.

7.1. Notation. For notational simplicity, we shall set pn = p, p0,n = p0. Let
Z+ = {0,1, . . .}. Let K,K(·) ∈ (0,∞) denote generic constants not depending on
their arguments (if any), but not on n. Also, in the proofs below, let n0 ≥ 1 denotes
a generic (large) integer. For α = (α1, . . . , αr) ∈ Z

r+, let |α| = α1 + · · · + αp , α! =
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α1! · · ·αr ! and let Dα denote the differential operator ∂ |α|
∂x

α1
1 ···∂x

αr
r

on R
r , where r ≥ 1

is an integer. Let Wn = n−1/2 ∑n
i=1 x′

iεi . Partition Wn as Wn = (W(1)′
n ,W(2)′

n )′,
where W(1)

n is p0 × 1. Also, set W(0)
n = Wn, p(0) = p, p(1) = p0 and p(2) =

p − p0. Let bn = D(1)
n C−1

11,ns(1)
n · λnn

−1/2, ϒn = n−1 ∑n
i=1 ξ0

i (ξ
0
i )

′ and ϒ̆n =
n−1 ∑n

i=1(ξ
0
i + η

(0)
i )(ξ0

i + η
(0)
i )

′
, where ξ

(0)
i = D(1)

n C−1
11,nx(1)

i , η
(0)
i = D(1)

n C−1
11,nηi

and ηi = (ξi,1, . . . , ξi,p0) with ξi,j = − λn

n1/2 · x̃i,j · sgn(βj,n)γ |βj,n|−(γ+1),1 ≤ j ≤
p0. Next note that by conditions (C.2), (C.3) and (C.6),

‖bn‖ ≤ ∥∥D(1)C−1/2
11,n

∥∥ · ∥∥C−1/2
11,n

∥∥ · ∥∥s(1)
n

∥∥ · λn√
n

= O
(
n−δ).

Let r1 = min{r ≥ 1 :‖bn‖r+1 = o(n−1/2)}. Define the Lebesgue density of the EE
for Tn by

ψn(x) = φ
(
x, σ 2ϒ̆n

)[
1 +

r1∑
|α|=1

bα
nχα

(
x;σ 2ϒ̆n

)

+ μ3

6
√

n

∑
|α|=3

ξ̄
(0)

n (α)χα
(
x;σ 2ϒ̆n

)]
, x ∈ R

q,

where ξ̄
(0)

n (α) = n−1 ∑n
i=1 (ξ

(0)
i )

α
, φ(x,ϒ) denotes the density of the N(0,ϒ)

distribution on R
q and where χα(x;ϒ) is defined by the identity

χα(x;ϒ)φ(x;ϒ) = (−D)αφ(x;ϒ), α ∈ Z
q
+.

Next define the density of the EE for Rn by

πn(x) = φ(x, ϒ̆n)

[
1 +

r1∑
k=1

1

k!
{ ∑

|α|=k

(−bn)
αχα(x : ϒ̆n)

}

+ 1√
n

· μ3

6σ 3

{ ∑
|α|=1

∑
|γ |=2

[
ξ̄

(0)

n (α + γ ) − 3ξ̄
(0)

n (α)ξ̄
(0)

n (γ )
]

× χα+γ (x; ϒ̆n)

− 3
∑

|α|=1

ξ̄
(0)

n (α)χα(x; ϒ̆n)

}]
,

x ∈ R
q .

7.2. Auxiliary results.

LEMMA 7.1. Under (C.2) and (C.4):
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(i) P(‖W(1)
n ‖ > K

√
p0 logn) = O(p0 · n−(r−2)/2);

(ii) P(‖W(l)
n ‖∞ > K

√
logn) = O(p(l) · n−(r−2)/2), for l = 0,1,2;

(iii) P(‖√n(β̃n − βn)‖∞ > K
√

logn) = O(p · n−(r−2)/2).

PROOF. See the supplementary material Chatterjee and Lahiri (2013) (here-
after referred to as [CL]). �

The key step in the proofs of Theorems 3.1–5.1 is EEs for the ALASSO estima-
tor and its studentized version which are given below.

THEOREM 7.2. (a) If conditions (C.1)–(C.6) hold with r = 4, then

sup
B∈Cq

∣∣∣∣P(Tn ∈ B) −
∫
B

ψn(x) dx
∣∣∣∣ = o

(
n−1/2)

.

(b) If conditions (C.1)′–(C.6)′ hold with r = 6, then

sup
B∈Cq

∣∣∣∣P(Rn ∈ B) −
∫
B

πn(x) dx
∣∣∣∣ = o

(
n−1/2)

.

PROOF. See [CL]. �

7.3. Proof of the main results.

PROOF OF THEOREM 3.1. We only give an outline of the proof here. For the
details of the steps, see [CL]. Let �(1)

n be a p0 × p0 diagonal matrix with j th
diagonal entry given by sgn(βj,n)|βj,n|−(γ+1), 1 ≤ j ≤ p0. Then it can be shown
that

n−1
n∑

i=1

ξ
(0)
i η

(0)
i

′ = −λnγ

n
D(1)

n C−1
11,n�

(1)
n C−1

11,nD(1)
n

′
.(7.1)

Using Theorem 7.2(a), one gets

�n ≡ sup
B∈Cq

∣∣∣∣P(Tn ∈ B) −
∫
B

φ
(
x;σ 2ϒn

)
dx

∣∣∣∣
= sup

B∈Cq

∣∣∣∣∫
B

[
φ

(
x;σ 2ϒ̆n

) − φ
(
x;σ 2ϒn

)]
dx

+ ∑
|α|=1

bα
n

∫
B

χα
(
x;σ 2ϒ̆n

)
φ

(
x;σ 2ϒ̆n

)
dx

(7.2)

+ μ3

6
√

n

∑
|α|=3

ξ̄
(0)

n (α)

∫
B

χα
(
x;σ 2ϒ̆n

)
φ

(
x;σ 2ϒ̆n

)
dx

∣∣∣∣
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+ o
(
n−1/2 + ‖bn‖)

≡ sup
B∈Cq

∣∣I1,n(B) + I2,n(B) + I3,n(B)
∣∣ + o

(
n−1/2 + ‖bn‖)

.

Also, by conditions (C.2)–(C.6),

‖ϒ̆n − ϒn‖ =
∥∥∥∥∥2n−1

n∑
i=1

ξ
(0)
i η

(0)
i

′ + n−1
n∑

i=1

η
(0)
i η

(0)
i

′
∥∥∥∥∥

(7.3)

≤ K(q, γ ) · λn

n
· na+b(γ+1).

The proof of Theorem 3.1 now follows from (7.1)–(7.3); See [CL]. �

PROOF OF THEOREM 3.2. Since tr(�n) ≥ δqna+b(γ+1) for some δ ∈ (0,1)

and �n is q × q , for each n ≥ 1, there exist a jn ∈ {1, . . . , q} such that (�n)j,j ≥
δna+b(γ+1). Write Cq,n = {{x ∈ R

q :xjn ∈ (−a, a)} :a ∈ R}. Also, let τ̆ 2
n = σ 2 ·

(ϒ̆n)jn,jn
and τ 2

n = σ 2 · (ϒn)jn,jn
. Then, Ik,n = 0, for all B ∈ Cq,n for k = 2,3,

(7.2) and by (7.1)–(7.3),

�n ≥ sup
B∈Cn

∣∣I1,n(B)
∣∣ + o

(
n−1/2 + ‖bn‖)

= sup
{∣∣∣∣∫ a

−a

[
φ(x, τ̆ ) − φ(x, τ )

]
dx

∣∣∣∣ :a ∈ R

}
+ o

(
n−1/2 + ‖bn‖)

(7.4)
≥ K

∣∣τ̆ 2
n − τ 2

n

∣∣ + o
(
n−1/2 + ‖bn‖)

≥ K · δγ · λn

n
· na+b(γ+1) + o

(
n−1/2 + ‖bn‖)

.

This proves part (b) in the case where n−1/2 + λn√
n

· nbγ = O(λn · n−1+a+b(γ+1)).
A subsequence argument proves part (b) when this condition fails. See [CL] for
more details. �

LEMMA 7.3. Suppose that conditions (C.1)′–(C.6)′ holds with r = 5, and let

n−1 ∑n
i=1 ‖C−1/2

11,n x(1)
i ‖5 = O(1). Then, for any δ > 0 and K ∈ (0,∞), there exists

δ0 ∈ (0,1) such that

sup
{∣∣ω̂n(t1, t2)

∣∣ : δ2 ≤ t2
1 + t2

2 ≤ nK} = 1 − δ0 + op(1),

where

ω̂n(t1, t2) = E∗ exp
(
ιt1ε

∗
1 + ιt2

(
ε∗

1
)2)

,

ω(t1, t2) = E exp
(
ιt1ε1 + ιt2(ε1)

2)
, t1, t2 ∈ R.
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PROOF. See [CL]. �

PROOF OF THEOREM 4.1. Restricting attention to a suitable set A3,n with
P(A3,n) → 1 and retracing the steps in the proof of Theorem 7.2, one can show
(cf. [CL]) that

sup
B∈Cq

∣∣∣∣P∗
(
T∗

n ∈ B
) −

∫
B

ψ̂n(x) dx
∣∣∣∣ = o

(
n−1/2);

(7.5)

sup
B∈Cq

∣∣∣∣P∗
(
R∗

n ∈ B
) −

∫
B

π̂n(x) dx
∣∣∣∣ = o

(
n−1/2)

,

where ψ̂n and π̂n are obtained from ψn and πn, respectively, by replacing
(σ 2,μ3,b′

n) by (σ̂ 2
n , μ̂3,n, b̂′

n), where

σ̂ 2
n = Var∗

(
ε∗

1
)
, μ̂3,n = E∗

(
ε∗

1 − E∗ε∗
1
)3

, b̂n = D(1)
n C−1

11,n̂s(1)
n ,

and the j th element of ŝ(1)
n is given by sgn(β̂j,n)λn · n−1/2 · |β̂j,n|−γ , 1 ≤ j ≤ p0.

For part (a), we have, for n ≥ n0,

P
(

sup
B∈Cq

∣∣P∗
(
T∗

n ∈ B
) − P(Tn ∈ B)

∣∣ > Kn−1/2
)

≤ P
({

sup
B∈Cq

∣∣�̂n(B) − �n(B)
∣∣ > Kn−1/2

}
∩ A3,n

)
+ P

(
Ac

3,n

)
≤ P

(∫ ∣∣φ(
x; σ̂ 2ϒ̆n

) − φ
(
x;σ 2

n ϒ̆n

)∣∣dx > Kn−1/2
)

+ P
(
Ac

3,n

)
≤ P

(∣∣σ̂ 2
n − σ 2∣∣ > Kn−1/2) + o(1),

which can be made arbitrarily small by choosing K ∈ (0,∞) large. Hence, part (a)
follows. The proof of part (b) is similar; see [CL] for more details. �

PROOF OF THEOREM 4.3. From the proof of Theorem 7.2 in [CL], there ex-
ists a set A1,n with P(Ac

1,n) = o(n−1), such that on Ac
1,n and for n ≥ n0,

În = In and

R̆n ≡
√

nDn(β̂n − βn) + b̆n

σ̆n

=
[{

D(1)
n C−1

11,nW(1)
n − λn√

n
D(1)

n C−1
11,ns̃(1)

n

}
+ λn√

n
D(1)

n C−1
11,ns†

n

(1)
]

· 1

σ̆n

≡ D(1)
n C−1

11,nW(1)
n · 1

σ̆n

+ Q3,n (say),
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where, Q3,n = λn√
n

· D(1)
n C−1

11,n(s
†
n

(1) − s̃(1)
n ), and the j th element of s†

n

(1)
is given

by s
†
j,n = sgn(β̂j,n)|β̃j,n|−γ

,1 ≤ j ≤ p0. Note that

P
(‖Q3,n‖ �= 0

)
≤ P

({
s†
n

(1) �= s̃(1)
n

} ∩ A1,n

) + P
(
Ac

1,n

)
≤ P

({
sgn(β̂j,n) �= sgn(βj,n), for some 1 ≤ j ≤ p0

} ∩ An

) + P
(
Ac

1,n

)
= 0 + P

(
Ac

1,n

)
for n ≥ n0

= o
(
n−1)

.

Next, using Taylor’s expansion, one can write

R̆n = D(1)
n C−1

11,nW(1)
n

[
σ−1 − 1

2σ 3

(
σ̆ 2

n − σ 2) + 3

4σ 5

(σ̆ 2
n − σ 2)

2

2!
]

+ Q4,n

≡ R̆1,n + Q4,n (say),

where P(‖Q4,n‖ > Kn−3/2(logn)2) = o(n−1). As a consequence, EEs for R̆n

and R̆1,n coincide upto order n−1. Now using arguments in the proof of Theo-
rem 7.2(b), combined with the arguments in Götze (1987) and Lahiri (1994), and
then using the transformation technique of Bhattacharya and Ghosh (1978), one
can show (see [CL] for details) that

sup
B∈Cq

∣∣∣∣P(R̆n ∈ B) −
∫
B

π1,n(x) dx
∣∣∣∣ = o

(
n−1)

,(7.6)

where

π1,n(x) = φ(x :ϒn)
[
1 + n−1/2p1,n

(
x;σ 2,μ3

) + n−1p2,n

(
x;σ 2,μ3,μ4

)]
,

with μ4 = Eε4
1 and where p1,n(·) and p2,n(·) are polynomials of degree 3 and 6,

respectively, with coefficients that are rational functions of the respective sets of
parameters such that the denominators depend only on σ 2 [as in the definition of
πn(·)].

Next, using Lemma 7.3 and similar arguments, one can show that

sup
B∈Cq

∣∣∣∣P∗
(
R̆∗

n ∈ B
) −

∫
B

π̂1,n(x) dx
∣∣∣∣ = op

(
n−1)

,(7.7)

where

π̂1,n(x) = φ(x;ϒn)
[
1 + n−1/2p1,n

(
x; σ̂ 2

n , μ̂3,n

) + n−1p2,n

(
x; σ̂ 2

n , μ̂3,n, μ̂4,n

)]
,

with σ̂ 2
n = E∗(ε∗

1)2, μ̂k,n = E∗(ε∗
1)k , k = 3,4. Theorem 4.3 now follows from (7.6)

and (7.7). �
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PROOF OF THEOREM 5.1. Using the arguments similar to the proof of Theo-
rem 7.2, one can show that

Tn = D(1)
n C−1

11,nW(1)
n − bn + �1,n ≡ T†

1,n + �1,n (say),(7.8)

where

P
(‖�1,n‖ > Kλn

√
p0 logn/n

) = o
(
n−1/2)

.(7.9)

Note that by (C.6), λnn
−1√p0 logn = o(n−1/2), when b = 0. Now using the ar-

guments in the proof of Theorem 7.2 (with η
(0)
i = 0 for all i = 1, . . . , n), one can

conclude (cf. [CL]) that

sup
B∈Cq

∣∣∣∣P(Rn ∈ B) −
∫
B

π†
n(x) dx

∣∣∣∣ = o
(
n−1/2)

,(7.10)

and that

sup
B∈Cq

∣∣∣∣P∗
(
R∗

n ∈ B
) −

∫
B

(
π†)∗

(x) dx
∣∣∣∣ = op

(
n−1/2)

,(7.11)

where π†
n(·) is defined by setting η

(0)
i = 0 for 1 ≤ i ≤ n in the definition of πn(·),

and where (π†)
∗
(·) is obtained from π†(·) by replacing bn, σ 2 and μ3 with b̂n, σ̂ 2

and μ̂3,n, as in (7.5). Using (7.10) and (7.11), one can conclude that

sup
B∈Cq

∣∣P(Rn ∈ B) − P∗
(
R∗

n ∈ B
)∣∣ = op

(
n−1/2)

.

The proof for R̆n is similar. We omit the routine details to save space. �
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SUPPLEMENTARY MATERIAL

Supplement to “Rates of convergence of the Adaptive LASSO estimators to
the Oracle distribution and higher order refinements by the bootstrap” (DOI:
10.1214/13-AOS1106SUPP; .pdf). Detailed proofs of all results.
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1258 A. CHATTERJEE AND S. N. LAHIRI

REFERENCES

BACH, F. (2009). Model-consistent sparse estimation through the bootstrap. Preprint. Available at
http://arxiv.org/abs/0901.3202.

BERK, R. A., BROWN, L. D., BUJA, A., ZHANG, K. and ZHAO, L. (2013). Valid post selection
inference. Ann. Statist. 41 802–837.

BHATTACHARYA, R. N. and GHOSH, J. K. (1978). On the validity of the formal Edgeworth expan-
sion. Ann. Statist. 6 434–451. MR0471142

BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig
selector. Ann. Statist. 37 1705–1732. MR2533469

BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. (2007). Sparsity oracle inequalities for the Lasso.
Electron. J. Stat. 1 169–194. MR2312149

CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger
than n. Ann. Statist. 35 2313–2351. MR2382644

CHATTERJEE, A. and LAHIRI, S. N. (2010). Asymptotic properties of the residual bootstrap for
Lasso estimators. Proc. Amer. Math. Soc. 138 4497–4509. MR2680074

CHATTERJEE, A. and LAHIRI, S. N. (2011a). Bootstrapping lasso estimators. J. Amer. Statist. Assoc.
106 608–625. MR2847974

CHATTERJEE, A. and LAHIRI, S. N. (2011b). Strong consistency of Lasso estimators. Sankhyā A
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