
The Annals of Statistics
2009, Vol. 37, No. 6A, 3099–3132
DOI: 10.1214/09-AOS689
© Institute of Mathematical Statistics, 2009

IDENTIFIABILITY OF PARAMETERS IN LATENT STRUCTURE
MODELS WITH MANY OBSERVED VARIABLES1

BY ELIZABETH S. ALLMAN2, CATHERINE MATIAS AND JOHN A. RHODES2

University of Alaska Fairbanks, Université d’Évry val d’Essonne,
CNRS and University of Alaska, Fairbanks

While hidden class models of various types arise in many statistical ap-
plications, it is often difficult to establish the identifiability of their parame-
ters. Focusing on models in which there is some structure of independence of
some of the observed variables conditioned on hidden ones, we demonstrate
a general approach for establishing identifiability utilizing algebraic argu-
ments. A theorem of J. Kruskal for a simple latent-class model with finite
state space lies at the core of our results, though we apply it to a diverse set
of models. These include mixtures of both finite and nonparametric product
distributions, hidden Markov models and random graph mixture models, and
lead to a number of new results and improvements to old ones.

In the parametric setting, this approach indicates that for such models, the
classical definition of identifiability is typically too strong. Instead generic
identifiability holds, which implies that the set of nonidentifiable parameters
has measure zero, so that parameter inference is still meaningful. In particu-
lar, this sheds light on the properties of finite mixtures of Bernoulli products,
which have been used for decades despite being known to have nonidentifi-
able parameters. In the nonparametric setting, we again obtain identifiability
only when certain restrictions are placed on the distributions that are mixed,
but we explicitly describe the conditions.

1. Introduction. Statistical models incorporating latent variables are widely
used to model heterogeneity within datasets, via a hidden structure. However, the
fundamental theoretical question of the identifiability of parameters of such mod-
els can be difficult to address. For specific models it is even known that certain
parameter values lead to nonidentifiability, while empirically, the model appears
to be well behaved for most values. Thus parameter inference procedures may
still be performed, even though theoretical justification of their consistency is still
lacking. In some cases (e.g., hidden Markov models [39]), it has been formally
established that generic choices of parameters are identifiable, which means that
only a subset of parameters of measure zero may not be identifiable.
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In this work, we consider a number of such variable models, all of which ex-
hibit a conditional independence structure, in which (some of) the observed vari-
ables are independent when conditioned on the unobserved ones. In particular, we
investigate:

1. finite mixtures of products of finite measures, where the mixing parameters
are unknown (including finite mixtures of multivariate Bernoulli distributions),
also called latent-class models in the literature;

2. finite mixtures of products of nonparametric measures, again with unknown
mixing parameters;

3. discrete hidden Markov models;
4. a random graph mixture model, in which the probability of the presence of an

edge is determined by the hidden states of the vertices it joins.

We show how a fundamental algebraic result of Kruskal [29, 30] on 3-way tables
can be used to derive identifiability results for all of these models. While Kruskal’s
work is focused on only 3 variates, each with finite state spaces, we use it to ob-
tain new identifiability results for mixtures with more variates (point 1, above),
whether discrete or continuous (point 2). For hidden Markov models (point 3),
with their more elaborate dependency structure, Kruskal’s work allows us to easily
recover some known results on identifiability that were originally approached with
other tools, and to strengthen them in certain aspects. For the random graph mix-
ture model (point 4), in which the presence/absence of each edge is independent
conditioned on the states of all vertices, we obtain new identifiability results via
this method, again by focusing on the model’s essential conditional independence
structure.

While we establish the validity of many identifiability statements not previously
known, the major contribution of this paper lies as much in the method of analysis
it introduces. By relating a diverse collection of models to Kruskal’s work, we in-
dicate the applicability of this method of establishing identifiability to a variety of
models with appropriate conditional independence structure. Although our exam-
ple of applying Kruskal’s work to a complicated model such as the random graph
requires substantial additional algebraic arguments tied to the details of the model,
it illustrates well that the essential insight can be a valuable one.

Finally, we note that in establishing identifiability of the parameters of a model,
this method clearly indicates one must allow for the possibility of certain “excep-
tional” choices of parameter values which are not identifiable. However, as these
exceptional values can be characterized through algebraic conditions, one may
deduce that they are of measure zero within the parameter space (in the finite-
dimensional case). Since “generic” parameters are identifiable, one is unlikely to
face identifiability problems in performing inference. Thus generic identifiability
of the parameters of a model is generally sufficient for data analysis purposes. Al-
though the notion of identifiability of parameters off a set of measure zero is not
a new one, neither the usefulness of this notion nor its algebraic origins seem to
have been widely recognized.
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2. Background. Latent structure models form a very large class of mod-
els including, for instance, finite univariate or multivariate mixtures [34], hidden
Markov models [5, 16] and nonparametric mixtures [33].

General formulations of the identification problem were made by several au-
thors, and pioneering works may be found in [27, 28]. The study of identifiability
proceeds from a hypothetical exact knowledge of the distribution of observed vari-
ables and asks whether one may, in principle, recover the parameters. Thus identifi-
cation problems are not problems of statistical inference in a strict sense. However,
since nonidentifiable parameters cannot be consistently estimated, identifiability is
a prerequisite of statistical parameter inference.

In the following, we are interested in models defined by a family M(�) =
{Pθ , θ ∈ �} of probability distributions on some space �, with parameter space
� (not necessarily finite dimensional). The classical definition of identifiability,
which we will refer to as strict identifiability, requires that for any two different
values θ �= θ ′ in �, the corresponding probability distributions Pθ and Pθ ′ are dif-
ferent. This is equivalent to injectivity of the model’s parameterization map � ,
which takes values in M1(�), the set of probability measures on �, and is defined
by �(θ) = Pθ .

In many cases, the above map will not be strictly injective. For instance, it is
well known that in models with discrete hidden variables (such as finite mixtures
or discrete hidden Markov models), the latent classes can be freely relabeled with-
out changing the distribution of the observations, a phenomenon known as “label
swapping.” In this sense, the above map is always at least r!-to-one, where r is
the number of classes in the model. However, this does not prevent the statistician
from inferring the parameters of these models. Indeed, parameter identifiability
up to a permutation on the class labels (which we henceforth consider as a type
of strict identifiability), is largely enough for practical use, at least in a maximum
likelihood setting. Note that the label swapping issue may cause major problems
in a Bayesian framework (see, for instance, [34], Section 4.9).

A related concept of local identifiability only requires the parameter to be
unique in small neighborhoods in the parameter space. For parametric models
(i.e., when the parameter space is finite dimensional), with some regularity con-
ditions, there is an equivalence between local identifiability of the parameters and
nonsingularity of the information matrix [40]. When an iterative procedure is used
to approximate an estimator of the parameter, different initializations can help to
detect multiple solutions of the estimation problem. This often corresponds to the
existence of multiple parameter values giving rise to the same distribution. How-
ever, the validity of such procedures relies on knowing that the parameterization
map is, at most, finite-to-one, and a precise characterization of the value of k such
that it is a k-to-one map would be most useful.

Thus knowledge that the parameterization map is finite-to-one might be too
weak a result from a statistical perspective on identifiability. Moreover, we argue
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in the following that infinite-to-one maps might not be problematic, as long as they
are generic k-to-one maps for known finite k.

While all our results are proved relying on the same underlying tool, they must
be expressed differently in the parametric framework (including the finite case)
and in the nonparametric one.

The parametric framework. While the focus on one-to-one or k-to-one para-
meterization maps is well suited for most of the classical models encountered in the
literature, it is inadequate in some important cases. For instance, it is well known
that finite mixtures of Bernoulli products are not identifiable [23], even up to a
relabeling of latent classes. However, these distributions are widely used to model
data when many binary variables are observed from individuals belonging to dif-
ferent unknown populations, and parameter estimation procedures are performed
in this context. For instance, these models may be used in numerical identifica-
tion of bacteria (see [23] and the references therein). Statisticians are aware of this
apparent contradiction; the title of the article [6], practical identifiability of finite
mixtures of multivariate Bernoulli distributions, indicates the need to reconcile
nonidentifiability and validity of inference procedures, and clearly indicates that
the strict notion of identifiability is not useful in this specific context. We establish
that parameters of finite mixtures of multivariate Bernoulli distributions (with a
fixed number of components) are in fact generically identifiable (see Section 5).

Here, “generic” is used in the sense of algebraic geometry, as will be defined in
the subsection on algebraic terminology below. Most importantly, it implies that
the set of points for which identifiability does not hold has measure zero. In this
sense, any observed data set has probability one of being drawn from a distribution
with identifiable parameters.

Understanding when generic identifiability holds, even in the case of finite mea-
sures, can be mathematically difficult. There are well-known examples of latent-
class models in which the parameterization map is in fact infinite-to-one, for rea-
sons that are not immediately obvious. For instance, Goodman [22] describes a
3-class model with four manifest binary variables and thus a parameter space of
dimension 3(4) + 2 = 14. Though the distributions resulting from this model lie
in a space of dimension 24 − 1 = 15, the image of the parameterization map has
dimension only 13. From a statistical point of view, this results in nonidentifiabil-
ity.

An important observation that underlies our investigations is that many finite
space models (e.g., latent-class models, hidden Markov models) involve parame-
terization maps which are polynomial in the scalar parameters. Thus statistical
models have recently been studied by algebraic geometers [19, 37]. Even in the
more general case of distributions belonging to an exponential family, which lead
to analytic but nonpolynomial maps, it is possible to use perspectives from alge-
braic geometry (see, for instance, [2, 3, 13]). Algebraic geometers use terminol-
ogy rather different from the statistical language, for instance, they describe the
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image of the parameterization map of a simple latent-class model as a higher se-
cant variety of a Segre variety. When the dimension of this variety is less than
expected, as in the example of Goodman above, the variety is termed defective,
and one may conclude the parameterization map is generically infinite-to-one. Re-
cent works such as [1, 7, 8] have made much progress in determining when defects
occur.

However, as pointed out by Elmore, Hall and Neeman [14], focusing on dimen-
sion is not sufficient for a complete understanding of the identifiability question.
Indeed, even if the dimensions of the parameter space and the image match, the
parameterization might be a generically k-to-one map, and the finite number k

cannot be characterized by using dimension approaches. For example, consider
latent-class models, assuming the number r of classes is known. In this context,
even though the dimensions agree, we might have a generically k-to-one map with
k > r!. (Recall that r! corresponds to the number of points which are equivalent by
permutating label classes.)

This possibility was already raised in the context of psychological studies by
Kruskal [29], whose work in [30] provides a strong result ensuring generic r!-
to-oneness of the parameterization map for latent r-class models under certain
conditions. Kruskal’s work, however, is focused on models with only 3 observed
variables, or, in other terms, on secant varieties of Segre products with 3 factors, or
on 3-way arrays. While the connection of Kruskal’s work to the algebraic geom-
etry literature seems to have been overlooked, the nature of his result is highly
algebraic.

Although [14] is ultimately directed at understanding nonparametric mixtures,
Elmore, Hall, and Neeman address the question of identifiability of the parame-
terization for latent-class models with many binary observed variables (i.e., for
secant varieties of Segre products of projective lines with many factors, or on
2 × 2 × · · · × 2 tables). These are just the mixtures of Bernoulli products referred
to above, though the authors never introduce that terminology. Using algebraic
methods, they show that with sufficiently many observed variables, the image of
the parameterization map is birationally equivalent to a symmetrization of the pa-
rameter space under the symmetric group �r . Thus for sufficiently many observed
variables, the parameterization map is generically r!-to-one. (Although the generic
nature of the result is not made explicit, that is, however, all that one can deduce
from a birational equivalence.) Their proof is constructive enough to give a nu-
merical understanding of how many observed variables are sufficient, though this
number’s growth in r is much larger than is necessary (see Corollary 5 and Theo-
rem 8 for more details).

The nonparametric framework. Nonparametric mixture models have received
much attention recently [4, 25, 26]. They provide an interesting framework for
modelling very general heterogeneous data. However, identifiability is a difficult
and crucial issue in such a high-dimensional setting.
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Using algebraic methods to study statistical models is most straightforward
when state spaces are finite. One way of handling continuous random variables via
an algebraic approach is to discretize the problem by binning the random variable
into a finite number of sets. For instance, [11, 15, 26] developed cut points methods
to transform multivariate continuous observations into binomial or multinomial
random variables.

As already mentioned, Elmore, Hall and Neeman [14] consider a finite mix-
ture of products of continuous distributions. By binning each continuous random
variable X to create a binary one, defined by the indicator function 1{X ≤ t}, for
some choice of t , they pass to a related finite model. But identification of a distri-
bution is equivalent to identification of its cumulative distribution function (c.d.f.)
F(t) = P(X ≤ t). Having addressed the question of identifiability of the para-
meters of a mixture of products of binary variables, they can thus argue for the
identifiability of the parameters of the original continuous model, as they continue
to do in [24]. However, because the authors are not explicit about the generic as-
pect of their results in [14], there are significant gaps in the formal justification
of their claims. Moreover, the bounds they claim on the number of observed vari-
ables which ensure generic identifiability leave much room for improvement, as
they point out.

The general approach. Our theme in this work is the applicability of the fun-
damental result of Kruskal on 3-way arrays to a spectrum of models with latent
structure. Though our approach is highly algebraic, it has little in common with
that of [14, 24], for establishing that with sufficiently many observed variables,
the parameterization map of r-latent-class models is either generically r!-to-one in
the parametric case, or that it is exactly r!-to-one (under some conditions) in the
nonparametric case. Our results apply not only to binary variables, but as easily
to ones with more states, or even to continuous ones. In the case of binary vari-
ables (multivariate Bernoulli mixtures), we obtain a much lower upper bound for
a sufficient number of variables to ensure generic identifiability (up to label swap-
ping) than the one that can be deduced from [14], and, in fact, our bound gives
the correct order of growth, log2 r . (The constant factor we obtain is, however, still
unlikely to be optimal.)

While our first results are on the identifiability of finite mixtures (with a fixed
number of components) of finite measure products, our method has further con-
sequences for more sophisticated models with a latent structure. Our approach for
such models with finite state spaces can be summarized very simply: we group
the observed variables into 3 collections, and view the composite states of each
collection as the states of a single clumped variable. We choose our collections so
that they will be conditionally independent, given the states of some of the hidden
variables. Viewing these hidden variables as a single composite one, the model re-
duces to a special instance of the model Kruskal studied. Thus Kruskal’s result on
3-way tables can be applied, after a little work, to show that Kruskal’s condition is
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satisfied. This might be done either by showing that the clumping process results
in a sufficiently generic model (ensuring Kruskal’s condition is automatically sat-
isfied for generic parameters), or that explicit restrictions on the parameters ensure
this clumping process satisfies Kruskal’s condition. In more geometric terms, we
embed a complicated finite model into a simple latent-class model with 3 observed
variables, taking care to verify that the embedding does not end up in the small set
for which Kruskal’s result tells us nothing.

To take up the continuous random variables case, we simply bin the real-valued
random variables into a partition of R into κ intervals and apply the previous
method to the new discretized random variables. As a consequence, we are able
to prove that finite mixtures of nonparametric independent variates, with at least
3 variates, have identifiable parameters under a mild and explicit regularity con-
dition. This is in sharp contrast not only with [14, 24], but also with works such
as [26], where the components of the mixture are assumed to be independent but
also identically distributed and [25], which dealt only with r = 2 groups (see Sec-
tion 7 for more details).

We note that Kruskal’s result has already been successfully used in phylogeny,
to prove identifiability of certain models of evolution of biological sequences
along a tree [3]. However, application of Kruskal’s result is limited to hidden
class models, or to other models with some conditional independence structure,
which have at least 3 observed variates. Kruskal’s theorem can sometimes be used
for models with many hidden variables, by considering a clumped latent variable
Z = (Z1, . . . ,Zn). We give two examples of such a use for models presenting a
dependency structure on the observations, namely hidden Markov models (Sec-
tion 6.1) and mixture models for random graphs (Section 6.2). For hidden Markov
models, we recover many known results, and improve on some of them. For the
random graph mixture model, we establish identifiability for the first time. Note
that in all these applications we always assume the number of latent classes is
known, which is crucial in using Kruskal’s approach. Identification of the number
of classes is an important issue that we do not consider here.

Algebraic terminology. Polynomials play an important role throughout our ar-
guments, so we introduce some basic terminology and facts from algebraic geom-
etry that we need. For a more thorough but accessible introduction to the field, we
recommend [10].

An algebraic variety V is defined as the simultaneous zero-set of a finite col-
lection of multivariate polynomials {fi}ni=1 ⊂ C[x1, x2, . . . , xk],

V = V (f1, . . . , fn) = {a ∈ C
k|fi(a) = 0,1 ≤ i ≤ n}.

A variety is all of C
k only when all fi are 0; otherwise, a variety is called a proper

subvariety and must be of dimension less than k, and, hence, of Lebesgue mea-
sure 0 in C

k . Analogous statements hold if we replace C
k by R

k , or even by any
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subset � ⊆ R
k containing an open k-dimensional ball. This last possibility is of

course most relevant for the statistical models of interest to us, since the parameter
space is naturally identified with a full-dimensional subset of [0,1]L for some L

(see Section 3 for more details). Intersections of algebraic varieties are algebraic
varieties as they are the simultaneous zero-set of the unions of the original sets of
polynomials. Finite unions of varieties are also varieties, since if sets S1 and S2
define varieties, then {fg|f ∈ S1, g ∈ S2} defines their union.

Given a set � ⊆ R
k of full dimension, we will often need to say some property

holds for all points in �, except possibly for those on some proper subvariety � ∩
V (f1, . . . , fn). We express this succinctly by saying the property holds generically
on �. We emphasize that the set of exceptional points of �, where the property
need not hold, is thus necessarily of Lebesgue measure zero.

In studying parametric models, � is typically taken to be the parameter space for
the model, so that a claim of generic identifiability of model parameters means that
all nonidentifiable parameter choices lie within a proper subvariety, and thus form
a set of Lebesgue measure zero. While we do not always explicitly characterize
the subvariety in statements of theorems, one could do so by careful consideration
of our proofs.

In a nonparametric context, where algebraic terminology appropriate to the
finite-dimensional setting is inappropriate, we avoid the use of the term “generic.”
Instead, we always give explicit characterizations of those parameter choices
which may not be identifiable.

Roadmap. We first present finite mixtures of finite measure products with a
conditional independence structure (or latent-class models) in Section 3. Then,
Kruskal’s result and consequences are presented in Section 4. Direct consequences
on the identifiability of the parameters of finite mixtures of finite measure products
appear in Section 5. More complicated dependent variables models, including hid-
den Markov models and a random graph mixture model, are studied in Section 6.
In Section 7, we consider mixtures of nonparametric distributions, analogous to
the finite ones considered earlier. All proofs are postponed to Section 8.

3. Finite mixtures of finite measure products. Consider a vector of ob-
served random variables {Xj }1≤j≤p where Xj has finite state space with cardi-
nality κj . Note that these variables are not assumed to be i.i.d. nor to have the
same state space. To model the distribution of these variables, we use a latent
(unobserved) random variable Z with values in {1, . . . , r}, where r is assumed
to be known. We interpret Z as denoting an unobservable class, and assume that
conditional on Z, the Xj ’s are independent random variables. The probability dis-
tribution of Z is given by the vector π = (πi) ∈ (0,1)r with

∑
πi = 1. More-

over, the probability distribution of Xj conditional on Z = i is specified by a vec-
tor pij ∈ [0,1]κj . We use the notation pij (l) for the lth coordinate of this vector
(1 ≤ l ≤ κj ). Thus we have

∑
l pij (l) = 1.
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For each class i, the joint distribution of the variables X1, . . . ,Xp conditional
on Z = i is then given by a p-dimensional κ1 × · · · × κp table

Pi =
p⊗

j=1

pij ,

whose (l1, l2, . . . , lp)-entry is
∏p

j=1 pij (lj ). Let

P =
r∑

i=1

πiPi .(1)

Then P is the distribution of a finite mixture of finite measure products, with a
known number r of components. The πi are interpreted as probabilities that a
draw from the population is in the ith of r classes. Conditioned on the class, the p

observable variables are independent. However, since the class is not discernible,
the p feature variables Xj described by one-dimensional marginalizations of P are
generally not independent.

We refer to the model described above as the r-class, p-feature model with
state space {1, . . . , κ1} × · · · × {1, . . . , κp}, and denote it by M(r; κ1, κ2, . . . , κp).
Identifying the parameter space of this model with a subset � of [0,1]L where
L = (r − 1) + r

∑p
i=1(κi − 1) and letting K = ∏p

i=1 κi , the parameterization map
for this model is

�r,p,(κi) :� → [0,1]K.

In the following, we specify parameters by vectors such as π and pij , always
implicitly assuming their entries add to 1.

As previously noted, this model’s parameters are not strictly identifiable if
r > 1, since the sum in (1) can always be reordered without changing P. Even
modulo this label swapping, there are certainly special instances when identifia-
bility will not hold. For instance, if Pi = Pj , then the parameters πi and πj can
be varied, as long as their sum πi + πj is held fixed, without effect on the distri-
bution P. Slightly more elaborate “special” instances of nonidentifiability can be
constructed, but in full generality, this issue remains poorly understood. Ideally,
one would know for which choices of r,p, (κi), generic values of the model’s pa-
rameters are identifiable up to permutation of the terms in (1), and, additionally,
have a characterization of the exceptional set of parameters on which identifiability
fails.

4. Kruskal’s theorem and its consequences. The basic identifiability result
on which we build our later arguments is a result of Kruskal [29, 30] in the context
of factor analyses for p = 3 features. Kruskal’s result deals with a 3-way contin-
gency table (or array) which cross-classifies a sample of n individuals with respect
to 3 polytomous variables (the ith of which takes values in {1, . . . , κi}). If there is



3108 E. S. ALLMAN, C. MATIAS AND J. A. RHODES

some latent variable Z with values in {1, . . . , r} so that each of the n individuals
belongs to one of the r latent classes and within the lth latent class, the 3 observed
variables are mutually independent, then this r-class latent structure would serve
as a simple explanation of the observed relationships among the variables in the
3-way contingency table. This latent structure analysis corresponds exactly to the
model M(r;κ1, κ2, κ3) described in the previous section.

To emphasize the focus on 3-variate models, note that in [30] Kruskal points
out that 2-way tables arising from the model M(r;κ1, κ2) do not have a unique
decomposition when r ≥ 2. This nonidentifiability is intimately related to the
nonuniqueness of certain matrix factorizations. While Goodman [22] studied the
model M(r;κ1, κ2, κ3, κ4) for fitting to 4-way contingency tables, no formal result
about uniqueness of the decomposition was established. In fact, nonidentifiability
of the model under certain circumstances is highlighted in that work.

To present Kruskal’s result, we introduce some algebraic notation. For j =
1,2,3, let Mj be a matrix of size r × κj , with mj

i = (m
j
i (1), . . . ,m

j
i (κj )) the

ith row of Mj . Let [M1,M2,M3] denote the κ1 × κ2 × κ3 tensor defined by

[M1,M2,M3] =
r∑

i=1

m1
i ⊗ m2

i ⊗ m3
i .

In other words, [M1,M2,M3] is a three-dimensional array whose (u, v,w) ele-
ment is

[M1,M2,M3]u,v,w =
r∑

i=1

m1
i (u)m2

i (v)m3
i (w)

for any 1 ≤ u ≤ κ1,1 ≤ v ≤ κ2,1 ≤ w ≤ κ3. Note that [M1,M2,M3] is left un-
changed by simultaneously permuting the rows of all the Mj and/or rescaling the

rows so that the product of the scaling factors used for the mj
i , j = 1,2,3, is equal

to 1.
A key point is that the probability distribution in a finite latent-class model with

three observed variables is exactly described by such a tensor: let Mj , j = 1,2,3,
be the matrix whose ith row is pij = P(Xj = · | Z = i). Let M̃1 = diag(π)M1
be the matrix whose ith row is πipi1. Then the (u, v,w) element of the tensor
[M̃1,M2,M3] equals P(X1 = u,X2 = v,X3 = w). Thus knowledge of the distrib-
ution of (X1,X2,X3) is equivalent to the knowledge of the tensor [M̃1,M2,M3].
Note that the Mi ’s are stochastic matrices, and thus the vector of πi ’s can be
thought of as scaling factors.

For a matrix M , the Kruskal rank of M will mean the largest number I such that
every set of I rows of M are independent. Note that this concept would change if
we replaced “row” by “column,” but we will only use the row version in this paper.
With the Kruskal rank of M denoted by rankK M , we have

rankK M ≤ rankM
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and equality of rank and Kruskal rank does not hold in general. However, in the
particular case where a matrix M of size p × q has rank p, it also has Kruskal
rank p.

The fundamental algebraic result of Kruskal is the following.

THEOREM 1 (Kruskal [29, 30]). Let Ij = rankK Mj . If

I1 + I2 + I3 ≥ 2r + 2,

then [M1,M2,M3] uniquely determines the Mj , up to simultaneous permutation
and rescaling of the rows.

The equivalence between the distributions of 3-variate latent-class models and
3-tensors, combined with the fact that rows of stochastic matrices sum to 1, gives
the following reformulation.

COROLLARY 2. Consider the model M(r;κ1, κ2, κ3), with the parameteriza-
tion of Section 3. Suppose all entries of π are positive. For each j = 1,2,3, let Mj

denote the matrix whose rows are pij , i = 1, . . . , r , and let Ij denote its Kruskal
rank. Then if

I1 + I2 + I3 ≥ 2r + 2,

the parameters of the model are uniquely identifiable, up to label swapping.

By observing that Kruskal’s condition on the sum of Kruskal ranks can be ex-
pressed through polynomial inequalities in the parameters, and thus holds generi-
cally, we obtain the following corollary.

COROLLARY 3. The parameters of the model M(r;κ1, κ2, κ3) are generically
identifiable, up to label swapping, provided

min(r, κ1) + min(r, κ2) + min(r, κ3) ≥ 2r + 2.

The assertion remains valid if, in addition, the class proportions {πi}1≤i≤r are held
fixed and positive in the model.

For the last statement of this corollary, we note that if the mixing proportions are
positive then one can translate Kruskal’s condition into a polynomial requirement
so that only the parameters pij (l) = P(Xj = l | Z = i) appear. Thus the generic
aspect only concerns this part of the parameter space, and not the part with the
proportions πi . As a consequence, the statement is valid when the proportions
are held fixed in (0,1). This is of great importance, as often statisticians assume
that these proportions are fixed and known (for instance using πi = 1/r for every
1 ≤ i ≤ r). Without observing this fact, we would not have a useful identifiability
result in the case of known πi , since fixing values of the πi results in considering
a subvariety of the full parameter space, which a priori might be included in the
subvariety of nonidentifiable parameters allowed by Corollary 3.
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5. Parameter identifiability of finite mixtures of finite measure products.
Finite mixtures of products of finite measure are widely used to model data, for
instance in biological taxonomy, medical diagnosis or classification of text docu-
ments [21, 35]. The identifiability issue for these models was first addressed forty
years ago by Teicher [42]. Teicher’s result states the equivalence between identifi-
ability of mixtures of product measure distributions and identifiability of the cor-
responding one-dimensional mixture models. As a consequence, finite mixtures of
Bernoulli products are not identifiable in a strict sense [23]. Teicher’s result is valid
for finite mixtures with an unknown number of components, but it can easily be
seen that nonidentifiability occurs even with a known number of components [6],
Section 1. The very simplicity of the equivalence condition stated by Teicher [42]
likely impeded statisticians from looking further at this issue.

Here we prove that finite mixtures of Bernoulli products (with a known number
of components) are in fact generically identifiable, indicating why these models
are well behaved in practice with respect to statistical parameter inference, despite
their lack of strict identifiability [6].

To obtain our results, we must first pass from Kruskal’s theorem on 3-variate
models to a similar one for p-variate models. To do this, we observe that p ob-
served variables can be combined into 3 agglomerate variables, so that Kruskal’s
result can be applied.

THEOREM 4. Consider the model M(r;k1, . . . , kp) where p ≥ 3. Suppose
there exists a tripartition of the set S = {1, . . . , p} into three disjoint nonempty
subsets S1, S2, S3, such that if κi = ∏

j∈Si
kj then

min(r, κ1) + min(r, κ2) + min(r, κ3) ≥ 2r + 2.(2)

Then model parameters are generically identifiable, up to label swapping. More-
over, the statement remains valid when the mixing proportions {πi}1≤i≤r are held
fixed and positive.

Considering the special case of finite mixtures of r Bernoulli products with p

components [i.e., the r-class, p-binary feature model M(r;2,2, . . . ,2)], to obtain
the strongest identifiability result, we choose a tripartition that maximizes the left-
hand side of inequality (2). Doing so yields the following.

COROLLARY 5. Parameters of the finite mixture of r different Bernoulli prod-
ucts with p components are generically identifiable, up to label swapping, pro-
vided

p ≥ 2�log2 r
 + 1,

where �x
 is the smallest integer at least as large as x.
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Note that generic identifiability of this model for sufficiently large values of p

is a consequence of the results of Elmore, Hall and Neeman, in [14], although
neither the generic nature of the result, nor the fact that the model is simply a
mixture of Bernoulli products, is noted by the authors. Moreover, our lower bound
on p to ensure generic identifiability is superior to the one obtained in [14]. Indeed,
letting C(r) be the minimal integer such that if p ≥ C(r) then the r-class, p-binary
feature model is generically identifiable, then [14] established that

log2 r ≤ C(r) ≤ c2r log2 r

for some effectively computable constant c2. While the lower bound for C(r) is
easy to obtain from the necessity that the dimension of the parameter space, rp +
(r − 1), be no larger than that of the distribution space 2p − 1, the upper bound
required substantial work. Corollary 5 above establishes the stronger result that

C(r) ≤ 2�log2 r
 + 1.

Note that this new upper bound, along with the simple lower bound, shows that the
order of growth of C(r) is precisely log2 r .

For the more general M(r;κ, . . . , κ) model, our lower bound on the number of
variates needed to generically identify the parameters, up to label swapping, is

p ≥ 2�logκ r
 + 1.

The proof of this bound follows the same lines as that of Corollary 5, and is there-
fore omitted.

6. Hidden classes models with dependent observations. In this section,
we give several additional illustrations of the applicability of Kruskal’s result in
the context of dependent observations. The hidden Markov models and random
graph mixture models we consider may at first appear to be far from the focus of
Kruskal’s theorem. This is not the case, however, as in both the observable vari-
ables are independent when appropriately conditioned on hidden ones. We succeed
in embedding these models into an appropriate M(r;κ1, κ2, κ3) and then use ex-
tensive algebraic arguments to obtain the (generic) identifiability results we desire.

6.1. Hidden Markov models. Almost 40 years ago, Petrie ([39], Theorem 1.3)
proved generic identifiability, up to label swapping, for discrete hidden Markov
models (HMMs). We offer a new proof, based on Kruskal’s theorem, of this well-
known result. This provides an interesting alternative to Petrie’s more direct ap-
proach, and one that might extend to more complex frameworks, such as Markov
chains with Markov regime, where no identifiability results are known (see, for
instance, [9]). Moreover, as a by-product, our approach establishes a new bound
on the number of consecutive variables needed, such that the marginal distribution
for a generic HMM uniquely determines the full probability distribution.
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We first briefly describe HMMs. Consider a stationary Markov chain {Zn}n≥0
on state space {1, . . . , r} with transition matrix A and initial distribution π (as-
sumed to be the stationary distribution). Conditional on {Zn}n≥0, the observations
{Xn}n≥0 on state space {1, . . . , κ} are assumed to be i.i.d., and the distribution of
each Xn only depends on Zn. Denote by B the matrix of size r × κ containing the
conditional probabilities P(Xn = k | Zn = i). The process {Xn}n≥0 is then a hid-
den Markov chain. Note that this is not a Markov process. The matrices A and B

constitute the parameters for the r-hidden state, κ-observable state HMM, and the
parameter space can be identified with a full-dimensional subset of R

r(r+κ−2). We
refer to [5, 16] for more details on HMMs.

Petrie [39] describes quite explicitly, for fixed r and κ , a subvariety of the
parameter space for an HMM on which identifiability might fail. Indeed, Petrie
proved that the set of parameters on which identifiability holds is the intersection
of the following: the set of regular HMMs; the set where the components of the
matrix B , namely P(Xn = k | Zn = i) are nonzero; the set where some row of
B has distinct entries [namely there exists some i ∈ {1, . . . , r} such that all the
{P(Xn = k | Zn = i)}k are distinct]; the set where the matrix A is nonsingular,
and 1 is an eigenvalue with multiplicity one for A [namely, P ′(1,A) �= 0 where
P(λ,A) = det(λI − A)]. Regular HMMs were first described by Gilbert in [20].
The definition relies on a notion of rank and an HMM is regular if its rank is equal
to its number of hidden states r . More details may be found in [17, 20].

The result of Petrie assumes knowledge of the whole probability distribution
of the HMM. But it is known ([17], Lemma 1.2.4) that the distribution of an
HMM with r hidden states and κ observed states, is completely determined by the
marginal distribution of 2r consecutive variables. An even stronger result appears
in [38], Chapter 1, Corollary 3.4: the marginal distribution of 2r − 1 consecutive
variables suffices to reconstruct the whole HMM distribution. Combining these
results shows that generic identifiability holds for HMMs from the distribution of
2r − 1 consecutive observations. Note there is no dependence of this number on κ ,
even though one might suspect a larger observable state space would aid identifia-
bility.

Using Kruskal’s theorem we prove the following.

THEOREM 6. The parameters of an HMM with r hidden states and κ observ-
able states are generically identifiable from the marginal distribution of 2k + 1
consecutive variables provided k satisfies(

k + κ − 1
κ − 1

)
≥ r.(3)

While we do not explicitly characterize a set of possibly nonidentifiable para-
meters as Petrie did, in principle we could do so.

Note, however, that we require only the marginal of 2k + 1 consecutive vari-
ables, where k satisfies an explicit condition involving κ . The worst case (i.e., the
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FIG. 1. Embedding the hidden Markov model into a simpler latent-class model.

largest value for k) arises when κ = 2, since κ �→ (k+κ−1
κ−1

)
is an increasing function

for positive κ . In this worst case, we easily compute that 2k + 1 = 2r − 1 consec-
utive variables suffice to generically identify the parameters. Thus our approach
yields generic versions of the claims of [17] and [38] described above.

Moreover, when the number κ of observed states is increased, the minimal value
of 2k + 1 which ensures identifiability by Theorem 6 becomes smaller. Thus the
fact that generic HMMs are characterized by the marginal of 2k + 1 consecutive
variables, where k satisfies (3), results in a much better bound than 2r − 1 as soon
as the observed state space has more than 2 points. In this sense, our result is
stronger than the one of Paz [38].

In proving Theorem 6, we embed the hidden Markov model in a simpler latent-
class model, as illustrated in Figure 1. The hidden variable Zk is the only one
we preserve, while we cluster the observed variables into groups so they may be
treated as 3 observed variables. According to properties of graphical models (see,
e.g., [31]), the agglomerated variables are independent when conditioned on Zk .
So Kruskal’s theorem applies. However, additional algebraic arguments are needed
to see that the embedding gives sufficiently generic points so that we may identify
parameters.

To conclude this section, note that Leroux [32] used Teicher’s result [42] to es-
tablish a sufficient condition for exact identifiability of parametric hidden Markov
models, with possibly continuous observations.

6.2. A random graph mixture model. We next illustrate the application of our
method to studying a random graph mixture model. This heterogeneous model is
used in a wide range of applications, such as molecular biology (gene interactions
or metabolic networks [12]), social sciences (relationships or co-authorship net-
works [36]) or the study of the world wide web (hyperlinks graphs [44]).

We consider a random graph mixture model in which each node belongs to some
unobserved class, or group, and conditional on the classes of all nodes, the edges
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are independent random variables whose distributions depend only on the classes
of the nodes they connect. More precisely, consider an undirected graph with n

nodes labeled 1, . . . , n and where presence/absence of an edge between two dif-
ferent nodes i and j is given by the indicator variable Xij . Let {Zi}1≤i≤n be i.i.d.
random variables with values in {1, . . . , r} and probability distribution π ∈ (0,1)r

representing node classes. Conditional on the classes of nodes {Zi}, the edge indi-
cators Xij are independent random variables whose distribution is Bernoulli with
some parameter pZiZj

. The between-groups connection parameters pij ∈ [0,1]
satisfy pij = pji , for all 1 ≤ i, j ≤ r . We emphasize that the observed random
variables Xij for this model are not independent, just as the observed variables
were not independent in the mixture models considered earlier in this paper.

The interest in the random graph model lies in the fact that different nodes may
have different connectivity properties. For instance one class may describe hubs
which are nodes with a very high connectivity, and a second class may contain the
others nodes with a lower overall connectivity. Thus one can model different node
behaviours with a reasonable number of parameters. Examples of networks easily
modelled with this approach, and more details on the properties of this model, can
be found in [12].

This model has been rediscovered many times in the literature and in various
fields of applications. A nonexhaustive bibliography includes [12, 18, 36, 41].
However, identifiability of the parameters for this random graph model has never
been addressed in the literature.

Frank and Harary [18] study the statistical inference of the parameters in the
restricted α–β or affiliation model. In this setup, only two parameters are used to
model the intra-group and inter-group probabilities of an edge occurrence pii = α,
1 ≤ i ≤ r and pij = β , 1 ≤ i < j ≤ r . Using the total number of edges, the propor-
tion of transitive triads and the proportion of 3-cycles among triads (see definitions
(3) and (4) in [18]), they obtain estimates of the parameters α,β and sometimes r ,
in various cases (α,β unknown and πi = 1/r with unknown r , for instance). How-
ever, they do not discuss the uniqueness of the solutions of the nonlinear equations
defining those estimates (see (16), (29) and (33) in [18]).

We prove the following result.

THEOREM 7. The parameters of the random graph model with r = 2 node
states are strictly identifiable, up to label swapping, provided there are at least 16
nodes and the connection parameters {p11,p12,p22} are distinct.

Our basic approach is to embed the random graph model into a model to which
Kruskal’s theorem applies. Since we have many hidden variables, one for each
node, we combine them into a single composite variable describing the states of
all nodes at once. Since the observed edge variables are binary, we also combine
them into collections, to create 3 composite edge variables with more states. We
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do this in such a way that the composite edge variables are still independent con-
ditioned on the composite node state. The main technical difficulty is that the ma-
trices whose entries give probabilities of observing a composite edge variable con-
ditioned on a composite node state must have well-understood Kruskal rank. This
requires some involved algebraic work.

The random graph model will be studied more thoroughly in a forthcoming
work. The special case of the affiliation model, which is not adressed by Theo-
rem 7, will be dealt with there as well.

7. Finite mixtures of nonparametric measure products. In this section, we
consider a nonparametric model of finite mixtures of r different probability distrib-
utions μ1, . . . ,μr on R

p , with p ≥ 3. For every 1 ≤ i ≤ r , we denote by μ
j
i the j th

marginal of μi and F
j
i the corresponding c.d.f. (defined by F

j
i (t) = μ

j
i ((−∞, t])

for any t ∈ R). Without loss of generality, we may assume that the functions F
j
i

are absolutely continuous.
For our first result, we assume further that the mixture model has the form

P =
r∑

i=1

πiμi =
r∑

i=1

πi

p∏
j=1

μ
j
i ,(4)

in which, conditional on a latent structure (specified by the proportions πi ), the p

variates are independent. The μ
j
i are viewed in a nonparametric setting.

In the next theorem, we prove identifiability of the model’s parameters—that is,
that P uniquely determines the factors appearing in (4)—under a mild and explicit
regularity condition on P, as soon as there are at least 3 variates and r is known.
Making a judicious use of cut points to discretize the distribution, and then using
Kruskal’s work, we prove the following.

THEOREM 8. Let P be a mixture of the form (4), such that for every j ∈
{1, . . . , p}, the measures {μj

i }1≤i≤r are linearly independent. Then, if p ≥ 3, the

parameters {πi,μ
j
i }1≤i≤r,1≤j≤p are strictly identifiable from P, up to label swap-

ping.

This result also generalizes to nonparametric mixture models where at least
three blocks of variates are independent conditioned on the latent structure. Let
b1, . . . , bp be integers with p ≥ 3 the number of blocks, and the μ

j
i be absolutely

continuous probability measures on R
bj . With m = ∑

j bj , consider the mixture
distribution on R

m given by

P =
r∑

i=1

πi

p∏
j=1

μ
j
i .(5)
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THEOREM 9. Let P be a mixture of the form (5), such that for every j ∈
{1, . . . , p}, the measures {μj

i }1≤i≤r on R
bj are linearly independent. Then, if

p ≥ 3, the parameters {πi,μ
j
i }1≤i≤r,1≤j≤p are strictly identifiable from P, up to

label swapping.

Both Theorems 8 and 9 could be strengthened somewhat, as their proofs do not
depend on the full power of Kruskal’s theorem. As an analog of Kruskal rank for
a matrix, say a finite set of measures has Kruskal rank k, if k is the maximal in-
teger such that every k-element subset is linearly independent. Then, for instance,
when p = 3, straightforward modifications of the proofs establish identifiability
provided the sum of the Kruskal ranks of the sets {μj

i }1≤i≤r for j = 1,2,3 is at
least 2r + 2.

Note that an earlier result linking identifiability with linear independence of
the densities to be mixed appears in [43] in a parametric context. Combining this
statement with the one obtained by Teicher [42], we get that in the parametric
framework, a sufficient and necessary condition for strict identifiability of finite
mixtures of product distributions is the linear independence of the univariate com-
ponents (this statement does not require the knowledge of r). In this sense, our
result may be seen as a generalization of these statements in the nonparametric
context.

Our results should be compared to two previous ones. First, Hettmansperger
and Thomas [26] studied the identical marginals case, where for each 1 ≤ i ≤ r ,
we have μ

j
i = μk

i for all 1 ≤ j, k ≤ p (with corresponding c.d.f. Fi). They proved
that, as soon as p ≥ 2r −1, and there exists some c ∈ R, such that the {Fi(c)}1≤i≤r

are all different, the mixing proportions πi are identifiable. Although they do not
state it (because they are primarily interested in estimation procedures and not
identifiability), they also identify the c.d.f.s Fi(c),1 ≤ i ≤ r , at any point c ∈ R

such that the {Fi(c)}1≤i≤r are all different.
Second, Hall and Zhou [25] proved that for r = 2, if p ≥ 3 and the mixture P is

such that its two-dimensional marginals are not the product of the corresponding
one-dimensional ones, that is, that for any 1 ≤ j, k ≤ p we have

P(Xj ,Xk) �= P(Xj )P(Xk),(6)

then the parameters π and F
j
i are uniquely identified by P. They also provide

consistent estimation procedures for the mixing proportions as well as for the uni-
variate c.d.f.’s {Fj

i }1≤j≤p,i=1,2.
Hall and Zhou state that their results, “apparently do not have straightforward

generalizations to mixtures of three or more products of independent components.”
In fact, Theorem 8 can already be viewed as such a generalization, since in the
r = 2 case we will show that inequality (6) is in fact equivalent to the independence
for each j of the set {μj

i }1≤i≤2.
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To develop a more direct generalization of the condition of Hall and Zhou, we
say a bivariate continuous probability distribution is of rank r if it can be written as
a sum of r products of signed univariate distributions (not necessarily probability
distributions), but no fewer. We emphasize that we allow the univariate distribu-
tions to have negative values, even though the bivariate does not. The related notion
of nonnegative rank, which additionally requires that the univariate distributions
be nonnegative, will not play a role here.

This definition of rank of a bivariate distribution is a direct generalization of the
notion of the rank for a matrix, with the bivariate distribution replacing the matrix,
the univariate ones replacing vectors, and the product of distributions replacing the
vector outer product. Moreover, in the case r = 2, inequality (6) is equivalent to
saying P(Xj ,Xk) has rank 2, since its rank is at most 2 from the expression (4),
and if it had rank 1 then marginalizing would show P(Xj ,Xk) = P(Xj )P(Xk).

Next we connect this concept to the hypotheses of Theorem 8.

LEMMA 10. Consider a bivariate distribution of the form

P(X1,X2) =
r∑

i=1

πiμ
1
i (X1)μ

2
i (X2).

Then P(X1,X2) has rank r if, and only if, for each of j = 1,2 the measures
{μj

i }1≤i≤r are linearly independent.

From Theorem 8, this immediately yields the following.

COROLLARY 11. Let P be a mixture of the form (4), and suppose that
for every j ∈ {1, . . . , p}, there is some k ∈ {1, . . . , p} such that the marginal
P(Xj ,Xk) is of rank r . Then, if p ≥ 3, the parameters {πi,μ

j
i }1≤i≤r,1≤j≤p are

strictly identifiable from P, up to label swapping.

Note that if the distribution P arising from (4) could be written with strictly
fewer than r different product distributions, then the assumption of Corollary 11
(and of Theorem 8) would not be met. Here, we state that a slightly stronger con-
dition, namely that any two-variate marginal of P cannot be written as the sum of
strictly fewer than r product components, suffices to ensure identifiability of the
parameters. Note also that the condition appearing in Theorem 8 is stated in terms
of the parameters of the distribution P, which are unknown to the statistician. How-
ever, the rephrased assumption appearing in Corollary 11 is stated in terms of the
observation distribution. Thus one could imagine testing this assumption on the
data (even if this might be a tough issue) prior to statistical inference.

The restriction to p ≥ 3, which arises in our method from using Kruskal’s
theorem, is necessary in this context. Indeed, in the case of r = 2 groups and
p = 2 variates, [25] proved that there exists a two-parameter continuum of points
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(π, {μj
i }1≤i≤2,1≤j≤2) solving equation (4). This simply echos the nonidentifiabil-

ity in the case of 2 variates with finite state spaces commented on in [30].
For models with more than 2 components in the mixture, Benaglia, Chauveau

and Hunter [4] recently proposed an algorithmic estimation procedure, without
insurance that the model would be identifiable. Our results states that under mild
regularity conditions, it is possible to identify the parameters from the mixture P,
at least when the number of components r is fixed. Thus our approach gives some
theoretical support to the procedure developed in [4].

Finally, recall that in [14, 24], an upper bound on the number of variates needed
to ensure “generic” identifiability of the model is claimed which is of the order
r log2(r). Our Theorem 8 lowers this bound considerably, as it shows 3 variates
suffice to identify the model, regardless of the value of r (under a mild regularity
assumption).

8. Proofs.

PROOF OF COROLLARY 2. For each j = 1,2,3, let Mj be the matrix of size
r × κj describing the probability distribution of Xj conditional on Z. More pre-
cisely, the ith row of Mj is pij = P(Xj = · | Z = i), for any i ∈ {1, . . . , r}. Let M̃1
be the matrix of size r × κ1 such that its ith row is πipi1 = πiP(X1 = · | Z = i).
Kruskal ranks of Mj and M̃1 are denoted Ij and Ĩ1, respectively. We have already
seen that the tensor [M̃1,M2,M3] describes the probability distribution of the ob-
servations (X1,X2,X3). Kruskal’s result states that, as soon as Kruskal ranks sat-
isfy the condition Ĩ1 +I2 +I3 ≥ 2r +2, this probability distribution uniquely deter-
mines the matrices M̃1,M2 and M3 up to rescaling of the rows and label swapping.
Note that as π has positive entries, Kruskal rank Ĩ1 is equal to I1. Moreover, us-
ing that the matrices M1,M2 and M3 are stochastic and that the entries of π are
positive, the corollary follows. �

PROOF OF COROLLARY 3. We first show that for any fixed choice of a pos-
itive integer Ij ≤ min(r, κj ), those r × κj matrices Mj , whose Kruskal rank is
strictly less than Ij , form a proper algebraic variety. But the matrices for which a
specific set of Ij rows are dependent is the zero set of all Ij × Ij minors obtained
from those rows. By taking appropriate products of these minors for all such sets
of Ij rows we may construct a set of polynomials whose zero set is precisely those
matrices of Kruskal rank less than Ij . This variety is proper, since matrices of full
rank do not lie in it.

Thus the set of triples of matrices (M1,M2,M3) for which the Kruskal rank
of Mi is strictly less than min(r, κi) forms a proper subvariety. For triples not in this
subvariety, our assumptions ensure that the rank inequality of Corollary 3 holds,
so the inequality holds generically. If the πi ’s are fixed and positive, the proof is
complete. Otherwise, note that the set of parameters with vectors π admitting zero
entries is also a proper subvariety of the parameter set. �
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PROOF OF THEOREM 4. Our goal is to apply Kruskal’s result to models with
more than 3 observed variables by means of a “grouping” argument. We require a
series of lemmas to accomplish this.

First, given an n × a1 matrix A1 and an n × a2 matrix A2, define the n × a1a2
matrix A = A1 ⊗row A2, as the row-wise tensor product, so that

A
(
i, a2(j − 1) + k

) = A1(i, j)A2(i, k).

The proof of the following lemma is straightforward and therefore omitted.

LEMMA 12. If conditional on a finite random variable Z, the random vari-
ables X1,X2 are independent, with the distribution of Xi conditional on Z given
by the matrix Ai of size r ×ai , then the row tensor product A = A1 ⊗row A2 of size
r × (a1a2) contains the probability distribution of (X1,X2) conditional on Z.

For each j ∈ {1, . . . , p}, denote by Mj the r × kj matrix whose ith row is
P(Xj = · | Z = i). Introduce three matrices Ni , i = 1,2,3, of size r × κi , defined
as

Ni =
row⊗
j∈Si

Mj

and the tensor N = [Ñ1,N2,N3], where the ith row of Ñ1 is πi times the ith row
of N1. According to Lemma 12, the tensor N contains the probabilities of the
three clumped variables ({Xj }j∈S1, {Xj }j∈S2, {Xj }j∈S3). Thus knowledge of the
distribution of the observations is equivalent to knowledge of N . Moreover, for
parameters π having positive entries (which is a generic condition), the Kruskal
ranks of Ñ1 and N1 are equal.

In the next lemma we characterize the Kruskal rank of the row-tensor product
obtained from generic matrices Ai .

LEMMA 13. Let Ai , i = 1, . . . , q , denote r × ai matrices, a = ∏q
i=1 ai and

A =
row⊗

i=1,...,q

Ai,

the r × a matrix obtained by taking tensor products of the corresponding rows of
the Ai . Then for generic Ai ’s,

rankK A = rankA = min(r, a).

PROOF. The condition that a matrix A not have full rank (resp. full Kruskal
rank) is equivalent to the simultaneous vanishing of its maximal minors (resp. idem
when r ≤ a, and equivalent to the existence of one vanishing maximal minor when
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r > a). Composing the map sending {Ai} → A with these minors gives polynomi-
als in the entries of the Ai . To see that the polynomials in the entries of the Ai are
nonzero, it is enough to exhibit a single choice of the Ai for which A has full rank
(resp. full Kruskal rank).

Let xij , i = 1, . . . , q , j = 1, . . . , ai , be distinct prime numbers. Consider Ai

defined by

Ai =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
xi1 xi2 · · · xiai

x2
i1 x2

i2 · · · x2
iai

...
...

. . .
...

xr−1
i1 xr−1

i2 · · · xr−1
iai

⎞
⎟⎟⎟⎟⎟⎠ .

For any vector y ∈ C
t , let W(y) = W(y1, y2, . . . , yt ) denote the t × t Vandermonde

matrix, with entries yi−1
j .

Suppose first that a ≥ r . Then the rows of A are the first r rows of the Van-
dermonde matrix W(ỹ), where ỹ is a vector whose entries are

∏
i xiji

for choices
of 1 ≤ ji ≤ ai . As the products

∏
i xiji

are distinct by choice of the xij , W(ỹ) is
nonsingular, so A has rank and Kruskal rank equal to r .

If instead r > a, then the first a rows of A form an invertible Vandermonde
matrix. Thus A is of rank a. To argue that A has full Kruskal rank, compose the
map {Ai} → A with the a × a minor from the first a rows of A. This gives us a
polynomial in the entries of the Ai , the nonvanishing of which ensures the first a

rows of A are independent. This polynomial is not identically zero, since a specific
choice of the Ai ’s such that the first a rows of A are independent has been given.
By composing this polynomial with maps that permute rows of all the Ai simul-
taneously, we may construct nonzero polynomials whose nonvanishing ensures all
other sets of a rows of A are independent. The proper subvariety defined by the
product of these polynomials, then, is precisely those choices of {Ai} for which A

is not of full Kruskal rank. This concludes the proof of the lemma. �

Returning to the proof of Theorem 4, note that to apply the preceding lemma to
stochastic matrices Mj , we must address the fact that each row of each Mj sums
to 1. However, as both rank and Kruskal rank are unaffected by multiplying rows
by nonzero scalars, and rows sums being nonzero is a generic condition (defined
by the nonvanishing of linear polynomials), we see immediately the conclusion of
Lemma 13 holds when all the Mj are additionally assumed to have row sums equal
to 1.

We thus see that for generic Mj , the matrices Ni defined above have Kruskal
rank Ii = min(r, κi). Now by assumption, the matrices Ni satisfy the condition of
Corollary 2. This implies that the tensor N = [Ñ1,N2,N3] uniquely determines
the matrices Ni and the vector π , up to permutation of the rows. We need a last
lemma before completing the proof of Theorem 4.



IDENTIFIABILITY IN LATENT STRUCTURE MODELS 3121

LEMMA 14. Suppose A = ⊗row
i=1,...,q Ai where the Ai are stochastic matrices.

Then the Ai are uniquely determined by A.

PROOF. Since each row of each Ai sums to 1, one easily sees that each entry
in Ai can be recovered as a sum of certain entries in the same row of A. �

Using this lemma, we have that each Ni uniquely determines the matrices Mj

for j ∈ Si , and Theorem 4 follows. �

PROOF OF COROLLARY 5. It is enough to consider the case where p =
2�log2 r
 + 1. With k = �log2 r
, we have that 2k−1 < r ≤ 2k. Choosing

κ1 = κ2 = 2k, κ3 = 2,

inequality (2) in Theorem 4 holds. �

PROOF OF THEOREM 6. The 2k + 1 consecutive observed variables can be
taken to be X0, X1, . . . ,X2k . Note that the transition matrix from Zi to Zi−1 is
given by A′ = diag(π)−1 AT diag(π).

Let B1 be the r × κk matrix giving probabilities of joint states of X0,X1, . . . ,

Xk−1 conditioned on the states of Zk . Similarly, let B2 be the r × κk matrix giving
probabilities of joint states of Xk+1, . . . ,X2k conditioned on the states of Zk .

Now the joint distribution for the model M(r;κk, κk, κ) with parameters
π,B1,B2,B is the same as that of the HMM with parameters π,A,B . Thus we ap-
ply Kruskal’s theorem, after we first show π ,B1,B2 are sufficiently generic to do
so for generic choices of A,B . The entries of π have been assumed to be positive.
With IM denoting the Kruskal rank of a matrix M , in order to apply Corollary 2,
we want to ensure

IB1 + IB2 + IB ≥ 2r + 2.

Making the generic assumption that B has Kruskal rank at least 2, it is sufficient
to make

IB1, IB2 ≥ r,

that is, to require that B1,B2 have full row rank.
Now B1,B2 can be explicitly given as

B1 = A′(B ⊗row (· · ·A′(B ⊗row (
A′(B ⊗row (A′B)

))) · · ·)),
(7)

B2 = A
(
B ⊗row (· · ·A(

B ⊗row (
A

(
B ⊗row (AB)

))) · · ·))
with k copies of A′ and of B appearing in the expression for B1, and k copies of
A and B appearing in that for B2. To show these have full row rank for generic
choices of stochastic A and B , it is enough to show they have full row rank for
some specific choice of stochastic A,B,π , since that will establish that some r ×
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r minors of B1,B2 are nonzero polynomials in the entries of A′,B and A,B ,
respectively. For this argument, we may even allow our choice of A to lie outside
of those usually allowed in the statistical model, as long as it lies in their (Zariski)
closure. We therefore choose A to be the identity, and π arbitrarily, so that A′ is
also the identity, thus simplifying to considering

B1 = B2 = B ⊗row B ⊗row · · · ⊗row B (k factors).(8)

It is now enough to show that B1, as given in (8), has full row rank for some choice
of stochastic B . We proceed very similarly to the proof of Lemma 13, but since a
row tensor power occurs here rather than an arbitrary product, we must make some
small changes to the argument.

Since nonzero rescalings of the rows of B have no effect on the rank of B1 in (8),
we do not need to require that the row sums of B are 1. So let x = (x1, x2, . . . , xκ)

be a vector of distinct primes, and define B by

B =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xκ

x2
1 x2

2 · · · x2
κ

...
...

. . .
...

xr−1
1 xr−1

2 · · · xr−1
κ

⎞
⎟⎟⎟⎟⎟⎠ .

Let y = x ⊗ x ⊗ · · · ⊗ x with k factors. Then using notation from Lemma 13, B1
will be the first r rows of the Vandermonde matrix W(y). To ensure B1 has rank r ,
it is sufficient to ensure that r of the entries of y are distinct, since then B1 has a
nonsingular Vandermonde submatrix of size r . The number of distinct entries of y
is the number of distinct monomials of degree k in the xi , 1 ≤ i ≤ κ . This number
is

(k+κ−1
κ−1

)
, so to ensure that generic A,B lead to B1 having full row rank, we ask

that k satisfy (
k + κ − 1

κ − 1

)
≥ r.

For fixed κ , the expression on the left of this inequality is an increasing and un-
bounded function of k, so this condition can be met for any r, κ .

Thus by Kruskal’s theorem, from the joint distribution of 2k + 1 consecutive
variables of the HMM for generic A,B , we may determine PB1,PB2,PB , where
P is an unknown permutation.

Now to identify A,B up to label swapping means to determine Ã = PAP t and
B̃ = PB for some permutation P . As B̃ has been found, we focus on Ã. From (7)
one finds

PB2 = Ã
(
B̃ ⊗row (· · · Ã(

B̃ ⊗row (
Ã

(
B̃ ⊗row (ÃB̃)

))) · · ·)).
In this expression, Ã and B̃ appear k times. Since each row of B̃ sums to 1, by
appropriate summing of the columns of this matrix (marginalizing over the vari-
able X2k), we may determine a matrix M given by a similar formula, but with only
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k − 1 occurrences of Ã and B̃ . Then

PB2 = Ã(B̃ ⊗row M).

As PB2 and B̃ ⊗row M are known and generically of rank r , from this equation
one can identify the matrix Ã.

Thus the HMM parameters A and B are identifiable up to permutation of the
states of the hidden variables. �

PROOF OF THEOREM 7. For the n node model, with node set Vn = {vk}1≤k≤n,
denote (undirected) edges in the complete graph Kn on Vn by (vk, vl) = (vl, vk)

for k �= l. We assume 0 < π1 ≤ π2 < 1, pij ∈ [0,1] and p11,p12,p22 are distinct.
Let Z = (Z1,Z2, . . . ,Zn) be the random variable, with state space {1,2}n,

which describes the state of all nodes collectively. Ordering the elements of the
state space in some way, we find the probabilities of the various states of Z are
given by the entries of a vector v ∈ R

2n
, all of which have the form πk

1 πn−k
2 . Ob-

serve for later use that no entries of v are zero, and the smallest and largest entries
are πn

1 and πn
2 , respectively (if π1 = π2 = 1/2, then all the entries of v are equal

to 2−n).
Elements of the state space of Z are specified by I = (i1, i2, . . . , in) ∈ {1,2}n,

meaning ik is the state of vk . An assignment of states to all edges in a graph
G ⊆ Kn will be represented by a subgraph G ⊆ G containing only those edges
in state 1, in accord with the interpretation of edge states 0 and 1 as “absent” and
“present.” We refer to the probability of a particular state assignment to the edges
of G as the probability of observing the corresponding G. We may think of any
such G as specifying a composite edge variable, whose states are represented by
the subgraphs G ⊆ G.

To relate the random graph model to the model of Kruskal’s theorem, we must
choose three observed variables and one hidden variable that reflect a conditional
independence structure. The hidden variable will be Z described above, indicating
the state of some number of nodes n, to be chosen below. The observed variables
will correspond to three pairwise edge-disjoint subgraphs G1,G2,G3 of Kn. By
choosing the Gi to have no edges in common, we ensure that for i �= j observing
any subgraph Gi of Gi is independent of observing any subgraph Gj of Gj , condi-
tioned on the state of Z. To meet the technical assumptions of Kruskal’s theorem,
we will also choose the Gi so that the three matrices Bi whose entries give prob-
abilities of observing each subgraph Gi of Gi , conditioned on the state of Z, have
full row rank. These matrices thus give conditional probabilities of observations
marginalized over all edges not in Gi .

The construction of the Gi proceeds in several steps. We begin by considering a
small complete graph, and an associated matrix: for a set of 4 nodes, define a 24 ×
2(4

2) = 16 × 64 matrix A, with rows indexed by assignments I ∈ {1,2}4 of states
to the nodes, columns indexed by all subgraphs G of K4 and entries giving the
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probability of observing the subgraph conditioned on the state assignment of the
nodes. Each entry of A is thus a monomial in the pij and qij = 1 − pij . Explicitly,
if I = (i1, i2, i3, i4), and ekl ∈ {0,1} is the state of edge (vk, vl) in G, the (I,G)-
entry of A is ∏

1≤k<l≤4

p
ekl

ikil
q

1−ekl

ikil
.

LEMMA 15. For distinct p11,p12,p22, the 16 × 64 matrix A described above
has full row rank.

This lemma can be established by a rank computation with symbolic algebra
software, so we omit a proof. One can also see, either through computation or
reasoning, that the complete graph on fewer than 4 nodes fails to produce a matrix
of full rank.

The next lemma shows we can find the 3 edge-disjoint subgraphs needed for
the application of Kruskal’s theorem. As the rest of the proof does not depend on
the nodes having 2 states, we state the following lemma for an arbitrary number
of node states. The more general formulation we prove here will be needed in a
subsequent paper.

Let r denote the number of node states and suppose we have found a number m

such that the rm × 2(m
2) matrix A of probabilities of observations of subgraphs of

the complete graph on m nodes conditioned on node states has rank rm. Lemma 15
establishes that for r = 2, we may take m = 4.

LEMMA 16. Suppose for the r-node-state model, the number of nodes m is
such that the rm × 2(m

2) matrix A of probabilities of observing subgraphs of Km

conditioned on node state assignments has rank rm. Then with n = m2 there exist
pairwise edge-disjoint subgraphs G1,G2,G3 of Kn such that for each Gi , the
matrix Bi of probabilities of observing subgraphs of Gi conditioned on node state
assignments has rank rn.

PROOF. We first describe the construction of the subgraphs G1,G2,G3 of Kn.
For each Gi , we partition the m2 nodes into m groups of size m in a way to be
described shortly. Then Gi will be the union of the m complete graphs on each
partition set. Thus Gi has m

(m
2

)
edges.

For conditional independence of observations of edges in Gi , from those in
Gj with i �= j , we must ensure Gi and Gj have no edges in common. This re-
quires only that a partition set of nodes leading to Gi has at most one element
in common with a partition set leading to Gj , if i �= j . Labeling the nodes by
(i, j) ∈ {1, . . . ,m} × {1, . . . ,m}, we picture the nodes as lattice points in a square
grid. We take as the partition leading to G1 the rows of the grid, as the partition
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leading to G2 the columns of the grid and as the partition leading to G3 the diag-
onals. Explicitly, if Pi = {V i

j |j ∈ {1, . . . ,m}} denotes the partition of the node set
Vm2 leading to Gi , then

V 1
j = {

(j, i)|i ∈ {1, . . . ,m}},
V 2

j = {
(i, j)|i ∈ {1, . . . ,m}},

V 3
j = {

(i, i + j modm)|i ∈ {1, . . . ,m}}
and each Gi is the union over j ∈ {1, . . . ,m} of the complete graphs on node
set V i

j .
Now Bi , the matrix of conditional probabilities of observing all possible sub-

graphs of Gi , conditioned on node states, has rn rows indexed by composite states
of all n = m2 nodes, and 2m(m

2) columns indexed by subgraphs of Gi . Observe that
with an appropriate ordering of the rows and columns (which is dependent on i),
Bi has a block structure given by

Bi = A ⊗ A ⊗ · · · ⊗ A (m factors).(9)

[Note that since A is rm × 2(m
2), the tensor product on the right is (rm)m × (2(m

2))m

which is rm2 × 2m(m
2), the size of Bi .] That Bi is this tensor product is most easily

seen by noting the partitioning of the m2 nodes into m disjoint sets V i
j gives rise

to m copies of the matrix A, one for each complete graph on a V i
j . The row indices

of Bi are obtained by choosing an assignment of states to the nodes in V i
j for each

j independently, and the column indices by the union of independently-chosen
subgraphs of the complete graphs on V i

j for each j . This independence in both
rows and columns leads to the tensor decomposition of Bi .

Now since A has full row rank, (9) implies that Bi does as well. �

REMARK 1. For future work, we note that this lemma easily generalizes to
graph models in which edges may be in any of s states, with s > 2. In that case, the
matrix A is rm × s(

m
2), and the columns of A are no longer indexed by subgraphs

of Km, but rather by s-colorings of the edges of Km.

To complete the proof of Theorem 7, we apply Corollary 2 for M(2m2;2m(m
2),

2m(m
2),2m(m

2)) to the parameter choice π = v, Mi = Bi , to find v and each Bi is
identifiable, up to row permutation. Thus here we do not apply the corollary to
the full random graph model, but rather its marginalization over all edges not in
G1 ∪ G2 ∪ G3.

Suppose now that π1 �= π2. Since πm2

1 , πm2

2 are the smallest and largest entries
of v, respectively, we may determine π1, π2, as well as which of the rows of Bi

correspond to the having all nodes in state 1 or all in state 2. Summing appropriate
entries of these rows, we obtain the probabilities p11 and p22 of observing a single
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edge conditioned on these node states. (This is simply a marginalization; sum the
row entries corresponding to all subgraphs of Gi that contain a fixed edge.) To
find p12, by consulting v we may choose one of the n rows of B1 which corre-
sponds to node states with all nodes but one in state 1. By considering sums of
row entries to obtain the conditional probability of observing a single edge, we
can produce the numbers p11, p12. As p11 is known, and p12 is distinct from it,
we thus determine p12.

If π1 = π2, then we cannot immediately determine which rows of Bi correspond
to all nodes being in state 1 or in state 2. However, by marginalizing all rows to
obtain the conditional probability of observing a single edge, we may determine
the set of numbers {p11,p12,p22}. With these in hand, we may then determine
which two rows correspond to having all nodes in state 1 and all in state 2. This
then uniquely determines which of the numbers is p12, so everything is known up
to label swapping. �

REMARK 2. While the above argument shows generic identifiability of the
parameters of the 2-node state random graph model provided there are at least 16
nodes, a slightly more complicated argument, which we do not include here, can
replace Lemma 16 to establish generic identifiability provided there are at least
10 nodes. Thus we make no claim to having determined the minimum number of
nodes to ensure identifiability.

PROOF OF THEOREM 8. We assume as usual that Z is a latent random vari-
able with distribution on {1, . . . , r} given by the vector π , and X = (X1, . . . ,Xp) is
the vector of observations such that conditional on Z = i, the variates {Xj }1≤j≤p

are independent, each Xj having probability distribution μ
j
i . We focus on 3 ran-

dom variables at a time only, beginning first with X1,X2,X3. The idea is to con-
struct a binning of the random variables X1,X2 and X3 using κj −1 ∈ N cut points
for Xj . For each j = 1,2,3, consider a partition of R into κj consecutive inter-
vals {I k

j }1≤k≤κj
, and consider the random variable Yj = (1{Xj ∈ I 1

j }, . . . ,1{Xj ∈
I

κj

j }), where 1{A} denotes the indicator function of set A. This is a finite ran-
dom variable taking values in {0,1}κj with at most one nonzero entry. We will
show here that we can identify the proportions πi and the probability measures
μ

j
i ,1 ≤ i ≤ r,1 ≤ j ≤ 3, relying only on the binned observed variables {Y1, Y2, Y3}

for some well-chosen partitions of R.
Consider for each j = 1,2,3, the matrices Mj of size r × κj whose ith row

is the distribution of Yj conditional on Z = i, namely the vector [P(Xj ∈ I 1
j |Z =

i), . . . ,P(Xj ∈ I
κj

j |Z = i)]. Introduce the matrix M̃1 whose ith row is the ith row
of M1 multiplied by the value πi . Note that the Mj ’s are stochastic matrices. More-
over, the tensor product [M̃1,M2,M3] is the κ1 × κ2 × κ3 table whose (k1, k2, k3)

entry is the probability P((X1,X2,X3) ∈ I
k1
1 × I

k2
2 × I

k3
3 ). This tensor is com-

pletely known as soon as the probability distribution (4) is given. Now we use
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Kruskal’s result to prove that with knowledge of the tensor [M̃1,M2,M3], we can
recover the parameters π and the stochastic matrices Mj, j = 1,2,3. If we can do
so for general enough and well-chosen partitions {I k

j }1≤k≤κj
, then we will be able

to recover the measures μ
j
i , for j = 1,2,3 and 1 ≤ i ≤ r .

We look for partitions {I k}1≤k≤κ , with κ ≥ r , such that the corresponding ma-
trix M has full row rank. Here we deliberately dropped the index j = 1,2,3.
If we can construct these matrices with full row rank, then we get I1 + I2 +
I3 = 3r ≥ 2r + 2 and Kruskal’s result applies. As the partition {I k}1≤k≤κ is
composed of consecutive intervals, the rows of the matrix M are of the form
[Fi(u1),Fi(u2) − Fi(u1), . . . ,Fi(uκ−1) − Fi(uκ−2),1 − Fi(uκ−1)] for some real
number cut points u1 < u2 < · · · < uκ−1. Replacing the j th column Cj of M by
Cj + Cj−1 for consecutive j from 2 to κ , we construct M ′ with same rank as M

and whose ith row is [Fi(u1),Fi(u2), . . . ,Fi(uκ−1),1]. Now linear independence
of the probability distributions {μi}1≤i≤r is equivalent to linear independence of
the c.d.f.s {Fi}1≤i≤r . We need the following lemma.

LEMMA 17. Let {Fi}1≤i≤r be linearly independent functions on R. Then there
exists some κ ∈ N and real numbers u1 < u2 < · · · < uκ−1 such that the vectors

{(Fi(u1), . . . ,Fi(uκ−1),1)}1≤i≤r

are linearly independent.

PROOF. Let us consider a set of points u1 < u2 < · · · < um in R with m ≥ r

and the matrix Am of size r × m whose ith row is (Fi(u1), . . . ,Fi(um),1). De-
note by Nm = {α ∈ R

r | αAm = 0}, the left nullspace of the matrix Am, and let
dm be its dimension. If dm = 0, then the matrix Am has full row rank and the
proof is complete. Now if dm ≥ 1, choose a nonzero vector α ∈ Nm. By linear in-
dependence of the Fi’s, we know that

∑r
i=1 αiFi is not the zero function, which

means that there exists some um+1 ∈ R such that
∑r

i=1 αiFi(um+1) �= 0. Up to a
reordering of the u’s, we may assume um < um+1 and consider the matrix Am+1
whose ith row is [Fi(u1), . . . ,Fi(um+1),1] and whose left nullspace Nm+1 has
dimension dm+1 < dm. Indeed, we have Nm+1 ⊂ Nm and by construction, the
one-dimensional space spanned by the vector α is not in Nm+1. Repeating this
construction a finite number of times, we find a matrix Aκ with the desired prop-
erties. �

With this lemma, we have proved that the desired partition exists. Moreover, for
any value t ∈ R, we may, by increasing κ , include t among the points uk without
lowering the rank of the matrix. Thus we can construct partitions that involve any
chosen cut point in such a fashion that Kruskal’s result in the form of Corollary 2
will apply. That is, the vector π and the matrices Mj may be recovered from the
mixture P, up to permutation of the rows. Moreover, summing up the first columns
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of the matrix Mj , up to the one corresponding to the chosen cut point t , we obtain

the value of F
j
i (t),1 ≤ i ≤ r, j = 1,2,3. To see that this enables one to recover

the whole probability distribution μ
j
i , up to label swapping on the i’s indexes,

note that once we fix an ordering on the states of the hidden variable, the rows
(Fi(u1), . . . ,Fi(uκ))1≤i≤r are fixed and for each value of t ∈ R, we associate to
the ith row the value Fi(t).

To conclude the proof, in the case of more than 3 variates, we repeat the
same procedure with the random variables X1,X2,X4. This enables us to re-
cover the values of {μ1

i ,μ
2
i ,μ

4
i }1≤i≤r up to a relabeling of the groups. As soon

as the μ1
i are linearly independent, they must be different, and using the two sets

{μ1
i ,μ

2
i ,μ

3
i }1≤i≤r and {μ1

i ,μ
2
i ,μ

4
i }1≤i≤r which are each known only up to (dif-

ferent) label swappings, we can thus recover the set {μ1
i ,μ

2
i ,μ

3
i ,μ

4
i }1≤i≤r up to a

relabeling of the groups. Adding a new random variable at a time finally gives the
result. �

PROOF OF THEOREM 9. In case of nonunidimensional blocks of independent
components, we proceed much as in the proof of Theorem 8, but construct a bin-
ning into product intervals. For instance, if X is two dimensional, we use κ2 differ-
ent bins, constructing Y = (1{X ∈ I 1 ×J 1},1{X ∈ I 1 ×J 2}, . . . ,1{X ∈ I κ ×J κ})
where {J k}1≤k≤κ is a second partition of R into κ ∈ N consecutive intervals. This
yields a matrix M whose rows are of the form(

Fi(u1, v1),Fi(u1, v2) − Fi(u1, v1), . . . ,Fi(u1,+∞) − Fi(u1, vκ−1),

Fi(u2, v1) − Fi(u1, v1),Fi(u2, v2) − Fi(u1, v2)

− Fi(u2, v1) + Fi(u1, v1), . . . ,

Fi(u2,+∞) − Fi(u1,+∞) − Fi(u2, vκ−1) + Fi(u1, vκ−1), . . . ,

Fi(+∞, v1) − Fi(uκ−1, v1),Fi(+∞, v2) − Fi(uκ−1, v2)

− Fi(+∞, v1) + Fi(uκ−1, v1), . . . ,

1 − Fi(uκ−1,+∞) − Fi(+∞, vκ−1) + Fi(uκ−1, vκ−1)
)

for some real numbers u1 < u2 < · · · < uκ−1 and v1 < v2 < · · · < vκ−1. (To
avoid cumbersome formulas, we only write the form of the matrix rows in the
case b = 2.) This matrix has the same rank as M ′ whose ith row is composed of
the values Fi(uk, vl) for 1 ≤ k, l ≤ κ , using the convention uκ = vκ = +∞. The
equivalence between linear independence of the probability distributions and cor-
responding multidimensional c.d.f.’s remains valid.

Lemma 17 generalizes to the following.

LEMMA 18. Let {Fi}1≤i≤r be linearly independent functions on R
b. There

exists some κ , and b collections of real numbers ui
1 < ui

2 < · · · < ui
κ−1, for 1 ≤ i ≤
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b, such that the r row vectors composed of the values {Fi(u
1
i1
, . . . , ub

ib
)|i1, . . . , ib ∈

{1, . . . , κ}}, for 1 ≤ i ≤ r are linearly independent.

The proof of this lemma is essentially the same as the proof of Lemma 17.
The only difference with the previous setup is that now the construction of the
desired set relies on addition of b coordinates at a time, namely t1, . . . , tb ∈ R,
which results in adding

∑b−1
j=0

(b
j

)
κj columns in the matrix.

To complete the argument establishing Theorem 9, we may again include any
point (t1, . . . , tb) ∈ R

b among the uk’s without changing the row ranks of the ma-
trices to which we apply Kruskal’s theorem. Thus we may recover the values
F1(t1, . . . , tb), . . . ,Fr(t1, . . . , tb), and conclude the proof in the same way as the
last theorem. �

PROOF OF LEMMA 10. Suppose the probability distribution

P(X1,X2) =
r∑

i=1

πiμ
1
i (X1)μ

2
i (X2)

has rank r . Then for k = 1,2, the sets {μk
i }1≤i≤r must be independent, since any

dependency relation would allow P to be expressed as a sum of fewer products.
Conversely, suppose for k = 1,2, the measures {μk

i }1≤i≤r are independent. The
corresponding sets of c.d.f.s {Fk

i }1≤i≤r are also independent, and thus we may
choose collections of points {tkj }1≤j≤r such that the r × r matrices Mk whose

i, j -entries are Fk
i (tkj ) have full rank. Then with F denoting the c.d.f. for P, the

matrix N with entries F(t1
i , t2

j ) can be expressed as

N = MT
1 diag(π)M2

and therefore has full rank. But if the rank of P were less than r , a similar fac-
torization arising from the expression of P using fewer than r summands shows
that N has rank smaller than r . Thus the rank of P is at least r , and since the given
form of P shows the rank is at most r , it has rank exactly r . �
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