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We consider the problem of learning causal information between random
variables in directed acyclic graphs (DAGs) when allowing arbitrarily many
latent and selection variables. The FCI (Fast Causal Inference) algorithm has
been explicitly designed to infer conditional independence and causal infor-
mation in such settings. However, FCI is computationally infeasible for large
graphs. We therefore propose the new RFCI algorithm, which is much faster
than FCI. In some situations the output of RFCI is slightly less informative,
in particular with respect to conditional independence information. However,
we prove that any causal information in the output of RFCI is correct in the
asymptotic limit. We also define a class of graphs on which the outputs of
FCI and RFCI are identical. We prove consistency of FCI and RFCI in sparse
high-dimensional settings, and demonstrate in simulations that the estimation
performances of the algorithms are very similar. All software is implemented
in the R-package pcalg.

1. Introduction. We consider the problem of learning the causal structure be-
tween random variables in acyclic systems with arbitrarily many latent and selec-
tion variables. As background information, we first discuss the situation without
latent and selection variables in Section 1.1. Next, in Section 1.2 we discuss com-
plications that arise when allowing for arbitrarily many latent and selection vari-
ables. Our new contributions are outlined in Section 1.3.

1.1. Systems without latent and selection variables. We first consider sys-
tems that satisfy the assumption of causal sufficiency, that is, that there are no
unmeasured common causes and no unmeasured selection variables. We assume
that causal information between variables can be represented by a directed acyclic
graph (DAG) in which the vertices represent random variables and the edges repre-
sent direct causal effects (see, e.g., [13, 14, 20]). In particular, X1 is a direct cause
of X2 only if X1 → X2 (i.e., X1 is a parent of X2), and X1 is a (possibly indirect)
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cause of X2 only if there is a directed path from X1 to X2 (i.e., X1 is an ancestor
of X2).

Each causal DAG implies a set of conditional independence relationships which
can be read off from the DAG using a concept called d-separation [13]. Several
DAGs can describe exactly the same conditional independence information. Such
DAGs are called Markov equivalent and form a Markov equivalence class. For
example, consider DAGs on the variables {X1,X2,X3}. Then X1 → X2 → X3,
X1 ← X2 ← X3 and X1 ← X2 → X3 form a Markov equivalence class, since
they all imply the single conditional independence relationship X1 ⊥⊥ X3|X2, that
is, X1 is conditionally independent of X3 given X2 (using the shorthand nota-
tion of Dawid [7]). Another Markov equivalence class is given by the single DAG
X1 → X2 ← X3, since this is the only DAG that implies the conditional inde-
pendence relationship X1 ⊥⊥ X3 alone. Markov equivalence classes of DAGs can
be described uniquely by a completed partially directed acyclic graph (CPDAG)
[3, 4].

CPDAGs can be learned from conditional independence information if one as-
sumes faithfulness, that is, if the conditional independence relationships among the
variables are exactly equal to those that are implied by the DAG via d-separation.
For example, suppose that the distribution of {X1,X2,X3} is faithful to an un-
known underlying causal DAG, and that the only conditional independence rela-
tionship is X1 ⊥⊥ X3|X2. Then the corresponding Markov equivalence class con-
sists of X1 → X2 → X3, X1 ← X2 ← X3 and X1 ← X2 → X3, and we know
that one of these three DAGs must be the true causal DAG. Algorithms that are
based on this idea are called constraint-based algorithms, and a prominent exam-
ple is the PC algorithm [20]. The PC algorithm is sound (i.e., correct) and complete
(i.e., maximally informative) under the assumptions of causal sufficiency and faith-
fulness [20]. It is efficiently implemented in the R-package pcalg [9], and was
shown to be asymptotically consistent in sparse high-dimensional settings [8].

In practice, one often wants to estimate not only the Markov equivalence class
of DAGs, but also the size of causal effects between pairs of variables. In the
special case that the estimated CPDAG represents a single DAG, one can do this
via, for example, Pearl’s do-calculus (also called intervention calculus; see [13])
or marginal structural models [18]. If the estimated CPDAG represents several
DAGs, one can conceptually estimate causal effects for each DAG in the Markov
equivalence class, and use these values to infer bounds on causal effects. This
idea, together with a fast local implementation, forms the basis of the IDA algo-
rithm [10, 11] which estimates bounds on causal effects from observational data
that are generated from an unknown causal DAG (IDA stands for Intervention cal-
culus when the DAG is Absent). The IDA algorithm was shown to be consistent
in sparse high-dimensional settings [11], and was validated on a challenging high-
dimensional yeast gene expression data set [10].
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1.2. Complications arising from latent and selection variables. In practice
there are often latent variables, that is, variables that are not measured or recorded.
Statistically speaking, these variables are marginalized out. Moreover, there can
be selection variables, that is, unmeasured variables that determine whether or not
a measured unit is included in the data sample. Statistically speaking, these vari-
ables are conditioned on (see [6, 21] for a more detailed discussion). Latent and
selection variables cause several complications.

The first problem is that causal inference based on the PC algorithm may be
incorrect. For example, consider the DAG in Figure 1(a) with observed variables
X = {X1,X2,X3} and latent variables L = {L1,L2}. The only conditional inde-
pendence relationship among the observed variables is X1 ⊥⊥ X3. There is only one
DAG on X that implies this single conditional independence relationship, namely
X1 → X2 ← X3, and this will therefore be the output of the PC algorithm; see
Figure 1(b). This output would lead us to believe that both X1 and X3 are causes
of X2. But this is clearly incorrect, since in the underlying DAG with latent vari-
ables, there is neither a directed path from X1 to X2 nor one from X3 to X2.

A second problem is that the space of DAGs is not closed under marginalization
and conditioning [16] in the following sense. If a distribution is faithful to a DAG,
then the distribution obtained by marginalizing out and conditioning on some of
the variables may not be faithful to any DAG on the observed variables. For exam-
ple, consider the DAG X1 → X2 ← L1 → X3 ← X4. This DAG implies the fol-
lowing set of conditional independence relationships among the observed variables
X = {X1, . . . ,X4}: X1 ⊥⊥ X3, X1 ⊥⊥ X4, X2 ⊥⊥ X4, X1 ⊥⊥ X3|X4, X1 ⊥⊥ X4|X2,
X1 ⊥⊥ X4|X3 and X2 ⊥⊥ X4|X1, and others implied by these. There is no DAG on
X that entails exactly this set of conditional independencies via d-separation.

These problems can be solved by introducing a new class of graphs on the ob-
served variables, called maximal ancestral graphs (MAGs) [16]. Every DAG with
latent and selection variables can be transformed into a unique MAG over the ob-
served variables ([16], page 981). Several DAGs can lead to the same MAG. In
fact, a MAG describes infinitely many DAGs since no restrictions are made on the
number of latent and selection variables.

MAGs encode causal relationships between the observed variables via the edge
marks. For example, consider the edge X1 → X2 in a MAG. The tail at X1 implies

(a) (b) (c)

FIG. 1. Graphs corresponding to the examples in Section 1.2. Throughout we use square boxes to
represent latent variables and circles to represent observed variables. (a) DAG with latent variables;
(b) CPDAG; (c) PAG.
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that X1 is a cause (ancestor) of X2 or of a selection variable, and the arrowhead
at X2 implies that X2 is not a cause (not an ancestor) of X1 nor of any selec-
tion variable, in all possible underlying DAGs with latent and selection variables.
Moreover, MAGs encode conditional independence relationships among the ob-
served variables via m-separation [16], a generalization of d-separation (see Defi-
nition 2.1 in Section 2.2). Several MAGs can describe exactly the same conditional
independence relationships; see [2]. Such MAGs form a Markov equivalence class
which can be represented by a partial ancestral graph (PAG); see Definition 3.1.
PAGs describe causal features common to every MAG in the Markov equivalence
class, and hence to every DAG (possibly with latent and selection variables) com-
patible with the observable independence structure under the assumption of faith-
fulness. For example, consider again the DAG in Figure 1(a). The only conditional
independence relationship among the observed variables is X1 ⊥⊥ X3, and this is
represented by the PAG in Figure 1(c). This PAG implies that X2 is not a cause
(ancestor) of X1, X3 or a selection variable, and this is indeed the case in the under-
lying DAG in Figure 1(a) and is true of any DAG that, assuming faithfulness, could
have implied X1 ⊥⊥ X3. The two circle marks at X1 and X3 in Figure 1(c) repre-
sent uncertainty about whether or not X1 and X3 are causes of X2. This reflects
the fact that the single conditional independence relationship X1 ⊥⊥ X3 among the
observed variables can arise from the DAG X1 → X2 ← X3 in which X1 and X3
are causes of X2, but it can also arise from the DAG in Figure 1(a) in which X1
and X3 are not causes of X2.

Under the faithfulness assumption, a Markov equivalence class of DAGs with
latent and selection variables can be learned from conditional independence infor-
mation among the observed variables alone using the Fast Causal Inference (FCI)
algorithm [20], which is a modification of the PC algorithm. Originally, the output
of FCI was defined as a partially oriented inducing path graph (POIPG), but its
output can also be interpreted as a PAG [23]. Spirtes et al. [20] proved that the
FCI algorithm is sound in the presence of arbitrarily many latent variables. Spirtes
et al. [21] extended the soundness proof to allow for selection variables as well.
Zhang [24] recently introduced extra orientation rules that make FCI complete
when its output is interpreted as a PAG. Despite its name, FCI is computationally
very intensive for large graphs.

Spirtes [19] introduced a modified version of FCI, called Anytime FCI, that only
considers conditional independence tests with conditioning sets of size less than
some prespecified cut-off K . Anytime FCI is typically faster but less informative
than FCI, but the causal interpretation of tails and arrowheads in its output is still
sound.

Some work on the estimation of the size of causal effects in situations with
latent and selection variables can be found in [17, 23] and in Chapter 7 of [20].

1.3. New contributions. We introduce a new algorithm for learning PAGs,
called the Really Fast Causal Inference (RFCI) algorithm (see Section 3.2). RFCI
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uses fewer conditional independence tests than FCI, and its tests condition on a
smaller number of variables. As a result, RFCI is much faster than FCI and its
output tends to be more reliable for small samples, since conditional independence
tests of high order have low power. On the other hand, the output of RFCI may be
less informative. In this sense, the algorithm is related to the Anytime FCI algo-
rithm [19].

In Section 3.4 we compare the outputs of FCI and RFCI, and define a class of
graphs for which the outputs of FCI and RFCI are identical.

In Section 4 we prove consistency of FCI and RFCI in sparse high-dimensional
settings. The sparsity conditions needed for consistency of FCI are stronger than
those for RFCI, due to the higher complexity of the FCI algorithm.

In order to compare RFCI to existing algorithms, we propose several small mod-
ifications of FCI and Anytime FCI. In particular, we introduce the Adaptive Any-
time FCI (AAFCI) algorithm (see Section 3 of the supplementary document [5])
and we propose several ways to speed up the FCI and AAFCI algorithms (see
Section 3.1).

We show in simulations (see Section 5) that the numbers of errors made by all
algorithms are very similar. Moreover, we show that our modifications of FCI and
AAFCI shorten the computation time considerably, but that for large graphs, RFCI
is the only feasible algorithm.

All proofs, a description of AAFCI, pseudocodes and two additional examples
are given in the supplementary document [5]. The R-package pcalg [9] contains
implementations of all algorithms.

2. Preliminaries. This section introduces terminology that is used throughout
the paper. Section 2.1 defines various graphical concepts, and Section 2.2 describes
how graphs can be interpreted probabilistically and causally.

2.1. Graphical definitions. A graph G = (V,E) is composed of a set of ver-
tices V = {X1, . . . ,Xp} and a set of edges E. In our framework, the vertices repre-
sent random variables and the edges describe conditional independence and ances-
tral relationships. The edge set E can contain (a subset of) the following six types
of edges: → (directed), ↔ (bi-directed), − (undirected), � � (nondirected), �

(partially undirected) and �→ (partially directed). The endpoints of an edge are
called marks and they can be tails, arrowheads or circles. We use the symbol “∗”
to denote an arbitrary edge mark. A graph containing only directed edges is called
directed, and one containing only undirected edges is called undirected. A mixed
graph can contain directed, bi-directed and undirected edges. If we are only inter-
ested in the presence and absence of edges in a graph and not in the edge marks,
we refer to the skeleton of the graph.

All the graphs we consider are simple in that there is at most one edge between
any two vertices. If an edge is present, the vertices are said to be adjacent. If
all pairs of vertices in a graph are adjacent, the graph is called complete. The
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adjacency set of a vertex Xi in a graph G is the set of all vertices in V \ {Xi}
that are adjacent to Xi in G , denoted by adj(G,Xi). A vertex Xj in adj(G,Xi) is
called a parent of Xi if Xj → Xi , a child of Xi if Xi → Xj , a spouse of Xi if
Xi ↔ Xj , and a neighbor of Xi if Xi − Xj . The corresponding sets of parents,
children, spouses and neighbors are denoted by pa(G,Xi), ch(G,Xi), sp(G,Xi)

and ne(G,Xi), respectively.
A path is a sequence of distinct adjacent vertices. A path 〈Xi,Xj , . . . ,Xk〉 is

said to be out of (into) Xi if the edge between Xi and Xj has a tail (arrowhead)
at Xi . A directed path is a path along directed edges that follows the direction of
the arrowheads. A cycle occurs when there is a path from Xi to Xj and Xi and Xj

are adjacent. A directed path from Xi to Xj forms a directed cycle together with
the edge Xj → Xi , and it forms an almost directed cycle together with the edge
Xj ↔ Xi . If there is a directed path π from Xi to Xj or if Xi = Xj , the vertex
Xi is called an ancestor of Xj and Xj a descendant of Xi . The sets of ances-
tors and descendants of a vertex Xi in G are denoted by an(G,Xi) and de(G,Xi),
respectively. These definitions are applied to a set Y ⊆ V of distinct vertices as
follows:

an(G,Y) = {Xi |Xi ∈ an(G,Xj ) for some Xj ∈ Y};
de(G,Y) = {Xi |Xi ∈ de(G,Xj ) for some Xj ∈ Y}.

Three vertices that form a cycle are called a triangle. Three vertices 〈Xi,Xj ,

Xk〉 are called an unshielded triple if Xi and Xj are adjacent, Xj and Xk are
adjacent, but Xi and Xk are not adjacent. A nonendpoint vertex Xj on a path π

is a collider on the path if both the edges preceding and succeeding it have an
arrowhead at Xj , that is, if the path contains ∗→Xj←∗. A nonendpoint vertex Xj

on a path π which is not a collider is a noncollider on the path. An unshielded triple
〈Xi,Xj ,Xk〉 is called a v-structure if Xj is a collider on the path 〈Xi,Xj ,Xk〉.

A path π = 〈Xl, . . . ,Xj ,Xb,Xp〉 in a mixed graph is called a discriminating
path for Xb if the following three conditions hold: (i) π includes at least three
edges; (ii) Xb is a nonendpoint vertex on π and is adjacent to Xp on π ; and (iii)
Xl is not adjacent to Xp in the graph and every vertex between Xl and Xb is a
collider on π and a parent of Xp . An example of a discriminating path is given in
Figure 4 of [5], where the circle marks are replaced by stars.

A graph G = (V,E) is called connected if there exists a path between any pair
of vertices in V. A graph is called biconnected if it is connected and remains so if
any vertex and its incident edges were to be removed. A biconnected component
of a graph is a maximally biconnected subgraph [1].

A directed graph G = (V,E) is called a directed acyclic graph (DAG) if it does
not contain directed cycles. A mixed graph G = (V,E) is called an ancestral graph
if (i) it does not contain directed cycles, (ii) it does not contain almost directed
cycles, and (iii) for any undirected edge Xi − Xj in E, Xi and Xj have no parents
or spouses. DAGs form a subset of ancestral graphs.
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2.2. Probabilistic and causal interpretation of graphs. A DAG entails con-
ditional independence relationships via a graphical criterion called d-separation,
which is a special case of m-separation:

DEFINITION 2.1 (Richardson and Spirtes [16]). A path π in an ancestral
graph is said to be blocked by a set of vertices Y if and only if:

(i) π contains a subpath 〈Xi,Xj ,Xk〉 such that the middle vertex Xj is a
noncollider on this path and Xj ∈ Y, or

(ii) π contains a v-structure Xi∗→Xj←∗Xk such that Xj /∈ Y and no descen-
dant of Xj is in Y.

Vertices Z and W are m-separated by Y if every path π between Z and W is
blocked by Y. Sets of vertices Z and W are m-separated by Y if all pairs of vertices
Z ∈ Z, W ∈ W are m-separated by Y.

If two vertices Xi and Xj in a DAG G are d-separated by a subset Y of the re-
maining vertices, then Xi ⊥⊥ Xj |Y in any distribution Q that factorizes according
to G (i.e., the joint density can be written as the product of the conditional densities
of each variable given its parents in G : q(X1, . . . ,Xp) = ∏p

i=1 q(Xi |pa(G,Xi)).
A distribution Q is said to be faithful to a DAG G if the reverse implication also
holds, that is, if the conditional independence relationships in Q are exactly the
same as those that can be inferred from G using d-separation. A set Y that d-
separates Xi and Xj in a DAG is called a minimal separating set if no subset of Y
d-separates Xi and Xj . A set Y is a minimal separating set for Xi and Xj given S
if Xi and Xj are d-separated by Y ∪ S and there is no subset Y′ of Y such that Xi

and Xj are d-separated by Y′ ∪ S.
When a DAG G = (V,E) contains latent and selection variables, we write

V = X ∪̇L ∪̇S, where X represents the observed variables, L represents the la-
tent variables and S represents the selection variables, and these sets are disjoint
(i.e., ∪̇ denotes the union of disjoint sets).

A maximal ancestral graph (MAG) is an ancestral graph in which every miss-
ing edge corresponds to a conditional independence relationship. Richardson and
Spirtes ([16], page 981) give an algorithm to transform a DAG G = (X ∪̇L ∪̇S,E)

into a unique MAG G∗ as follows. Let G∗ have vertex set X. For any pair of ver-
tices Xi,Xj ∈ X make them adjacent in G∗ if and only if there is an inducing
path (see Definition 3.5) between Xi and Xj in G relative to X given S. More-
over, for each edge Xi ∗∗Xj in G∗ put an arrowhead at Xi if Xi /∈ an(G, {Xj } ∪ S)

and put a tail otherwise. The resulting MAG G∗ = (X,E∗) encodes the condi-
tional independence relationships holding in G among the observed variables X
conditional on some value for the selection variables S = s; thus if Xi and Xj are
m-separated by Y in G∗, then Xi and Xj are d-separated by Y ∪ S in G and hence
Xi ⊥⊥ Xj |(Y ∪ {S = s}) in any distribution Q factorizing according to G . Perhaps
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more importantly, an ancestral graph preserves the ancestral relationships encoded
in the DAG.

Throughout the remainder of this paper, S refers to either the set of variables S
or the event S = s, depending on the context.

3. Oracle versions of the algorithms. We consider the following problem:
assuming that the distribution of V = X ∪̇L ∪̇S is faithful to an unknown under-
lying causal DAG G = (V,E), and given oracle information about all conditional
independence relationships between pairs of variables Xi and Xj in X given sets
Y ∪ S where Y ⊆ X \ {Xi,Xj }, we want to infer information about the ancestral
(causal) relationships of the variables in the underlying DAG, which we represent
via a PAG.

We discuss and compare two algorithms for this purpose, the FCI algorithm and
our new RFCI algorithm. We first define the outputs of both algorithms: an FCI-
PAG and an RFCI-PAG. (An FCI-PAG is usually referred to simply as a “PAG,” but
in the remainder of this paper we use the name FCI-PAG to make a clear distinction
between the output of the two algorithms.)

DEFINITION 3.1. Let G be a DAG with partitioned vertex set X ∪̇L ∪̇S. Let
C be a simple graph with vertex set X and edges of the type →, �→, � �, ↔,
− or � . Then C is said to be an FCI-PAG that represents G if and only if, for
any distribution P of X ∪̇L ∪̇S that is faithful to G , the following four conditions
hold:

(i) the absence of an edge between two vertices Xi and Xj in C implies that
there exists a subset Y ⊆ X \ {Xi,Xj } such that Xi ⊥⊥ Xj |(Y ∪ S) in P ;

(ii) the presence of an edge between two vertices Xi and Xj in C implies that
Xi ⊥⊥ Xj |(Y ∪ S) in P for all subsets Y ⊆ X \ {Xi,Xj };

(iii) if an edge between Xi and Xj in C has an arrowhead at Xj , then Xj /∈
an(G,Xi ∪ S);

(iv) if an edge between Xi and Xj in C has a tail at Xj , then Xj ∈ an(G,Xi ∪S).

DEFINITION 3.2. Let G be a DAG with partitioned vertex set X ∪̇L ∪̇S. Let
C be a simple graph with vertex set X and edges of the type →, �→, � �, ↔, −,
or � . Then C is said to be an RFCI-PAG that represents G if and only if, for
any distribution P of X ∪̇L ∪̇S that is faithful to G , conditions (i), (iii) and (iv) of
Definition 3.1 and the following condition hold:

(ii′) the presence of an edge between two vertices Xi and Xj in C implies that
Xi ⊥⊥ Xj |(Y ∪ S) for all subsets Y ⊆ adj(C,Xi) \ {Xj } and for all subsets Y ⊆
adj(C,Xj ) \ {Xi}.

Condition (ii) in Definition 3.1 is stronger than condition (ii′) in Definition 3.2.
Hence, the presence of an edge in an RFCI-PAG has a weaker interpretation than
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in an FCI-PAG. This has several consequences. First, every FCI-PAG is an RFCI-
PAG. Second, different RFCI-PAGs for the same underlying DAG may have dif-
ferent skeletons, while the FCI-PAG skeleton is unique. In general, the RFCI-PAG
skeleton is a supergraph of the FCI-PAG skeleton. Finally, an RFCI-PAG can cor-
respond to more than one Markov equivalence class of DAGs (see Example 2 in
Section 3.3).

It is worth noting that every FCI-PAG is an RFCI-PAG. Moreover, for a given
pair of a graph G and a distribution P faithful to it, there may be two different FCI-
PAGs that represent G but they will have the same skeleton. On the other hand, for
a given pair of a graph G and a distribution P faithful to it, there may also be
more than one RFCI-PAG that represents G and these different RFCI-PAGs can
also have different skeletons.

The remainder of this section is organized as follows. Section 3.1 briefly dis-
cusses the FCI algorithm and proposes modifications that can speed up the algo-
rithm while remaining sound and complete. Section 3.2 introduces our new RFCI
algorithm. Section 3.3 discusses several examples that illustrate the commonali-
ties and differences between the two algorithms, and Section 3.4 defines a class of
graphs for which the outputs of FCI and RFCI are identical.

3.1. The FCI algorithm. A high-level sketch of FCI ([20], pages 144 and 145)
is given in Algorithm 3.1. The sub-algorithms 4.1–4.3 are given in [5].

Algorithm 3.1 The FCI algorithm
Require: Conditional independence information among all variables in X given S
1: Use Algorithm 4.1 of [5] to find an initial skeleton (C ), separation sets (sepset) and unshielded

triple list (M);
2: Use Algorithm 4.2 of [5] to orient v-structures (update C );
3: Use Algorithm 4.3 of [5] to find the final skeleton (update C and sepset);
4: Use Algorithm 4.2 of [5] to orient v-structures (update C );
5: Use rules (R1)–(R10) of [24] to orient as many edge marks as possible (update C );
6: return C , sepset.

The determination of adjacencies in the PAG within the FCI algorithm is based
on the following fact: if Xi is not an ancestor of Xj , and Xi and Xj are condi-
tionally independent given some set Y ∪ S where Y ⊆ X \ {Xi,Xj }, then Xi and
Xj are conditionally independent given Y′ ∪ S for some subset Y′ of a certain set
D-SEP(Xi,Xj ) or of D-SEP(Xj ,Xi) (see [20], page 134 for a definition). This
means that, in order to determine whether there is an edge between Xi and Xj in
an FCI-PAG, one does not need to test whether Xi ⊥⊥ Xj |(Y ∪ S) for all possible
subsets Y ⊆ X \ {Xi,Xj }, but only for all possible subsets Y ⊆ D-SEP(Xi,Xj )

and Y ⊆ D-SEP(Xj ,Xi). Since the sets D-SEP(Xi,Xj ) cannot be inferred from
the observed conditional independencies, Spirtes et al. [20] defined a superset,
called Possible-D-SEP, that can be computed:
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DEFINITION 3.3. Let C be a graph with any of the following edge types: � �,
�→, ↔. Possible-D-SEP(Xi,Xj ) in C , denoted in shorthand by pds(C,Xi,Xj ), is

defined as follows: Xk ∈ pds(C,Xi,Xj ) if and only if there is a path π between
Xi and Xk in C such that for every subpath 〈Xm,Xl,Xh〉 of π , Xl is a collider on
the subpath in C or 〈Xm,Xl,Xh〉 is a triangle in C .

REMARK 3.1. Note that Xj does not play a role in the definition of pds(C ,
Xi,Xj ), but we keep it as an argument because we will later consider alternative
definitions of Possible-D-SEP (see Definition 3.4) where the second vertex Xj

does play a role.

Since the definition of Possible-D-SEP requires some knowledge about the
skeleton and orientation of edges, the FCI algorithm first finds an initial skele-
ton denoted by C1 in Step 1. This is done as in the PC-algorithm, by starting with
a complete graph with edges � � and performing conditional independence tests
given subsets of increasing size of the adjacency sets of the vertices. An edge
between Xi and Xj is deleted if a conditional independence is found, and the
set responsible for this conditional independence is saved in sepset(Xi,Xj ) and
sepset(Xj ,Xi) (see Algorithm 4.1 of [5]). The skeleton after completion of Step 1
is a superset of the final skeleton.

In Step 2, the algorithm orients unshielded triples Xi ∗ �Xj
� ∗Xk as v-structures

Xi∗→Xj←∗Xk if and only if Xj is not in sepset(Xi,Xk) and sepset(Xk,Xi) (see
Algorithm 4.2 of [5]).

The graph resulting after Step 2, denoted by C2, contains sufficient informa-
tion to compute the Possible-D-SEP sets. Thus, in Step 3, the algorithm computes
pds(C2,Xi, ·) for every Xi ∈ X. Then for every element Xj in adj(C2,Xi), the
algorithm tests whether Xi ⊥⊥ Xj |(Y ∪ S) for every subset Y of pds(C2,Xi, ·) \
{Xi,Xj } and of pds(C2,Xj , ·) \ {Xj,Xi} (see Algorithm 4.3 of [5]). As in Step 1,
the tests are arranged in a hierarchical way starting with conditioning sets of small
size. If there exists a set Y that makes Xi and Xj conditionally independent given
Y∪S, the edge between Xi and Xj is removed and the set Y is saved as the separa-
tion set in sepset(Xi,Xj ) and sepset(Xj ,Xi). After all conditional independence
tests are completed, every edge in C is reoriented as � �, since the orientation of v-
structures in Step 2 of the algorithm cannot necessarily be interpreted as specified
in conditions (iii) and (iv) of Definition 3.1.

In Step 4, the v-structures are therefore oriented again based on the updated
skeleton and the updated information in sepset (see Algorithm 4.2 of [5]). Finally,
in Step 5 the algorithm replaces as many circles as possible by arrowheads and
tails using the orientation rules described by [24].

First proposed modification: FCIpath. For sparse graphs, Step 3 of the FCI
algorithm dramatically increases the computational complexity of the algorithm
when compared to the PC algorithm. The additional computational effort can be
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divided in two parts: computing the Possible-D-SEP sets, and testing conditional
independence given all subsets of these sets. The latter part is computationally
infeasible when the sets pds(C2,Xi, ·) are large, containing, say, more than 30
vertices. Since the size of the Possible-D-SEP sets plays such an important role in
the complexity of the FCI algorithm, and since one has some freedom in defining
these sets (they simply must be supersets of the D-SEP sets), we first propose a
modification of the definition of Possible-D-SEP that can decrease its size.

DEFINITION 3.4. Let C be a graph with any of the following edge types: � �,
�→, ↔. Then, for two vertices Xi and Xj adjacent in C , pdspath(C,Xi,Xj ) is

defined as follows: Xk ∈ pdspath(C,Xi,Xj ) if and only if (i) there is a path π

between Xi and Xk in C such that for every subpath 〈Xm,Xl,Xh〉 of π , Xl is a
collider on the subpath in C or 〈Xm,Xl,Xh〉 is a triangle in C , and (ii) Xk lies on a
path between Xi and Xj .

For any pair of adjacent vertices Xi and Xj in a graph C , the set pdspath(C,Xi ,
Xj) can be computed easily by intersecting pds(C,Xi, ·) with the unique bicon-
nected component in C that contains the edge between Xi and Xj . Algorithm 4.3
of [5] can now be modified as follows. Before line 1, we compute all bicon-
nected components of the graph C2, where C2 is the graph resulting from Step 2 of
the FCI algorithm. Then between lines 3 and 4, we compute pdspath(C2,Xi,Xj )

as described above. Finally, on lines 8, 13 and 14, we replace pds(C2,Xi, ·) by
pdspath(C2,Xi,Xj ). We refer to the FCI algorithm with this modified version of
Algorithm 4.3 of [5] as FCIpath.

Second class of modifications: CFCI, CFCIpath, SCFCI and SCFCIpath. An-
other possibility to decrease the size of Possible-D-SEP is to use conservative rules
to orient v-structures in Step 2 of the FCI algorithm, so that fewer arrowheads are
introduced, similarly to the Conservative PC algorithm [15]. This is especially
helpful in the sample version of the algorithm (see Section 4.1), as the sample
version tends to orient too many v-structures, which can lead to long chains of bi-
directed edges and hence large Possible-D-SEP sets (see Figure 6 in Section 5.3).

The conservative orientation works as follows. For all unshielded triples
〈Xi,Xj ,Xk〉 in C1, where C1 is the graph resulting from Step 1 of the FCI al-
gorithm, we determine all subsets Y of adj(C1,Xi) and of adj(C1,Xk) satisfying
Xi ⊥⊥ Xk|(Y ∪ S). We refer to these sets as separating sets, and we label the triple
〈Xi,Xj ,Xk〉 as unambiguous if and only if (i) at least one separating set Y is
found and either Xj is in all separating sets and in sepset(Xi,Xk) or Xj is in none
of the separating sets nor in sepset(Xi,Xk), or (ii) no such separating set Y is
found. [Condition (ii) can occur, since separating sets found in Step 1 of the FCI
algorithm do not need to be a subset of adj(C1,Xi) or of adj(C1,Xk).] At the end
of Step 2, we only orient unambiguous triples satisfying Xj /∈ sepset(Xi,Xk) as
v-structures. This may lead to different Possible-D-SEP sets in Step 3 (even in the
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oracle version of the algorithm), but other than that, Steps 3–5 of the algorithm re-
main unchanged. We refer to this version of the FCI algorithm as Conservative FCI
(CFCI). If CFCI is used in combination with pdspath, we use the name CFCIpath.

Finally, the idea of conservative v-structures can also be applied in Step 4 of the
FCI algorithm. For each unshielded triple 〈Xi,Xj ,Xk〉 in C3, where C3 is the graph
resulting from Step 3, we determine all subsets Y of adj(C3,Xi) and of adj(C3,Xk)

satisfying Xi ⊥⊥ Xk|(Y ∪ S). We then determine if a triple is unambiguous, and
only if this is the case we orient it as v-structure or non-v-structure. Moreover, the
orientation rules in Step 5 of the algorithm are adapted so that they only rely on
unambiguous triples. We use the name Superconservative FCI (SCFCI) to refer
to the version of FCI that uses conservative v-structures in both Steps 2 and 4. If
SCFCI is used in combination with pdspath, we use the name SCFCIpath. The proof
of Theorem 3.1 shows that the output of the oracle version of SCFCI is identical to
that of CFCI. We still consider this version, however, in the hope to obtain better
edge orientations in the sample versions of the algorithms, where the outputs are
typically not identical.

Soundness of FCI follows from Theorem 5 of [21]. Soundness results for the
modifications FCIpath, CFCI, CFCIpath, SCFCI and SCFCIpath are given in the fol-
lowing theorem:

THEOREM 3.1. Consider one of the oracle versions of FCIpath, CFCI,
CFCIpath, SCFCI or SCFCIpath. Let the distribution of V = X ∪̇L ∪̇S be faith-
ful to a DAG G and let conditional independence information among all variables
in X given S be the input to the algorithm. Then the output of the algorithm is an
FCI-PAG of G .

Completeness of FCI was proved by [24]. This means that the output of FCI
is maximally informative, in the sense that for every circle mark there exists at
least one MAG in the Markov equivalence class represented by the PAG where the
mark is oriented as a tail, and at least one where it is oriented as an arrowhead.
Completeness results of FCIpath, CFCI, CFCIpath, SCFCI and SCFCIpath follow
directly from the fact that, in the oracle versions, the orientation rules of these
modifications boil down to the orientation rules of FCI.

3.2. The RFCI algorithm. The Really Fast Causal Inference (RFCI) algorithm
is a modification of FCI. The main difference is that RFCI avoids the conditional
independence tests given subsets of Possible-D-SEP sets, which can become very
large even for sparse graphs. Instead, RFCI performs some additional tests before
orienting v-structures and discriminating paths in order to ensure soundness, based
on Lemmas 3.1 and 3.2 below. The number of these additional tests and the size of
their conditioning sets is small for sparse graphs, since RFCI only conditions on
subsets of the adjacency sets. As a result, RFCI is much faster than FCI for sparse
graphs (see Section 5.3). Moreover, the lower computational complexity of RFCI
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leads to high-dimensional consistency results under weaker conditions than FCI
[compare conditions (A3) and (A3′) in Sections 4.2 and 4.3]. A high-level sketch
of RFCI is given in Algorithm 3.2.

Algorithm 3.2 The RFCI algorithm
Require: Conditional independence information among all variables in X given S
1: Use Algorithm 4.1 of [5] to find an initial skeleton (C ), separation sets (sepset) and unshielded

triple list (M);
2: Use Algorithm 4.4 of [5] to orient v-structures (update C and sepset);
3: Use Algorithm 4.5 of [5] to orient as many edge marks as possible (update C and sepset);
4: return C , sepset.

Step 1 of the algorithm is identical to Step 1 of Algorithm 3.1, and is used to
find an initial skeleton C1 that satisfies conditions (i) and (ii′) of Definition 3.2.

In Step 2 of the algorithm, unshielded triples are oriented based on Lemma 3.1
and some further edges may be removed.

LEMMA 3.1 (Unshielded triple rule). Let the distribution of V = X ∪̇L ∪̇S be
faithful to a DAG G . Assume that (a1) Sik is a minimal separating set for Xi and
Xk given S, and (a2) Xi and Xj as well as Xj and Xk are conditionally dependent
given (Sik \ {Xj }) ∪ S. Then Xj ∈ an(G, {Xi,Xk} ∪ S) if and only if Xj ∈ Sik .

The details of Step 2 are given in Algorithm 4.4 of [5]. We start with a list
M of all unshielded triples in C1, where C1 is the graph resulting from Step 1
of the RFCI algorithm, and an empty list L that is used to store triples that
were found to satisfy the conditions of Lemma 3.1. For each triple 〈Xi,Xj ,Xk〉
in M, we check if both Xi and Xj and Xj and Xk are conditionally depen-
dent given (sepset(Xi,Xk) \ {Xj }) ∪ S. These conditional dependencies may not
have been checked in Step 1 of the algorithm, since sepset(Xi,Xk) \ {Xj } does
not need to be a subset of adj(C1,Xj ). If both conditional dependencies hold,
the triple satisfies the conditions of Lemma 3.1 and is added to L. On the other
hand, an additional conditional independence relationship may be detected, say
Xi ⊥⊥ Xj |((sepset(Xi,Xk) \ {Xj }) ∪ S). This may arise in a situation where Xi

and Xj are not m-separated given a subset of vertices adjacent to Xi , and are
not m-separated given a subset of vertices adjacent to Xj , but they do happen
to be m-separated given the set (sepset(Xi,Xk) \ {Xj }) ∪ S. In this situation, we
remove the edge Xi ∗∗Xj from the graph, in agreement with condition (i) of Def-
inition 3.2. The removal of this edge can create new unshielded triples, which are
added to M. Moreover, it can destroy unshielded triples in L and M, which are
therefore removed. Finally, by testing subsets of the conditioning set which led to
removal of the edge, we find a minimal separating set for Xi and Xj and store it in
sepset(Xi,Xj ) and sepset(Xj ,Xi). Example 1 of [5] shows that it is not sufficient
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to simply store sepset(Xi,Xk) \ {Xj } since it may not be minimal for Xi and Xj .
We work with the lists M and L to ensure that the result of Step 2 does not depend
on the order in which the unshielded triples are considered.

After Step 2, all unshielded triples still present in the graph are correctly ori-
ented as a v-structure or non-v-structure. In Step 3, the algorithm orients as many
further edges as possible, as described in Algorithm 4.5 of [5]. This procedure con-
sists of repeated applications of the orientation rules (R1)–(R10) of [24], with the
difference that rule (R4) about the discriminating path has been modified according
to Lemma 3.2.

LEMMA 3.2 (Discriminating path rule). Let the distribution of V = X ∪̇L ∪̇S
be faithful to a DAG G . Let πik = 〈Xi, . . . ,Xl,Xj ,Xk〉 be a sequence of at least
four vertices that satisfy: (a1) Xi and Xk are conditionally independent given
Sik ∪ S, (a2) any two successive vertices Xh and Xh+1 on πik are condition-
ally dependent given (Y′ \ {Xh,Xh+1}) ∪ S for all Y′ ⊆ Sik , (a3) all vertices
Xh between Xi and Xj (not including Xi and Xj ) satisfy Xh ∈ an(G,Xk) and
Xh /∈ an(G, {Xh−1,Xh+1}∪S), where Xh−1 and Xh+1 denote the vertices adjacent
to Xh on πik . Then the following hold: (b1) if Xj ∈ Sik , then Xj ∈ an(G, {Xk} ∪ S)

and Xk /∈ an(G, {Xj }∪S), and (b2) if Xj /∈ Sik , then Xj /∈ an(G, {Xl,Xk}∪S) and
Xk /∈ an(G, {Xj } ∪ S).

Lemma 3.2 is applied as follows. For each triangle 〈Xl,Xj ,Xk〉 of the form
Xj

� ∗Xk , Xj∗→Xl and Xl → Xk , the algorithm searches for a discriminat-
ing path π = 〈Xi, . . . ,Xl,Xj ,Xk〉 for Xj of minimal length, and checks that
the vertices in every consecutive pair (Xr,Xq) on π are conditionally depen-
dent given Y ∪ S for all subsets Y of sepset(Xi,Xk) \ {Xr,Xq}. (Example 2 of
[5] shows why it is not sufficient to only check conditional dependence given
(sepset(Xi,Xk) \ {Xr,Xq}) ∪ S, as we did for the v-structures.) If we do not
find any conditional independence relationship, the path satisfies the conditions
of Lemma 3.2 and is oriented as in rule (R4) of [24]. If one or more conditional
independence relationships are found, the corresponding edges are removed, their
minimal separating sets are stored, and any new unshielded triples that are created
by removing the edges are oriented using Algorithm 4.4 of [5]. We note that the
output of Step 3 may depend on the order in which the discriminating paths are
considered.

Soundness of RFCI is stated in the following theorem.

THEOREM 3.2. Let the distribution of V = X ∪̇L ∪̇S be faithful to a DAG G
and let conditional independence information among all variables in X given S be
the input to the RFCI algorithm. Then the output of RFCI is an RFCI-PAG of G .

REMARK 3.2. The new orientation rules based on Lemmas 3.1 and 3.2
open possibilities for different modifications of the FCI algorithm. For exam-
ple, one could replace pds(C,Xi,Xj ) by pdsk(C,Xi,Xj ), where a vertex Xl is
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in pdsk(C,Xi,Xj ) if it is in pds(C,Xi,Xj ) and there is a path between Xi and Xl

containing no more than k + 1 vertices. This modification yields a skeleton that
is typically a superset of the skeleton of the true FCI-PAG. In order to infer cor-
rect causal orientations based on this skeleton, one needs to use Algorithms 4.4
and 4.5 of [5] to determine the final orientations of the edges. The parameter k

represents a trade-off between computing time and informativeness of the output,
where k = 1 corresponds to the RFCI algorithm and k = |X| − 2 corresponds to
the FCI algorithm.

Another way to obtain a more informative but slower version of RFCI can be
obtained by modifying Step 1 of the RFCI algorithm: instead of considering all
subsets of adj(C,Xi) and of adj(C,Xj ), one can consider all subsets of the union
adj(C,Xi) ∪ adj(C,Xj ).

3.3. Examples. We now illustrate the algorithms in two examples. In Exam-
ple 1, the outputs of FCI and RFCI are identical. In Example 2, the outputs of
FCI and RFCI are not identical, and the output of RFCI describes two Markov
equivalence classes. We will see, however, that the ancestral or causal information
inferred from an RFCI-PAG is correct. Two additional examples illustrating details
of Algorithms 4.4 and 4.5 of [5] are given in Section 5 of [5].

EXAMPLE 1. Consider the DAG in Figure 2(a) containing observed variables
X = {X1, . . . ,X6}, latent variables L = {L1,L2} and no selection variables (S =
∅). Suppose that all conditional independence relationships over X that can be
read off from this DAG are used as input for the algorithms.

In all algorithms, Step 1 is the same, and consists of finding an initial skeleton.
This skeleton, denoted by C1, is shown in Figure 2(b). The final output given by
both algorithms is shown in Figure 2(c).

(a) (b) (c)

FIG. 2. Graphs corresponding to Example 1, where the outputs of FCI and RFCI are identical.
(a) Underlying DAG with latent variables; (b) initial skeleton C1; (c) RFCI-PAG and FCI-PAG.
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Comparing the initial skeleton with the final skeleton, we see that the edge
X1 � �X5 is present in the initial but not in the final skeleton. The absence in the
final skeleton is due to the fact that X1 ⊥⊥ X5|{X2,X3,X4}. The edge is present in
the initial skeleton, since this conditional independence is not found in Step 1 of the
algorithms, because {X2,X3,X4} is not a subset of adj(C1,X1) nor of adj(C1,X5).

The FCI algorithm finds the conditional independence relationship X1 ⊥⊥
X5|{X2,X3,X4} in Step 3 when subsets of Possible-D-SEP are considered, since
pds(C2,X1,X5) \ {X1,X5} = {X2,X3,X4} and pds(C2,X5,X1) \ {X5,X1} =
{X2,X3,X4,X6}, where C2 is the graph resulting from Step 2 of the algorithm.

In the RFCI algorithm, the conditional independence relationship X1 ⊥⊥X5|{X2,
X3,X4} is also found, but by another mechanism. In Step 2 of Algorithm 3.2,
unshielded triples are oriented after performing some additional conditional inde-
pendence tests. In particular, when considering the triple 〈X1,X5,X6〉, the algo-
rithm checks whether X1 ⊥⊥ X5|(sepset(X1,X6) \ {X5}), where sepset(X1,X6) =
{X2,X3,X4}.

This example also shows why it is necessary to check unshielded triples ac-
cording to Lemma 3.1 before orienting them as v-structures. Omitting this check
for triple 〈X1,X5,X6〉 would orient it as a v-structure, since X5 /∈ sepset(X1,X6).
Hence, we would conclude that X5 /∈ an(G, {X6} ∪ S), which contradicts the un-
derlying DAG.

Finally, we see that the orientations of the edges are identical in the outputs of
both algorithms, which implies that the outputs encode the same ancestral infor-
mation.

EXAMPLE 2. Consider the DAG G in Figure 3(a), containing observed vari-
ables X = {X1, . . . ,X5}, latent variables L = {L1,L2} and no selection variables
(S = ∅) (see also [21], page 228, Figure 8a). Suppose that all conditional indepen-
dence relationships over X that can be read off from this DAG are used as input
for the algorithms.

(a) (b) (c)

FIG. 3. Graphs corresponding to Example 2, where the outputs of FCI and RFCI are not iden-
tical. The output of RFCI corresponds to two Markov equivalence classes when interpreted as an
RFCI-PAG. (a) Underlying DAG G with latent variables; (b) output of RFCI for G ; (c) output of FCI
for G .
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The outputs of the RFCI and FCI algorithms are shown in Figure 3(b) and (c),
respectively. We see that the output of RFCI contains an extra edge, namely
X1 ↔ X5.

As in Example 1, this edge is present after Step 1 of both algorithms. The reason
is that the conditional independence X1 ⊥⊥ X5|{X2,X3,X4} is not found, because
{X2,X3,X4} is not a subset of adj(C1,X1) nor of adj(C1,X5), where C1 denotes
the skeleton after Step 1.

The FCI algorithm finds this conditional independence in Step 3 when subsets of
Possible-D-SEP are considered. The RFCI algorithm does not find this conditional
independence, since the edge between X1 and X5 does not appear in an unshielded
triple or a discriminating path. However, the ancestral information encoded by the
output of RFCI is correct, and in this example identical to the ancestral information
encoded by the output of FCI.

Finally, we show that the RFCI-PAG in Figure 3(b) describes two Markov equiv-
alence classes. Consider a new DAG G′, which is adapted from G in Figure 3(a) by
adding one additional latent variable L3 pointing at X1 and X5. This modification
implies that X1 and X5 are conditionally dependent given any subset of the re-
maining observed variables, so that G′ belongs to a different Markov equivalence
class than G . The output of both FCI and RFCI, when using as input the conditional
independence relationships that can be read off from G′, is given in Figure 3(b).
Hence, the PAG in Figure 3(b) represents more than one Markov equivalence class
if interpreted as an RFCI-PAG.

3.4. A class of graphs for which the outputs of FCI and RFCI are identical.
We now specify graphical conditions on an underlying DAG G = (V,E) with
V = X ∪̇L ∪̇S such that the outputs of FCI and RFCI are identical (Theorem 3.3).
Moreover, if the outputs of RFCI and FCI are not identical, we infer properties of
edges that are present in the output of RFCI but not in that of FCI (Theorem 3.4).

The results in this section rely on the concept of inducing paths [21, 22], which
we have extended here:

DEFINITION 3.5. Let G = (V,E) be a DAG with V = X ∪̇L ∪̇S and let Y be
a subset of X containing Xi and Xj with Xi = Xj . A path π between Xi and Xj

is called an inducing path relative to Y given S if and only if every member of
Y ∪ S that is a nonendpoint on π is a collider on π and every collider on π has a
descendant in {Xi,Xj } ∪ S.

We note that our Definition 3.5 corresponds to the one in [21] if Y = X. The
existence of an inducing path in a DAG is related to d-connection in the follow-
ing way. There is an inducing path between Xi and Xj relative to Y given S if
and only if Xi and Xj are not d-separated by (Y′ ∪ S) \ {Xi,Xj } for all Y′ ⊆ Y
(see [21], Lemma 9, page 243). The definition of an inducing path is monotone in
the following sense: if Y1 ⊆ Y2 ⊆ X and there is an inducing path between Xi and
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Xj relative to Y2 given S, then there also is an inducing path between Xi and Xj

relative to Y1 given S.
Consider a pair of vertices Xi,Xj ∈ X in an underlying DAG G . We introduce

the following shorthand notation. Let Adj(i, j) = adj(C1,Xi) \ {Xj }, where C1
is the initial skeleton after Step 1 of the algorithms. Moreover, let Pds(i, j) =
pds(C2,Xi,Xj ) \ {Xj,Xi}, where C2 is the graph resulting from Step 2 of the FCI
algorithm. By definition, Pds(k, i) ⊇ Adj(k, i) for any pair of vertices Xk,Xi ∈ X.
We now consider the following three scenarios:

(S1) There is an inducing path between Xi and Xj in G relative to Pds(i, j)

given S, and there is an inducing path between Xi and Xj relative to Pds(j, i)
given S.

(S2) There is an inducing path between Xi and Xj in G relative to Adj(i, j)

given S, and there is an inducing path between Xi and Xj relative to Adj(j, i)
given S. Moreover, there is no inducing path between Xi and Xj in G relative to
Pds(i, j) given S, or there is no inducing path between Xi and Xj in G relative to
Pds(j, i) given S.

(S3) There is no inducing path between Xi and Xj in G relative to Adj(i, j)

given S, or there is no inducing path between Xi and Xj in G relative to Adj(j, i)
given S.

We now obtain the following theorem:

THEOREM 3.3. Assume that the distribution of V = X ∪̇L ∪̇S is faithful to an
underlying DAG G . Then the output C′ of RFCI equals the output C′′ of FCI if for
every pair of vertices Xi , Xj in X either (S1) holds or (S3) holds. If C′ = C′′, then
the skeleton of C′ is a strict superset of the skeleton of C′′, and Scenario (S2) must
hold for every pair of vertices that are adjacent in C′ but not in C′′.

Scenario (S2) occurs if and only if (i) there is a path π(i, j) between Xi and Xj

in the underlying DAG G that satisfies: (c1) all colliders on π(i, j) have descen-
dants in {Xi,Xj } ∪ S, (c2) every member of Adj(i, j) ∪ S on π(i, j) is a collider
on π(i, j), (c3) there is a member of (Pds(i, j) ∪ Pds(j, i)) \ Adj(i, j) on π(i, j)

that is not a collider on the path, and (ii) there is a path π(j, i) between Xj and Xi

in the underlying DAG that satisfies conditions (c1)–(c3) above with the roles of i

and j reversed. In condition (c3), an equivalent formulation is given by replacing
Pds(i, j) ∪ Pds(j, i) with X \ {Xi,Xj }.

To illustrate Theorem 3.3, consider again Example 2 and the graphs in Fig-
ure 3. The output of RFCI for the underlying DAG shown in Figure 3(a) con-
tains an edge between X1 and X5, while the output of FCI does not. Accord-
ing to Theorem 3.3, Scenario (S2) must hold for the vertices X1 and X5. Hence,
there must exist paths π(1,5) and π(5,1) between X1 and X5 in the underlying
DAG that satisfy conditions (c1)–(c3) above. This is indeed the case for the path



312 COLOMBO, MAATHUIS, KALISCH AND RICHARDSON

π = π(1,5) = π(5,1) = 〈X1,L1,X2,X3,X4,L2,X5〉: (c1) there are two collid-
ers on π , X2 and X4, both with descendants in {X1,X5}, (c2) all members of
Adj(1,5) = Adj(5,1) = {X2,X4} on π are colliders on the path, and (c3) X3 is a
member of (Pds(1,5)∪Pds(5,1))\Adj(1,5) = (Pds(5,1)∪Pds(1,5))\Adj(5,1)

on π and is a noncollider on π .
To see that the occurrence of Scenario (S2) does not always lead to a difference

in the outputs of FCI and RFCI, we revisit Example 1 and the graphs in Figure 2.
The same path π as above satisfies conditions (c1)–(c3) in the underlying DAG,
but the outputs of FCI and RFCI are identical (due to the extra tests in Step 2 of
Algorithm 3.2). This illustrates that fulfillment of (S1) or (S3) for every pair of
vertices is not a necessary condition for equality of FCI and RFCI.

Finally, the following theorem establishes features of edges that are present in
an RFCI-PAG but not in an FCI-PAG.

THEOREM 3.4. Assume that the distribution of V = X ∪̇L ∪̇S is faithful to an
underlying DAG G . If there is an edge Xi ∗∗Xj in an RFCI-PAG for G that is not
present in an FCI-PAG for G , then the following hold: (i) Xi /∈ an(G,Xj ∪ S) and
Xj /∈ an(G,Xi ∪ S), and (ii) each edge mark of Xi ∗∗Xj in the RFCI-PAG is a
circle or an arrowhead.

4. Consistency of FCI and RFCI in sparse high-dimensional settings. Let
G = (V,E) be a DAG with V = X ∪̇L ∪̇S and let M be the corresponding unique
MAG over X. We assume that we observe n i.i.d. copies of W = (W1, . . . ,Wp) ∼
(X1|S, . . . ,Xp|S). To represent high-dimensional behavior, we let the DAG G and
the number of observed variables p in X grow as a function of the sample size,
so that p = pn, G = Gn and M = Mn. We do not impose any restrictions on the
number of latent and selection variables. Throughout, we assume that W is mul-
tivariate Gaussian, so that conditional independence is equivalent to zero partial
correlation.

In Section 4.1, we define the sample versions of RFCI and the different versions
of FCI. Sections 4.2 and 4.3 contain consistency results for RFCI and FCI in sparse
high-dimensional settings. The conditions required for consistency of RFCI are
considerably weaker than those for FCI.

4.1. Sample versions of RFCI and the different versions of FCI. Let ρn;i,j |Y
be the partial correlation between Wi and Wj in W given a set Y ⊆ W \ {Wi,Wj },
and let ρ̂n;i,j |Y be the corresponding sample partial correlation. We test if a partial
correlation is equal to zero after applying Fisher’s z-transform defined as g(x) =
1
2 log(1+x

1−x
). Thus, we consider

ẑn;i,j |Y = g(ρ̂n;i,j |Y) and zn;i,j |Y = g(ρn;i,j |Y)

and we reject the null-hypothesis H0(i, j |Y) :ρi,j |Y = 0 against the two-sided al-
ternative HA(i, j |Y) :ρi,j |Y = 0 at significance level α if

|ẑn;i,j |Y| > �−1(1 − α/2)(n − |Y| − 3)−1/2,(4.1)
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where �(·) denotes the cumulative distribution function of a standard normal ran-
dom variable. (We assume n > |Y| + 3.)

Sample versions of RFCI and the different versions of FCI can be obtained
by simply adapting all steps with conditional independence decisions as follows:
Xi and Xj are judged to be conditionally independent given Y′ ∪ S for Y′ ⊆ X \
{Xi,Xj } if and only if |ẑn;i,j |Y| ≤ �−1(1 − α/2)(n − |Y| − 3)−1/2 for Y ∼ Y′|S.
The parameter α is used for many tests, and plays the role of a tuning parameter.

4.2. Consistency of RFCI. We impose the following assumptions:

(A1) The distribution of W is faithful to the underlying causal MAG Mn for
all n.

(A2) The number of variables in X, denoted by pn, satisfies pn = O(na) for
some 0 ≤ a < ∞.

(A3) The maximum size of the adjacency sets after Step 1 of the oracle RFCI
algorithm, denoted by qn = max1≤i≤pn(|adj(C1,Xi)|), where C1 is the skeleton
after Step 1, satisfies qn = O(n1−b) for some 0 < b ≤ 1.

(A4) The distribution of W is multivariate Gaussian.
(A5) The partial correlations satisfy the following lower and upper bound for

all Wi,Wj ∈ {W1, . . . ,Wpn} and Y ⊆ {W1, . . . ,Wpn} \ {Wi,Wj } with |Y| ≤ qn:

inf{|ρn;i,j |Y| :ρn;i,j |Y = 0} ≥ cn,

sup{|ρn;i,j |Y| : i = j} ≤ M < 1,

where c−1
n = O(nd) for some 0 ≤ d < b/2 with b from (A3).

Assumption (A2) allows the number of variables to grow as any polynomial of
the sample size, representing a high-dimensional setting. Assumption (A3) is a
sparseness assumption, and poses a bound on the growth of the maximum size of
the adjacency sets in the graph resulting from Step 1 of the oracle RFCI algorithm.
The upper bound in assumption (A5) excludes sequences of models in which the
partial correlations tend to 1, hence avoiding identifiability problems. The lower
bound in assumption (A5) requires the nonzero partial correlations to be outside
of the n−b/2 range, with b as in assumption (A3). This condition is similar to
assumption 5 in [12] and condition (8) in [25].

The similarities between our assumptions and the assumptions of [8] for consis-
tency of the PC algorithm are evident. The main differences are that our assump-
tion (A3) concerns the skeleton after Step 1 of the oracle RFCI algorithm instead
of the underlying DAG, and that our assumptions (A1) and (A4)–(A5) concern the
distribution of W instead of X.

THEOREM 4.1. Assume (A1)–(A5). Denote by Ĉn(αn) the output of the sam-
ple version of the RFCI algorithm and by C′

n the oracle version of the RFCI algo-
rithm. Then there exists a sequence αn → 0 (n → ∞) and a constant 0 < C < ∞
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such that

P[Ĉn(αn) = C′
n] ≥ 1 − O(exp(−Cn1−2d)) → 1 as n → ∞,

where d > 0 is as in (A5).

One such sequence for αn is αn = 2(1 − �(n1/2cn/2)), where cn is the lower
bound in (A5) (which depends on the unknown data distribution).

4.3. Consistency of FCI. Assume (A1)–(A5) of Section 4.2, but replace (A3)
by (A3′):

(A3′) The maximum size of the Possible-D-SEP sets in Step 3 of the oracle
FCI algorithm, denoted by rn = max1≤i≤pn(|pds(C2,Xi, ·)|), where C2 is the graph
resulting from Step 2, satisfies rn = O(n1−b) for some 0 < b ≤ 1.

Assumption (A3′) is stronger than assumption (A3), since the skeleton after
Step 1 of the RFCI algorithm is identical to the skeleton after Step 2 of the FCI al-
gorithm, and since the adjacency set is contained in Possible-D-SEP by definition.
(In fact, one can construct sequences of graphs in which the maximum size of the
adjacency sets is fixed, but the maximum size of the Possible-D-SEP sets grows
linearly with the number of vertices.) The stricter assumption (A3′) is needed for
the additional conditional independence tests in Step 3 of the FCI algorithm.

THEOREM 4.2. Assume (A1)–(A5) with (A3′) instead of (A3). Consider one
of the sample versions of FCI, FCIpath, CFCI, CFCIpath, SCFCI or SCFCIpath, and
denote its output by C∗

n(αn). Denote the true underlying FCI-PAG by Cn. Then
there exists a sequence αn → 0 (n → ∞) and a constant 0 < C < ∞ such that

P[C∗
n(αn) = Cn] ≥ 1 − O(exp(−Cn1−2d)) → 1 as n → ∞,

where d > 0 is as in (A5).

As before, one such sequence for αn is αn = 2(1 − �(n1/2cn/2)), where cn is
the lower bound in (A5).

5. Numerical examples. In this section we compare the performance of RFCI
and different versions of FCI and Anytime FCI in simulation studies, consider-
ing both the computing time and the estimation performance. Since Anytime FCI
requires an additional tuning parameter (see [19] and Section 3 of [5]), we can-
not compare it directly. We therefore define a slight modification, called Adaptive
Anytime FCI (AAFCI), where this tuning parameter is set adaptively (see Section 3
of [5]). Our proposed modifications of FCI (see Section 3.1) can also be applied to
AAFCI, leading to the following algorithms: AAFCIpath, CAAFCI, CAAFCIpath,
SCAAFCI and SCAAFCIpath.

The remainder of this section is organized as follows. The simulation setup is
described in Section 5.1. Section 5.2 shows that the estimation performances of
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RFCI and all versions of FCI and AAFCI are very similar. Section 5.3 shows that
our adaptations of FCI and AAFCI can reduce the computation time significantly
for graphs of moderate size, but that RFCI is the only feasible algorithm for large
graphs.

5.1. Simulation setup. We use the following procedure to generate a random
DAG with a given number of vertices p′ and expected neighborhood size E(N).
First, we generate a random adjacency matrix A with independent realizations of
Bernoulli(E(N)/(p′ − 1)) random variables in the lower triangle of the matrix
and zeroes in the remaining entries. Next, we replace the ones in A by indepen-
dent realizations of a Uniform([0.1,1]) random variable. A nonzero entry Aij can
be interpreted as an edge from Xj to Xi with “strength” Aij , in the sense that
X1, . . . ,Xp′ can be generated as follows: X1 = ε1 and Xi = ∑i−1

r=1 AirXr + εi for
i = 2, . . . , p′, where ε1, . . . , εp′ are mutually independent N (0,1) random vari-
ables. The variables X1, . . . ,Xp′ then have a multivariate Gaussian distribution
with mean zero and covariance matrix �′ = (1 − A)−1(1 − A)−T , where 1 is the
p′ × p′ identity matrix.

To assess the impact of latent variables, we randomly define half of the variables
that have no parents and at least two children to be latent (we do not consider
selection variables). We restrict ourselves to variables that have no parents and at
least two children, since these are particularly difficult for RFCI in the sense that
they are likely to satisfy Scenario (S2) in Section 3.4. Throughout, we let p denote
the number of observed variables.

We consider the oracle versions of RFCI and FCIpath (note that the outputs of
FCIpath and FCI are identical in the oracle versions), and the sample versions of
RFCI, (AA)FCI, (AA)FCIpath, C(AA)FCI, C(AA)FCIpath and SC(AA)FCIpath. In
all plots (AA)FCIpath is abbreviated as (AA)FCIp. Let � be the p × p matrix
that is obtained from �′ by deleting the rows and columns that correspond to
latent variables. The oracle versions of the algorithms use � as input, and the
sample versions of the algorithms use simulated data from a Np(0,�) distribution
as input.

The simulations were performed on an AMD Opteron (tm) Quad Core Proces-
sor 8380 with 2.5 GHz and 2 GB RAM on Linux using R 2.11.0.

5.2. Estimation performance. We first investigated the difference between the
oracle versions of RFCI and FCIpath, using simulation settings p′ ∈ {15,20,25}
and E(N) = 2. For each combination of these parameters, we generated 1000
DAGs, where the average number of observed variables was p ≈ {14,18,23}
(rounded to the nearest integer). For each simulated graph, we assessed whether the
outputs of FCIpath and RFCI were different, and if this was the case, we counted the
number of additional edges in the output of RFCI when compared to that of FCI.
For p′ = 15, p′ = 20 and p′ = 25, there were 0, 1 and 5 of the 1000 DAGs that
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gave different results, and whenever there was a difference, the output of RFCI had
a single additional edge. Hence, for these simulation settings, the oracle versions
of FCIpath and RFCI were almost always identical, and if there was a difference,
the difference was very small.

Next, we investigated the performance of the sample versions of RFCI and our
adaptations of FCI and AAFCI, considering the number of differences in the output
when compared to the true FCI-PAG. We used two simulation settings: small-scale
and large-scale.

The small-scale simulation setting is as follows. For each value of p′ ∈ {10,15,
20,25,30}, we generated 50 random DAGs with E(N) = 2, where the average
number of observed variables was p ≈ {9,14,18,23,27}. For each such DAG,
we generated a data set of size n = 1000 and ran RFCI, (AA)FCI, (AA)FCIpath,
C(AA)FCI and SC(AA)FCIpath with tuning parameter α = 0.01.

Figure 4 shows the results for the small-scale setting. Figure 4(a) shows the
average number of missing or extra edges over the 50 replicates, and we see that
this number was virtually identical for all algorithms. Figure 4(b) shows the aver-
age number of different edge marks over the 50 replicates. We again see that all
algorithms performed similarly. We note that the conservative and superconserva-
tive adaptations of the algorithms yield slightly better edge orientations than the
standard versions for larger graphs.

The large-scale simulation setting is as follows. For each value of p′ ∈ {100,
200,300,500} we generated 100 random DAGs with E(N) = 3, where the aver-

(a) (b)

FIG. 4. Estimation performance of the sample versions of RFCI and the different versions of FCI
and AAFCI in the small-scale setting, when compared to the true underlying FCI-PAG. The simula-
tion settings were E(N) = 2, n = 1000 and α = 0.01. (a) Average number of missing or extra edges
over 50 replicates; (b) average number of different edge marks over 50 replicates.
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(a) (b)

FIG. 5. Estimation performance of the sample versions of RFCI and the fastest versions of FCI and
AAFCI in the large-scale setting, when compared to the true underlying FCI-PAG. The simulation
settings were E(N) = 3, n = 1000 and α = 0.01. (a) Average number of missing or extra edges over
91 replicates (see text); (b) average number of different edge marks over 91 replicates (see text).

age number of observed variables was p ≈ {90,180,271,452}. For each DAG, we
generated a data set of size n = 1000, and ran RFCI, CFCIpath and CAAFCIpath
[the other versions of (AA)FCI were computationally infeasible] using tuning pa-
rameter α = 0.01. To ensure reasonable computing times, we terminated an algo-
rithm for a graph if it was not finished after eight hours. For CFCIpath, termination
occurred five times for p′ = 300 and nine times for p′ = 500. One of the latter
nine graphs also led to termination of CAAFCIpath. To ensure comparability we
deleted any run which did not complete for all algorithms and computed the aver-
age number of missing or extra edges [see Figure 5(a)] and the average number of
different edge marks [see Figure 5(b)] over the 91 remaining runs. We again see
that all algorithms performed similarly.

5.3. Computing time. We first compared the size of the Possible-D-SEP sets
in the different versions of FCI, since this is the most important factor for the
computing time of these algorithms. In particular, if the size of Possible-D-SEP
is, say, 25 vertices or more, it becomes computationally infeasible to consider all
of its subsets. For all combinations of p′ ∈ {10,50,250} and E(N) ∈ {2,3}, we
generated 100 random graphs and ran the oracle version of FCI and FCIpath and
the sample versions of FCI, FCIpath, CFCI and CFCIpath. The average number of
observed variables was p ≈ {9,46,230} for E(N) = 2 and p ≈ {9,45,226} for
E(N) = 3. For the sample versions of the algorithms we used sample size n =
1000 and tuning parameter α = 0.01. For each simulated graph and each algorithm
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FIG. 6. A plot of mean-max-pds (see text) versus p′, where both axes are drawn in log scale. The
horizontal line at mean-max-pds = 24 indicates an upper bound that still yields a feasible running
time of the algorithms.

we computed the maximum size of the Possible-D-SEP sets over all vertices in
the graph. We averaged these numbers over the 100 replicates, and denoted the
result by mean-max-pds. The results are shown in Figure 6. We see that the new
definition of pdspath (see Definition 3.4 used in algorithm FCIpath and CFCIpath)
reduced mean-max-pds slightly, while the conservative adaptations of the sample
versions of the algorithms reduced it drastically. These results are also relevant for
the different versions of AAFCI, since AAFCI considers all subsets of Possible
D-SEP up to a certain size. This again becomes infeasible if Possible D-SEP is
large.

Next, we investigated the computing time of the sample version of RFCI and
modifications of FCI and AAFCI under the same simulation settings as in Sec-
tion 5.2.

Figure 7(a) shows the average running times over the 50 replicates in the small-
scale setting. We see that RFCI was fastest for all parameter settings, while the
standard version of FCI was slowest for all settings with p′ ≥ 15. Our new adapta-
tions of FCI and AAFCI reduced the running time of FCI and AAFCI significantly,
which is in correspondence with the reduction in mean-max-pds that we saw in
Figure 6.

Figure 7(b) shows the average running times over the 91 fastest runs in the
large-scale setting. We see that RFCI is the only algorithm that is computation-
ally feasible for large graphs: for p′ = 500 RFCI took about 40 seconds, while
the fastest modifications of FCI took about 10,000 seconds. These results can be
explained by the fact that Steps 2 and 3 in the RFCI algorithm only involve local
tests (conditioning on subsets of the adjacency set of a vertex), while Step 3 of
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(a) (b)

FIG. 7. Running time of the sample versions of the algorithms, using simulation settings n = 1000
and α = 0.01, where the y-axes are drawn in log scale. (a) Average running time in seconds of each
algorithm over 50 replicates, using E(N) = 2; (b) average running time in seconds of each algorithm
over 91 replicates (see text), using E(N) = 3.

(AA)FCI considers subsets of the Possible D-SEP sets, which can be large even
for sparse graphs (see Figure 6).

6. Discussion. In this paper, we introduce a new algorithm for learning PAGs,
called the Really Fast Causal Inference (RFCI) algorithm. RFCI uses fewer con-
ditional independence tests than the existing FCI algorithm, and its tests condition
on a smaller number of variables.

The output of RFCI can be interpreted as the output of FCI, with the only dif-
ference that the presence of an edge has a weaker meaning. In particular, the inter-
pretation of tails and arrowheads is identical for both algorithms. In this sense the
RFCI algorithm is similar to the Anytime FCI algorithm of [19].

We describe a class of graphs where the outputs of FCI and RFCI are identical,
and show that differences between the two algorithms are caused by very special
structures in the underlying DAG. We confirm this finding in simulation studies
that show that differences between the oracle versions of RFCI and FCI are very
rare.

We prove consistency of FCI and RFCI in sparse high-dimensional settings.
The sparsity conditions needed for consistency of RFCI are considerably weaker
than those needed for FCI, due to the lower computational complexity of the RFCI
algorithm.

We compare RFCI with several modifications of (Anytime) FCI in simulation
studies. We show that all algorithms perform similarly in terms of estimation,
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and that RFCI is the only algorithm that is computationally feasible for high-
dimensional sparse graphs.

We envision several possible uses of RFCI. First, it could be used in addition
to the PC algorithm to assess the potential impact of the existence of latent or
selection variables. Second, it could be used as a building block for an IDA-like
method [10, 11] to obtain bounds on causal effects based on observational data that
is faithful to an unknown underlying causal graph with arbitrarily many latent and
selection variables. In order to achieve the latter, we plan to build on the work of
[17, 23], who made a start with the study of causal reasoning for ancestral graphs.
Other interesting open problems include investigating which RFCI-PAGs can only
correspond to a single Markov equivalence class, and investigating completeness
of the RFCI algorithm, that is, investigating whether the edge marks in the output
of RFCI are maximally informative.

SUPPLEMENTARY MATERIAL

Supplement to “Learning high-dimensional directed acyclic graphs with la-
tent and selection variables” (DOI: 10.1214/11-AOS940SUPP; .pdf). All proofs,
a description of the Adaptive Anytime FCI algorithm, pseudocodes, and two addi-
tional examples can be found in the supplementary document [5].
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