
The Annals of Statistics
2011, Vol. 39, No. 5, 2716–2739
DOI: 10.1214/11-AOS915
© Institute of Mathematical Statistics, 2011

PRINCIPAL COMPONENTS ANALYSIS IN THE SPACE OF
PHYLOGENETIC TREES

BY TOM M. W. NYE

Newcastle University

Phylogenetic analysis of DNA or other data commonly gives rise to a col-
lection or sample of inferred evolutionary trees. Principal Components Anal-
ysis (PCA) cannot be applied directly to collections of trees since the space of
evolutionary trees on a fixed set of taxa is not a vector space. This paper de-
scribes a novel geometrical approach to PCA in tree-space that constructs the
first principal path in an analogous way to standard linear Euclidean PCA.
Given a data set of phylogenetic trees, a geodesic principal path is sought
that maximizes the variance of the data under a form of projection onto the
path. Due to the high dimensionality of tree-space and the nonlinear nature
of this problem, the computational complexity is potentially very high, so ap-
proximate optimization algorithms are used to search for the optimal path.
Principal paths identified in this way reveal and quantify the main sources
of variation in the original collection of trees in terms of both topology and
branch lengths. The approach is illustrated by application to simulated sets of
trees and to a set of gene trees from metazoan (animal) species.

Introduction. Inference of evolutionary or phylogenetic trees is a fundamen-
tal task in many areas of biology, and tree estimation has developed over several
decades into a mature statistical field [13]. On a phylogenetic tree, leaves cor-
respond to existing observed taxa, internal vertices correspond to ancestral taxa,
and branch lengths represent the degree of evolutionary divergence between taxa.
A phylogenetic tree representing the division and divergence of different species
is called a species tree. However, individual regions of DNA can evolve accord-
ing to trees that differ from the underlying species tree, and an inferred phylo-
genetic tree from a particular gene or DNA region is called a gene tree. Gene
trees can differ from the species tree for several reasons: random variation in the
process of DNA letter substitution; population effects by which the evolutionary
course of an individual gene does not match that of the species as a whole [10];
and even relatively rare events whereby genetic material is exchanged between
species in a nontree-like manner [11]. Phylogenetic analysis of a number of dif-
ferent genes in a fixed set of species therefore generally gives rise to a collection
of alternative phylogenetic trees. Collections of alternative phylogenetic trees also
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arise from inferential methods that involve simulation: bootstrap replication and
MCMC sampling from Bayesian posteriors are widely used in the construction of
phylogenetic estimates. Given such a collection of alternative trees, whether gene
trees or a simulated sample, identifying differences and quantifying variation is a
difficult problem, since we might potentially have several hundred trees on thou-
sands of species. Standard multivariate statistical methods such as clustering [8,
23, 28] and Multi-Dimensional Scaling (MDS) [8, 19] have been used to address
this problem. Principal Components Analysis (PCA), in contrast, cannot be ap-
plied directly since the space of phylogenetic trees on a fixed set of species is not
a Euclidean vector space. This paper describes a geometric approach to PCA for
sets of alternative phylogenetic trees. The aim is to identify which tree features
are most variable within a given set of trees and to quantify this variation—just
as the first few components in regular PCA pick out the most variable features of
a Euclidean data set. Although PCA has been used to analyze different phyloge-
netic data previously (such as distance matrix data), the method presented here is
the first to work intrinsically within the space of phylogenetic trees. The approach
relies to a large extent on existing mathematical tools, and the main novel con-
tribution comes from combining those elements into a computationally feasible
method.

A key feature of our approach is the incorporation of both topological and ge-
ometrical information from the trees under analysis, via the so-called geodesic
metric on the space of trees [5, 22, 25]. Topological information refers to the exact
pattern of branching within a tree, while geometrical information refers to the dis-
tances between taxa induced by branch lengths on the tree. Topological features
are generally more straightforward to characterize in a set of alternative trees, by
counting the proportion of trees containing a given feature. For example, bootstrap
replicate data sets are often represented by a single “consensus” tree annotated
with a percentage support for each clade within the tree [12]. However, the geom-
etry and topology of evolutionary trees are intimately related: we can continuously
change the topology of a tree by shrinking down the length of any internal branch
and expanding out an alternative branch in its place, as shown in Figure 1. Recent
authors [22] have stressed the importance of using geometrical information to draw
comparisons between trees on account of the interdependence of tree geometry and
topology, and due to the increased distinguishability obtained by using continuous
rather than discrete metrics. Moreover, tree geometry plays an important role in in-
ference: it has been shown that long branches tend to “attract” each other, leading
to mistakes in the topology of inferred trees [21].

Taking a set of alternative phylogenetic trees on some fixed set of taxa as in-
put, our approach identifies a path L through tree-space that can be thought of
analogously to the first principal component in regular Euclidean PCA. The path
consists of a smoothly changing tree structure in which certain branches expand or
shrink. Alternative topologies emerge when internal branches are shrunk to have
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FIG. 1. A schematic view of a region of tree-space on five taxa: points in space correspond to
unrooted trees. Trees with the same topology all lie in the same quadrant of tree-space (trees x,u,
e.g.). Different quadrants are joined along their edges. Tree x can be continuously deformed into tree
z by shrinking down the branch DE via tree y and replacing it with the branch CD. It follows that tree
z is obtained from x via nearest neighbor interchange (NNI) of the split ABC|DE into split ABE|CD.
However, at y another NNI move is possible: ABC|DE could be replaced by ABD|CE, corresponding
to the lower left quadrant.

zero length and are then replaced with topologically distinct branches. The path L

is constructed in such a way that the changing features—both in terms of topology
and geometry—correspond to the most variable features within the data set. Just as
for regular PCA, L also captures correlations in the data set: features that tend to
occur together in the data are also represented together on L. A quantitative mea-
sure of variability can be assigned to L, in analogy with the proportion of variance
contributed by each component in regular PCA. Unlike Euclidean vector spaces,
there is no inner product on tree-space, and so the analysis cannot be extended
in a straightforward manner to provide higher order principal paths by working
orthogonally to L. Further discussion is given in Section 6.

Our approach—which we will refer to as �PCA (for “phylogenetic” PCA)—is
motivated by geometrical analogy with regular vector space PCA. Construction
of the first principal component in a Euclidean vector space can be thought of as
follows:

(1) Given a set of vectors x1, . . . , xn identify the centroid x̄.
(2) For a fixed line L through x̄ take the orthogonal projection of the points

x1, . . . , xn onto L.
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(3) Identify the line that maximizes the variance of the projected points
along L, or, equivalently, which minimizes the sum of squared orthogonal dis-
tances of the points from the line.

For a Euclidean vector space, these steps can be re-expressed and solved in terms
of simple linear algebra. However, the space of phylogenetic trees on a fixed set
of taxa is not a Euclidean vector space, so these steps cannot be applied directly in
the same way to sets of alternative phylogenies. Tree-space can be equipped with
various metrics that allow geometry to be performed, and for reasons described
below, we use the geodesic metric [5]. �PCA then follows a similar set of steps
to those above, but working with the geodesic metric, d(·, ·). In step (2), the lines
L become paths in tree-space with the property that, for any pair of points on the
path, the path coincides with the geodesic between the points. Trees x1, . . . , xn are
“projected” onto each path by finding points yi on the path that minimize the dis-
tance d(xi, yi) for i = 1, . . . , n. Pythagoras’ theorem does not hold in tree-space,
so in the analog of step (3), paths which maximize the variance can be different
from paths which minimize the sum of squared distances. We consider searching
for both types of paths. Step (3) is potentially excessively computationally de-
manding, and so we describe (i) a greedy algorithm for constructing optimal paths
and (ii) a Monte Carlo optimization approach. The methods we propose for steps
(2) and (3) form the novel contribution of this paper. “Projection” of points onto a
geodesic path L in step (2) is relatively simple to perform using existing methods
for computing the geodesic metric, but a detailed algorithm has not been given pre-
viously. Searching over the set of possible paths is more technically demanding.
Consideration of this particular problem and the solutions we present appear to be
entirely novel.

The development of �PCA has been influenced by a recent paper by Wang and
Marron [29]. Wang and Marron addressed a similar problem, developing a form of
PCA for data sets with a tree-like structure. In a second paper [3], they applied their
method to sets of trees obtained from medical imaging data. In particular, their
reformulation of PCA in terms of the geometrical steps specified above motivated
the corresponding steps in �PCA. Other authors have also developed analogs of
PCA in nonstandard geometries [14, 18], and Wang and Marron give an excellent
overview of this area of research [29]. However, it must be stressed that the method
of Wang and Marron does not apply to sets of phylogenetic trees, and that �PCA is
not simply a reworking of their approach. On account of the ostensible similarities
between the approaches, we devote a section to explaining the relationship between
them later in the paper.

The remainder of the paper is structured in the following way. We first describe
the geometry of tree-space and set up necessary notation and mathematical back-
ground. Section 2 contains a description of the �PCA approach and proofs of its
properties. We then explain more fully the relationship to the work of Wang and
Marron, before evaluating �PCA on simulated sets of trees and a real set of gene
trees from metazoan species.
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1. Background: The geometry of tree-space.

1.1. Splits and vector representation of trees. We will work throughout with
a fixed set of taxa O = {o1, . . . , om} and the set of unrooted phylogenetic trees
TO on O . Given a tree x ∈ TO , cutting any branch on x partitions the taxa into
two unordered nonoverlapping sets. Such a partition is called a split, and splits
are usually denoted X|Xc where X ⊂ O and c denotes the complement in O .
There are M = 2m−1 − 1 possible (nonempty) splits of the set O , and the set of
these is denoted S. It is crucial to note that arbitrary sets of splits do not generally
correspond to valid tree topologies—a compatibility condition must be satisfied.
For example, if O = {A,B,C,D,E}, then the two splits {A,B}|{C,D,E} and
{A,C}|{B,D,E} cannot both be represented on the same tree.

Any tree x ∈ TO can be regarded as a weighted set of compatible splits, where
the weight assigned to each split is given by the length of the corresponding branch
on x. We only consider trees with positive branch lengths. We write Tx to denote
the set of splits in x, and encapsulate the branch lengths via a function λx :S → R

+
defined by

λx(p) =
{

branch length associated with p, if p ∈ Tx ,
zero, otherwise.

Tree-space TO can then be embedded in R
M in the following way. Take the stan-

dard basis of R
M and associate each split p ∈ S with a different basis vector ep .

Any tree x ∈ TO can then be associated uniquely with the vector

λx = ∑
p∈S

λx(p)ep.(1.1)

In fact, it is convenient to abuse notation slightly and write p for the basis vector ep ,
identifying each split directly with the corresponding vector in R

M . Equation (1.1)
essentially associates every tree x with a vector of branch lengths, but due to the
compatibility relations between splits, not every such vector corresponds to a tree.
In fact, each tree contains at most 2m − 3 splits, so as the number of taxa m in-
creases, 2m − 3 � M and TO becomes an increasingly sparse subset of R

M .
Since a collection x1, . . . , xn of trees can be regarded as a set of vectors

λx1, . . . ,λxn , why not just perform PCA on these vectors? In general, the principal
components obtained in this way will not correspond to valid trees, and interpre-
tation of the principal components becomes impossible. A form of PCA which
operates intrinsically within TO and which produces interpretable “components”
is required.

1.2. Decomposition of tree-space by topology. The geometry of TO was first
comprehensively studied in a paper by Billera et al. [5], which included the defi-
nition and proof of existence of geodesics. Their description of TO amounts to a
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decomposition into a set of overlapping component pieces, each piece correspond-
ing to a different tree topology. In this section we recall aspects of this decomposi-
tion which are central to �PCA, most importantly for the definition of geodesics
on TO .

The decomposition is easiest to understand by identifying TO with its image
under the embedding in R

M . Every tree in TO contains the set of splits corre-
sponding to terminal edges (those that end in a leaf), denoted Sterm ⊂ S. Since
every tree contains every terminal split

TO
∼= span+{p :p ∈ Sterm} × TO,int,

where span+ denotes the span of vectors with nonnegative weights, and TO,int
is the part of tree-space corresponding to internal splits. Next consider a single
unrooted tree x which is fully resolved, by which we mean every internal vertex
has exactly 3 neighbors. Let t denote the topology of x or, more precisely, the
set of nonterminal splits t = Tx \ Sterm. Since x is fully resolved, it has m − 3
internal edges, so t contains m − 3 splits. The internal branch lengths of any tree
with topology t are determined by a point in Qt = span+{p :p ∈ t}. We call Qt

the topological orthant containing x, and it is isomorphic to the positive orthant
of R

m−3. The faces of the orthant Qt correspond to trees that have some zero
length branches. Such trees are not fully resolved or, in other words, some internal
vertices have more than 3 neighbors. This structure is illustrated in Figure 1.

Tree-space TO is formed from the union of the orthants Qt over all possible
fully resolved topologies t :

TO = span+{p :p ∈ Sterm} × ⋃
resolved

topologies t

Qt .

The individual orthants Qt are stitched together along their faces, since each un-
resolved tree occurs on the face of more than one orthant. To understand how the
orthants are stitched together in more detail, consider a point on the face of an
orthant Qt at which a single branch length corresponding to a split p has been col-
lapsed to zero. As illustrated in Figure 1, there are two ways in which this branch
can be replaced with an alternative, thereby obtaining a fully resolved tree with
a different topology. Each (m − 4)-dimensional face of Qt is therefore identified
with corresponding faces in two other orthants Qt ′ and Qt ′′ . The operation illus-
trated in Figure 1 is called Nearest Neighbor Interchange (or NNI); we say that
topologies t ′ and t ′′ are obtained by NNI of the split p within t . Faces of Qt with
co-dimension greater than 1 will be contained in more than two other orthants.
Later, we will need to deal with paths in TO between such faces and so we need
to extend the definition of NNI (which is usually taken as a relationship between
strictly binary trees). Given a split p in a fixed tree, there are two or more sub-
trees hanging from each end of the associated edge in the tree. An extended NNI
move (or XNNI) consists of swapping a subtree from one end of the branch with
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a subtree from the opposite end. This operation removes split p from the tree and
replaces it with an incompatible split p′. On a binary tree this definition coincides
with the standard definition of NNI [1], and XNNI includes all NNI moves.

1.3. Geodesics and the geodesic metric. TO can be equipped with metrics via
the embedding into R

M described above. In particular, L2 norm on R
M defines

a metric: d2(x, y) = |λx − λy |2. However, such metrics are not intrinsic to tree-
space. For example, when x and y have different topologies, d2 corresponds to the
length of a straight line segment joining x to y through R

M , but this line contains
points outside the image of TO under the embedding.

Billera et al. [5] proved the existence of a metric that locally resembles the L2
metric, but which is intrinsic to TO independent of the embedding in R

M . This
metric is called the geodesic metric d , and it is the canonical metric for �PCA due
to its intrinsic nature. It is defined as follows. For two trees x and y with the same
topology, d(x, y) = d2(x, y). When x and y have different topologies, d(x, y) is
defined as the length of the shortest continuous path joining x to y in TO which
consists of a series of straight line segments through any feasible sequence of topo-
logical orthants. The length of such a path is defined to be the sum of the Euclidean
lengths of each constituent line segment. The shortest such path joining x to y is
called the geodesic between x and y. The proof that geodesics exist between points
in TO and that geodesics define a valid metric is given in [5]. As part of the proof,
Billera et al. [5] showed that tree-space is CAT(0) [16]. This means that triangles
in TO are “skinny” in comparison to triangles in the Euclidean plane. More for-
mally, given points x, y, z ∈ TO , consider the triangle between points x′, y′, z′ in
the Euclidean plane with the same edge lengths, so that d(x, y) = d(x′, y′), etc.
If γ (t) is the path-length parameterized geodesic between x and y and γ ′(t) the
corresponding geodesic in the Euclidean plane, then d(z, γ (t)) ≤ d(z′, γ ′(t)) for
all points γ (t) between x and y.

Geodesics in TO have the following properties. First, if x, y ∈ TO have the same
topology t , then the geodesic joining them is the obvious Euclidean line segment
in Qt . Second, when x and y have some but not all splits in common, the splits
in the intersection Tx ∩ Ty are all included at every point along the geodesic.
The length of the branch associated to p ∈ Tx ∩ Ty changes in the obvious lin-
ear way from λx(p) to λy(p). Third, when x and y have different topologies, the
geodesic may pass through other topological orthants than the two associated with
x and y, as illustrated by Figure 2. This is the case for points x1 and y1 in the
figure. However, trees along the geodesic only ever contain splits from Tx ∪ Ty ,
albeit in different combinations. It follows that when x and y have different topolo-
gies, computing the geodesic distance d(x, y) is nontrivial. However, an efficient
polynomial-time algorithm has been developed for constructing geodesics [25],
and we use this algorithm to calculate distances in �PCA.

A crucial feature of CAT(0) spaces is that paths which are everywhere locally
geodesic are necessarily globally geodesic (see [25], Lemma 2.1). Geodesics like
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FIG. 2. Geodesics in tree-space consist of line segments through different topological quadrants.
On five taxa there are 15 different quadrants, but only three are shown above, each with a sketch of the
corresponding topology. Each axis corresponds to the length of a different split. The shaded region
does not correspond to a valid quadrant since the splits AB|CDE and BE|ACD are incompatible. The
geodesic between x1 and y1 passes through three quadrants, whereas the geodesic between x2 and
y2 passes through just two quadrants. In this case the geodesic is the same as the cone path.

that between x1 and y1 in Figure 2 must therefore not “bend” as they cross between
different orthants. For some pairs x, y, however, the shortest path is given by col-
lapsing branch lengths for splits in Tx \ Ty down to zero, so that the topology is
then Tx ∩Ty followed by expanding out branch lengths in Ty \Tx to obtain y. Any
two points can be joined by such a path, and they are referred to as cone paths.
In Figure 2 the cone path coincides with geodesic for points x2 and y2; geodesic
between x1, y1 is clearly shorter than the cone path.

2. Methods.

2.1. Existence of principal paths. We now have the geometrical ingredients
needed to define the �PCA procedure. �PCA seeks to construct a principal path
from the set of TO -lines defined as follows.

DEFINITION 1. A path � in TO is a TO -line if:

(i) every sub-path of � is the geodesic between its endpoints, and
(ii) � extends to infinity in two directions.

We will often just use the term line to mean a TO -line where the context is
obvious. Results in [5] show that any geodesic can be extended into a TO -line
(though often not uniquely). The following proposition establishes existence and
uniqueness of closest points on lines.
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PROPOSITION 2.1. Given a TO -line L and a point x ∈ TO , there is a unique
closest point y ∈ L to x.

PROOF. The proof relies mainly on the CAT(0) property to enable comparison
with Euclidean space. Let x0 be any point on L and suppose L(t) is a path-length
parameterization of L such that L(0) = x0. Defining r = d(x0, x), consider the
triangle x0, x,L(t) for some t > r . The “skinny” triangle property implies that

d(x,L(r)) < d(x,L(t)).

The same bound applies to L(−t). The closest point y ∈ L, if it exists, must there-
fore lie on L(t) for t ∈ [−r, r]. Since this is a compact set and since the geodesic
distance is a continuous function, d(x,L(t)) achieves its minimum on the interval.
To prove uniqueness of the closest point y, suppose two distinct points y, y′ ∈ L

achieve the same minimum distance ρ. Again, the “skinny” triangle property for
the triangle y, x, y′ implies that points on L between y and y′ are closer to x than
distance ρ. This is a contradiction, so y is unique. �

Now suppose we are given a set of points x0, x1, . . . , xn ∈ TO . For every line
L through x0 we can obtain the projection y1, . . . , yn of x1, . . . , xn onto L. This
defines two functions, f‖(L) and f⊥(L), which are, respectively, defined as the
sum of squared distance along L,

∑
d(x0, yi)

2, and the sum of squared distances
perpendicular to L,

∑
d(xi, yi)

2.

PROPOSITION 2.2. There is a TO -line through x0 which maximizes f‖. Simi-
larly, there is a TO -line through x0 which minimizes f⊥.

PROOF. We know from the proof of Proposition 2.1 that given any line L

through x0, the points yi are at most distance R from x0, where R = max{d(x0,

xi)}. Let SR be the sphere {z ∈ TO :d(z, x0) = R}. Each pair (z, z′) ∈ SR ×SR rep-
resents a pair of geodesics γ (z, x0) and γ (x0, z

′). If d(z, z′) = 2R, then necessarily
the geodesic between z and z′ is exactly γ (z, x0) followed by γ (x0, z

′), and we say
z, z′ are antipodal. Every line L through x0 determines an antipodal pair (z, z′),
and since the projected points yi all lie on the geodesic between that pair, f‖ and
f⊥ only depend on the pair (z, z′). By continuity of the function d :SR × SR → R,
the set of antipodal pairs is a closed subset of SR × SR and is therefore compact.
It follows that there is a geodesic between antipodal points on SR which optimizes
either f‖ or f⊥. The geodesic can be extended into a line, and that establishes the
proposition. �

The optimal line may be nonunique for two reasons. First, different extensions
of the geodesic between an antipodal pair (z, z′) might exist. This would arise, for
example, if all the points x1, . . . , xn lay in the same topological orthant. Second,
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as in regular Euclidean PCA, the collection of points x1, . . . , xn can be isotropic,
so that the optimal pair (z, z′) is nonunique.

Given the existence of optimal TO -lines, we can now consider how to construct
a principal line. As outlined in the Introduction, construction of the principal line
consists of the following steps:

(1) Given trees x1, . . . , xn, construct a “central point” x0.
(2) Given a line L through x0, “project” x1, . . . , xn onto L by finding the closest

point yi in L to xi for i = 1, . . . , n.
(3) Find the line L such which optimizes the particular choice of objective func-

tion f (either f‖ or f⊥).

The details of each of these steps is described in turn, but step 3 forms the main
challenge.

2.2. Centroids and consensus. Ideally, x0 should be chosen so as to minimize
the sum of squared distances:

x0 = arg min
x

∑
d(x, xi)

2.(2.1)

In a Euclidean vector space, this reduces to finding the mean of the data x1, . . . , xn.
In tree-space, due to the lack of additive structure, the mean does not make sense,
and there is no known closed solution to (2.1). Instead, Billera et al. [5] suggest
using the centroid, which is defined via a recursive procedure based on finding the
midpoint along the geodesic between any two points. However, for large data sets,
this procedure is computationally demanding. We therefore propose taking x0 to
be the majority consensus tree [4]. Finding an “average” or consensus tree is a
well-studied problem in phylogeny [7] and various forms of consensus tree exist.
The majority consensus topology consists of splits which are found in strictly more
than half the trees x1, . . . , xn. Branch lengths on x0 are assigned their average value
in the data set:

λx0(p) = 1

|I (p)|
∑

i∈I (p)

λxi
(p)

for all p ∈ Tx0 where I (p) is the set {i :p ∈ Txi
}. Results obtained later in this

paper were obtained using this choice of x0. However, construction of the principal
line L does not rely on any particular properties of the point x0, and �PCA works
with any sensible choice.

2.3. “Projection” onto TO -lines. Given any line L and points x1, . . . , xn,
Proposition 2.1 established the existence of closest points y1, . . . , yn ∈ L. Here
we describe computational aspects of this “projection” onto L. Although this re-
lies on existing mathematics, as presented in Section 1, the details of an algorithm
for projection onto a geodesic path have not previously been given. We will assume
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L(t) is a path-length parameterization of L. For each point xi , Euclidean projec-
tion under the embedding into R

M described in Section 1.1 is used to obtain a first
guess L(si) for y. Amenta et al. [2] showed that the geodesic distance between
two points is bounded by the Euclidean distance:

‖λx − λy‖2 ≤ d(x, y) ≤ √
2 × ‖λx − λy‖2.

It follows that if εi denotes the Euclidean distance between xi and L(si), then yi

lies on L(si ± εi). This bounding interval for yi is used as the starting point for
a golden-ratio search, which is iterated until some tolerance on yi is achieved. It
can be shown that finding yi is a convex optimization, so the golden-ratio search
is guaranteed to converge. The proof of convexity relies on the CAT(0) property
and convexity of the equivalent Euclidean problem. The algorithm of Owen and
Provan [25] is used to calculate geodesic distance during the golden-ratio search.
However, it is not necessary to recompute geodesics from scratch at every iteration:
the sequence of orthants for a geodesic at one iteration can often be reused in the
next iteration, with an associated gain in computational efficiency.

In Euclidean vector spaces, Pythagoras’ theorem gives a decomposition of the
total sum of squared distances d2

0 = ∑
d(x0, xi)

2 of a collection of points into con-
tributions from directions perpendicular and parallel to any given line L. However,
this decomposition does not apply in TO with the geodesic metric. Nonetheless,
we can evaluate the quantities

d2⊥ = ∑
d(xi, yi)

2 and d2‖ = ∑
d(yi, x0)

2

for any metric. It can be shown that for the geodesic metric, unlike the Euclidean
case, the sum of these two quantities depends on L. Despite this, when evaluated
for a principal path L, the sums of squared distances provide a useful quantification
of variability, as we demonstrate in the results sections.

2.4. Lines through x0. We need to construct TO -lines through x0 and identify
one which optimizes our choice of objective function, f . This is a challenging
problem which has not previously been considered in the literature. In order to
achieve computational tractability, we restrict to a particular class of TO -lines and
then employ different optimization algorithms to search over the restricted class.
To motivate this approach, we start by considering properties of lines through x0.

In the topological orthant containing x0, any TO -line L consists of a straight line
segment. For brevity, we will write T0 for the midpoint topology Tx0 and λ0 for the
branch length function λx0 . Let Q0 denote the orthant containing x0, and for now
assume that x0 is a binary tree (so it contains the maximal number of splits). If p

is a split contained in Q0, then the branch length at a point y(s) ∈ Q0 on L has the
form

λy(s)(p) = λ0(p) + s × wp,(2.2)
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where wp is a “weight” associated to split p, and s lies on some interval contain-
ing zero. The set of weights determines the direction vector of the line segment
through x0. Given such a line segment, we need to know how it might extend
beyond Q0 into the rest of tree-space.

Where the segment meets a face of Q0, at least one split is assigned zero branch
length. Generically, the line segment will meet a co-dimension 1 face of Q0, so
that just one split p will have zero length. Solving equation (2.2) for this split
gives

λy(s)(p) = 0 ⇒ s = −λ0(p)/wp.(2.3)

The line then extends from this point into one of the neighboring alternative or-
thants. In a similar way, every other split whose length varies in the initial line
segment containing x0 is associated with a solution of equation (2.3) and, corre-
spondingly, with an alternative split related to the first by NNI. If we restrict to the
set of “generic” lines (those which always meet a co-dimension 1 face of every
orthant), then finding the optimal line L therefore consists of a topological prob-
lem (namely, choosing a new split p′ to replace each p) and a geometrical problem
(finding the best set of weights wp). However, these problems are not independent.
We can order the solutions to (2.3) as we move out from x0 in a particular direction
along L. Suppose the first solution we come to is at s = s1 and we replace split p1
with p′

1. At the next solution s = s2, split p2 is assigned zero length and we replace
it via an NNI move. However, the choice of splits available as replacements for p2
does not depend solely on p2 but also on the rest of the tree topology just before
s = s2—and therefore potentially on the choice of replacement p′

1 of p1. Thus, the
topological aspect of construction depends on the relative order of the solutions
to (2.3), which in turn depends on the weights wp . Optimization over the set of
possible weights and splits will be computationally demanding for trees with more
than a few species—an exhaustive search will not be possible.

A key feature of the description above is the assumption that line segments meet
the boundary of orthants in co-dimension 1 faces. We restrict our search space for
L similarly, but take into account the possibility that x0 might not be fully resolved.
We make this more formal as follows.

DEFINITION 2. Suppose p ∈ S is compatible with x0 and p′ ∈ S is obtained
by extended nearest neighbor interchange of p in T0 ∪{p}. The simple line through
x0 associated with p,p′ and weight w is the path y(s) ∈ TO defined by

λy(s)(p) = λ0(p) + sw if λ0(p) + sw ≥ 0

= 0 otherwise,

λy(s)(p
′) = −(

λ0(p) + sw
)

if λ0(p) + sw ≤ 0

= 0 otherwise,

λy(s)(q) = λ0(q) if q /∈ {p,p′}.
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Such a path moves through a single pair of orthants. The next definition extends
simple lines to pass through more than two orthants.

DEFINITION 3. Suppose x(s) is the simple line through x0 defined by split
pairs (p1,p

′
1), . . . , (pk,p

′
k) and weights w1, . . . ,wk , and suppose that the pair of

splits (pk+1,p
′
k+1) and weight wk+1 ∈ R satisfy the following:

(i) pk+1 is compatible with x(s) for all s such that λ0(pk+1) + swk+1 ≥ 0,
(ii) p′

k+1 is compatible with x(s) for all s such that λ0(pk+1) + swk+1 < 0,
(iii) pk+1,p

′
k+1 are related by XNNI in x(sk+1) where sk+1 = −λ0(pk+1)/

wk+1.

Then the simple line y(s) defined by (p1,p
′
1), . . . , (pk+1,p

′
k+1) and weights

w1, . . . ,wk+1 is given by

λy(s)(pi) = λ0(pi) + swi if λ0(pi) + swi ≥ 0
(2.4)

= 0 otherwise,

λy(s)(p
′
i ) = −(

λ0(pi) + swi

)
if λ0(pi) + swi ≤ 0

(2.5)
= 0 otherwise,

λy(s)(q) = λ0(q) if q /∈ {pi} ∪ {p′
i}, i = 1, . . . , k + 1.(2.6)

To prove that simple lines satisfy the conditions of Definition 1, Proposition 4.2
of [5] can be applied to any pair of points on a simple line in order to show that the
subpath between those points is geodesic.

Simple lines through x0 resemble the geodesic between x1 and y1 in Fig-
ure 2: they continue between orthants without bends, and hence are always locally
geodesic. Moreover, any straight line segment through x0 can be obtained as part
of a simple line. Nonetheless, restriction to the class of simple lines removes many
lines from consideration. Cone paths are ruled out, together with any geodesic
for which some subset of the splits changes like a cone path. (This latter class
of geodesics resembles x1 − y1 in Figure 2 for some splits and x2 − y2 for oth-
ers.) This restriction is carried out for the sake of computational tractability. More
discussion is given in Section 6.

Definition 3 describes how to extend a simple line on k split pairs to one on
k + 1 split pairs. Our algorithms for finding an optimal simple line are based pre-
cisely on this operation. Suppose a simple line L is determined by sets of splits
P = {p1, . . . , pk},P ′ = {p′

1, . . . , p
′
k} and weights W = {w1, . . . ,wk}. Conditions

(i)–(iii) of Definition 3 place constraints on any proposed splits p,p′ and weight
w which might be used to extend L. The values si = −λ0(pi)/wi correspond to
points at which L crosses the boundary between orthants, and we can assume
they are ordered with s1 ≤ s2 ≤ · · · ≤ sk . They divide L up into k + 1 intervals
Ii = [si, si+1] for i = 0,1, . . . , k taking s0 = −∞ and sk+1 = ∞, such that the
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topology of L is constant on each interval. Let ti denote the tree topology on Ii .
Now suppose that p is compatible with T0 and p′ is a proposed replacement for p.
Suppose we also propose an interval Ii on which we require the XNNI move to be
performed. Conditions (i)–(iii) are then equivalent to the following.

Geometrical constraint:

si ≤ −λ0(p)

w
≤ si+1, so the XNNI move occurs on interval Ii .

Topological constraint:

• If w < 0, then p must be compatible with t0, . . . , ti and p′ must be compatible
with ti \ p, . . . , tk+1 \ p; or

• if w > 0, then p′ must be compatible with t0 \ p, . . . , ti \ p and p must be
compatible with ti , . . . , tk+1.

When p is not contained in T0, but instead extends the midpoint topology, then
λ0(p) = 0 and the solution to equation (2.3) is s = 0. In this case, the geometric
constraint corresponds to an unbounded interval for w, and the interval Ii on which
the XNNI move p → p′ takes place must necessarily contain s = 0.

2.5. Greedy algorithm for finding an optimal simple line. The following al-
gorithm repeatedly extends a simple line by adding in a new split pair at each
iteration. The pair chosen is the one which gives the best improvement in the
objectivef :

(1) Let F be the set of feasible splits (see below).
(2) Consider in turn every split p in F that is compatible with T0, and every

possible replacement p′ for p.
(3) For each interval Ii , test whether p′ is an XNNI replacement of p in ti .
(4) If (ii) holds on interval Ii , then next check whether the pair p,p′ satisfies

either topological constraint for that interval. Fix the sign of w depending on which
constraint applies.

(5) If either topological constraint holds, then find w that maximizes the vari-
ance of the projected points on L, subject to the geometrical constraint and sign
of w. This is carried out using the golden ratio search for the optimum value of w.

(6) Repeat for all feasible pairs p,p′ ∈ F and find the pair that gives the maxi-
mum projected variance.

(7) Add p, p′ and w to the lists P , P ′ and W , and reorder the lists according
to the solutions of (2.3). Remove p,p′ from F , and repeat from step 2.

The algorithm continues until no more splits can be added to L. This will occur
in at most m − 3 iterations where m is the number of species, since every tree can
contain at most m − 3 nontrivial splits.

The set of feasible splits F could be taken to be the entire set of possible
splits S, but this is inefficient. If neither split p,p′ is contained in any of the trees
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x1, . . . , xn, then adding the pair to L will only increase the distances d(xi, yi) so
that L is a worse approximation to the data. We therefore take F to be the set of
nontrivial splits found in at least one tree x1, . . . , xn. It is possible that at some
stage the best improvement in f might be given by some p ∈ F and a replacement
p′ /∈ F (e.g., consider the case that all the trees xi lie in the same orthant). How-
ever, in such a situation, the data would not be informative about the choice of p′,
and so we disregard this possibility.

The greedy algorithm terminates after at most m − 3 iterations. During each
iteration O(|F |2) pairs of splits and O(m) possible intervals for the move p →
p′ are considered. For each pair of splits and interval, n trees are projected onto
the proposed line. Each projection requires O(m4) steps. The golden ratio search
during projection is performed to a fixed tolerance, and so is independent of m, n

and |F |. Overall, the algorithm therefore requires O(m6 × n × |F |2) steps where
F is at worst O(nm).

2.6. Monte Carlo optimization algorithm. A Monte Carlo optimization al-
gorithm was also implemented in order to provide comparisons with the greedy
approach. A simulated-annealing type approach was adopted, where the state at
each iteration comprised a simple line L through x0. At each iteration a “birth”
or “death” move was randomly proposed from the current state. Birth moves con-
sisted of adding a valid split pair to L, while death moves consisted of removing
a split pair from L. Birth moves were obtained by selecting p ∈ F uniformly at
random, then selecting p′ uniformly at random from the possible XNNI replace-
ments of p satisfying the constraints defined above. The weight assigned to p,p′
was obtained by the golden ratio search, as for the greedy approach. Death moves
were carried out by choosing at random the split pair at either end of L (i.e., with
largest positive or negative si) and removing it. Removing other split pairs results
in incompatible sets of splits along L and is therefore forbidden. The relative prob-
abilities of birth and death depended on the number k of split pairs in L and were
designed to favor birth for small k and death when k was large. Proposals lead-
ing to improvement in the objective were always accepted. Other proposals were
accepted with probability

Pr(accept) =
(

1 − δ

D

)1/τ

,

where δ is the absolute difference of the objective for the proposed and current
state, D is a bound for δ, and τ is the “temperature.” For f = f⊥, D was taken to
be

∑
d(x0, xi)

2, while for f = f‖, D was taken to be f‖ for the current state. The
temperature τ was slowly decreased as the optimization progressed.

2.7. Branch length transformations. We investigated certain transformations
of the data x1, . . . , xn prior to analysis with �PCA. Kupczok et al. [22] suggest
scaling each tree x1, . . . , xn to have the same total branch length. In practice, this
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seemed to make little difference to the examples we looked at in the results section
below. Instead we considered the following branch length normalization. For each
split p, branch lengths were scaled by a constant so that the average branch length
associated with p across the whole data set was unity. This was repeated for each
split in the data set. The idea behind this is to make �PCA measure variability
relative to branch length and to amplify the variability in short branches. In regular
PCA the correlation matrix can be analyzed instead of the covariance matrix, and
this branch length transformation can be thought of as being analogous to the cor-
relation matrix version. Principal geodesics obtained for branch-length normalized
data can be back-transformed onto the original scale by scaling the weights W .

3. Relationship to the work by Wang and Marron. Wang and Marron [29]
previously developed PCA in a space of trees, and on account of the similarities of
our approach to theirs, in this section we look in detail at the relationship between
the approaches. The steps underlying our approach specified at the start of Sec-
tion 2 were taken directly from [29], but the details of how these steps are carried
out are quite different on account of the different geometries under consideration.

In [29] rooted bifurcating trees are considered, but, unlike phylogenetic trees,
the leaf vertices are not assigned taxon labels. Instead, each vertex can have a “left”
and a “right” descendant, and trees in the data set can have different depths from
root to leaf. Most importantly, branches do not have any associated length, but,
instead, each vertex present in a tree has an associated real number (or vector).
An example of such data consists of blood vessel information from medical imag-
ing: vertices represent blood vessels, edges represent connections between blood
vessels, and the data value associated to each vertex corresponds to some measure-
ment at that point in the blood vessel structure. One crucial difference between the
two spaces of trees is that in [29] there is no relationship between the values as-
sociated to vertices and the topological structure of the tree. This is different from
the space TO , in which branch lengths can be shrunk down and replaced by an
alternative topology.

This separation of “topological” and “geometrical” aspects of the problem in
[29] results in principal components with separate topological and geometrical
parts. In Wang and Marron’s terminology, a structure tree line is a sequence of
vertices, each descended from the previous vertex, which can be thought of as
(discontinuous) “growth” of a tree toward a leaf, by grafting on branches. In con-
trast, an attribute tree line consists of a fixed tree structure with “direction vectors”
associated to vertices. This is clearly very different from the lines constructed by
�PCA in which the principal path reflects both topological and geometrical vari-
ability in the data set.

Not surprisingly, given the different structures of the spaces considered, the met-
rics used in the two approaches differ. The metric in [29] is a linear combination of
the (unweighted) Robinson–Foulds metric [27] and a Euclidean distance between
the vectors associated to each vertex. This metric is inexpensive to compute, in
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contrast to the geodesic metric which we consider, and this reduces the computa-
tional burden of their approach relative to ours. The midpoint x0 in [29] is taken to
have the majority consensus topology [4], as used here, since this minimizes the
sum of the Robinson–Foulds distances of the midpoint from x1, . . . , xn. However,
while Wang and Marron obtain an exact form of Pythagoras’ theorem with their
metric, that is not the case for �PCA (see Section 2.3).

In summary, the method of Wang and Marron cannot be applied directly to
phylogenetic trees, since the trees they consider lack taxon labels and branch
lengths and so cannot represent phylogenies. While our approach builds on the
same framework as that laid out in [29], differences in the geometries of the spaces
under consideration make the mathematical details of the implementation of PCA
substantially different. In particular, �PCA relies heavily on the geometry of TO

described by Billera et al. [5]. It is interesting to note how a seemingly small dif-
ference in the geometry of the space under consideration can substantially change
the way PCA is implemented.

4. Simulation studies.

4.1. Simple mixtures. �PCA was used to analyze collections of randomly
generated trees with two (or more) known underlying topologies. These simula-
tions were not intended as a model of a specific process giving rise to alternative
trees, but were performed in order to verify the methodology and demonstrate how
it works on simple examples. We describe the simulations very briefly here, but
give more details in the supplementary material [24]. Two sets of simulations were
performed. In the first set, trees were simulated such that each had one of two
possible topologies t1 or t2. The underlying topologies t1, t2 were related by an
NNI move and represented alternative positions for a clade within the tree. Topol-
ogy t1 was adopted with probability θ and t2 with probability 1 − θ . Apart from
branches affected by the change in topology, all other branch lengths were kept
fixed. For each value of θ , 100 trees were randomly generated in this way. Ad-
ditional variability was added by simulating a DNA alignment for each tree, and
then replacing the tree with the maximum likelihood (ML) tree estimated from the
alignment. �PCA was used to analyze these estimated trees. A second set of sim-
ulations was performed in which there were two correlated changes in topology.
Each tree consisted of two subtrees, and each subtree had either topology t1 or t2
as in the first set of simulations. The alternative topologies in each half of the tree
were simulated to arise with correlation ρ. Again, additional variability was added
by simulating alignments and replacing each tree with an ML estimate. 100 trees
were generated for each pair of values θ, ρ and �PCA was used to analyze each
set of estimated ML trees.

The results indicated that optimization of f‖ gave the best performance: paths
obtained by optimizing f⊥ sometimes missed the changes in topology imposed in
the data sets. In this non-Euclidean setting the sum d2‖ + d2⊥ is generally less than
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the total sum of squared distances d2
0 , so optimization of f⊥ may result in principal

paths that fail to capture variability in the data by finding paths in which both sums
d2‖ and d2⊥ are small.

In both sets of simulations, �PCA with f‖ gave principal paths corresponding
to the change between the imposed alternative topologies. In the first set of simu-
lations, based on a single pair of alternative topologies, as θ increased the change
between the underlying topologies t1, t2 dominated the principal path (the corre-
sponding splits received a higher weight) as variability due to tree estimation from
alignments was dominated by the imposed variability in topology. In the second
set of simulations, for small values of ρ the principal path corresponded to change
between the alternative topologies on one part of the tree, with the other pair of
alternative topologies receiving a low weight. For larger ρ, the correlated alterna-
tives in both parts of the tree were identified by the principal path. More details are
given in the supplementary material [24].

4.2. Long branch attraction. In order to demonstrate a potential application
of �PCA, a simple study of long branch attraction (LBA) was performed. LBA
is a feature of phylogenetic methods in which species on long branches are often
grouped together erroneously on estimated trees. We took a tree from the litera-
ture [6] representing a deep phylogeny of eukaryote species which includes two
long branches and a distant out-group, as shown in Figure 3. 100 trees were simu-
lated by first simulating amino acid alignments from the base tree (300 base pairs,
WAG+4� model) using the seq-gen software [26] and then obtaining an ML esti-
mate tree from each alignment using phyML [17]. �PCA was used to analyze the
set of trees estimated from the simulated alignments.

Analysis of the simulated trees was carried out first with un-normalized data and
then again with the normalization procedure described in Section 2.7. Optimization
was carried out using the f‖ objective function, and results were obtained with
both the greedy and Monte Carlo algorithms. Despite long runs, the Monte Carlo
algorithm failed to improve on the results obtained with the greedy algorithm.
The results obtained with the greedy algorithm are shown in Table 1 and Figure 3
shows the principal path obtained with normalized branch lengths. The “proportion
of variance” d2‖/d2

0 was greater with the normalized data, and so we suggest that
normalization is preferable for this data set.

As explained in [6], estimated trees tend to place the long branches (Guillardia
and Microsporidia) next to the out-group (Archaea). The analyses of both the un-
normalized and normalized data show this effect with, respectively, Guillardia and
Microsporidia “floating” round the tree to be placed closer to the Archaea. The fact
that each principal path captures a single such effect suggests that the attraction of
the two long branches to the Archaea is uncorrelated in the data. �PCA exactly
captures the expected LBA artefact in the simulated data.
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FIG. 3. Simulation study of LBA. (a) Underlying tree with two long branches and distant out-group
(archaea, on the left). (b)–(e) Trees along the principal path. Branches were normalized to have unit
mean. No back-transform to the original scale was performed, since this obscured the visual effect.
Arrows highlight the microsporidia group (labeled “microsp”) moving round to join the outgroup
(labeled “cn_arch” and “eu_arch”).
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TABLE 1
Results of the LBA simulations. The largest two weights w for split pairs and a description of the

corresponding changes in topology are given. Weights were normalized to have unit Euclidean norm

w Change in topology

Without normalization (d2‖/d2
0 = 2.6%)

0.859 Guilardia moves past pairing with Rhodophyta to top of clade with plants
0.152 Guilardia moves from top of clade with plants to position closer to Archaea

Branch lengths normalized (d2‖/d2
0 = 10.3%)

0.706 Microsporidia moves from grouping with fungi to top of clade with Metazoa
0.482 Microsporidia grouped with Archaea

5. Analysis of metazoan data. �PCA was applied to a set of 118 gene trees
from 21 metazoan (animal) species, previously analyzed in [22]. �PCA was per-
formed on both unscaled and branch length normalized data using the f‖ objective
function. The Monte Carlo optimization algorithm obtained principal paths with
slightly higher f‖ scores than the greedy algorithm, and so we refer to that set of
results here. The principal paths obtained with the two algorithms were similar, and
shared the majority of split pairs in common. The “proportion of variance” d2‖/d2

0
was 1.8% for the unscaled data and 4.6% for the normalized data—relatively low
in both cases. However, the simulation studies produced similarly low scores (be-
tween 3% and 5% on artificial data), suggesting that low scores might be common
even when �PCA is successfully capturing aspects of variability in the data. Fur-
ther comments about the low proportion of variance are made in Section 6.

The principal path obtained for the unscaled data corresponded to uncertainty
in the positioning of the out-group, yeast. It moves from being placed next to the
worms to being grouped with sea squirt. This might be an LBA effect since sea
squirt and yeast lie on relatively long branches. Results of the analysis using data
with normalized branch lengths are shown in Figure 4. The principal path indi-
cates uncertainty in the placement of Human: it is either grouped with Chimpanzee
or Macaque. The position of Human relative to its neighbors was a longstanding
problem in phylogenetics [15]. Uncertainty in the positioning arises from the pres-
ence of a relatively short internal branch in the species tree joining Human and
Chimpanzee to the other primates. Although well known in evolutionary biology,
this simple example illustrates how �PCA can be used to identify and visualize
alternatives within a set of trees.

6. Conclusion. We have presented a procedure for identifying principal paths
in the space of phylogenetic trees which best approximate a set of alternative phy-
logenies in an analogous way to standard PCA in Euclidean vector spaces. A key
feature of the approach is the use of metrics that combine geometric and topo-
logical information about trees. The principal paths constructed coincide with the
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FIG. 4. Trees along the principal path for the normalized metazoan data in order (a)–(d). (a) cor-
responds to the majority consensus topology. Human moves from being grouped with Chimp (labeled
“pantro”) to Macaque (labeled “mmulatta”), as highlighted by the solid arrows.

geodesic between every pair of points on the path. Each principal path is equipped
with a summary statistic analogous to the Euclidean proportion of variance which
quantifies variability along the path.

Results obtained from simulated and experimental data sets gave values for the
“proportion of variance” d2‖/d2

0 which were relatively low in comparison to typi-
cal values for standard PCA (e.g., about 5% for the normalized metazoa data set).
This is the result of two features of the problem. First, the data sets analyzed in
this paper are high dimensional (containing over 100 different splits), and in the
same way as for standard Euclidean data, this tends to lead to lower proportions of
variance. To illustrate this, consider, for example, a multivariate normal distribu-
tion with dimension 100 and covariance matrix diag(5σ 2, σ 2, . . . , σ 2). Standard
PCA would give a proportion of variance of roughly 5% even though the variance
along the principal component is substantially higher than in other directions. Sec-
ond, the failure of Pythagoras’ theorem in tree-space means that for any analysis
variance “leaks out,” that is, the sum of squares d2‖ + d2⊥ is less than the total sum

of square distances for the original data d2
0 , further decreasing d2‖/d2

0 .
In order to construct principal paths, two approximations have been imposed:
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(1) A greedy algorithm or Monte Carlo search is carried out in the configuration
space of paths in order to find the optimal path. There is no guarantee that the
optimal path will always be found.

(2) The configuration space itself is restricted to a subclass of paths (referred
to as simple lines). By restricting in this way we might rule out capturing types of
variability in the data under analysis.

We consider the second of these approximations to be more limiting, and it is diffi-
cult to generalize the approach we have described to overcome it. Another area re-
quiring further research is the construction of higher-dimensional approximations
to data, analogous to second and third, etc. principal components. Construction
of higher order principal components in Euclidean vector spaces is carried out by
working orthogonally to the first principal component. Tree-space is not equipped
with an inner product, and so this procedure cannot carry over directly to TO . Our
algorithms for constructing the principal path L do not therefore readily generalize
to give higher order paths. Instead, we would need to consider two-dimensional
subsets of TO which approximate the data x1, . . . , xn as closely as possible. In
analogy to the definition of TO -lines, we would require that such subsets � con-
tain the geodesic between any two points in �, and so � would locally resemble
a plane in each orthant. However, in contrast to the theory of geodesics, the the-
ory of higher-dimensional surfaces in tree-space is not well developed. We have
not attempted to advance this theory in this paper, but have focused on the already
considerable problem of identifying lines which best approximate the data.

The �PCA procedure has been presented as an empirical analysis of sampled
trees without reference to any underlying distribution that generated the trees.
Distributions such as sampling distributions, bootstrap distributions and Bayesian
posteriors are of fundamental importance in phylogenetic inference, but the ge-
ometrical properties of these distributions have received little study. Billera et al.
[5] considered spherically symmetric distributions with density decaying exponen-
tially away from a central point. A second form of isotropic distribution consists of
the limit of a random walk in tree-space from a fixed central point. By simulating
samples from a suitable random walk and carrying out �PCA on the samples, an
empirical p-value could be assigned to the proportion of variance of a principal
line constructed from experimental data, as a test for significant departure from
isotropy. Holmes [20], however, suggests that the assumption of spherical symme-
try is not realistic for most distributions of interest. One area where distributions
on tree-space have been defined more precisely is the study of population-genetic
effects on gene phylogenies [9]. Such distributions could be studied in the context
of tree-space geometry, and it might be possible to obtain the sampling theory of
principal lines under �PCA in this case.

This paper has presented the results of applying �PCA to some relatively sim-
ple examples, and demonstrated the type of information principal paths reveal. The
method can be applied to larger data sets and it has the potential to provide new
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insights into a range of problems in evolutionary biology. Software for performing
�PCA and for visualizing principal paths as animations of trees is available in the
supplementary material [24], together with the data sets analyzed in this paper.
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SUPPLEMENTARY MATERIAL

Principal components analysis in the space of phylogenetic trees: Supple-
mentary information (DOI: 10.1214/11-AOS915SUPP; .pdf). This contains fur-
ther information about the simulation studies in Section 4.1.
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