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THE COMPOSITE ABSOLUTE PENALTIES FAMILY FOR
GROUPED AND HIERARCHICAL VARIABLE SELECTION1

BY PENG ZHAO, GUILHERME ROCHA AND BIN YU2

University of California, Berkeley

Extracting useful information from high-dimensional data is an impor-
tant focus of today’s statistical research and practice. Penalized loss func-
tion minimization has been shown to be effective for this task both theoreti-
cally and empirically. With the virtues of both regularization and sparsity, the
L1-penalized squared error minimization method Lasso has been popular in
regression models and beyond.

In this paper, we combine different norms including L1 to form an intel-
ligent penalty in order to add side information to the fitting of a regression or
classification model to obtain reasonable estimates. Specifically, we introduce
the Composite Absolute Penalties (CAP) family, which allows given group-
ing and hierarchical relationships between the predictors to be expressed.
CAP penalties are built by defining groups and combining the properties
of norm penalties at the across-group and within-group levels. Grouped se-
lection occurs for nonoverlapping groups. Hierarchical variable selection is
reached by defining groups with particular overlapping patterns. We propose
using the BLASSO and cross-validation to compute CAP estimates in gen-
eral. For a subfamily of CAP estimates involving only the L1 and L∞ norms,
we introduce the iCAP algorithm to trace the entire regularization path for
the grouped selection problem. Within this subfamily, unbiased estimates of
the degrees of freedom (df) are derived so that the regularization parameter is
selected without cross-validation. CAP is shown to improve on the predictive
performance of the LASSO in a series of simulated experiments, including
cases with p � n and possibly mis-specified groupings. When the complex-
ity of a model is properly calculated, iCAP is seen to be parsimonious in the
experiments.

1. Introduction. Information technology advances are bringing the possibil-
ity of new and exciting discoveries in various scientific fields. At the same time,
they pose challenges for the practice of statistics because current data sets of-
ten contain a large number of variables compared to the number of observations.
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A paramount example is micro-array data, where thousands or more gene expres-
sions are collected while the number of samples remains around a few hundreds
(e.g., [11]).

For regression and classification, parameter estimates are often defined as the
minimizer of an empirical loss function L and too responsive to noise when the
number of observations n is small with respect to the model dimensionality p.
Regularization procedures impose constraints represented by a penalization func-
tion T . The regularized estimates are given by:

β̂(λ) = arg min
β

[L(Z,β) + λ · T (β)],

where λ controls the amount of regularization and Z = (X,Y ) is the (random)
observed data: X is the n × p design matrix of predictors, and Y a n-dimensional
vector of response variables (Y being continuous for regression and discrete for
classification). We restrict attention to linear models:

L(Z,β) = L

(
Y,

p∑
j=1

βjXj

)
,(1)

where Xj denotes the observed values for the j th predictor (j th column of X).
Thus, setting βj = 0 corresponds to excluding Xj from the model.

Selection of variables is a popular way of performing regularization. It stabi-
lizes the parameter estimates while leading to interpretable models. Early variable
selection methods such as Akaike’s AIC [1], Mallow’s Cp [15] and Schwartz’s
BIC [19] are based on penalizing the dimensionality of the model. Penalizing es-
timates by their Euclidean norm (ridge regression [12]) is commonly used among
statisticians. Bridge estimates [9] use the Lγ -norm on the β parameter defined as
‖β‖γ = (

∑p
j=1 |βj |γ )1/γ as a penalization: they were first considered as a unifying

framework in which to understand ridge regression and variable selection (the di-
mensionality of the model being interpreted as the “L0-norm” of the coefficients).
More recently, the nonnegative garrote [3], wavelet shrinkage [5], basis pursuit [4]
and the LASSO [22] have exploited the convexity [2] of the L1-norm as a more
computationally tractable means for selecting variables.

For severely ill-posed estimation problems, sparsity alone may not be sufficient
to obtain stable estimates [26]. Group or hierarchical information can be a source
of further regularization constraints. Sources of such information vary according
to the problem at hand. A grouping of the predictors may arise naturally: for cat-
egorical variables, the dummy variables used to represent different levels define
a natural grouping [23]. Alternatively, a natural hierarchy may exist: an interac-
tion term is usually only included in a model after its corresponding main effects.
More broadly, in applied work, expert knowledge is a potential source of grouping
and hierarchical information. After completing this work, we have also learned
that grouping of parameters also occur naturally when fitting various regressions
simultaneously [16].



3470 P. ZHAO, G. ROCHA AND B. YU

In this paper, we introduce the Composite Absolute Penalties (CAP) family of
penalties. CAP penalties are highly customizable and build upon Lγ penalties to
express both grouped and hierarchical selection. The overlapping patterns of the
groups and the norms applied to the groups of coefficients used to build a CAP
penalty determine the properties of the associated estimate. The CAP penalty for-
mation assumes a known grouping or hierarchical structure on the predictors. For
group selection, clustering techniques can be used to define groups of predictors
before the CAP penalty is applied. In our simulations, this two-step approach has
resulted in CAP estimates that were robust to misspecified groups.

Zou and Hastie [26] (the Elastic Net), Kim, Kim and Kim [14] (Blockwise
Sparse Regression) and Yuan and Lin [23] (GLASSO) have previously explored
combinations of the L1-norm and L2-norm penalties to achieve more structured
estimates. The CAP family extends these ideas in two directions: first, it allows
different norms to be combined and; second, different overlapping of the groups
are allowed to be used. These extensions result both in computational and mod-
eling gains. By allowing norms other than L1 and L2 to be used, the CAP family
allows computationally convenient penalties to be constructed from the L1 and L∞
norms. By letting the groups overlap, CAP penalties can be constructed to repre-
sent a hierarchy among the predictors. In Section 2.2.2, we detail how the groups
should overlap for a given hierarchy to be represented.

CAP penalties built from the L1 and L∞-norms are computationally conve-
nient, as their regularization paths are piecewise linear for piecewise quadratic
loss functions [18]. We call such group of penalties the iCAP family (“i” stand-
ing for the infinity norm). We extend the homotopy/LARS-LASSO algorithm
[8, 17] and design fast algorithms for iCAP penalties in the cases of nonover-
lapping group selection (the iCAP algorithm) and tree-hierarchical selection (the
hierarchical iCAP algorithm: hiCAP). A Matlab implementation of these algo-
rithms is available from: http://www.stat.berkeley.edu/twiki/Research/YuGroup/
Softwarehttp://www.stat.berkeley.edu/twiki/Research/YuGroup/Software.

For iCAP penalties, used with the L2-loss, unbiased estimates of the degrees
of freedom of models along the path can be obtained by extending the results in
Zou, Hastie and Tibshirani [27]. It is then possible to employ information theory
criteria to pick an estimate from the regularization path and thus avoiding the use
of cross validation. Models picked from the iCAP path using Sugiura’s [21] AICc

and the degrees of freedom estimates had predictive performance comparable to
cross-validated models even when n � p.

The computational advantage of CAP penalties is preserved in a broader setting.
We prove that CAP penalties is convex whenever all norms used in its construc-
tion are convex. Based on this, we propose using the BLASSO algorithm [24] to
compute the CAP regularization path and cross-validation to select the amount of
regularization.

Our experimental results show that the inclusion of group and hierarchical infor-
mation substantially enhance the predictive performance of the penalized estimates

http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software
http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software
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in comparison to the LASSO. This improvement was preserved even when empir-
ically determined partitions of the set of predictors was severely mis-specified and
was observed for different settings of the norms used to build CAP. While the
CAP estimates are not sparser than LASSO estimates in the number of variables
sense, they result in more parsimonious use of degrees of freedom and more stable
estimates [7].

The remainder of this paper is organized as follows. In Section 2, for a given
grouping or hierarchical structure, we define CAP penalties, relate them to the
properties of γ -norm penalized estimates and detail how to build CAP penalties
from given group and hierarchical information. Section 3 proves the convexity of
the CAP penalties and describes the computation of CAP estimates. We propose
algorithms for tracing the CAP regularization path and methods for selecting the
regularization parameter λ. Section 4 gives experimental results based on simu-
lations of CAP regression with the L2-loss and explores a data-driven group for-
mation procedure showing that CAP estimates enjoy some robustness relative to
possibly mis-specified groupings. Section 5 concludes the paper with a brief dis-
cussion.

2. The Composite Absolute Penalty (CAP) family. We first give a review of
the properties of Lγ -norm penalized estimates. Then we show how CAP penalties
exploit them to reach grouped and hierarchical selection. For overlapping groups,
our focus will be on how to overlap groups so hierarchical selection is achieved.

2.1. Preliminaries: properties of bridge regressions. We consider an extended
version of the bridge regression [9] where a general loss function replaces the
L2-loss. The bridge regularized coefficients are given by

β̂γ (λ) = arg min
β

[L(Z,β) + λ · T (β)](2)

with T (β) = ‖β‖γ
γ =

p∑
j=1

|βj |γ .

The properties of bridge estimates path vary considerably according to the value
chosen for γ . The estimates tend to fall in regions of high “curvature” of the
penalty contour plot: for 0 ≤ γ ≤ 1, some estimated coefficients are set to zero;
for 1 < γ < 2, estimated coefficients lying in directions closer to the axis are fa-
vored; for γ = 2, the estimates are not encouraged to lie in any particular direction;
and finally for 2 < γ ≤ ∞, they tend to concentrate along the diagonals. Figure 1
illustrates the different behavior of bridge regression estimates for different values
of γ for the diabetes data used in Efron et al. [8].

CAP penalties exploit the distinct behaviors of the bridge estimates according
to whether γ = 1 or γ > 1. For convex L and γ ≥ 1, the bridge estimates are fully
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FIG. 1. Regularization paths of bridge regressions. Upper Panel: Regularization paths for differ-
ent bridge parameters for the diabetes data. From left to right: Lasso (γ = 1), near-Lasso (γ = 1.1),
Ridge (γ = 2), over-Ridge (γ = 4), max(γ = ∞). The horizontal and vertical axis contain the
γ -norm of the normalized coefficients and the normalized coefficients respectively. Lower Panel:
Contour plots ‖(β1, β2)‖γ = 1 for the corresponding penalties.

characterized by the Karush–Kuhn–Tucker (KKT) conditions (see [2]):

∂L

∂βj

= −λ
∂‖β‖γ

∂βj

= −λ · sign(βj )
|βj |γ−1

‖β‖γ−1
γ

for j such that βj �= 0;(3)

∣∣∣∣ ∂L

∂βj

∣∣∣∣ ≤ λ

∣∣∣∣∂‖β‖γ

∂βj

∣∣∣∣ = λ
|βj |γ−1

‖β‖γ−1
γ

for j such that βj = 0.(4)

Hence, for 1 < γ ≤ ∞, the estimate β̂j equals zero if and only if ∂L(Yi ,Xi,β̂)
∂βj

|βj=0 =
0. This condition is satisfied with probability zero when the distribution of Zi =
(Xi, Yi) is continuous and L is strictly convex. Therefore, 1 < γ ≤ ∞ implies that
all variables are almost surely included in the bridge estimate. When γ = 1, how-
ever, the right-hand side of (4) becomes a constant set by λ and thus variables that
fail to infinitesimally reduce the loss by a certain threshold are kept at zero. In what
follows, we show how these distinctive behaviors result in group and hierarchical
selections.

2.2. CAP penalties. We start this subsection by defining the CAP family in its
most general form. Then for a given group or hierarchical structure, we specialize
the CAP penalty for grouped and hierarchical selection. Unless otherwise stated,
we assume that each predictor Xj in what follows is normalized to have mean zero
and variance one.

Let

I = {1, . . . , p}
contain all indices of the predictors. Given K subsets of indices,

Gk ⊂ I.
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The group formation varies according to the given grouping or hierarchical struc-
ture that we want to express through the CAP penalty. Details are presented later
in this section. We let a given grouping be denoted by

G = (G1, . . . ,GK).

Moreover, a vector of norm parameters γ = (γ0, γ1, . . . , γK) ∈ R
K+1+ must be

defined. We let γk ≡ c denote the case γk = c,∀k ≥ 1.
Call the Lγ0 -norm the overall norm and Lγk

-norm the kth group norm and define

βGk
= (βj )j∈Gk

,

Nk = ‖βGk
‖γk

and(5)

N = (N1, . . . ,NK) for k = 1, . . . ,K.

The CAP penalty for grouping G and norms γ is given by

TG,γ (β) = ‖N‖γ0
γ0

=
[∑

k

|Nk|γ0

]
.(6)

The corresponding CAP estimate for the regularization parameter λ is

β̂G,γ (λ) = arg min
β

[L(Z,β) + λ · TG,γ (β)].(7)

In its full generality, the CAP penalties defined above can be used to induce
a wide array of different structures in the coefficients: γ0 determines how groups
relate to one another while γk dictates the relationship of the coefficients within
group k. The general principle follows from the distinctive behavior of bridge es-
timates for γ > 1 and γ = 1 as discussed above. Hence, for γ0 = 1 and γk > 1 for
all k, the variables in each group are selected as a block [14, 23]. Nonoverlapping
groups yield grouped selection, while suitably constructed overlapping patterns
can be used to achieve hierarchical selection. More general overlapping patterns
and norm choices are possible, but we defer their study for future research as they
are not needed for our goal of grouped and hierarchical selection.

2.2.1. Grouped selection: the nonoverlapping groups case. When the goal of
the penalization is to select or exclude nonoverlapping groups of variables simul-
taneously and the groups are known, we form nonoverlapping groups Gk, k =
1, . . . ,K to reflect this information. That is, all variables to be added or deleted
concurrently should be collected in one group Gk ∈ G.

Given the grouping G, the CAP penalization can be interpreted as mimicking the
behavior of bridge penalties on two different levels: an across-group and a within-
group level. On the across-group level, the group norms Nk behave as if they were
penalized by a Lγ0 -norm. On the within-group level, the γk norm then determines
how the coefficients βGk

relate to each other. A formal result establishing this is es-
tablished in a Bayesian interpretation of CAP penalties for nonoverlapping groups



3474 P. ZHAO, G. ROCHA AND B. YU

FIG. 2. Effect of group-norm on regularization path. In this figure, we show the regularization
path for CAP penalties with different group norms applied to the diabetes data in Efron et al. [8].
The predictors were split into three groups: the first group contains age and sex; the second, body
mass index and blood pressure; and the third, blood serum measurements. From left to right, we
see: (a) Lasso (γ0 = 1, γk ≡ 1); (b) CAP(1.1), (γ0 = 1, γk ≡ 1.1); (c) GLasso (γ0 = 1, γk ≡ 2),
(d) CAP(4), (γ0 = 1, γk ≡ 4); (e) iCAP(γ0 = 1, γk ≡ ∞).

presented in details in the technical report version of this paper [25]. For γ0 = 1,
sparsity in the N vector of group norms is promoted. The γk > 1 parameters then
determine how close together the size of the coefficients within a selected group
are kept. Thus, Yuan and Lin’s [23] corresponds to the LASSO on the across-group
level and the rotational invariant ridge penalization on the within-group level. Fig-
ure 2 illustrates this fact for the diabetes data from Efron et al. [8].

By allowing group norms other than L2 to be applied to the coefficients in a
group, CAP can lead to computational savings by setting γ0 = 1 and γk ≡ ∞. In
Section 3 below, we present computationally efficient algorithm and model selec-
tion criterion for such CAP penalties.

In Section 4, simulation experiments provide compelling evidence that the ad-
dition of the group structure can greatly enhance the predictive performance of an
estimated model.

A note on normalization. Assuming the predictors are normalized, it may be
desirable to account for the size of different groups when building the penalties.
For γ0 = 1, γk ≡ γ̄ and letting γ̄ ∗ = γ̄

γ̄−1 , the decision on whether group Gk is

in the model for a fixed λ can be shown to depend upon ‖∇βGk
L(Z, β̂(λ))‖γ̄ ∗ .

Thus, larger groups are more likely to be included in the model purely due to their
size. We propose that group normalization is achieved by dividing the variance
normalized predictors in Gk by q

1/γ̄ ∗
k . Following Yuan and Lin [23], such correc-

tion causes two hypothetical groups Gk and Gk′ having ‖∇βj
L(Z, β̂(λ))‖ = c for

all j ∈ Gk ∪ Gk′ to be included in the CAP estimate simultaneously. Note that for
γ̄ = 1 (LASSO), γ̄ ∗ = ∞ and the group sizes are ignored as in this setting the
group structure is lost.

In an extended technical report version of this paper [25], we perform experi-
ments suggesting that the additional normalization by group size does not affect
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the selection results greatly. This aspect of grouped CAP penalties is explained in
further detail there.

2.2.2. Hierarchical selection: the nested groups case. We now show how to
define CAP penalties to achieve hierarchical selection. We start from an example
used to illustrate the principle behind hierarchical CAP penalties, and then prove
a result concerning CAP penalties with overlapping groups. Finally, we show how
to use our result to build a penalty that induces a hierarchy starting from its repre-
sentation as a directed graph.

Consider a simple case involving two predictors X1 and X2. Suppose we
want X1 to be included in the model before X2. A directed graph can be used
to represent this hierarchy as shown in panel (a) in Figure 4. This hierarchy can be
induced by defining the overlapping groups G1 = {1,2} and G2 = {2} with γ0 = 1,
γm > 1 for m = 1,2. That results in the penalty

T (β) = ‖(β1, β2)‖γ1 + ‖(β2)‖γ2 .(8)

The contour plots of this penalty function are shown in Figure 3 for different
values of γ = γ1. As G2 contains only one variable, these contours are the same
regardless of the value chosen for γ2 (‖β2‖γ2 = |β2| for any γ2). The breakpoints
along the β2 = 0 axis in panels (b) through (d) show that solutions with β1 �= 0
and β2 = 0 tend to be encouraged by this penalty when γ1 > 1. Setting γ1 = 1,
however, causes breakpoints to appear along the β1 = 0 axis as shown in panel (a),
hinting that γ1 > 1 is needed for the hierarchical structure to be preserved.

In what refers to the definition of the groups, two things were important for the
hierarchy to arise from penalty (8): first, β2 was in every group β1 was; second,
there was one group in which β2 was penalized without β1 being penalized. As we
will see below, having β2 in every group where β1 is ensures that, once β2 deviates
from zero, the infinitesimal penalty of β1 becomes zero. In addition, letting β2 be
on a group of its own makes it possible for β1 to deviate from zero, while β2 is
kept at zero.

FIG. 3. Contour plots for the penalty in (8).
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The general principle behind the example. The example above suggests that,
to construct more general hierarchies, the key is to set γ0 = 1, γk > 1 for all k.
Given such a γ , a penalty can cause a set of indices I1 to be added before the
set I2, by defining groups G1 = I2 and G2 = I1 ∪ I2. Our next result extends this
simple case to more interesting hierarchical structures.

THEOREM 1. Let I1,I2 ⊂ {1, . . . , p} be two subsets of indices. Suppose:

• γ0 = 1 and γk > 1,∀k = 1, . . . ,K .
• I1 ⊂ Gk ⇒ I2 ⊂ Gk for all k and
• ∃k∗ such that I2 ⊂ Gk∗ and I1 �⊂ Gk∗ .

Then, ∂
∂βI1

T (β) = 0 whenever βI2 �= 0 and βI1 = 0.

A proof is given in the Appendix A. Assuming the set {Z ∈ R
n×(p+1) : ∂

∂βI1
L(Z,

β)|
βI2=β̂I2 ,βI1=0 = 0} to have zero probability, Theorem 1 states that once the

variables in I2 are added to the model, infinitesimal movements of the coefficients
of variables in I1 are not penalized and hence βI1 will almost surely deviate from
zero.

Defining groups for hierarchical selection. Using Theorem 1, a grouping for
a more complex hierarchical structure can be constructed from its representation
as a directed graph. Let each node correspond to a group of variables Gk and set
its descendants to be the groups that should only be added to the model after Gk .
The graph representing the hierarchy in the simple case with two predictors above
is shown in the panel (a) of Figure 4. Based on this representation and Theorem 1,

FIG. 4. Directed graphs representing hierarchies: (a) The hierarchy of the simple example: X1
must precede X2; (b) Hierarchy for a main and interaction effects model with four variables. The
“root nodes” correspond to the main effects and must be added to the model before its children.
Each main effect has all the interactions in which it takes part as its children. Each second order
interaction effect has two parents.
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FIG. 5. A sample regularization path for the simple ANOVA example with four variables. In the
LASSO path, an interaction (dotted lines) is allowed to enter the model when its corresponding main
effect (solid lines) is not in the model. When the group norm γk is greater than one, the hierarchy is
respected. From left to right: (a) Lasso (γ0 = 1, γk ≡ 1); (b) CAP(1.1), (γ0 = 1, γk ≡ 4), (c) GLasso
(γ0 = 1, γk ≡ 2), (d) CAP(4), (γ0 = 1, γk ≡ 4), (e) iCAP, (γ0 = 1, γk ≡ ∞).

CAP penalties enforcing the given hierarchy can be obtained by setting

T (β) =
nodes∑
m=1

αm · ‖(βGm,βall descendants of Gm)‖γm(9)

with αm > 0 for all m. The factor αm can be used to correct for the effect of a
coefficient being present in too many groups, a concern brought to our attention
by one of the referees. In this paper, we keep αm = 1 for all m throughout. We
return to this issue in our experimental section below.

For a more concrete example, consider a regression model involving d predic-
tors x1, . . . , xd and all its second-order interactions. Suppose that an interaction
term xixj is to be added only after the corresponding main effects xi and xj . The
hierarchy graph is formed by adding an arrow from each main effect to each of its
interaction terms. Figure 4 shows the hierarchy graph for d = 4. Figure 5 shows
sample paths for d = 4 with penalties based on (9) and using this hierarchy graph
and having different settings for γk . These sample paths were obtained by setting
β1 = 20, β2 = 10, β3 = 5, β1,2 = 15 and β2,3 = 7. All remaining coefficients in
the model are set to zero. Each predictor has standard normal distribution and the
signal to noise ratio is set to 2. Because of the large effect of some interaction terms
they are added to the model before their respective main effects when the LASSO
is used. However, setting γk to be slightly larger than 1 is already enough to cause
the hierarchical structure to be satisfied. We develop this example further in one of
the simulation studies in Section 4.

3. Computing CAP estimates. The proper value of the regularization para-
meter λ to use with CAP penalties is rarely known in advance. Two ingredients are
then needed to implement CAP in practice: efficient ways of computing estimates
for different values of λ and a criterion for choosing an appropriate λ. This section
proposes methods for completing these tasks.



3478 P. ZHAO, G. ROCHA AND B. YU

3.1. Tracing the CAP regularization path. Convexity is a key property for
solving optimization problems such as the one defining CAP estimates (7). When
the objective function is convex, a point satisfying the Karush–Kuhn–Tucker
(KKT) conditions is necessarily a global minimum (see [2]). As the algorithms we
present below rely on tracing solutions to the KKT conditions for different values
of λ, we now present sufficient conditions for convexity of the CAP program (7).
A proof is given in Appendix A.

THEOREM 2. If γi ≥ 1,∀i = 0, . . . ,K , then T (β) in (6) is convex. If, in addi-
tion, the loss function L is convex in β the objective function of the CAP optimiza-
tion problem in (7) is convex.

We now detail algorithms for computing the CAP regularization path. The
BLasso algorithm is used to deal with general convex loss functions and CAP
penalties. Under the L2-loss with γ0 = 1 and γk ≡ ∞, we introduce the iCAP (∞-
CAP) and the hiCAP (hierarchical-∞-CAP) algorithms to trace the path for group
and tree-structured hierarchical selection, respectively.

3.1.1. The BLasso algorithm. The BLasso algorithm [24] can be used to ap-
proximate the regularization path for general convex loss and penalty functions.
We use the BLasso algorithm in our experimental section due to its ease of imple-
mentation and flexibility: the same code was used for different settings of the CAP
penalty.

Similarly to boosting [10] and the Forward Stagewise Fitting algorithm [8], the
BLasso algorithm works by taking forward steps of fixed size in the direction of
steepest descent of the loss function. However, BLasso also allows for backward
steps that take the penalty into account. With the addition of these backward steps,
the BLasso is proven to approximate the Lasso path arbitrarily close, provided the
step size can get small. An added advantage of the algorithm is its ability to trade
off between precision and computational expense by adjusting the step size. For a
detailed description of the algorithm, we refer the reader to Zhao and Yu [24].

3.1.2. Piecewise linear paths: L2-loss, L1-norm and L∞-norm penalization.
For piecewise quadratic, convex loss functions and γk ∈ {1,∞} for all k =
0, . . . ,K , the CAP regularization path is known to be piecewise linear [18].
In these cases, it is possible to devise algorithms that jump from one break-
point to the next while exactly computing their respective estimates as in the
homotopy/LARS-LASSO algorithm [8, 17]. Next, we introduce two such algo-
rithms for the L2-loss: the first (iCAP) for grouped selection and the second for hi-
erarchical selection (hiCAP). Before that, we present an algorithm for the L2-loss
estimates penalized by the L∞-norm (iLASSO). It serves as a stepping stone be-
tween the homotopy/LARS-LASSO [8, 17] and the iCAP and hiCAP path-tracing
algorithms.
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The regularization path for iLASSO (∞-LASSO). The iLASSO estimate cor-
responds to the bridge regression (2) with the L2-loss and γ = ∞. The KKT con-
ditions defining the estimate for a particular λ are[

X′
Rλ

XRλ XRλXUλ

X′
Uλ

XRλ X′
Uλ

XUλ

][
α̂

β̂Uλ

]
=

[
X′

Rλ
Y − λ

XUλY

]
,

(10)
β̂Rλ = α̂Sλ,

where Rλ = {j : |β̂j | = ‖β̂‖∞}, Uλ = {j : |β̂j | < ‖β̂‖∞}, S(λ) = signs[X′(Y −
Xβ̂(λ))], and XRλ = ∑

j∈Rλ
Sj (λ)Xj . From these conditions, it follows that

|β̂j (λ)| = α̂, for all j ∈ Rλ and X′
j (Y −Xβ̂(λ)) = 0, for all j ∈ Uλ. Starting from

a breakpoint λ0 and its respective estimate β̂(λ0), the path moves in a direction
�β̂ that preserves the KKT conditions. The next breakpoint is then determined by
β̂λ1 = β̂λ0 +δ ·�β̂ where δ > 0 is the least value to cause an index to move between
the Rλ and Uλ sets. The pseudo-code for the iLASSO algorithm is presented in
the technical report version of this paper [25]. We now extend this algorithm to
handle the grouped case.

The iCAP algorithm (∞-CAP). The iCAP algorithm is valid for the L2-loss
and nonoverlapping groups with γ0 = 1 and γk ≡ ∞. This algorithm operates
on two levels: it behaves as the Lasso on the group level and as the iLASSO
within each group. To make this precise, first define the kth group correlation
at λ to be ck(λ) = ‖X′

Gk
(Y − Xβ(λ))‖1 and the set of active groups Aλ = {j ∈

{1, . . . ,K} : |cj (λ)| = maxk=1,...,K |ck(λ)|}. At a given λ, the groups not in Aλ

have all their coefficients set to zero and β̂(λ) is such that all groups in Aλ

have the same group correlation size. At the within-group level, for β̂(λ) to be
a solution, each index j ∈ Gk must belong to either of two sets: Uλ,k = {j ∈
Gk :X′

j (Y − Xβ̂(λ)) = 0} or Rλ,k = {j ∈ Gk : β̂j (λ) = ‖β̂Gk
(λ)‖∞}.

For λ0 = maxj∈� ,...,K ‖X′
Gj

Y‖1, the solution is given by β̂(λ0) = 0. From this

point, a direction �β̂ can be found so that the conditions above are satisfied by
β̂(λ0) + δ�β̂ for small enough δ > 0. To find the next breakpoint, compute the
least value of δ > 0 that causes one of the following events: a group is added to
or removed from Aλ; an index moves between the sets Uλ,k and Rλ,k for some
group k; or a sign change occurs in the correlation between the residuals and a
variable in an inactive group. If no such δ > 0 exists, the algorithm moves toward
an un-regularized solution along the direction �β̂ . The pseudo-code is given in
Appendix B. The Matlab code implementing this algorithm can be downloaded
from http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software.

The hiCAP algorithm (hierarchical-∞-CAP). We now introduce an algorithm
for hierarchical selection. It is valid for the L2-loss when γ0 = 1, γk ≡ ∞ and the

http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software
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graph representing the hierarchy is a tree. The KKT conditions in this case are to
an extent similar to those of the nonoverlapping groups case. The difference is that
the groups now change dynamically along the path. Specifics of the algorithm are
lengthy to describe and do not provide much statistical insight. We give a high level
description here and refer readers interested in implementing the algorithm to the
code available at http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software.

The algorithm starts by forming nonoverlapping groups such that:

• Each nonoverlapping group consists of a sub-tree.
• Viewing each of the subtrees formed as a supernode, the derived super-tree

formed by these supernodes must satisfy the condition that average correlation
size (unsigned) between Y and X’s within the supernode is higher than that of
all its descendant supernodes.

Once these groups are formed, the algorithm starts by moving the coefficients in
the root group as in the nonoverlapping iCAP algorithm. The optimality condi-
tions are met because the root group has the highest average correlation. Then, the
algorithm proceeds observing two constraints:

1. Average unsigned correlation between Y −Xβ̂(λ) and X’s within each supern-
ode is at least as high than that of all its descendant supernodes.

2. Maximum unsigned coefficient of each supernode is larger than or equal to that
of any of its descendants.

Between breakpoints, the path is found by determining a direction such that these
conditions are met. Breakpoints are found by noticing they are characterized by:

• If the average correlation between Y − Xβ̂(λ) and a subtree Ga contained by a
supernode equals that of a supernode, then Ga splits into a new supernode.

• If a supernode a’s maximum coefficient size equals that of a descendant supern-
ode b, then they are combined into a new supernode. These would also guarantee
that a super node with all zero coefficients should have descendants with all zero
coefficients.

• If a supernode with all zero coefficients and a descendant reached equal average
correlation size (unsigned), they are merged.

3.2. Choosing the regularization parameter λ. For the selection of the regu-
larization parameter λ under general CAP penalties, we propose the use of cross-
validation. We refer the reader to Stone [20] and Efron [6] for details on cross-
validation. For the particular case of the iCAP having nonoverlapping groups and
under the L2-loss, we extend the Zou, Hastie and Tibshirani [27] unbiased esti-
mate of the degrees of freedom for the LASSO. This estimate can then be used in
conjunction with an information criterion to pick an appropriate level of regulariza-
tion. We choose to use Sugiura’s [21] AICC information criterion. Our preference
for this criterion follows from its being a correction of Akaike’s [1] AIC for small

http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software
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samples. Letting k denote the dimensionality of a linear model, the AICC criterion
for a linear model is

AICC = n

2
log

(
n∑

i=1

(
Yi − Xiβ̂(λ)

)2
)

+ n

2

(
1 + k/n

1 − k + 2/n

)
,(11)

where n corresponds to the sample size. A model is selected by minimizing the
expression in (11). To apply this criterion to iCAP, we substitute k by estimates
of the effective number of parameters (degrees of freedom). As we will see in our
experimental section, the AICC criterion resulted in good predictive performance,
even in the “small-n, large-p” setting.

The extension of Zou, Hastie and Tibshirani [27] unbiased estimates of the de-
grees of freedom to iCAP follows from noticing that, between breakpoints, the
LASSO, iLASSO and iCAP estimates mimic the behavior of projections on linear
subspaces spanned by subsets of the predictor variables. It follows that standard
results for linear estimates establish the dimension of the projecting subspace as
an unbiased estimate of the degrees of freedom of penalized estimates in a broader
set of penalties. Therefore, to compute unbiased estimates of degrees of freedom
for the iLASSO or iCAP regressions above, it is enough to count the number of
free parameters being fit at a point in the path. Letting Aλ and Uk,λ be as de-
fined in Section 3.1 above, the resulting estimates of the degrees of freedom are
d̂f(λ) = |Uλ| + 1 for the iLASSO and d̂f(λ) = |Aλ| + ∑

k∈Aλ
|Uk,λ| for the iCAP.

A complete proof for the iLASSO case and a sketch of the proof for the iCAP
case are given in Appendix A.1. Based on the above reasoning, we believe similar
results should hold under the L2-loss for any CAP penalties built exclusively from
the L1-norm and the L∞-norm. The missing ingredient is a way of determining
the dimension of a projecting subspace along the path in broader settings. Future
research will be devoted to that.

4. Experimental results. We now illustrate and evaluate the use of CAP in a
series of simulated examples. The CAP framework needs the input of a grouping
or hierarchical structure. For the grouping simulations, we explore the possibility
of having a data-driven group structure choice and show that CAP enjoys a certain
degree of robustness to misspecified groups. We leave a completely data-driven
group structure choice as a topic of future research. For the hierarchical selection,
two examples illustrate the use of the framework presented in Section 2.2.2 and
the penalty in (9) to induce a pre-determined hierarchy. We defer the study of data-
defined hierarchies for future work.

We will be comparing the predictive performance, sparsity and parsimony of
different CAP estimates and that of the LASSO. As a measure of prediction per-
formance we use the model error ME(β̂) = (β̂ − β)E(X′X)(β̂ − β). In what con-
cerns sparsity, we look not only at the number of variables selected by CAP and
LASSO, but also at measures of sparsity that take the added structure into account:
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the number of selected groups for group selection and a properly defined measure
for hierarchical selection (see Section 4.2). Whenever possible, we also compare
the parsimony of the selected models as measured by the effective degrees of free-
dom and compare the cross-validation and AICC based selections for the tuning
parameter λ.

In all experiments below, the data is simulated from

Y = Xβ + σε,(12)

with ε ∼ N (0, I). The parameters β , σ as well as the covariance structure of X are
set specifically for each experiment.

4.1. Grouped selection results. In our grouping experiments, the group struc-
ture among the p predictors in X is due to their relationship to a set of K zero-mean
Gaussian hidden factors Z ∈ R

K :

cov(Zk,Zk′) =
⎧⎨
⎩

2.0, if |k − k′| = 0,
1.0, if |k − k′| = 1,
0.0, if |k − k′| > 1,

for k, k′ ∈ {1, . . . ,K}.

A predictor Xj in group Gk is the sum of the Zk factor and a noise term

Xj = Zk + ηj if j ∈ Gk,

with the Gaussian ηj noise term having zero mean and

cov(ηj , ηj ′) = (4.0) · 0.95|j−j ′|.
The correlation between the factors Z is meant to make group selection slightly

more challenging. Also, we chose the covariance structure of the disturbance
terms η to avoid an overly easy case for the empirical determination of the groups
described below.

Clustering for forming groups. In applications, the grouping structure must
often be estimated from data. In our grouping experiments, we estimate the true
group structure G by clustering the predictors in X using the Partitioning Around
Medoids (PAM) algorithm (see [13]). The PAM algorithm needs the number of
groups as an input. Instead of trying to fine-tune the selection of the number of
groups, we fix the number of groups K̃ in the estimated clustering above, below
and at the correct value K , specifically, we set:

• K̃ = K : proper estimation of the number of groups;
• K̃ = 0.5 · K : severe underestimation of the number of groups;
• K̃ = 1.5 · K : severe overestimation of the number of groups.

Implicitly, we are assuming that a tuning method that can set the number of es-
timated groups K̃ in PAM to be between 0.5K (alt. below 1.5K) and the true
number of groups K has results that are no worse than the ones observed in our
underestimated (alt. overestimated) scenario below.
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4.1.1. Effect of group norms and λ selection methods. In this first experiment,
we want to compare the difference among CAP estimates using alternative settings
for the within-group norm and the LASSO. We keep the dimensionality of the
problem low and emulate a high-dimensional setting (n < p) by setting

n = 80, p = 100 and K = 10.

The coefficients β are made dissimilar (see Figure 6) within a group to avoid
undue advantage to iCAP:

βj =

⎧⎪⎪⎨
⎪⎪⎩

0.10(1 + 0.9j−1), for j = 1, . . . ,10;
0.04(1 + 0.9j−11), for j = 11, . . . ,20;
0.01(1 + 0.9j−21), for j = 21, . . . ,30;
0, otherwise.

The noise level is set to σ = 3 and results are based on 50 replications.
The results reported in Table 1 show that all the different CAP penalties con-

sidered significantly reduced the model error in the comparison with the LASSO.
The reduction in model error was also observed to be robust to misspecifications
of the group structure (the cases K̃ = 0.5 · K and K̃ = 1.5 · K).

Table 2 shows that our estimate for the degrees of freedom used in conjunction
with the AICC criterion was able to select predictive models as good as 10-fold
cross-validation at a lower computational expense. The comparison of the results
across the number of clusters used to group the predictors show that the improve-
ment in prediction was robust to misspecifications in the number of groups used to
cluster the predictors. iCAP’s performance was the most sensitive to this type of
misspecification as the L∞-norm makes a heavier use of the prespecified grouping
information.

FIG. 6. Profile of coefficients for grouping experiment. In the first grouping experiment, only the
first three groups have nonzero coefficients. Within each group, the coefficients have an exponential
decay.
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TABLE 1
Comparison of different CAP penalties. Results for the LASSO and different CAP penalties for the

first grouping experiment (based on 50 replications). All CAP penalties considered reduced the
mean model error and number of selected groups in the comparison with the LASSO. The CAP

penalty with γk ≡ 4 had a slight advantage over iCAP and the GLASSO

N. groups LASSO GLASSO CAP(4) iCAP

Model errors

Underestimated 1.863 1.025 0.918 1.429
(0.5K) (0.194) (0.101) (0.106) (0.316)

Right 1.863 1.048 0.835 0.933
(1.0K) (0.194) (0.094) (0.100) (0.092)

Overestimated 1.863 1.159 0.970 1.271
(1.5K) (0.194) (0.089) (0.090) (0.135)

Number of selected variables

Underestimated 13.567 45.233 39.650 65.333
(0.5K) (1.243) (3.504) (3.490) (4.633)

Right 13.567 38.200 32.450 49.000
(1.0K) (1.243) (2.502) (1.748) (3.567)

Overestimated 13.567 33.900 33.450 48.400
(1.5K) (1.243) (2.452) (3.097) (3.461)

Number of selected groups

Underestimated 6.233 5.600 4.600 6.933
(0.5K) (0.491) (0.400) (0.387) (0.442)

Right 6.233 4.067 3.250 4.900
(1.0K) (0.491) (0.275) (0.176) (0.357)

Overestimated 6.233 4.100 3.950 5.333
(1.5K) (0.491) (0.326) (0.352) (0.402)

TABLE 2
Comparison of model errors according to λ selection method. Mean difference in model error

between CAP and LASSO models selected using the AICC criterion and 10-fold cross-validation.
The AICC criterion had results comparable to 10-fold cross-validation

ME(AICC )-ME(CV)

LASSO (γk ≡ 1) iCAP (γk ≡ ∞)

Underestimated −0.253 −0.077
(0.5K) (0.177) (0.048)

Right −0.470 −0.267
(1.0K) (0.388) (0.207)

Overestimated −0.324 −0.112
(1.5K) (0.245) (0.065)
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In terms of sparsity, the CAP estimates include a larger number of variables than
the LASSO due to its block-inclusion nature. If we look at how many of the true
groups are selected instead, we see that the CAP estimates made use of a lesser
number of groups than the LASSO: an advantage if group selection is the goal.
The low ratio between the number of variables and number of groups selected by
the LASSO provide evidence that the LASSO estimates did not preserve the group
structure selecting only a few variables from each group.

4.1.2. Grouping with small-n-large-p. We now compare iCAP and the
LASSO when the number of predictors p = Kq grows due to an increase in either
the number of groups K or in the group size q . The sample size is fixed at n = 80.
The coefficients are randomly selected for each replication according to two differ-
ent schemes: in the Grouped Laplacian scheme the coefficients are constant within
each group and equal to K independent samples from a Laplacian distribution
with parameter αG; in the Individual Laplacian scheme the p coefficients are inde-
pendently sampled from a Laplacian distribution with parameter αI . The Grouped
Laplacian scheme favors iCAP due to the grouped structure of the coefficients
whereas the Individual Laplacian scheme favors the LASSO. The parameters αG

and αI were adjusted so the signal power E(β ′X′Xβ) is roughly constant across
experiments. The complete set of parameters used is shown in Table 3.

We only report the results obtained from using the AICC criterion to select λ.
The results for 10-fold cross-validation were similar. Tables 4 and 5 show the re-
sults based on 100 replications.

The iCAP estimates had predictive performance better than or comparable to
LASSO estimates. For the Grouped Laplacian case, the reduction in model er-
ror was very pronounced for all settings considered. In the Individual Laplacian
case, iCAP and LASSO had comparable model errors for p = 100. As the num-
ber of predictors increased, however, iCAP resulted in lower model errors than
the LASSO even under the Individual Laplacian regime. This result provides evi-
dence that collecting highly correlated predictors into groups is beneficial in terms
of predicting performance, especially as the ratio p/n increases. The predictive

TABLE 3
Parameters for the simulation of the small-n-large-p case

Grouped Laplacian Individual Laplacian

p q K αG E(β′X′Xβ) SNR αI E(β′X′Xβ) SNR σ

100 10 10 1.00 · 10−1 54.02 3.95 3.00 · 10−1 54.00 3.95 3.7
250 10 25 0.63 · 10−1 53.60 3.92 1.90 · 10−1 54.15 3.96 3.7
250 25 10 0.43 · 10−1 54.61 3.99 1.90 · 10−1 54.15 3.96 3.7
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TABLE 4
Results for small-n-large-p experiment under Grouped Laplacian sampling. Results based on
100 replications and AICC selected λ. The true model has its parameters sampled according

to the Grouped Laplacian scheme (see Section 4.1.2). The inclusion of grouping structure
improves the predictive performance of the models whether the predictors are clustered
in the correct number of groups (1.0K) or not (0.5K and 1.5K). LASSO selects a smaller

number of variables and is slightly sparser in terms of number of groups. iCAP
estimates are more parsimonious in terms of degrees of freedom

LASSO 0.5K 1.0K 1.5K

Model errors

p = 100, q = 10 5.028 3.783 2.839 3.481
(0.208) (0.172) (0.119) (0.132)

p = 250, q = 10 13.061 11.135 6.660 8.128
(0.506) (0.834) (0.227) (0.271)

p = 250, q = 25 8.356 5.113 3.479 4.457
(0.379) (0.228) (0.149) (0.202)

Number of selected variables

p = 100, q = 10 19.590 93.940 82.200 73.720
(0.546) (1.108) (1.508) (1.438)

p = 250, q = 10 26.070 211.090 169.700 144.740
(0.668) (3.335) (2.866) (2.781)

p = 250, q = 25 25.450 236.300 218.500 192.730
(0.664) (2.979) (3.049) (3.667)

Number of true groups selected

p = 100, q = 10 8.140 9.520 8.220 8.240
(0.163) (0.090) (0.151) (0.148)

p = 250, q = 10 14.550 21.780 16.970 16.720
(0.336) (0.290) (0.287) (0.317)

p = 250, q = 25 7.980 9.560 8.740 8.530
(0.160) (0.102) (0.122) (0.149)

Degrees of freedom

p = 100, q = 10 19.590 13.600 10.460 12.060
(0.546) (0.459) (0.365) (0.404)

p = 250, q = 10 26.070 19.710 18.490 20.190
(0.668) (0.646) (0.431) (0.501)

p = 250, q = 25 25.450 18.010 13.590 14.920
(0.664) (0.604) (0.481) (0.491)

gains from using CAP were also preserved under misspecified groupings. iCAP
estimates had smaller or comparable model errors than the LASSO when the pre-
dictors were clustered into a number of groups that was 50% smaller or larger than
the actual number of predictor clusters.
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TABLE 5
Results for small-n-large-p experiment under Individual Laplacian sampling. Results based on

100 replications and AICC selected λ. The true model has its parameters sampled according to the
Independent Laplacian scheme (see Section 4.1.2). For a lower-dimensional model

(p = 100, q = 10), the predictive performance of iCAP is comparable to the LASSO. For higher
dimensions (p = 250, q = 10 and q = 25), iCAP has better predictive performance. LASSO selects
a smaller number of variables than iCAP and a comparable number of groups in all cases. iCAP

estimates are still more parsimonious in terms of degrees of freedom

LASSO 0.5K 1.0K 1.5K

Model errors

p = 100, q = 10 10.310 10.885 10.153 11.056
(0.309) (0.388) (0.300) (0.348)

p = 250, q = 10 22.560 18.790 18.194 18.990
(0.701) (0.446) (0.463) (0.422)

p = 250, q = 25 19.891 17.483 16.544 18.301
(0.614) (0.424) (0.387) (0.493)

Number of selected variables

p = 100, q = 10 20.200 96.460 90.700 73.530
(0.620) (0.869) (1.249) (1.459)

p = 250, q = 10 25.540 228.070 180.700 150.000
(0.620) (2.246) (3.003) (2.508)

p = 250, q = 25 24.440 243.490 234.250 198.040
(0.589) (1.530) (1.935) (2.638)

Number of true groups selected

p = 100, q = 10 9.580 9.760 9.480 9.320
(0.106) (0.092) (0.098) (0.119)

p = 250, q = 10 21.210 24.110 21.580 20.720
(0.309) (0.115) (0.266) (0.290)

p = 250, q = 25 9.720 9.870 9.730 9.650
(0.057) (0.049) (0.066) (0.069)

Degrees of freedom

p = 100, q = 10 20.200 16.320 16.140 14.650
(0.620) (0.684) (0.635) (0.614)

p = 250, q = 10 25.540 22.230 20.290 21.210
(0.620) (0.630) (0.486) (0.536)

p = 250, q = 25 24.440 20.360 20.060 18.670
(0.589) (0.610) (0.635) (0.637)

Contrary to what was expected, the iCAP estimates involved a number of groups
comparable to the LASSO in all simulated scenarios. We believe this is due to a
more parsimonious use of degrees of freedom by iCAP estimates. As more groups
are added to the model, the within-group restrictions imposed by the L∞-norm
prevent a rapid increase in the use of degrees of freedom. As a result, iCAP esti-
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mates can afford to include groups in the model more aggressively in an attempt to
reduce the L2-loss. This reasoning is supported by the lesser degrees of freedom
used by iCAP selected models in the comparison to the LASSO.

4.2. Hierarchical selection results. Now, we provide examples where the hi-
erarchical structure of the predictors is exploited to enhance the predictive perfor-
mance of models. We define hierarchical gap as a measure of compliance to the
given hierarchical structure: it is the minimal number of additional variables that
should be added to the model so the hierarchy is satisfied. If a model satisfies a
given hierarchy, no additional variables must be added and this measure equals
zero.

4.2.1. Hierarchical selection for ANOVA model with interaction terms. We
now further develop the regression model with interaction terms introduced in Sec-
tion 2 (cf. Figure 4).

The data is generated according to (12) and set the number of variables to d = 10
resulting in a regression involving 10 main effects and 45 interactions:

X = [Z1, . . . ,Z10,Z1Z2, . . . ,Z1Z10, . . . ,Z9Z10],
Zj

i.i.d.∼ N (0,1).

We assume the hierarchical structure is given that the second order terms are
to be added to the model only after their corresponding main effects. This is an
extension of the hierarchical structure in Figure 4 from d = 4 to d = 10. Applying
(9) to this graph with uniform αm weights gives:

T (β) =
10∑

j=1

j−1∑
i=1

[|βi,j | + ‖(βi, βj , βi,j )‖γi,j
].

In this case, each interaction term is penalized in three factors of the summa-
tion, which agrees to the number of variables that are added to the model (Zij ,
Zi and Zj ).

We set the first four main effect coefficients to be β1 = 7, β2 = 2, β3 = 1 and
β4 = 1 with all remaining main effects set to zero. The main effects are kept
fixed throughout and five different levels of interaction strengths are considered
as shown in Table 6. The variance of the noise term was kept constant across the
experiments. The number of observations n was set to 121. The results reported in
Table 7 were obtained from 100 replications.

For low and moderate interactions, the introduction of hierarchical structure
reduced the model error from the LASSO. For strong interactions, the CAP and
LASSO results were comparable. For very strong interactions, the implicit as-
sumption of smaller second order effects embedded in the hierarchical selection
is no longer suitable causing the LASSO to reach a better predictive performance.
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TABLE 6
Simulation setup for the ANOVA experiment

Coefficients

Description Z1Z2 Z1Z3 Z1Z4 Z2Z3 Z2Z4 Z3Z4 σ SNR

No interactions 0 0 0 0 0 0 3.7 4.02
Weak interactions 0.5 0 0 0.1 0.1 0 3.7 4.08
Moderate interactions 1.0 0 0 0.5 0.4 0.1 3.7 4.33
Strong interactions 5 0 0 4 2 0 3.7 13.88
Very strong interactions 7 7 7 2 2 1 3.7 38.20

In addition, CAP selected models involving on average a slightly lesser or equal
number of variables to the LASSO in all simulated cases. The hierarchical gap
(see definition in Section 4.2) for the LASSO shows that it did not comply with
the hierarchy of the problem. According to the theory developed in Section 2, for
CAP estimates this difference should be exactly zero. The small deviations from
zero observed in our experiments are due to the approximate nature of the BLasso
algorithm.

4.2.2. Multiresolution model. In this experiment, the true signal is given by
a linear combination of Haar wavelets at different resolution levels. Letting Zij

denote the Haar wavelet at the j th position of level i, we have

Zij (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1, if t ∈
(

j

2i+1 ,
j + 1

2i+1

)
,

1, if t ∈
(

j + 1

2i+1 ,
j + 2

2i+1

)
,

0, otherwise,

for i ∈ N, j = 0,1,2, . . . ,2i−1.

In what follows, we let a vector Z̃ij be formed by computing Zij (t) at 16
equally spaced “time points” over [0,1]. The design matrix X is then given by
[Z̃00, Z̃10 Z̃11, Z̃20 · · · Z̃23, Z̃30 · · · Z̃37].

We consider five different settings for the value of β with various sparsity levels
and tree depths. The parameter σ is adjusted to keep the signal to noise ratio at
0.4 in all cases. The true model parameters are shown within the tree hierarchy in
Figure 7.

The simulated data corresponds to 5 sets of observations of the 16 “time points.”
Five-fold cross-validation was used for selecting the regularization level. At each
cross-validation round, the 16 points kept out of the sample correspond to each of
the “time positions” (“balanced cross-validation”).

In its upper left panel, Figure 7 shows the directed graph representing the tree
hierarchy used to form the CAP penalty using the recipe laid out by (9) in Section 2
with αm = 1 for all m. Our option for setting all weights to 1 in this case is similar
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TABLE 7
Simulation results for the hierarchical ANOVA example. Results based on 50 replications, 121

observations and 10-fold CV. Hierarchical structure lead to reduced model error and sparser
models. The hierarchy gap is the number of variables that must be added to the model so the

hierarchy is satisfied. The LASSO does not respect the model hierarchy. The small deviations from
zero for CAP estimates are due to BLASSO approximation

LASSO “GLASSO” CAP(4) iCAP

Model errors

No interactions 3.367 1.481 1.478 1.466
(0.288) (0.133) (0.134) (0.124)

Weak interactions 4.032 2.190 2.296 2.117
(0.303) (0.147) (0.161) (0.117)

Moderate interactions 5.905 4.260 4.090 4.085
(0.307) (0.205) (0.207) (0.196)

Strong interactions 8.912 8.901 7.793 8.388
(0.695) (0.621) (0.568) (0.626)

Very strong int. 11.474 11.998 14.538 26.072
(0.758) (0.800) (0.915) (1.351)

Number of selected variables

No interactions 13.440 12.720 11.440 9.280
(0.897) (0.935) (0.725) (0.431)

Weak interactions 13.960 13.780 12.720 9.920
(0.936) (1.041) (0.806) (0.442)

Moderate interactions 16.160 17.240 14.960 11.260
(1.021) (1.015) (0.773) (0.488)

Strong interactions 21.800 27.000 20.680 13.740
(0.965) (0.910) (0.636) (0.384)

Very strong int. 26.400 28.020 20.520 14.560
(0.670) (0.577) (0.448) (0.289)

Hierarchy gap

No interactions 3.560 0.220 0.420 0.800
(0.192) (0.066) (0.107) (0.128)

Weak interactions 3.560 0.160 0.340 0.840
(0.169) (0.052) (0.079) (0.112)

Moderate interactions 3.440 0.420 0.640 1.020
(0.174) (0.091) (0.106) (0.150)

Strong interactions 4.240 0.740 1.600 2.020
(0.184) (0.102) (0.143) (0.163)

Very strong int. 3.780 1.080 1.580 0.920
(0.155) (0.140) (0.143) (0.137)

to the one presented in the ANOVA experiment above: the number of variables
added to the model when a variable is added matches the number of times its
coefficient appears on the penalty.
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FIG. 7. Coefficients and hierarchies used in the wavelet tree example.

The results for the hierarchical selection are shown in Table 8. The use of the
hierarchical information greatly reduced the model error as well as the number of
selected variables. As in the ANOVA cases, the hierarchical gap shows that the
LASSO models do not satisfy the tree hierarchy. The approximate nature of the
BLASSO algorithm again causes the hierarchical gap of GLASSO and CAP(4)
to deviate slightly from zero. For hiCAP estimates, perfect agreement with the
hierarchy is observed as the hiCAP algorithm (see Section 3) is exact.

4.3. Additional experiments. In addition to the experiments presented above,
we have also run CAP under examples taken from Yuan and Lin [23] and Zou
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TABLE 8
Simulation results for the hierarchical wavelet tree example. Results based on 200 replications,

5 × 16 observations and 5 fold “balanced” CV. Hierarchical structure lead to reduced model error
and sparser models. The hierarchy gap is the number of variables that must be added to the model
so the hierarchy is satisfied. The LASSO does not respect the tree hierarchy. Small discrepancies in

GLASSO and CAP(4) due to approximation in BLASSO

LASSO GLASSO CAP(4) iCAP

Model errors

Root-only tree 40.508 26.994 28.498 28.909
(2.039) (1.635) (1.650) (1.820)

One-sided 80.197 57.100 58.228 57.195
(2.954) (2.519) (2.465) (2.532)

Complete tree 112.578 76.911 79.498 78.117
(3.407) (2.661) (2.736) (2.733)

Regular tree 82.979 58.020 60.037 60.259
(2.738) (2.237) (2.252) (2.379)

Heavy-leaved tree 454.607 388.262 385.770 359.154
(11.950) (10.015) (9.884) (10.565)

Number of selected variables

Root-only tree 4.070 4.495 4.405 3.185
(0.209) (0.265) (0.241) (0.244)

One-sided 6.080 6.770 6.235 5.415
(0.211) (0.247) (0.218) (0.245)

Complete tree 7.010 7.605 6.995 6.720
(0.226) (0.227) (0.213) (0.248)

Regular tree 6.140 6.690 6.255 5.490
(0.230) (0.243) (0.218) (0.250)

Heavy-leaved tree 10.985 11.630 10.930 11.240
(0.258) (0.192) (0.186) (0.239)

Hierarchy gap

Root-only tree 1.765 0.235 0.360 0.000
(0.096) (0.038) (0.049) (0.000)

One-sided 0.710 0.180 0.300 0.000
(0.064) (0.031) (0.038) (0.000)

Complete tree 1.640 0.310 0.505 0.000
(0.091) (0.042) (0.057) (0.000)

Regular tree 1.210 0.225 0.335 0.000
(0.069) (0.030) (0.039) (0.000)

Heavy-leaved tree 1.455 0.210 0.370 0.000
(0.079) (0.034) (0.044) (0.000)

and Hastie [26]. The results are similar to the ones obtained above: CAP results in
improved prediction performance over the LASSO with models involving a larger
number of variables, a similar or smaller number of groups and making use of less



GROUPED AND HIERARCHICAL SELECTION 3493

degrees of freedom. We invite the reader to check the details in the technical report
version of this paper [25].

5. Discussion and concluding remarks. In this paper, we have introduced
the Composite Absolute Penalty (CAP) family. It provides a regularization frame-
work for incorporating predetermined grouping and hierarchical structures among
the predictors by combining Lγ -norm penalties and applying them to properly
defined groups of coefficients.

The definition of the groups to which norms are applied is instrumental in deter-
mining the properties of CAP estimates. Nonoverlapping groups give rise to group
selection as done previously by Yuan and Lin [23] and Kim, Kim and Kim [14]
where L1 and L2 norms are combined. CAP penalties extend these works by let-
ting norms other than the L2-norm to be applied to the groups of variables. Com-
binations of the L1 and L∞ are convenient from a computational standpoint as
illustrated by the iCAP (nonoverlapping groups) with fast homotopy/LARS-type
algorithms. Its Matlab code can be downloaded from our research group website
http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software.

The definition of CAP penalties also generalizes previous work by allowing the
groups to overlap. Here, we have shown how to construct overlapping groups lead-
ing to hierarchical selection. Combinations of the L1 and L∞ are also computa-
tionally convenient to hierarchical selection as illustrated by the hiCAP algorithm
for tree hierarchical selection (also available from our research group website).

In a set of simulated examples, we have shown that CAP estimates using a
given grouping or hierarchical structure can reduce the model error when com-
pared to LASSO estimates. In the grouped-selection case, we show such reduc-
tion has taken place in the “small-n-large-p” setting and was observed even when
the groups were data-determined (noisy) and the resulting number of groups was
within a large margin of the actual number of groups among the predictors (be-
tween 50% and 150% of the true number of groups).

In addition, iCAP predictions are more parsimonious in terms of use of degrees
of freedom being less sensitive to disturbances in the observed data [7]. Finally,
CAP’s ability to select models respecting the group and hierarchical structure of
the problems makes its estimates more interpretable. It is a topic of our future
research to explore ways to estimate group and hierarchical structures completely
based on data.

APPENDIX A: PROOFS

PROOF OF THEOREM 1. Algebraically, we have for γ > 1

∂

∂β1
T (β) = ∂

∂β1
‖β‖γ = sign(β1)

( |β1|
‖β‖γ

)(γ−1)

.

http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software
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As a result, if β2 > 0, β1 is locally not penalized at 0 and it will only stay at this
point if the gradient of the loss function L is exactly zero for β1 = 0. Unless the
distribution of the gradient of the loss function has an atom at zero for β1, β1 �= 0
with probability one. �

PROOF OF THEOREM 2. It is enough to prove that T is convex:

1. T(α · β) = |α| · T(β), for all α ∈ R: For each group k, Nk(αβ) = αNk(β). Thus
T (αβ) = ‖N(αβ)‖γ0 = |α|‖N(β)‖γ0 = |α|T (β);

2. T(β1 + β2) ≤ T(β1) + T(β2): Using the triangular inequality,

T (β1 + β2) = ∑
k

(
Nk(β1 + β2)

)γ0 ≤ ∑
k

(
Nk(β1) + Nk(β2)

)γ0

= ‖N(β1) + N(β2)‖γ0 ≤ ‖N(β1)‖γ0 + ‖N(β2)‖γ0

= T (β1) + T (β2).

Convexity follows by setting β1 = θβ3 and β2 = (1 − θ)β4 with θ ∈ [0,1]. �

A.1. DF Estimates for iLASSO and iCAP. We now derive an unbiased es-
timate for the degrees of freedom of iLASSO fits along the regularization path.
The optimization problem defining the iLASSO estimate is dual to the LASSO
problem (see [2]). Facts 1 through 3 below follow from this duality and the results
in Efron et al. [8] and Zou, Hastie and Tibshirani [27]. For the remainder of this
section, we denote the iLASSO and iCAP fit by μ̂(λ, y) = Xβ̂(λ, y).

FACT A.1. For each λ, there exists a set Kλ such that Kλ is the union of a fi-
nite collection of hyperplanes and for all Y ∈ Cλ = R

n −Kλ, λ is not a breakpoint
in the regularization path.

FACT A.2. β̂(λ, y) is a continuous function of y for all λ.

FACT A.3. If y ∈ Cλ, then the sets Rλ and Uλ are locally invariant.

From these three facts, we can prove:

LEMMA A.1. For a fixed λ ≥ 0 and Y ∈ Cλ , μ̂(λ, y) satisfies

‖μ̂(λ, y + �y) − μ̂(λ, y)‖ ≤ ‖�y‖, for sufficiently small �y

and

∇ · μ̂(λ, y) = |Uλ| + 1.
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PROOF. We first notice that, μ̂(λ, y) = Xβ̂(λ,Y ) = [XRλ XUλ] ·[α̂ β̂ ′
Uλ

]′.
From the optimality conditions for the L∞ penalty,

(X′X)α̂(λ,Y ) = X′Y − λ · sign
(
Y − Xα̂(λ,Y )

)
and

(X′X)α̂(λ,Y + �Y) = X′(Y + �Y) − λ · sign
(
Y + �Y − Xα̂(λ,Y + �Y)

)
.

For Y ∈ Cλ, there exists small �Y so the signs of the correlation between the
residuals and each predictor are preserved. Subtracting the two equations above:
μ̂(λ,Y + �Y) − μ̂(λ,Y ) = X(X′X)−1X′�Y . Thus, μ̂(λ,Y ) behaves locally as
a projection on a fixed subspace given by Rλ and Uλ. From standard projec-
tion matrix results: ‖Xβ̂(λ, y + �y) − Xβ̂(λ, y)‖ ≤ ‖�y‖, for small �y and
∇ · μ̂(λ,Y ) = tr(X(X′X)−1X′) = |Uλ| + 1. �

Lemma A.1 implies that the fit μ̂(λ, y) is uniformly Lipschitz on R
n (it is the

closure of Cλ). Using Stein’s lemma and the divergent expression above:

THEOREM A.1. The L∞-penalized fit μ̂λ(y) is uniformly Lipschitz for all λ.
The degrees of freedom of μ̂λ(y) is given by df (λ) = E[|Uλ|] + 1.

The proof for the case of nonoverlapping groups follows the same steps. We
only present a sketch of the proof as a detailed proof is not very insightful. Fact A.1
is proven by noticing that, for fixed λ, each of the conditions defining breakpoints
require Y to belong to a finite union of hyperplanes. Fact A.2 follows from the
CAP objective function being convex and continuous in both λ and Y . Fact A.3
is established by noticing that the sets Aλ and Rk,λ,∀k = 1, . . . ,K are invariant
in between breakpoints. As before, the CAP fit behaves (except for a shrinkage
factor) as a projection onto a subspace whose dimension is the number of “free”
parameters at that point of the path. The result follows from standard arguments
for linear estimates.

APPENDIX B: PSEUDO-CODE FOR THE iCAP ALGORITHM

1. Set t = 0, λt = maxk ‖ck(0)‖, β̂(λt ) = 0.
2. Repeat until λt = 0:

(a) Set Aλt to contain all groups with ck = λt ;
(b) For each group k, set:

Uλ,k = {
j ∈ Gk :X′

j

(
Y − Xβ̂(λt )

) = 0
}

and Rλ,k = Gk − Uk,λ;
(c) Determine a direction �β̂ such that:

(i) if k /∈ Aλ, then �β̂Gk
= 0;
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(ii) for k ∈ Aλ, �β̂Rk,λ
= αk · Sλ,k with αk chosen so:

ck

(
β̂(λ) + δ · �β̂

)
= ck∗

(
β̂(λ) + δ · �β̂

)
for all k, k∗ ∈ Aλ and

X′
Uk,λ

(
Y − X

(
β̂(λ) + δ · �β̂

))
= 0 for small enough δ > 0.

(d) Compute the step sizes for which breakpoints occur:

δA = inf
δ>0

{ck∗(β̂λ + δ · �β̂) = ck(β̂λ + δ · �β̂) for some k∗ /∈ Aλ and k ∈ Aλ},

δI = inf
δ>0

{‖β̂Gk
(λ) + δ · �β̂‖∞ = 0 for some k ∈ Aλ},

δU = inf
δ>0

{
X′

m

(
Y − X

(
β̂(λ) + δ · �β̂

)) = 0 for some m ∈ Gk with k ∈ Aλ

}
,

δR = inf
δ>0

{|β̂m(λ) + δ · �β̂m| = ‖β̂Gk
(λ) + δ · �β̂‖∞

for some m ∈ Uk,λ with k ∈ Aλ},
δS = inf

δ>0

{
X′

m

(
Y − X

(
β̂(λ) + δ · �β̂

)) = 0 for some m ∈ Gk with k /∈ Aλ

}
,

where we take the infimum over an empty set to be +∞.
(e) Set t = t + 1, δ = min{δA, δI , δR, δU , δS, λt }, λt+1 = ‖ck(β̂(λt ) + δ ·

�β̂)‖∞ and β̂(λt+1) = β̂(λt ) + δ · �β̂ .
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