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Within a Bayesian decision theoretic framework we investigate some
asymptotic optimality properties of a large class of multiple testing rules.
A parametric setup is considered, in which observations come from a normal
scale mixture model and the total loss is assumed to be the sum of losses for
individual tests. Our model can be used for testing point null hypotheses, as
well as to distinguish large signals from a multitude of very small effects.
A rule is defined to be asymptotically Bayes optimal under sparsity (ABOS),
if within our chosen asymptotic framework the ratio of its Bayes risk and
that of the Bayes oracle (a rule which minimizes the Bayes risk) converges to
one. Our main interest is in the asymptotic scheme where the proportion p of
“true” alternatives converges to zero.

We fully characterize the class of fixed threshold multiple testing rules
which are ABOS, and hence derive conditions for the asymptotic optimality
of rules controlling the Bayesian False Discovery Rate (BFDR). We finally
provide conditions under which the popular Benjamini–Hochberg (BH) and
Bonferroni procedures are ABOS and show that for a wide class of spar-
sity levels, the threshold of the former can be approximated by a nonrandom
threshold.

It turns out that while the choice of asymptotically optimal FDR levels
for BH depends on the relative cost of a type I error, it is almost independent
of the level of sparsity. Specifically, we show that when the number of tests
m increases to infinity, then BH with FDR level chosen in accordance with
the assumed loss function is ABOS in the entire range of sparsity parameters
p ∝ m−β , with β ∈ (0,1].

1. Introduction. Multiple testing has emerged as a very important problem
in statistical inference because of its applicability in understanding large data sets
involving many parameters. A prominent area of the application of multiple test-
ing is microarray data analysis, where one wants to simultaneously test expression
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levels of thousands of genes (see, e.g., [18, 19, 24, 31, 34, 35, 41] or [42]). Vari-
ous ways of performing multiple tests have been proposed in the literature over the
years, typically differing in their objective. Among the most popular classical mul-
tiple testing procedures, one finds the Bonferroni correction, aimed at controlling
the family wise error rate (FWER) and the Benjamini–Hochberg procedure [2],
which controls the false discovery rate (FDR). A wide range of empirical Bayes
(e.g., see [6, 17–19] and [44]) and full Bayes tests (see, e.g., [6, 12, 31] and [35])
have also been proposed and are used extensively in such problems.

In the classical setting, a multiple testing procedure is considered to be op-
timal if it maximizes the number of true discoveries, while keeping one of the
type I error measures (like FWER, FDR or the expected number of false positives)
at a certain, fixed level. In this context, it is shown in [25] that the Benjamini–
Hochberg procedure (henceforth called BH) is optimal within a large class of step-
up multiple testing procedures controlling FDR. In recent years many new multiple
testing procedures, which have some optimality properties in the classical sense,
have been proposed (e.g., [11, 29, 32] or [33]). In [20] an asymptotic analysis is
performed and new step-up and step-up-down procedures, which maximize the
asymptotic power while controlling the asymptotic FDR, are introduced. Also, in
[41] and [43] two classical oracle procedures for multiple testing are defined. The
oracle procedure proposed in [41] maximizes the expected number of true pos-
itives where the expected number of false positives is kept fixed. This procedure
requires the knowledge of the true distribution for all test statistics and is rather dif-
ficult to estimate without further assumptions on the process generating the data.
The oracle proposed in [43] assumes that the data is generated according to a two-
component mixture model. It aims at maximizing the marginal false nondiscov-
ery rate (mFNR), while controlling the marginal false discovery rate (mFDR) at a
given level. In [43] a data-driven adaptive procedure is developed, which asymp-
totically attains the performance of the oracle procedure for any fixed (though
unknown) proportion p of alternative hypothesis.

In this paper we take a different point of view and analyze the properties of
multiple testing rules from the perspective of Bayesian decision theory. We assume
for each test fixed losses δ0 and δA for type I and type II errors, respectively, and
define the overall loss of a multiple testing rule as the sum of losses incurred in
each individual test. We feel that such an approach is natural in the context of
testing, where the main goal is to detect significant signals, rather than estimate
their magnitude. In the specific case where δ0 = δA = 1, the total loss is equal to
the number of misclassified hypotheses. Also, we consider the asymptotic scheme,
under which the proportion p of “true” alternatives among all tests converges to
zero as the number of tests m goes to infinity, and restrict our attention to the
signals on the verge of detectability, which can be asymptotically detected with
the power in (0,1).

In recent years, substantial efforts have been made to understand the proper-
ties of multiple testing procedures under sparsity, that is, in the case where p is
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very small (e.g., [7, 13, 14, 26, 30]). A major theoretical breakthrough was made
in [1], where it has been shown that the Benjamini–Hochberg procedure can be
used for estimating a sparse vector of means, while the level of sparsity can vary
considerably. In [1] independent normal observations Xi, i = 1, . . . ,m, with un-
known means μi and known variance are considered. Among the studied parame-
ter spaces are the l0[pm] balls, which consist of those real m-vectors for which the
fraction of nonzero elements is at most pm. A data-adaptive thresholding estimator
for the unknown vector of means is proposed using the Benjamini–Hochberg rule
at the FDR level αm ≥ γ

logm
for some γ > 0 and all m > 1. If the FDR control

level αm converges to α0 ∈ [0,1/2], this estimator is shown to be asymptotically
minimax, simultaneously for a large class of loss functions (and in fact for many
different types of sparsity classes including the l0 balls), as long as pm is in the

range [ log5 m
m

,m−ξ ], with ξ ∈ (0,1).
In this paper we provide new theoretical results, which illustrate the asymptotic

optimality properties of BH under sparsity in the context of Bayesian decision the-
ory. BH is a very interesting procedure to analyze from this point of view, since,
despite its frequentist origin, it shares some of the major strengths of Bayesian
methods. Specifically, as shown in [18] and [23], BH can be understood as an
empirical Bayes approximation to the procedure controlling the “Bayesian” False
Discovery Rate (BFDR). This approximation relies mainly on estimation of the
distribution generating the data by the empirical distribution function. In this way,
similarly to standard Bayes methods, it gains strength by combining information
from all the tests. The major issue addressed in this paper is the relationship be-
tween BFDR control and optimization of the Bayes risk. Our research was moti-
vated mainly by the good properties of BH with respect to the misclassification
rate under sparsity, documented in [5, 6] and [23]. The present paper lends theo-
retical support to these experimental findings, by specifying a large range of loss
functions for which BH is asymptotically optimal in a Bayesian decision theoretic
context.

The outline of the paper is as follows. In Section 2 we define and discuss our
model, and we introduce the decision theoretic and asymptotic framework of the
paper. The Bayes oracle, which minimizes the Bayes risk, is presented, which
applies a fixed threshold critical region for each individual test. Conditions are
formulated under which the asymptotic power of this rule is larger than 0, but
smaller than 1. Two different levels of sparsity, the extremely sparse case and a
slightly denser case, are defined, which play a prominent role throughout the paper.

In Section 3 we compute the asymptotic risk of the Bayes oracle, and we for-
mally define the concept of asymptotic Bayes optimality under sparsity (ABOS).
We then study fixed threshold tests in great detail and fully characterize the class
of fixed threshold testing rules being ABOS. In the subsequent Section 4 we study
fixed threshold multiple testing rules which make use of the unknown model pa-
rameters to control the Bayesian False Discovery Rate (BFDR) exactly at a given



1554 BOGDAN, CHAKRABARTI, FROMMLET AND GHOSH

level α. We provide conditions for such rules to be ABOS and also consider ABOS
of the closely related fixed threshold tests using the asymptotic approximation of
the BH threshold cGW, introduced by Genovese and Wasserman [23]. Specifically,
in Corollary 4.1 we show that if p ∝ m−β for some β > 0, then the asymptotically
optimal BFDR levels depend mainly on the ratio of loss functions for type I and
type II errors and are independent of β .

The main results of the paper are included in Section 5, where we specify
conditions under which the Bonferroni rule as well as the Benjamini–Hochberg
procedure are ABOS. Specifically, Theorem 5.1 shows that when FDR levels
αm → α∞ < 1 satisfy the conditions of optimality of BFDR controlling rules, then
the difference between the random threshold of BH and the Genovese–Wasserman
threshold cGW converges to 0 for any sequence of sparsity parameters pm ∝ m−β ,
with β ∈ (0,1). Theorem 5.2 shows that for the same FDR levels BH is ABOS
whenever pm ∝ m−β , with β ∈ (0,1]. Thus, our results show that BH adapts to the
unknown level of sparsity. However, we also show that the optimal FDR control-
ling level depends on the relative cost of a type I error—it should be chosen to be
small if the relative cost of the type I error is large. Specifically, within our asymp-
totic framework, the Benjamini–Hochberg rule controlling the FDR at a fixed level
α ∈ (0,1) is ABOS for a wide range of sparsity levels, provided that the ratio of
losses for type I and type II errors converges to zero at a slow rate which can vary
widely. When the loss ratio is constant, similar optimality results hold if the FDR
controlling level slowly converges to zero.

Section 6 contains a discussion and directions for further research. The proof of
the asymptotic optimality of BH can be found in Section 7, while the remaining
lengthy proofs can be found in the supplemental report [3].

2. Statistical model and asymptotic framework. Suppose we have m in-
dependent observations X1, . . . ,Xm, and assume that each Xi has a normal
N(μi, σ

2
ε ) distribution. Here μi represents the effect under investigation, and σ 2

ε

is the variance of the random noise (e.g., the measurement error). We assume that
each μi is an independent random variable, with distribution determined by the
value of the unobservable random variable νi , which takes values 0 and 1 with
probabilities 1 − p and p, respectively, for some p ∈ (0,1). We denote by H0i

the event that νi = 0, while HAi denotes the event νi = 1. We will refer to these
events as the null and alternative hypotheses. Under H0i , μi is assumed to have
a N(0, σ 2

0 ) distribution (where σ 2
0 ≥ 0), while under HAi it is assumed to have a

N(0, σ 2
0 + τ 2) distribution (where τ 2 > 0). Hence, we are really modeling the μi’s

as i.i.d. r.v.’s from the following mixture distribution:

μi ∼ (1 − p)N(0, σ 2
0 ) + pN(0, σ 2

0 + τ 2).(2.1)

This implies that the marginal distribution of Xi is the scale mixture of normals,
namely,

Xi ∼ (1 − p)N(0, σ 2) + pN(0, σ 2 + τ 2),(2.2)
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where σ 2 = σ 2
ε + σ 2

0 .
Note that in the case where σ 2

0 = 0, H0i corresponds to the point null hypothesis
that μi = 0, and HAi says that μi �= 0 [since under HAi P (μi = 0) = 0)]. Thus
this model can be used for simultaneously testing if the means of the Xi ’s are
zero or not. Allowing σ 2

0 > 0 greatly extends the scope of the applications of the
proposed mixture model under sparsity. In many multiple testing problems it seems
unrealistic to assume that the vast majority of effects are exactly equal to zero.
For example, in the context of locating genes influencing quantitative traits, it is
typically assumed that a trait is influenced by many genes with very small effects,
so called polygenes. Such genes form a background, which can be modeled by the
null component of the mixture. In this case the main purpose of statistical inference
is the identification of a small number of significant “outliers,” whose impact on the
trait is substantially larger than that of the polygenes. These important “outlying”
genes are modeled by the nonnull component of the mixture.

In the remaining part of the paper we will assume that the variance of Xi under
the null hypothesis, σ 2, is known. This assumption is often used in the literature
on the asymptotic properties of multiple testing procedures (see, e.g., [1] or [13]).
Some discussion concerning the general issue of estimation of parameters in sparse
mixtures is provided in Section 6.

REMARK 2.1. Note that given μi , the distribution of Xi is a location shift
of the distribution under the null. This is the setting in which multiple testing is
typically analyzed in the classical context. In our extended Bayesian model, the
choice of a normal N(0, σ 2

0 + τ 2) prior for μi under the alternative results in a
corresponding normal N(0, σ 2 + τ 2) marginal distribution for Xi , which differs
from the null distribution only by a larger scale parameter. The proposed mixture
model for Xi is a specific example of the two-groups model, which was discussed
in a wider nonparametric context, for example, in [6, 17, 19] and [24]. Similar
Gaussian mixture models for multiple testing were considered, for example, in [7]
and [16]. Restricting attention to scale mixtures of normal distributions allows us
to reduce the technical complexity of the proofs and to concentrate on the main as-
pects of the problem. Moreover, we believe that the proposed model is applicable
in many practical situations, when there are no prior expectations concerning the
sign of μi . Our asymptotic results may be extended to the situation when the distri-
bution of μi under the alternative is not symmetric about 0. Namely, the techniques
presented in the related report [22] can be used for a similar asymptotic analysis
when the “alternative” normal distribution N(0, σ 2

0 + τ 2) of μi in the model (2.1)
is replaced by a general scale distribution, with the scale parameter playing role
of τ . A manuscript dealing with this case is in preparation.

We consider a Bayesian decision theoretic formulation of the multiple testing
problem of testing H0i versus HAi , for i = 1, . . . ,m simultaneously. For each i,
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TABLE 1
Matrix of losses

Choose H0i Choose HAi

H0i true 0 δ0
HAi true δA 0

there are two possible “states of nature,” namely H0i with Xi ∼ N(0, σ 2) or HAi

with Xi ∼ N(0, σ 2 + τ 2), that occur with probabilities (1−p) and p, respectively.
Table 1 defines the matrix of losses for making a decision in the ith test.

We assume that the overall loss in the multiple testing procedure is the sum of
losses for individual tests. Thus our approach is based on the notion of an additive
loss function, which goes back to [27] and [28], and seems to be implicit in most
of the current formulations.

Under an additive loss function, the compound Bayes decision problem can
be solved as follows. It is easy to see that the expected value of the total loss is
minimized by a procedure which simply applies the Bayesian classifier to each
individual test. For each i, this leads to choosing the alternative hypothesis HAi in
cases such that

φA(Xi)

φ0(Xi)
≥ (1 − p)δ0

pδA

,(2.3)

where φA and φ0 are the densities of Xi under the alternative and null hypotheses,
respectively.

After substituting in the formulas for the appropriate normal densities, we obtain
the optimal rule

Reject H0i if
X2

i

σ 2 ≥ c2,(2.4)

where

c2 = c2
τ,σ,f,δ = σ 2 + τ 2

τ 2

(
log

((
τ

σ

)2

+ 1
)

+ 2 log(f δ)

)
(2.5)

with f = 1−p
p

and δ = δ0
δA

. We call this rule a Bayes oracle, since it makes use of
the unknown parameters of the mixture, τ and p, and therefore is not attainable in
finite samples.

Using standard notation from the theory of testing, we define the probability of
a type I error as

t1i = PH0i
(H0i is rejected)

and the probability of a type II error as

t2i = PHAi
(H0i is accepted).
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Note that under our mixture model the marginal distributions of Xi under the
null and alternative hypotheses do not depend on i, and the threshold of the Bayes
oracle is also the same for each test. Hence, when calculating the probabilities of
type I errors and type II errors for the Bayes oracle, we can, and will henceforth,
suppress i from t1i and t2i . The same remark also applies to any fixed threshold
procedure which, for each i, rejects H0i if X2

i /σ
2 > K for some constant K .

2.1. The asymptotic framework. We now want to motivate the asymptotic
framework which will be formally introduced below as Assumption (A). Let
γ = (p, τ 2, σ 2, δ0, δA) be the vector of parameters defining the Bayes oracle (2.5).
In our asymptotic analysis, we will consider infinite sequences of such γ ’s. A nat-
ural example of such a situation arises when the number of tests m increases to
infinity, and the vector γ varies with the number of tests m. But here we are actu-
ally trying to understand, in a unified manner, the general limiting problem when
γ varies through a sequence.

The threshold (2.5) depends on τ and σ only through u = ( τ
σ
)2. Note that u is

a natural scale for measuring the strength of the signal in terms of the variance of
Xi under the null. We also introduce another parameter v = uf 2δ2, which can be
used to simplify the formula for the optimal threshold

c2
u,v =

(
1 + 1

u

)(
logv + log(1 + 1/u)

)
.(2.6)

Observe that under the alternative Xi

σ
has a normal N(0,1 + u) distribution.

Thus the probability of a type II error using the Bayes oracle is given by

t2 = P

(
Z2 <

1

u + 1
c2
u,v

)
,(2.7)

where Z is a standard normal variable.
From (2.7) it follows that given an arbitrary infinite sequence of γ ’s, the limit-

ing power of the Bayes oracle is nonzero only if the corresponding sequence
c2
u,v

u+1
remains bounded. We will restrict ourselves to such sequences, since otherwise
even the Bayes oracle cannot guarantee nontrivial inference in the limit and all
rules will perform poorly.

The focus of this paper is the study of the inference problem when p → 0,
and the goal is to find procedures which will efficiently identify signals under
such circumstances. To clarify these ideas, consider the situation where p → 0
and log(δ) = o(logp). It is immediately evident from (2.5) that in this situation

c2 = c2
u,v diverges to infinity. Hence

c2
u,v

u+1 remains bounded only when the signal

magnitude u diverges to infinity, in which case
c2
u,v

u+1 ∝ logv
u

. This explains two of
the three asymptotic conditions we impose in Assumption (A). The third condition
v → ∞ pragmatically ensures that δ is not allowed to converge to zero too quickly.



1558 BOGDAN, CHAKRABARTI, FROMMLET AND GHOSH

ASSUMPTION (A). A sequence of vectors {γt = (pt , τ
2
t , σ 2

t , δ0t , δAt ); t ∈
{1,2, . . .}} satisfies this assumption if the corresponding sequence of parame-
ter vectors, θt = (pt , ut , vt ), fulfills the following conditions: pt → 0, ut → ∞,
vt → ∞ and logvt

ut
→ C ∈ (0,∞), as t → ∞.

REMARK 2.2. We do not allow C = ∞ in Assumption (A) because then the
limit of the probability of a type II error for Bayes oracle is equal to one, and
signals cannot be identified. If C = 0, then the oracle has a limiting power equal
to one. Such a situation can occur naturally if the number of replicates used to
calculate Xi increases to infinity as p → 0 (see, e.g., [22]). However, in this article
we will restrict ourselves to C ∈ (0,∞), that is, the case where the asymptotic
power is smaller than one. The corresponding parametric region might be thought
of as being at “the verge of detectability.” The extension of the asymptotic results
presented in this paper to the case when C = 0 as well as to some cases when p

does not converge to zero can be found in [4], which is an extended version of this
manuscript. Specifically, Theorems 3.1, 3.2 and 4.1 below hold in exactly the same
form even when the condition p → 0 is eliminated from Assumption (A).

REMARK 2.3. We will frequently consider the generic situation

log δ = o(logp).(2.8)

In that case Assumption (A) reduces to p → 0, u → ∞, v → ∞ and −2 logp
u

→
C ∈ (0,∞) and specifies the relationship between the magnitude u of asymptot-
ically detectable signals and the sparsity parameter p. Interestingly, the relation-
ship u ∝ − logp, can be related to asymptotically least-favorable configurations
for l0[p] balls discussed in Section 3.1 of [1]. Ignoring constants, the typical mag-
nitudes of observations corresponding to such signals will be similar to the thresh-
old of the minimax hard thresholding estimator corresponding to the parameter
space l0[p].

Notation: We will usually suppress the index t of the elements of the vector γt

and θt . Unless otherwise stated, throughout the paper the notation ot will denote
an infinite sequence of terms indexed by t , which go to zero when t → ∞. In many
cases t is the same as the number of tests m, and in such cases the notation ot will
be replaced by om.

In case of m → ∞ we will consider specifically two different levels of sparsity.
The first, the extremely sparse case, is characterized by

mpm → s ∈ (0,∞] and
log(mpm)

logm
→ 0.(2.9)

Condition (2.9) is satisfied, for example, when pm ∝ 1
m

. In this situation the ex-
pected number of “signals” does not increase with m, which makes it impossible
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to consistently estimate the mixture parameters. The second, “denser” case is char-
acterized by

pm → 0 and
log(mpm)

logm
→ Cp ∈ (0,1],(2.10)

which includes pm ∝ m−β for 0 < β < 1.

3. Asymptotic Bayes-optimality under sparsity. We start by computing
type I and type II error rates of the Bayes oracle. As usual  denotes the cumula-
tive distribution function and φ the density of the standard normal distribution.

LEMMA 3.1. Under Assumption (A) the probabilities of type I and type II
error using the Bayes oracle are given by the following equations:

t1 = e−C/2

√
2

πv logv
(1 + ot ),(3.1)

t2 = (
2

(√
C

) − 1
)
(1 + ot ).(3.2)

PROOF. Note that t1 = P(|Z| > cu,v). Moreover,

c2
u,v = (1 + zu,v) logv,(3.3)

where limu→∞,v→∞ zu,vu = 1. Therefore, we obtain

φ(cu,v)
√

2πv = exp
(−zu,v logv

2

)
,

which, together with Assumption (A), yields

φ(cu,v) = e−C/2

√
1

2πv
(1 + ot ).(3.4)

Now the proof follows easily by invoking the well-known approximation to the
tail probability of the standard normal distribution

P(|Z| > c) = 2φ(c)

c

(
1 − z1(c)

)
,(3.5)

where z1(c) is a positive function such that z1(c)c
2 = O(1) as c → ∞.

The formula for type II error immediately follows from (2.7) and Assump-
tion (A). �
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3.1. The Bayes risk. Under an additive loss function, the Bayes risk for a mul-
tiple testing procedure is given by

R = δ0E(V ) + δAE(T ),(3.6)

where E(V ) and E(T ) are the expected numbers of false positives and false neg-
atives, respectively. In particular, under our mixture model, the Bayes risk for a
fixed threshold multiple testing procedure is given by

R = m
(
(1 − p)t1δ0 + pt2δA

)
.(3.7)

Equations (3.1) and (3.2) easily yield the following asymptotic approximation
to the optimal Bayes risk.

THEOREM 3.1. Under Assumption (A), using the Bayes oracle, the risk takes
the form

Ropt = mpδA

(
2

(√
C

) − 1
)
(1 + ot ).(3.8)

REMARK 3.1. It is important to note that under Assumption (A), the asymp-
totic form of the risk of the Bayes oracle in (3.1) is determined by its type II error
component. In fact the probability of type II error, t2, is much less sensitive to
changes in the threshold value than the probability of type I error, t1. In particu-
lar, it is easy to see that the same asymptotic form of t2 [as in (3.2)] is achieved
by any multiple testing rule rejecting the null hypothesis H0i when X2

i /σ
2 > c2

t ,
with c2

t = logv + zt and zt = o(logv). Probability of type I error is substantially
more sensitive to changes in the critical value, even if zt = o(logv). If zt is always
positive, then the rate of convergence of the probability of type I error to zero is
faster than that of the optimal rule, and the total risk is still determined by the
type II component. Therefore the rule remains optimal as long as zt = o(logv).
However, if zt = o(logv) can take negative values, the situation is quite subtle. In
this case the rate of convergence of the probability of type I error to zero may be
equal or slower than that of the optimal rule, making the overall risk of the rule
substantially larger than Ropt. These observations are formally summarized in The-
orem 3.2, which gives a characterization of the set of the asymptotically optimal
fixed threshold multiple testing rules.

DEFINITION. Consider a sequence of parameter vectors γt , satisfying As-
sumption (A). We call a multiple testing rule asymptotically Bayes optimal under
sparsity (ABOS) for γt if its risk R satisfies

R

Ropt
→ 1 as t → ∞,

where Ropt is the optimal risk, given by Theorem 3.1.
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REMARK 3.2. This definition relates optimality to a particular sequence of γ

vectors satisfying Assumption (A). However, the asymptotically optimal rule for a
specific sequence γt is also typically optimal for a large set of “similar” sequences.
The asymptotic results presented in the following sections of this paper character-
ize these “domains” of optimality for some of the popularly used multiple testing
rules. Since Assumption (A) is an inherent part of our definition of optimality,
we will refrain from explicitly stating it when reporting our asymptotic optimality
results.

The following theorem fully characterizes the set of asymptotically Bayes-
optimal multiple testing rules with fixed thresholds.

THEOREM 3.2. A multiple testing rule of the form (2.4) with threshold c2 =
c2
t = logv + zt is ABOS if and only if

zt = o(logv)(3.9)

and

zt + 2 log logv → ∞.(3.10)

The proof of Theorem 3.2 is provided in Section 8 of [3].

REMARK 3.3. Conditions (3.9) and (3.10) guarantee the asymptotic Bayes
optimality of the components of risk corresponding to type II and type I errors,
respectively.

In the following corollary we present multiple testing rules which are ABOS in
the generic situation of Remark 2.3, where u ∝ − logp.

COROLLARY 3.1. Assume (2.8) holds, δ is bounded from above, m → ∞ and
p ∝ m−β , with β > 0. Then a fixed threshold multiple testing rule (2.4) based on
the threshold

c2 = c2
m = 2β logm + d,(3.11)

where d ∈ R, is ABOS.

The proof is straightforward and is thus skipped.

REMARK 3.4. The optimal threshold, provided in Corollary 3.1, depends on
the unknown parameter β . It may be pointed out that it is proved in Section 5 that
the Benjamini–Hochberg multiple testing procedure adapts to this unknown spar-
sity and, under very mild conditions on δ and the FDR level α, is ABOS whenever
0 < β ≤ 1. Corollary 3.1 shows also that the universal threshold 2 logm of [15] is
ABOS when β = 1. Thus, within our asymptotic framework, the universal thresh-
old is asymptotically optimal when the expected number of true signals does not
increase with m.



1562 BOGDAN, CHAKRABARTI, FROMMLET AND GHOSH

4. Controlling the Bayesian False Discovery Rate. In a seminal paper [2],
Benjamini and Hochberg introduced the False Discovery Rate (FDR) as a measure
of the accuracy of a multiple testing procedure

FDR = E

(
V

R

)
.(4.1)

Here R is the total number of null hypotheses rejected, V is the number of “false”
rejections and it is assumed that V

R
= 0 when R = 0. For tests with a fixed thresh-

old, Efron and Tibshirani [18] define another very similar measure, called the
Bayesian False Discovery Rate, BFDR,

BFDR = P(H0i is true|H0i was rejected) = (1 − p)t1

(1 − p)t1 + p(1 − t2)
,(4.2)

where t1 and t2 are the probabilities of type I and type II errors.
According to Theorem 1 of [40], in the case when individual test statistics are

generated by the two-component mixture model and the multiple testing proce-
dure uses the same fixed threshold for each of the tests, BFDR coincides with the
positive False Discovery Rate pFDR of [40], defined as

pFDR = E

(
V

R

∣∣∣R > 0
)

= FDR

P(R > 0)
.

Note here that in our context it is enough to consider threshold tests that reject

for high values of
X2

i

σ 2 . This is due to the fact that from the MLR property and the
Neyman–Pearson lemma, it can be easily proved that any other kind of test with
the same type 1 error will have a larger BFDR and Bayesian False Negative Rate
(BFNR).

Extensive simulation studies and theoretical calculations in [6, 23] and [5] il-
lustrate that multiple testing rules controlling the BFDR at a small level α ≈ 0.05
behave very well under sparsity in terms of minimizing the misclassification error
(i.e., the Bayes risk for δ0 = δA). We also recall in this context that a test has BFDR
α if and only if

(1 − α)(1 − p)t1 + αpt2 = αp,(4.3)

the left-hand side of (4.3) being the Bayes risk for δ0 = 1 − α and δA = α. So
the definition of the BFDR itself has a strong connection to the Bayes risk and a
“proper” choice of α might actually yield an optimal rule (for similar conclusions,
see, e.g., [43]). One can show quite easily that under the mixture model (2.2), the
BFDR of a test based on the threshold c2 continuously decreases from (1 − p) for
c = 0 to 0 for c → ∞ (see Lemma 9.1 of [3]). In other words, there exists a 1–1
mapping between thresholds c ∈ [0,∞) and BFDR levels α ∈ (0,1 −p]. So, if the
BFDR control level is chosen properly, the corresponding threshold can satisfy the
conditions of Theorem 3.2.
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REMARK 4.1. In [10] it is argued that when the data are generated according
to the two component mixture model, BFDR of any fixed threshold rule as well
as of the Benjamini–Hochberg procedure is bounded from below by a constant
β� ≥ 0, where β� depends on the actual mixture density. Lemma 9.1 of [3] shows
under our mixture model (2.2) β� = 0, that is, the criticality phenomenon of [10]
does not occur. This is generally true in any case when the ratio of tail probabilities
P(|Xi | > c) under the null and alternative distributions converges to 0 as c → ∞.

Now, we give a full characterization of asymptotically optimal BFDR levels,
which will be later used to prove ABOS of BH.

4.1. ABOS of BFDR rules. The general Theorem 4.1, below, gives conditions
on α, which guarantee optimality for any given sequence of parameters γt , sat-
isfying Assumption (A). Corollary 4.1 presents a special simple choice which
works in the general setting. In the subsequent Corollary 4.2 we study the generic
situation (2.8) of Remark 2.3. Finally, Corollary 4.3 considers the case where
α = const ∈ (0,1) and gives simple conditions for δ that guarantee optimality.

Consider a fixed threshold rule (based on
X2

i

σ 2 ) with the BFDR equal to α. Under

the mixture model (2.2), a corresponding threshold value c2
B can be obtained by

solving the equation

(1 − p)(1 − (cB))

(1 − p)(1 − (cB)) + p(1 − (cB/
√

u + 1))
= α,(4.4)

or equivalently, by solving

1 − (cB)

1 − (cB/
√

u + 1)
= α

f (1 − α)
= rα

f
,(4.5)

where

rα = α

1 − α
.(4.6)

Note that rα converges to 0 when α → 0 and to infinity when α → 1.
Using Theorem 3.2, one can show that this test is asymptotically optimal only

if cB√
u+1

converges to
√

C, where C is the constant in Assumption (A). From (4.5),
this in turn implies that a BFDR rule for a chosen α sequence can only be optimal
if rα

f
goes to zero while satisfying certain conditions. When rα

f
→ 0, a convenient

asymptotic expansion for c2
B can be obtained, and optimality holds if and only if

this asymptotic form conforms to the conditions specified in Theorem 3.2. The
following theorem gives the asymptotic expansion for c2

B and specifies the range
of “optimal” choices of rα .
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THEOREM 4.1. Consider a fixed threshold rule with BFDR = α = αt . Define
st by

log(f δ
√

u)

log(f/rα)
= 1 + st ,(4.7)

where rα = α
1−α

. Then the rule is ABOS if and only if

st → 0(4.8)

and

2st log(f/rα) − log log(f/rα) → −∞.(4.9)

The threshold for this rule is of the form

c2
B = 2 log

(
f

rα

)
− log

(
2 log

(
f

rα

))
+ C1 + ot ,(4.10)

where C1 = log( 2
πD2 ), and D = 2(1 − (

√
C)) is the asymptotic power. The cor-

responding probability of a type I error is equal to

t1 = D
rα

f
(1 + ot ).

The proof of Theorem 4.1 can be found in Section 10 of [3].

REMARK 4.2. In comparison to (4.8), condition (4.9) imposes an additional
restriction on positive values of st (i.e., large values of α). It is clear from the proof
of Theorem 4.1 that the necessity of this additional requirement results from the
asymmetric roles of type I and type II errors in the Bayes risk, as discussed in
Remark 3.1.

REMARK 4.3. Condition (4.8), given in Theorem 4.1, says (after some al-
gebra) that a sequence of asymptotically optimal BFDR levels α = αt satisfies

α
1−α

= (δ
√

u)bt−1f bt for some bt , where bt → 0 as t → ∞. Broadly speaking,
this means that for optimality the BFDR levels need to be chosen small when the
loss ratio is large. The seemingly evident dependence of α on u is not stressed in
this article, since on the verge of detectability u = 2

C
log(f δ)(1 + ot ) and, as seen

in the following corollaries, the range of asymptotically optimal levels of α does
not depend on C. A thorough discussion of the dependence of α on u in case when
C = 0 can be found in [4].

COROLLARY 4.1. A rule with BFDR at the level α = αt , such that rα ∝
(δ

√
u)−1, is ABOS. Specifically, if m → ∞, p ∝ m−β (β > 0) and log δ

logm
→ Cδ ∈

[0,∞], then a rule with BFDR at the level α such that rα ∝ (δ
√

log(mδ))−1 is
ABOS.
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REMARK 4.4. Corollary 4.1 shows that while the proposed optimal BFDR
level clearly depends on the ratio of losses δ, it is independent of the sparsity
parameter β .

The proof of Corollary 4.1 is immediate by verifying that (4.8) and (4.9) are
satisfied by such sequences of α’s. Also the proofs of the following Corollaries 4.2
and 4.3, follow quite immediately from Theorem 4.1 and are thus omitted.

COROLLARY 4.2. Assume the generic situation (2.8) of Remark 2.3. Then a
fixed threshold rule with BFDR equal to α is ABOS if and only if rα satisfies

log rα = o(logp) and rαδ → 0.

If we assume further that m → ∞ and p ∝ m−β (β > 0), such a rule is ABOS if
and only if

log rα = o(logm) and rαδ → 0.

In case when δ = const and p ∝ m−β , the BFDR rule is ABOS if and only if α → 0
such that logα = o(logm).

COROLLARY 4.3. A fixed threshold rule with BFDR equal to α ∈ (0,1) is
ABOS if and only if δ → 0 at such a rate that log δ

logp
→ 0. If we assume that m → ∞

and p ∝ m−β (β > 0), such a rule is ABOS if and only if δ → 0 such that log δ =
o(logm).

Corollary 4.3, given above, states that a rule with BFDR at a fixed level α is
asymptotically optimal for a wide range of loss functions, such that δ → 0. Note
that the assumption that δ → 0 as p → 0 agrees with the intuition that the cost of
missing a signal should be relatively large if the true number of signals is small.
Corollary 4.2 shows that when the loss ratio is constant, a BFDR rule is asymptot-
ically optimal for a wide range of α levels, such that α → 0.

4.2. Optimality of the asymptotic approximation to the BH threshold. In [23]
it is proved that when the number of tests tends to infinity, and the fraction of true
alternatives remains fixed, then the random threshold of the Benjamini–Hochberg
procedure can be approximated by

cGW :
(1 − (cGW))

(1 − p)(1 − (cGW)) + p(1 − (cGW/
√

u + 1))
= α.(4.11)

Compared to the equation defining the BFDR rule (4.4), the function on the
left-hand side of (4.11) lacks (1 − p) in the numerator. In the case where p → 0
this term is negligible, and one expects that the rule based on cGW asymptotically
approximates the corresponding BFDR rule for the same α. The following result
shows that this is indeed the case.
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THEOREM 4.2. Consider the rule rejecting the null hypothesis H0i if
X2

i

σ 2 ≥
c2

GW, where cGW is defined in (4.11). This rule is ABOS if and only if the corre-
sponding BFDR rule defined in (4.4) is ABOS. In this case we have

c2
GW = c2

B + ot ,

where c2
B is the threshold of an asymptotically optimal BFDR rule, defined in The-

orem 4.1.

PROOF. Note that (4.11) is equivalent to

1 − (cGW)

1 − (cGW/
√

u + 1)
= prα

1 + prα
= rα′

f
,(4.12)

where α′ = α(1 − p). Thus cGW is the same as the threshold of a rule with BFDR
at the level α′.

Define st ′ by log(f δ
√

u)
log(f/rα′ ) = 1+ st ′ . It follows easily that st ′ satisfies (4.8) and (4.9)

of Theorem 4.1 (with α replaced by α′), if and only if st defined in (4.7) satisfies
(4.8) and (4.9). Thus the first part of the theorem is proved.

To complete the proof of the theorem, we observe that the optimality of a BFDR
rule implies that rα

f
→ 0, and the optimality of the rule based on cGW implies that

rα′
f

→ 0. In either case, prα → 0 and thus (4.12) reduces to

1 − (cGW)

1 − (cGW/
√

u + 1)
= prα(1 + ot ) = rα

f
(1 + ot ).(4.13)

Now, the asymptotic approximation to c2
GW can be obtained analogously to the

asymptotic form of the threshold for an optimal BFDR rule, provided in (4.10).
�

5. ABOS of classical frequentist multiple testing procedures. Similarly to
the Bayes oracle, the BFDR rules discussed in Section 4 are not attainable, since
they require the knowledge of the parameters of the mixture distribution (2.2).
However, the results included in Section 4 can be used to prove the asymptotic
optimality of classical multiple testing procedures, such as the Bonferroni rule and
the Benjamini–Hochberg procedure (BH). In this section we consider a sequence
of problems in which the number of tests m → ∞ and the γ sequence is indexed
by t = m.

5.1. ABOS of the Bonferroni correction. The Bonferroni correction is one of
the oldest and most popular multiple testing rules. It is aimed at controlling the
Family Wise Error Rate, FWER = P(V > 0), where V is the number of false
discoveries. The Bonferroni correction at FWER level α rejects all null hypothesis
for which Zi = |Xi |

σ
exceeds the threshold

cBon : 1 − (cBon) = α

2m
.
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Under the assumption that m → ∞, the threshold for the Bonferroni correction
can be written as

c2
Bon = 2 log

(
m

α

)
− log

(
2 log

(
m

α

))
+ log(2/π) + om.(5.1)

Comparison of this threshold with the asymptotic approximation to an opti-
mal BFDR rule (4.10) suggests that the Bonferroni correction will have similar
asymptotic optimality properties in the extremely sparse case (2.9). Indeed, these
expectations are confirmed by the following Lemma 5.1, which will be used in the
next section for the proof of ABOS of the Benjamini–Hochberg procedure under
very sparse signals.

LEMMA 5.1. Assume that m → ∞ and (2.9) holds. The Bonferroni proce-
dure at FWER level αm → α∞ ∈ [0,1) is ABOS if αm satisfies the assumptions of
Theorem 4.1.

PROOF. Under the assumptions of Lemma 5.1 and Theorem 4.1

c2
Bon = c2

B + 2 log zm − 2 log(1 − α∞) + 2 logD + om,

where zm = mpm, D = 2(1 −(
√

C)), and c2
B is the threshold of the rule control-

ling the BFDR at level αm. From (2.9) it follows easily that c2
Bon = c2

B(1+om). By
assumption, the rule based on the threshold c2

B is optimal, and hence c2
Bon satisfies

condition (3.9) of Theorem 3.2. Condition (3.10) is satisfied, since by assumption
log zm is bounded below for sufficiently large m and thus ABOS of the Bonferroni
correction follows. �

5.2. ABOS of BH. Let Zi = |Xi

σ
| and pi = 2(1 −(Zi)) be the corresponding

p-value. We sort p-values in ascending order p(1) ≤ p(2) ≤ · · · ≤ p(m) and denote

k = max
{
i :p(i) ≤ iα

m

}
.(5.2)

The Benjamini–Hochberg procedure BH at FDR level α rejects all the null hy-
potheses for which the corresponding p-values are smaller than or equal to p(k).

REMARK 5.1. BH gained large popularity after the seminal paper [2], where
it was proved that it controls FDR. It was originally proposed in [37], and later
used in [39] as a test for the global null hypothesis.

Let us denote 1 − F̂m(y) = #{|Zi | ≥ y}/m. It is easy to check (see, e.g., (2.2) of
[38] or the equivalence theorem of [18]) that the Benjamini–Hochberg procedure
rejects the null hypothesis H0i when Z2

i ≥ c̃2
BH, where

c̃BH = inf
{
y :

2(1 − (y))

1 − F̂m(y)
≤ α

}
.(5.3)
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Note also that BH rejects the null hypothesis H0i whenever Z2
i exceeds the

threshold of the Bonferroni correction. Therefore, we define the random threshold
for BH as

cBH = min{cBon, c̃BH}.
Comparing (5.3) and (4.11), we observe that the difference between c̃BH and

cGW is in replacing the cumulative distribution function of |Zi | [appearing in
(4.11)] by the empirical distribution function (in 5.3). Therefore, as shown in [23],
for any fixed mixture distribution (2.2) c̃BH converges in probability to cGW as
m → ∞. The following Theorem 5.1, shows that the approximation of c̃BH by
cGW works also within our asymptotic framework, where pm → 0 and cGW → ∞.

THEOREM 5.1. Assume that pm → 0 such that for sufficiently large m

pm >
logβpm

m
for some constant βp > 1.(5.4)

Moreover, assume that the sequence of FDR levels αm satisfies

αm → α∞ < 1(5.5)

and

αm satisfies the assumption of Theorem 4.1.(5.6)

Then for every ε > 0, every constant β1 > 0 and sufficiently large m (dependent
on ε and β1)

P(|cBH − cGW| > ε) ≤ m−β1 .

The proof of Theorem 5.1 is provided in Section 11 of [3].
Theorem 5.1 suggests asymptotic optimality of BH under a relatively “dense”

scenario, specified in assumption (5.4). Indeed, the following Theorem 5.2, shows
asymptotic optimality of BH and extends the “optimality” range of the sparsity
parameter to all sequences pm such that mpm → s ∈ (0,∞]. Concerning type I
error component of the risk, this extension was possible due to the precise and
powerful results of [21] on the expected number of false discoveries using BH
under the total null hypothesis. The optimality of the type II error component under
the extremely sparse scenario (2.9) results directly from a comparison with the
Bonferroni correction and Lemma 5.1.

THEOREM 5.2. Assume that

m → ∞, pm → 0, mpm → s ∈ (0,∞].(5.7)

Then BH at the FDR level α = αm is ABOS if (5.5) and (5.6) hold.
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The proof of Theorem 5.2 is provided in Section 7.

REMARK 5.2. Theorem 5.2 states that under the sparsity assumption (5.7),
BH behaves similarly to a BFDR control rule. Specifically, if assumptions (5.5)
and (5.7) are satisfied, then the BH rule is ABOS under FDR-levels α ∝ (δ

√
u)−1,

as in Corollary 4.1. Furthermore, if p ∝ m−β , with 0 < β ≤ 1, log δ
logm

→ Cδ ∈
[0,∞] and δ

√
log(mδ) → ∞, then a rule with FDR at the level α such that

α ∝ (δ
√

log(mδ))−1 is ABOS. Also, in the case when p ∝ m−β (0 < β ≤ 1) and
δ ∝ 1√

logm
, then BH at a fixed FDR level α ∈ (0,1) is ABOS. Thus, while the

asymptotically optimal FDR levels clearly depend on the ratio of losses δ, they are
independent of the sparsity parameter β; that is, ABOS property of BH is highly
adaptive with respect to the level of sparsity.

The next Theorem 5.3, deals with optimality of BH under the generic assump-
tion (2.8) which here has the form log δ = o(logm).

THEOREM 5.3. Suppose m → ∞ and p ∝ m−β , with 0 < β ≤ 1. Moreover,
assume that log δ = o(logm) and α → α∞ < 1. Then BH is ABOS if

logα = o(logm) and αδ → 0.

PROOF. Given the assumptions we are in the situation of Corollary 4.2, and it
is easy to verify that therefore all assumptions of Theorem 5.2 are fulfilled. Thus
ABOS holds. �

COROLLARY 5.1. Suppose m → ∞ and p ∝ m−β , with 0 < β ≤ 1. Moreover,
assume that δ = const. Then BH is ABOS if α converges to 0, such that logα =
o(logm).

COROLLARY 5.2. Suppose m → ∞ and p ∝ m−β , with 0 < β ≤ 1. Moreover,
assume that α = const. Then BH is ABOS if δ converges to 0, such that log δ =
o(logm).

Theorem 5.2, Remark 5.2, Theorem 5.3 and its corollaries give some general
suggestions on the choice of the optimal FDR level for BH. Note, however, that
according to Theorem 3.2, BH can be asymptotically optimal even when the dif-
ference between its asymptotic threshold cGW and the threshold of the Bayes or-
acle slowly diverges to infinity. The following lemma provides a more specific
condition on α and δ, which guarantees that the difference between cGW and the
threshold of the Bayes oracle converges to a constant.
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LEMMA 5.2. Let pm ∝ m−β , for some β > 0. Moreover, assume that δ sat-
isfies the generic assumption (2.8) and that α satisfies the assumptions of The-
orem 4.1. Then the difference between the asymptotic approximation to the BH
threshold cGW (4.11) and the threshold of the Bayes oracle (2.5) converges to a
constant if and only if the FDR level αm and the ratio of loss functions δm satisfy
the condition

rαmδm = sm

logm
,(5.8)

where rαm = αm

1−αm
and sm → Cs ∈ (0,∞).

PROOF. Straightforward algebra shows that the difference between the thresh-
old of the Bayes oracle and cGW is equal to

2 log logm + 2 log(δmrαm) + log(2β/C) + log(2β) + C − C1 + om,

where C1 is the constant provided in (4.10). From this Lemma 5.2 follows easily.
�

REMARK 5.3. Theorem 5.1 states that if β ∈ (0,1), then the random thresh-
old of BH can be well approximated by cGW. Therefore, in this case Lemma 5.2
provides also the “best” asymptotically optimal choices of FDR levels for BH.
Since under the assumptions of Theorem 5.1 αm converges to a constant smaller
than one, condition (5.8) can be written as αmδm ∝ (logm)−1. Specifically, if
δm = const, then the sequence of best FDR levels should satisfy αm ∝ (logm)−1.
Thus the choice αm ∝ (logm)−1 is recommended when one aims at minimizing the
misclassification rate. On the other hand, BH with the fixed FDR level α ∈ (0,1)

works particularly well if δm ∝ (logm)−1.

6. Discussion. We have investigated the asymptotic optimality of multiple
testing rules under sparsity, using the framework of Bayesian decision theory. We
formulated conditions for the asymptotic optimality of the universal threshold of
[15] and the Bonferroni correction. Moreover, similarly to [1], we have proved
some asymptotic optimality properties of rules controlling the Bayesian False Dis-
covery Rate and the Benjamini and Hochberg procedure. Comparing with [1], we
replaced a loss function based on estimation error with a loss function dependent
only on the type of testing error. This resulted in somewhat different optimality
properties of BH. Specifically, we have shown that the optimal FDR level for BH
depends on the ratio between the loss for type I and type II errors and is almost
independent of the level of sparsity. Within our chosen asymptotic framework BH
with the FDR levels chosen in accordance with the assumed loss function is asymp-
totically optimal in the entire range of sparsity parameters p, such that p → 0 and
mp → s ∈ (0,∞]. This range of values of p covers the situation when p ∝ 1/m,
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and in this way it substantially extends the range of sparsity levels under which the
asymptotic minimax properties of BH were proved in [1].

In this paper we proposed a new asymptotic framework to analyze properties of
multiple testing procedures. According to our definition a multiple testing rule is
ABOS if the ratio of its risk to the risk of the Bayes oracle converges to 1 as the
number of tests increases to infinity. Our asymptotic results are to a large extend
based on exact inequalities for finite values of m. The refined versions of these
inequalities can be further used to characterize the rates of convergence of the
ratio of risks to 1 and to compare “efficiency” of different ABOS methods. We
consider this as an interesting area for further research.

The results reported in this paper provide sufficient conditions for the asymp-
totically optimal FDR levels for BH. They leave, however, a lot of freedom in the
choice of proportionality constants, which obviously play a large role for a given
finite value of m. Based on the properties of BFDR controlling rules we expect
that for any given m there exists FDR level α such that the risk of BH is equal
to the risk of the Bayes oracle. This finite sample optimal choice of α would de-
pend on the actual values of the mixture parameters p and u. In recent years many
Bayesian and empirical Bayes methods for multiple testing have been proposed,
which provide a natural way of approximating the Bayes oracle in the case where
the parameters of the mixture distribution are unknown. The advantages of these
Bayesian methods, both in parametric and nonparametric settings, were illustrated
in, for example, [5, 6, 17, 36, 41]. In [6] it is shown that when p is moderately small
both fully Bayesian and empirical Bayes methods perform very well with respect
to the Bayes risk. However, analysis of the asymptotic properties of fully Bayesian
methods in the case where pm → 0 remains a challenging task. In the case of em-
pirical Bayes methods, the asymptotic results given in [8] illustrate that consistent
estimation of the mixture parameters is possible when pm ∝ m−β , with β ∈ (0,1).
New results on the convergence rates of these estimates, presented in [7], raise
some hopes that proofs of the optimality properties of the corresponding empirical
Bayes rules can be found. It is, however, rather unclear whether the full or em-
pirical Bayes methods can be asymptotically optimal in the extremely sparse case
of pm ∝ m−1. Note that in this situation the expected number of signals does not
increase when m → ∞ and consistent estimation of the alternative distribution is
not possible. These doubts, regarding the asymptotic optimality of Bayesian proce-
dures in the extremely sparse case, are partially confirmed by the simulation study
in [6], where for very small p Bayesian methods are outperformed by BH and the
Bonferroni correction at the traditional FDR and FWER levels α = 0.05.

The Benjamini–Hochberg procedure can only be directly applied when the dis-
tribution under the null hypothesis is completely specified, that is, when σ is
known. In the case of testing a simple null hypothesis (i.e., when σ0 = 0), σ can be
estimated using replicates. The precision of this estimation depends on the num-
ber of replicates and can be arbitrarily good. In the case where σ0 > 0 (i.e., when
we want to distinguish large signals from background noise), the situation is quite
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different. In this case, σ can only be estimated by pooling the information from
all the test statistics. The related modifications of the maximum likelihood method
for estimating parameters in the sparse mixture (2.2) are discussed in [6]. More
sophisticated methods for estimating parameters of the normal null distribution in
case of no parametric assumptions on the form of the alternative are provided in
[16] and [26]. In [7] it is proved that for β < 1/2 the proposed estimators based on
the empirical characteristic function are minimax rate optimal. Simulation results
reported in [6] show that in the parametric setting of (2.2) and for very small p,
the plug-in versions of BH at FDR level α = 0.05 outperform Bayesian approx-
imations to the oracle. We believe that this is due to the fact that BH does not
require the estimation of p, which is rather difficult when p is very small. Despite
this relatively good behavior of BH, it is rather unlikely that the plug-in versions of
BH are asymptotically optimal in the case where p ∝ m−1. A thorough theoretical
comparison of empirical Bayes versions of BH with Bayesian approximations to
the Bayes oracle and an analysis of their asymptotic optimality remains an inter-
esting problem for future research.

Model (2.2) assumes that the statistics for different tests are independent. In
principle, the model and the methods proposed in this paper can be extended to
cover the situation of dependent test statistics. However, in that case the optimal
Bayes solution for the compound decision problem will be more difficult to obtain.
In particular the optimal Bayes classifier for the ith test may depend on the values
of all other test statistics, leading to a rather complicated Bayes oracle. We believe
that under specific dependency structures BH may still retain its asymptotic opti-
mality properties. The detailed analysis of this problem requires a thorough new
investigation and remains an open problem for future research.

In this paper we have modeled the test statistics using a scale mixture of normal
distributions. As already mentioned, we believe that the main conclusions of the
paper will hold for a substantially larger family of two component mixtures, which
are currently often applied to multiple testing problems (see, e.g., [7, 16, 17]). In
a recent article [9], a new “continuous” one-group model for multiple testing was
proposed. As in our case, the test statistics are assumed to have a normal distribu-
tion with mean equal to zero, but the scale parameters are different for different
tests and modeled as independent random variables from the one-sided Cauchy
distribution. As discussed in [9], the resulting Bayesian estimate of the vector of
means shrinks small effects strongly toward zero and leaves large effects almost in-
tact. In this way, it enables very good separation of large signals from background
noise. In [9] it is demonstrated that the results from the proposed procedure for
multiple testing often agree with the results from Bayesian methods based on the
two-group model. A thorough analysis of the asymptotic properties of the method
proposed in [9] in the context of multiple testing remains a challenging task. How-
ever, we believe that the suggested one-group model has its own, very interesting
virtues and Carvalho, Polson and Scott [9] clearly demonstrate that the search for
modeling strategies for the problem of multiple testing, as well as for the most
meaningful optimality criteria, is still an open and active area of research.
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7. Proof of Theorem 5.2. The proof of Theorem 5.2 consists of two parts.
The first part shows the optimality of the type I error component of the risk (see
Theorem 7.1) while the second part shows that of the type II error component (see
Theorem 7.2). Combining these two facts, the result follows immediately. The
proofs of Theorems 7.1 and 7.2 are based on a series of intermediate results.

7.1. Bound on the type I error component of the risk. The first and most es-
sential step of the proof of the optimality of the type I error component of the risk
relies on showing that, under certain conditions, the expected number of false dis-
coveries of BH, EV , is bounded by cvαK , where α is the FDR level, K is the true
number of signals and cv is a positive constant. This result is very intuitive in view
of the definition of FDR [see (4.1)]. The proof is, however, nontrivial, due to the
difference between E(V

R
) and EV

ER
.

LEMMA 7.1. Consider the BH rule at a fixed FDR level α ≤ α0 < 1. Let K

be the number of true signals. The conditional expected number of false rejections
given that K = k, with k < m( 1

α0
− 1), is bounded by

E(V |K = k) ≤ α

(
k

1 − α
+ 1

(1 − α)2

)
.(7.1)

Specifically, for 1 ≤ k < m( 1
α0

− 1)

E(V |K = k) ≤ cvαk(7.2)

with

cv = 2 − α0

(1 − α0)2 .(7.3)

PROOF. Given the condition K = k, there are (m − k) true nulls. Let the cor-
responding ordered p-values be p̃(1) ≤ · · · ≤ p̃(m−k). Imagine that we apply to
these p-values the following procedure B̃Hk which rejects the hypotheses whose
p-values are smaller than p̃

(k̃)
, where

k̃ = max
{
i : p̃(i) ≤ α(i + k)

m

}
.(7.4)

Let Ṽ be the corresponding number of rejections. Then E(V |K = k) ≤ E(Ṽ ),
since the number of false rejections for the original BH, V , is not larger than Ṽ .
Now, consider m i.i.d. p-values q1, . . . , qm from the total null (i.e., each of
the m nulls is true), which are independent of the given original p-values. Let
q̃(1) ≤ · · · ≤ q̃(m−k) be the ordered values from the subsequence q1, . . . , qm−k .
Then q̃(1), . . . , q̃(m−k) and p̃(1), . . . , p̃(m−k) have exactly the same distribution. Let
V1 and V2 be the number of rejections of null when the procedure (7.4) is applied
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to the first (m − k) or m q’s, respectively. Then E(V |K = k) ≤ E(Ṽ ) = E(V1) ≤
E(V2).

Now the bound on k (see the assumption of Lemma 7.1) guarantees that α(i +
k)/m on the right-hand side of (7.4) is smaller than 1 for all possible i. We can
thus apply Lemma 4.2 of [21] directly, which yields

E(V2) = α

m−1∑
i=0

(k + i + 1)

(
m − 1

i

)
i!

(
α

m

)i

.

Routine calculations now lead to Lemma 7.1

E(V2) ≤ α

∞∑
i=0

(k + i + 1)αi = α

(
k

1 − α
+ 1

(1 − α)2

)
.

�

REMARK 7.1. Note that in the case where α0 < 0.5, the inequality k <

m( 1
α0

− 1) is always fulfilled.

The following lemma is an extension of Lemma 7.1 to the mixture model (2.2).

LEMMA 7.2. Under assumptions (5.5) and (5.7), the expected number of false
rejections is bounded by

E(V ) < C2αmmpm,

where C2 is any constant satisfying

C2 >

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 − α∞
(1 − α∞)2 , when s = ∞,

e−s

s(1 − α∞)2 + 2 − α∞
(1 − α∞)2 , when s ∈ (0,∞).

PROOF. Define C6 := 1
α∞ − 1 and m0 := min(m,C6m). The following holds:

E(V ) ≤
m0∑
k=0

E(V |K = k)P (K = k) + mP(K > m0).(7.5)

The first term can be bounded for m large enough using Lemma 7.1,
m0∑
k=0

E(V |K = k)P (K = k) ≤ αm

(1 − αm)2 (1 − pm)m + c̃vαmmpm,

where c̃v is any constant larger than 2−α∞
(1−α∞)2 . Now observe that 1

(1−αm)2 (1 − pm)m

converges to 0 if s = ∞ or to e−s

(1−α∞)2 otherwise. Hence, it follows that

m0∑
k=0

E(V |K = k)P (K = k) < C2mαmpm,
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for any constant C2 satisfying the assumption of Lemma 7.2.
Finally, note that the second term of (7.5) vanishes for α∞ < 0.5. On the other

hand, for α∞ ∈ [0.5,1), Lemma 7.1 of [1] yields

mP(K > m0) = mP(K > C6m) ≤ m exp
(−1

4mpmh(C6/pm)
)
,

where h(x) = min(|x − 1|, |x − 1|2). If pm → 0, then for any constant C7 ∈
(0,C6) and sufficiently large m, the right-hand side is bounded from above by
m exp(−C7m) → 0. Now, from the assumptions mpm → s > 0 and αm → α∞ >

0.5, it follows that for any constant β2 > 0 and sufficiently large m, the second
term of (7.5) is smaller than β2αmmpm, and Lemma 7.2 follows. �

Lemma 7.2 easily leads to the following Theorem 7.1, on the optimality of the
type I error component of the risk of BH.

THEOREM 7.1. Under assumptions (5.5)–(5.7), the type I error component of
the risk of BH, R1 = δ0E(V ), satisfies R1

Ropt
→ 0, where Ropt is the optimal risk

defined in Theorem 3.1.

PROOF. From Lemma 7.2
R1

Ropt
= δ0E(V )

Ropt
≤ C3αmδm(1 + om),(7.6)

where C3 = C2
2(

√
C)−1

. Now, observe that the left-hand side of (4.9) [included in

assumption (5.6)] can be written as

2 log(δmrαm) + logu − log log(f/rαm),

and under (4.8) and Assumption (A) it can be further reduced to

2 log(δmrαm) − logC + om.

Thus assumptions (4.9) and (5.5) together imply that δmαm → 0, and from (7.6) it
immediately follows that R1

Ropt
→ 0. �

7.2. Bound on the type II component of the risk. To prove the optimality of the
type II error component of the risk of BH, we consider the extremely sparse case
(2.9) and the denser case (2.10) separately. Note that in the extremely sparse case,
the optimality of the type II component of the risk of BH follows directly from a
comparison with the more conservative Bonferroni correction, which according to
Lemma 5.1 is ABOS in this range of sparsity parameters.

The proof of optimality for the denser case is based on the approximation of
the random threshold of BH by the asymptotically optimal threshold cGW [see
(4.11)], given in Theorem 5.1. The corresponding “denser” case assumption (5.4)
is substantially less restrictive than (2.10) and partially covers the extremely sparse
case (2.9).
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THEOREM 7.2. Under the assumptions of Theorem 5.1 the type II error com-
ponent of the risk of BH satisfies

R2 ≤ Ropt(1 + om).(7.7)

PROOF. Denote the number of false negatives under the BH rule by T . Let us
fix ε > 0 and let c̃1 = cGW + ε. Clearly,

E(T ) ≤ E(T |cBH ≤ c̃1)P (cBH ≤ c̃1) + mP(cBH > c̃1),

and furthermore

E(T |cBH ≤ c̃1)P (cBH ≤ c̃1) ≤ ET1,

where T1 is the number of false negatives produced by the rule based on the thresh-
old c̃1. Note that the rule based on c̃1 differs from the asymptotically optimal rule
cGW only by a constant, and therefore, from Theorem 3.2, it is asymptotically
optimal. Hence, it follows that δAET1 = Ropt(1 + om). On the other hand, from
Theorem 5.1, for any β1 > 0 and sufficiently large m (dependent on ε and β1)

P(cBH > c̃1) ≤ m−β1 .

Therefore,

R2 = δAET ≤ Ropt(1 + om) + δAm1−β1 .

Now, observe that under assumption (5.4)

δAm1−β1

Ropt
= C4

m−β1

p
< C4

m1−β1

logβp m
,

where C4 = 1
2(

√
C)−1

. Thus, choosing, for example, β1 = 1, we conclude that

δAm1−β1 = o(Ropt), and the proof is thus complete. �
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