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A COMPLETE CLASS THEOREM FOR STRICT MONOTONE
LIKELIHOOD RATIO WITH APPLICATIONS!

By L. D. BRowN, ARTHUR COHEN AND W. E. STRAWDERMAN

Rutgers University

Suppose a random variable has a density belonging to a one parameter
family which has strict monotone likelihood ratio. For inference regard-
ing the parameter (or a monotone function of the parameter) consider the
loss function to be bowl shaped for each fixed parameter and also to have
each action be a ‘“point of increase’ or a ‘‘point of decrease’” for some
value of the parameter. Under these conditions, given any nonmonotone
decision procedure, a unique monotone procedure is constructed which is
strictly better than the given procedure for all the above loss functions.
This result has application to the following areas: combining data prob-
lems, sufficiency, a multivariate one-sided testing problem.

1. Introduction and summary. Let X be a real random variable whose density,
fo(x), is strict monotone likelihood ratio. "Assume that both the parameter space,
0, and action space, % for the problem are subsets of the real line. We will

also assume that the loss function is lower semicontinuous and bowl shaped in

ac 7 for every fixed 6 € ©, and for each a, there exists a ¢, for which a is a
“point of increase” or “decrease.” Given any nonmonotone decision procedure
0(x; A), A being any Borel set, we construct ¢’(x; A) where ¢’ is monotone and
0’ is strictly better than 6. The uniquely constructed procedure ¢’ is better than
o for all loss functions described above. This construction implies that the class
of monotone procedures is a complete class. This result is stronger than the
result of Karlin and Rubin [3]. Karlin and Rubin [3] proved that if f,(x) is
monotone likelihood ratio, then the class of monotone procedures is essentially
complete. Their proof involves a lengthy limiting argument which cannot be
adapted to yield the result here. An additional advantage of the result here is
for pedagogical purposes. The main step of the proof is an adaptation of a
Karlin and Rubin lemma. The proof of the result here is short and does not
involve a limiting argument.

The broad nature of the loss function means that the result is applicable to a
variety of problems. In particular, one-sided testing, “‘one-sided” finite action,
point estimation, and fixed width confidence estimation are problems to which
the result applies. The fact that the constructed procedure is better for all loss
functions satisfying the conditions reflects a robust property of the constructed
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procedure. Furthermore, the result can be used to solve three other problems.
We list these three applications.

C(1.1) Let X, and X, be a pair of independent observations on a random vari-
able with density f;(x). We are concerned with inference regarding ¢, and the
loss function is as described in the above paragraph. The question is, when
can we utilize both observations to come up with a procedure that is strictly
better than a given procedure based on only one observation? This problem
has relevance in situations where the statistician seeks to combine data or the
statistician wants to decide if he should take additional sample points. One
conclusion is that if fy(x) is strict monotone likelihood ratio, then given any
procedure based on one observation, there exists a procedure based on both
observations which is strictly better. Some corollaries for hypothesis testing
problems are also given.

(1.2) Let X, X, ..., X, be a random sample from a population whose density
Jfo(x) is strict monotone likelihood ratio, which belongs to the exponential family,
and is dominated by a nonatomic measure. The inference problem and loss
function are as above. Let T be a sufficient statistic. The result is as follows:
If 0 is any procedure not based on T alone, then d* can be constructed so that
0* is based only on T and 6* is strictly better than 9. This result has some
analogue to the Rao-Blackwell theorem. Whereas there is a restriction on the
density here, there is no requirement for a convex loss function. The construc-
tion here leads to a procedure which is better than the given procedure for all
loss functions described above. In the case where the problem is point estima-
tion with convex loss, the construction will not always yield the same estimator
given by the Rao-Blackwell construction. Furthermore, whereas the Rao-
Blackwell construction preserves unbiasedness, the construction here preserves
median unbiasedness.

(1.3) Oosterhoff [4] defines strict monotone likelihood ratio for multivariate
densities, f,(x), with several parameters. Here x and @ are vectors. He con-
siders testing the hypothesis H,: @ = 8,, vs. H,: 6, > 6, where 6, > ¢ means
that 6, > 6,,, all i, and for at least one i, §, > 6, He defines a monotone pro-
cedure in x space and proves that if f,(x) is strict monotone likelihood ratio
then the monotone procedures are essentially complete. We prove that the
monotone procedures are complete. We also prove that if f,(x) is monotone
likelihood ratio, then the monotone procedures are essentially complete.

In the next section we give definitions and prove the main theorem. In Section
3 we discuss the problem of two observations versus one observation. In Section
4 we give the result on sufficiency, while the multivariate one sided testing prob-
lem is discussed in Section 5.

2. Complete class theorem. Let X be a real random variable with cumula-
tive distribution function Fy(x) = {2, f,(x) dv(u), for § € ©, where O is a subset
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of the real line and where v is a g-finite, nonatomic measure. (With appropriate
modifications most of the ensuing results are still true when v is not nonatomic.)
Furthermore we assume fy(x) is strict monotone likelihood ratio. We are con-
cerned with inference on ¢ (or with a monotone function of #). The action
space .9/ is a subset of the real line and the loss function is denoted by L(d, a)
for ae 7. For convenience we take %" = 0, although the more general case
can be treated similarly. We now give:

DEeriNITION 2.1. The loss function L(@, a) is defined to be bowl shaped, if
for each fixed 6, L(0, ) is nonincreasing for a < ¢, L(#, §) = 0, and L(0, -) is
nondecreasing for @ > 0. We also introduce Condition 2.1:

ConpiTioN 2.1. For every action a, either

(i) there exists a 0, say 6,, with 6, < a, such that for every action &’ > a,
L@#,,a) — L@,,a) > 0, or

(ii) there exists a 0, say 0,, with 6, > a, such that for every action a’ < a,
L@,,a)— L(,,a) > 0.

We will assume that L(8, a) is lower semicontinuous, bowl shaped, and satisfies
Condition 2.1. A decision procedure, denoted by d(x, 4), will be for each x, a
probability measure on the Borel sets of .97, and for each 4, a measurable map.
We define a monotone decision procedure as follows:

DEFINITION 2.2. A procedure, 4, is monotone if (it is equivalent to a meas-
urable map such that) for any x <y, and any aec.%¥, the condition
0(y; (— o0, a]) > 0 implies that d(x; (a, c0)) = 0.

Let R(8, 6) denote the risk function for a procedure d. Also let F,~* denote
the left continuous inverse function of F,. Now we are ready to state

THEOREM 2.1. Let 0 be any given nonmonotone procedure. Let b be any real
number and let K,(A, 6) = § 6(x; A)fy(x) dv(x). Define ¢’ as in (2.1),

(2.1) F(xi (=00, b)) =1 if x < F,MK,((— o0, 8], 9))
=0 if x> F,"(Ky((— o0, b],0)).
Then R(0, 0") < R(0, 0) for all 6 € © with strict inequality for some 6 € ©.
Proor. Let §, be a monotone decision procedure such that
(2.2) K,((— o0, b), d)) = K;((— o0, b), d) and

Ky((— o0, b], 95) = Ky((— o0, 8], 9) .
Note that

(2.3)  Ky((—o0, b]); 8)) — Ko(— o0, ], 9) ‘
= § [0y(x; (— 00, 8]) — 9(x; (— o0, b])]fo(x) d¥(x) -

Since g, is monotone, [d,(x; (— oo, b]) — d(x; (— oo, b])], as a function of x, has
at most one sign change in the order of plus to minus. This fact, the strict
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monotone likelihood ratio of fy(x), and (2.2) imply

(2.4) Ky((— o0, b], 8y) — Ky((— o0, 5],0) =0 for 6 <56
<0 for 6 >0b.

Similarly

(2.5) Ky((— o0, b), 6,) — Ky((— o0, b),0) =0 for 0 <5
<0 for 6 =5b.

Now note that the difference in risks for § and 4§, is
(2.6) R(6,0) — R(8,d) = §,, § ., L0, b)[0(x; db) — d(x; db)] fo(x) dy(x)
=, L(0, b)[K,(db, 3) — K(db, 8,)] .
If we integrate by parts in (2.6), by virtue of lower semicontinuity of L we get
R0, 3) — R(9, d,)

= {2a [Ko((— 00, b), 3g) — Ky((— o0, b), 9)] dL(6, b)
2.7) + §7 [Ko((6, 00), ) — Ko((b, o0), 65)] dL(0, b)

= (Lo [Ky((— 00, b), 3g) — Ky((— o0, b), )] dL(0, b)

+ {7 [Ko((— 00, 8], 8p) — Ko((— 0, b], 0) dL(0, D) .

The fact that L is bowl shaped, (2.4) and (2.5) imply that (2.7) = 0.

Note that ¢ is nonmonotone and must therefore differ from J, on a set of
positive v-measure. Then, since fy(x) is strict monotone likelihood ratio, there
exists a b, say b*, for which Ky((— oo, b*], 6,) — Ky(— o0, b*], d) is nonzero for
every 0 =+ b*.

Suppose b* is an action for which the loss satisfies Condition 2.1(i). By right
continuity of K,((— oo, b], 9,) — Ky((— o0, b], d) as a function of b, it follows
that for each @ < b* there exists an interval of values [b*, 5(6)] such that

(2.8)  K,((—o0,b],8) — K((—o0,b],8) >0  for be[b*,b®)].

By Condition 2.1 (i) L(@4, 5(0;x)) — L(04+, b*) > 0. Then (2.8) implies that (2.7)
is strictly positive at 6 = 6,. < b*.

If b* is an action for which the loss satisfies Condition 2.1 (ii), then for each
6 > b* there exists an interval of values (b*, 5(¢)] such that

(2.9)  K,(—o0,b),8) — Ky((—o0,b),8) <0  for be (b, b()].

Let § = 6,. > b. Since L(,, a) is right continuous in a for a < 6,. and since
it is decreasing and lower semicontinuous on this domain, Condition 2.1 (ii) im-
plies that there exist values b, b,, with b* < b, < b, < b(0,.) such that L(0,., b;) >
L(6,., b,). It now follows from (2.9) that (2.7) is strictly positive at 6 = 6,..

The preceding paragraphs have yielded that R(6,d,) — R(6,0) =0 and
R(0,., d;) — R(0,+, 6) > 0. Hence 0, is strictly better than 4.

To complete the proof of the theorem we show that ¢’ defined in (2.1) is a
monotone decision procedure satisfying (2.2). Clearly (2.1) leads to the second
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equality in (2.2). The first equality in (2.2) follows by recognizing that
K,({8}, &) = F, F,"(Ky(— 00, b], 8) — F, F, (K,(— oo, b), 8) = K,({b}, ). Also
from (2.1) it is clear that §’(+; A) is a measurable function. Now let b > b.
Observe that §'(x; (— oo, b] = '(x; (— oo, b)) since
Fy~(K5((— 00, B], 8)) = Fy~'(Kj((— o0, B], 8"))

2 F;7(K3((— o0, ], 9))

= By (F Fy (Ko (— 00, 8], 9))

= F,"(Ky(— o0, b], 9) .
Hence §'(x; (— oo, b]) = 1 implies that §(x; (— oo, b]) = 1 for all b > b. Simi-
larly, 6'(x; (— oo, b]) = 0 implies ¢'(x; (—oo, b]) = 0 for all b < b. It follows
that ¢’(x; ) is a well-defined probability measure. Finally note that if x <y
and 6’(y; (— oo, a]) > Othenx < y < F,7 (K, ((— 0, a]), 0)) so that d'(x; a, 00)) =
1 — &'(x; (— o0, a]) = 0. Hence ¢’ is monotone. This completes the proof of
the theorem.

REMARK 2.1. It can be seen from Definition 2.1 that ¢’ is nonrandomized,
with the measure d’(x; -) concentrated on the point

d'(x) = sup {b: 6'(x; (— oo, b]) = 0}
=inf{b: 0'(x; (— o0, b]) = 1}.

By itself, the fact that ¢’ is nonrandomized is of no special interest since in
the nonatomic case every monotone procedure is nonrandomized. (By this we
mean that (x; +) is concentrated on a single point for almost every x(v).) To
see this observe that it is a consequence of Definition 2.2 that for any mono-
tone measurable map the set {x:supf{a: d(x, (—o0,a)) =0} < inf{b: d(x,
(— o0, b]) = 1} is countable, and hence has v measure zero.

3. Two observations vs. one observation. In this section we study the problem
discussed in (1.1). We have a pair of independent observations X;, X, from a
population whose density f,(x) is strict monotone likelihood ratio. We are in-
terested in inference regarding ¢ (or a monotone function of #). The loss func-
tion L(@, a) is bowl shaped and satisfies Condition 2.1. Let d(x,; A) represent a
nondegenerate procedure based only on the first observation. Then we prove:

THEOREM 3.1. For any nondegenerate procedure 0(x,; A), there exists a procedure
0"((x,, x,); A) based on both observations such that o' is strictly better than é.

PrOOF. Assume d(x;; A) is monotone. If d(x,; A) is not monotone, we can
use Theorem 2.1 to construct a procedure based on X, which is better and is
monotone. Let §((x,, x,); A) be the procedure which uses d(x,; 4) with proba-
bility 4 and d(x,; 4) with probability 1. Clearly R(6, ) = R(f, §). We proceed
to construct ¢’((x,, x,); A) which will be better than 0. Since § is monotone, it
is nonrandomized so we may let d(x,) correspond to d(x,; «). Let

B ={be 7 v[x,:d(x) > b] =0}, B ={be 7 y[x,: d(x)) < b] =0},

b=inf,.56, and b =sup,b.
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Thus b < d(x,) < b, a.e. v, and b < b. Now consider any b e (b, b). Note that
for any such b,
0((xy5 X3); (— o0, 8]) =1 if dx)<b, dx)<b

if dx,)>b, dx,)<b
if dx,)<b, dx,)>b
if d(x,) >b, dx)>b.
Now apply the construction of (2.1) to ¢ at each fixed value of X, to define
0'((x1» x,); A). Fix be (b, b). For any fixed x,, we see from (3.1) that § takes
on values 1 and } if d(x,) < b, and values } and 0 if d(x,) > b. Therefore for
fixed x,, 0 is such that

Ky ((— o0, b], 8") — K,*((— o0, b], 3) > 0 for 6 <b

<0 for 6 >5b.

(3.1)

O N N

From the proof of Theorem 2.1 there exists a 6, such that conditionally, given
x,, 0’ is at least as good as ¢ for every @ and strictly better at §,. The value 6,
is independent of the given x,. It follows then that if §’ is well defined, i.e.
measurable, then R(8’, 6,|x,) < R(d, 6,|x,) and hence that R(’, 6) < R(5, 6)
for every 6.

To complete the proof of the theorem then, we show ¢’ is measurable. Let
d’ correspond to ¢’ and note from (2.1) and the definition of ¢ that d’ is such that

(33) PEd(X,x)<cl=3%+LPJdX)<c]  if dx)<c
= PJd(X,) < c] if d(x) >,

where P* represents a conditional probability for X, = x,. Consider the set
E, = {(x,y): d'(X}, x,) < c}. For each fixed X, = x,, the set is an interval
(— o0, Xi(x,)). The monotonicity of 4 and (3.3) imply that as x, increases the
left-hand side of (3.3) is nonincreasing. This in turn implies that X,(x,) is a
nonincreasing function. Thus X (x,) is a measurable function which implies,
by application of Exercise 5, Halmos ([2], pages 142-143), that E, is a measur-
able set. Hence d'(X;, X,) is measurable and the proof of the theorem is complete.

REMARK 3.1. A nontrivial example of when two observations are not strictly
better than one observation is as follows: Let X;, X, be independent Bernoulli
random variables with parameter p. Test the null hypothesis that p = 1 vs. p = 3.
The test which accepts the null hypothesis when X; = 0 and rejects when X, = 1
is most powerful of size . The theorem fails here because v is not nonatomic.

REMARK 3.2. From the proof of Theorem 3.1 it is clear that two observations
are better than one whenever the problem is such that a randomized procedure
based on one observation can be improved on by a nonrandomized procedure
based on one observation. Thus when the loss function is strictly convex the
result is true for all densities.
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We conclude this section by considering some consequences of Theorem 3.1
and its proof for the special problems of hypotheses testing and confidence set
estimation.

First consider the problem of testing a one-sided hypothesis, say H,: 8 = 6, vs.
H,: 6 > 6,. Then an obvious consequence of the proof of Theorem 3.1 is that
the set of nonrandomized tests whose acceptance regions have x; sections of
the form (— oo, x,(x;)] and x, sections of the form (— oo, x,(x,)] form a complete
class. For this same problem, let ¢ be the test based on one observation which
rejects when X, > ¢; i.e. ¢(x;) = 0if X; < ¢, ¢(x,) = 1if X; > c. Let ¢'(x,, x,)
be any nonrandomized test whose acceptance region has x; sections of the
form (— oo, xy(x,)], x, sections of the form (— oo, x,(X;)] and when x, = ¢ the
x, section is (—oo, ¢], and when x, = ¢, the x, section is (—oo, c]. Assume
@'(x15 X;) = ¢'(Xy, X,).

The following theorem has relevance to the problem of combining tests.

THEOREM 3.2. Suppose ¢(x,) is not always 0 or not always 1. Then any test of
the form ¢'(x,, x,) whose size equals the size of the test for ¢(x,) is strictly better
than the test ¢(x,). :

Proor. The test @(x;, x,) = (§)e(x,) + (3)¢(x,) has the same risk function as
o(x,). Therefore it suffices to show that ¢’ is better than ¢. Note that ¢ and
¢’ are equal for all (x,, x,) such that {x, < ¢, x, < ¢} and {x, > ¢, x, > c}. Let
0 ={(xpx):c<xx<candG = {(x, %) ¢ < x, x, < ¢, and ¢'(x;, X,) =
1}. By the definition of ¢ and the fact that ¢’ has the same size as @, we have
Pry (G| Q) = 4. By strict monotone likelihood ratio and the properties of ¢’ it
follows that Pr, (4| Q) is an increasing function of #. Since @(x,, x,) = § for
(X1, x;) € Q, since ¢ and ¢’ are symmetric, it follows that the power of ¢’ exceeds
the power of ¢ for every 6. This completes the proof of the theorem.

Regarding Theorem 3.2 we make some remarks. First it is easily seen that
the permutation invariant tests form a complete class. Whereas ¢’ represents a
class of “combined” procedures it is not known whether such procedures are
themselves admissible. In fact if fy(x) is normal with unknown mean ¢, and the
size of the test is not 4, the ¢’ tests are inadmissible. This is so since a UMP
test exists and is not a ¢’ test. An unanswered question for the general com-
bining of tests problem is what is an admissible combined test that is better
than ¢.

We conclude this section with some remarks.

REMARK 3.3. For the two-sided testing problem, with f,(x) of Pdlya type 3,
one can also prove that given a test based on one observation, there exists a
test based on two observations which is strictly better.

REMARK 3.4, For confidence set estimation, when evaluating a confidence
set by probability of coverage and probability of covering false values, Theorem
3.1 applied to hypothesis testing yields by duality, a comparable result for
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confidence set estimation. The confidence set itself, which is better than the
confidence set based on one observation, may not be an interval and may not
even be a measurable set. When the resulting confidence set is measurable, a
theorem of Cohen and Strawderman [1] implies that an analogous result holds
for confidence set estimation when the criteria are probability of coverage and
a function of the length or measure of the confidence set.

4. Sufficiency theorem. Let X = (X, X,, ..., X,) represent a random sample
of size n from a population whose distribution belongs to the exponential family.
Let the density f,(x), dominated by v(x), a nonatomic measure, be strict mono-
tone likelihood ratio. Let T(X) be a sufficient statistic. We are interested in
inference on ¢ when the loss function is bowl-shaped and satisfies Condition
(2.1). We prove:

THEOREM 4.1. Let d(x; A) be any nondegenerate procedure not based only on T.
Then there exists a procedure ¢'(T; A) which is strictly better.

Proor. Consider the procedure 0*(T; A) = E{d(x; A)|T}. Since T is suf-
ficient, 0* does not depend on §. Also R(f#, ) = R(#, 6*). Now note that 5*
is a randomized procedure. To see this consider two cases. First suppose 9 is
randomized. Then for some set 4, 0*(T'; A) would have to satisfy 0 < 6*(T; 4) < 1.
Next suppose d is nonrandomized. If in fact 6* were nonrandomized then we
would have for every Borel set 4, letting U = {x: *(T; 4) = 0}, either

4.1) 0 = essinf, ., 0*(T(x); A) = essinf, ., d(x; A4)
0 = ess sup, ., 0*(T(x); A) < esssup, ., 0(X; A)

or letting V' = {x: 0*(T; A) = 1}, a similar set of equations with 1 replacing 0.
The equations in (4.1) would imply that indeed ¢ itself would be based only on
a sufficient statistic. This contradiction implies that ¢* is randomized. Now
we may construct ¢’ from the randomized 6* according to (2.1). By Theorem
2.1 8" is strictly better than &* and hence better than . This completes the
proof of the theorem.

Theorem 4.1 provides an analogue to the Rao-Blackwell theorem. Whereas
Rao-Blackwell assume convex loss, here no such assumption is made. Here
the loss function or collection of loss functions includes all reasonable convex
loss functions as well as reasonable nonconvex loss functions. The construction
here yields a procedure that is better for all these loss functions simultaneously.
The construction is appropriate for hypothesis testing, fixed width confidence
estimation, and point estimation. Another analogue to the Rao-Blackwell
theorem is the following: Whereas the Rao-Blackwell construction preserves
unbiasedness of a point estimator, the construction here preserves median un-
biasedness of a point estimator. This is expressed in

COROLLARY 4.1. Let O(x) be a median unbiased estimator of 6 not based only
on the sufficient statistic T. Then the construction of Theorem 4.1 yields 6'(T) which
is median unbiased and ' is strictly better than .

.
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ProOF. The estimator § is median unbiased if we have Pr,{f < 6} = 4. It
is easily seen from (2.1) and the two steps in the construction of Theorem 4.1
that §, which depends on T, is such that Pr, {0’ < 6} = Pr, {6 <6} =4 Thus
6" is median unbiased and by Theorem 4.1 it is better than 6. This completes
the proof of the corollary.

We conclude this section with two examples:

ExampLEs. Let X}, X,, - .-, X, be independent N(¢, 1). Then given the point
estimate X;, the construction yields X as the estimator based on the sufficient
statistic which is better.

Let X,, X,, ---,X, be independent with exponential density fy(x) =
0e=%1, .,(x). Then, given the point estimate X, for (1/6), the construction yields
C,X, C, + 1, as the estimator based on the sufficient statistic which is better.
This contrasts with the Rao-Blackwell construction which yields X.

5. Multivariate testing problem. Oosterhoff [4] defines a strict monotone
likelihood ratio density for a random vector X of order k X 1 as follows: Let
0 be a k x 1 vector of parameters. A partial ordering of points in R is defined
by x’ < ,x, meaning x,/ < x, fori = 1,2, - .-, k. The density f{x; #) is strict
monotone likelihood ratio if for ” < ,0’, [ f(x; ")/ f(x; 6”)] is strictly increas-
ing in x. A set B in R* is monotone if when x € Band x’ < x, then X’ ¢ B.
Oosterhoff [4] considers the hypothesis testing problem H,: 6 = 8,vs. H,: 6,< 0.
He proves that if f{x; @) > 0 for all x, 8; if f{x; ) is dominated by a nonatomic
measure v; if f(x; @) is strict monotone likelihood ratio, then for the hypothesis
testing problem H, vs. H,, the class of monotone procedures is essentially com-
plete. We prove under the same conditions:

THEOREM 5.1. The class of monotone procedures is complete.

Proor. We give a proof for k = 2. For larger k the proof is similar. Given
@(x,, X;) is a nonmonotone procedure we construct a procedure ¢’(x;, x,) which
is better than ¢. For the given ¢ either x, or x, is a coordinate such that if it
is held fixed, then conditionally the sections in the other variable are not mono-
tone a.e. v. Say that ¢ is not monotone in x, a.e. for fixed x, a.e. For each
fixed x,, define ¢’(x,, x,) to be monotone in x,, and to satisfy

(5.1) § [¢'(x15 x2) — @(x15 xz)]fdo(xl’ X)) dx; = 0.
For 6, < .0, the strict monotone likelihood ratio property of f,(x) implies
(5.2) § [¢' (%1 X2) — @(x1, X2)] fo(x1 X2) dx, > 0.

Thus from (5.1) and (5.2) ¢’ has the same conditional size as ¢ and has higher
conditional power than ¢ for every 8, < .0. The fact that ¢'(x;, x,) is the es-
sentially unique nonrandomized test satisfying (5.1) implies the measurability of
¢'(x,, ;). Thus it is clear that ¢’ is well defined and since ¢’ is conditionally
better than ¢ for x, a.e., it follows that ¢’ is strictly better than ¢. Thus any
nonmonotone procedure is inadmissible. Since the space of tests is weakly
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compact, the admissible tests form a minimal complete class. All admissible
tests must be monotone. Hence the monotone procedures form a complete class.
This completes the proof of the theorem.

Oosterhoff [4] requires strict monotone likelihood ratio for the density f,(x)
in order to prove that the monotone procedures form an essentially complete
class. The method here gives the same result with a weaker assumption. That
is, we prove:

COROLLARY 5.1. Let f,(X) be dominated by a nonatomic measure v and be mono-
tone likelihood ratio. Assume the support of the density f,(x) does not depend on the
parameter 0. Then the monotone procedures form an essentially complete class.

Proor. Define a family of densities by

(5-3) 90 °(x) = (I — 1/0)fo(x) + (1/0)kg(x)fo,(X) »

where g(x) is a bounded strictly increasing function in each variable, while the
other variables are held fixed (for example g(x) = g(x; + x, + - -+ + x,), and
9(f) = arctant + =/2),and k' = § g(xjf,o(x) dv(x). Clearly g, (x)/f,(x) is for
fixed @, and fixed ¢, a strictly increasing function of each variable, while the
other variables remain fixed.

Now let ¢(x) denote a nonmonotone test. For each g, if g, (X) is the density
of the random vector x, there exists by virtue of Theorem 5.1 (see equations
(5.-1) and (5.2) and note only the monotonicity of [ f,(X)/f,(x)] is used), a mono-
tone procedure ¢,” which is better than ¢. That is, for density g,'”(x)

(5-4) R,(0, ¢) — R,(0,¢.) > 0,

for all @ + 6,. Since the space of tests is weakly compact and the space of
monotone procedures is weakly compact, let ¢,” be a convergent subsequence
of ¢,/ with ¢ as the limiting monotone test. Since g,'”’(x) converges a.e. v to
f5(X) as ¢ — oo, use of Fatou’s lemma yields

(5.5) R0, ¢) — R(8, ¢),
for every 8. Also we may write
R0, ¢,”") — R(8, ¢")
(5.6) = § 0,"(X)9,'"(X) du(X) § ¢"(X)f5(X) di(X)
= § 0, (X)(g,(X) — fo(X)) du(X) + § (9,"(X) — ¢"(X))fo(X) du(X) -

The second term on the right-hand side of (5.6) tends to zero as ¢ — oo by weak
convergence. It is also easy to see that the first integral on the right-hand side
also tends to zero as ¢ — co. Thus by (5.4), (5.5) and the conclusion regarding
(5.6) we have

(5.7) R0, ¢) = R(0, "(X)) »

for every 8. This completes the proof of the corollary.
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