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THE SPARSITY AND BIAS OF THE LASSO SELECTION IN
HIGH-DIMENSIONAL LINEAR REGRESSION
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Meinshausen and Buhlmann [Ann. Statist. 34 (2006) 1436–1462] showed
that, for neighborhood selection in Gaussian graphical models, under a neigh-
borhood stability condition, the LASSO is consistent, even when the number
of variables is of greater order than the sample size. Zhao and Yu [(2006) J.
Machine Learning Research 7 2541–2567] formalized the neighborhood sta-
bility condition in the context of linear regression as a strong irrepresentable
condition. That paper showed that under this condition, the LASSO selects
exactly the set of nonzero regression coefficients, provided that these coef-
ficients are bounded away from zero at a certain rate. In this paper, the re-
gression coefficients outside an ideal model are assumed to be small, but not
necessarily zero. Under a sparse Riesz condition on the correlation of design
variables, we prove that the LASSO selects a model of the correct order of
dimensionality, controls the bias of the selected model at a level determined
by the contributions of small regression coefficients and threshold bias, and
selects all coefficients of greater order than the bias of the selected model.
Moreover, as a consequence of this rate consistency of the LASSO in model
selection, it is proved that the sum of error squares for the mean response and
the �α-loss for the regression coefficients converge at the best possible rates
under the given conditions. An interesting aspect of our results is that the log-
arithm of the number of variables can be of the same order as the sample size
for certain random dependent designs.

1. Introduction. Consider a linear regression model

yi =
p∑

j=1

xijβj + εi, i = 1, . . . , n,(1.1)

where yi is the response variable, xij are covariates or design variables and εi is
the error term. In many applications, such as studies involving microarray or mass
spectrum data, the total number of covariates p can be large or even much larger
than n, but the number of important covariates is typically smaller than n. With
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such data, regularized or penalized methods are needed to fit the model and vari-
able selection is often the most important aspect of the analysis. The LASSO [Tib-
shirani (1996)] is a penalized method similar to the ridge regression but uses the
L1-penalty

∑p
j=1 |βj | instead of the L2-penalty

∑p
j=1 β2

j . An important feature of
the LASSO is that it can be used for variable selection. Compared to the classical
variable selection methods, such as subset selection, the LASSO has two advan-
tages. First, the selection process in the LASSO is based on continuous trajectories
of regression coefficients as functions of the penalty level and is hence more stable
than subset selection methods. Second, the LASSO is computationally feasible for
high-dimensional data [Osborne, Presnell and Turlach (2000a, 2000b), Efron et
al. (2004)]. In contrast, computation in subset selection is combinatorial and not
feasible when p is large.

Several authors have studied the model-selection consistency of the LASSO in
the sense of selecting exactly the set of variables with nonzero coefficients, that
is, identifying the subset {j :βj �= 0} of {1, . . . , p}. In the low-dimensional setting
with fixed p, Knight and Fu (2000) showed that, under appropriate conditions, the
LASSO is consistent for estimating the regression parameters βj and their limiting
distributions can have positive probability mass at 0 when βj = 0. However, care-
ful inspection of their results indicates that the positive probability mass at 0 is less
than 1 in the limit for certain configurations of the covariates and regression coeffi-
cients, which suggests that the LASSO is not variable-selection consistent without
proper assumptions. Leng, Lin and Wahba (2006) showed that the LASSO is, in
general, not variable-selection consistent when the prediction accuracy is used as
the criterion for choosing the penalty parameter. On the other hand, Meinshausen
and Buhlmann (2006) showed that, for neighborhood selection in the Gaussian
graphical models, under a neighborhood stability condition on the design matrix
and certain additional regularity conditions, the LASSO is consistent, even when
the number of variables tends to infinity at a rate faster than n. Zhao and Yu (2006)
formalized the neighborhood stability condition in the context of linear regression
models as a strong irrepresentable condition. They showed that under this cru-
cial condition and certain other regularity conditions, the LASSO is consistent for
variable selection, even when the number of variables p is as large as exp(na) for
some 0 < a < 1. Thus, their results are applicable to high-dimensional regression
problems, provided that the conditions, in particular, the strong irrepresentable
condition, are reasonable for the data.

In this paper, we provide a different set of sufficient conditions under which the
LASSO is rate consistent in the sparsity and bias of the selected model in high-
dimensional regression. The usual definition of sparseness for model selection, as
used in Meinshausen and Buhlmann (2006) and Zhao and Yu (2006), is that only
a small number of regression coefficients are nonzero and all nonzero coefficients
are uniformly bounded away from zero at a certain rate. Thus, variable selection is
equivalent to distinguishing between nonzero and zero coefficients with a separa-
tion zone. We consider a more general concept of sparseness: a model is sparse if
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most coefficients are small, in the sense that the sum of their absolute values is be-
low a certain level. Under this general sparsity assumption, it is no longer sensible
to select exactly the set of nonzero coefficients. Therefore, in cases where the exact
selection consistency for all βj �= 0 is unattainable or undesirable, we propose to
evaluate the selected model with the sparsity as its dimension and the bias as the
unexplained part of the mean vector and the missing large coefficients. As our goal
is to select a parsimonious model which approximate the truth well, the sparsity
and bias are suitable measures of performance. This is not to be confused with
criteria for estimation or prediction, since we are not bound to use the LASSO for
these purposes after model selection.

Under a sparse Riesz condition which limits the range of the eigenvalues of the
covariance matrices of all subsets of a fixed number of covariates, we prove that
the LASSO selects a model with the correct order of sparsity and controls the bias
of the selected model at a level of the same order as the bias of the LASSO in the
well-understood case of orthonormal design. Consequently, the LASSO selects all
variables with coefficients above a threshold determined by the controlled bias of
the selected model. In this sense, and in view of the optimality properties of the
soft threshold method for orthonormal designs [Donoho and Johnstone (1994)],
our results provide the rate consistency of the LASSO for general designs under
the sparse Riesz condition. As mentioned in the previous paragraph, the LASSO
does not have to be used for estimation and prediction after model selection. Nev-
ertheless, we show that the rate consistency of the LASSO selection implies the
convergence of the LASSO estimator to the true mean Eyi and coefficients βj at
the same rate as in the case of orthonormal design.

When the number of regression coefficients exceeds the number of observations
(p > n), there are potentially many models fitting the same data. However, there
is a certain uniqueness among such models under sparsity constraints. Under the
sparse Riesz condition, all sets of q∗ design vectors are linearly independent for
a certain given rank q∗ so that the linear combination of design vectors is unique
among all coefficient vectors of sparsity q∗/2 or less. Moreover, our rate consis-
tency result proves that under mild conditions, the representation of all coefficients
above a certain threshold level is determined in the selected model with high prob-
ability. Of course, such uniqueness is invalid when the sparsity assumption fails to
hold.

We describe our rate consistency results in Section 2 and prove them in Sec-
tion 5. Implications of the rate consistency for the convergence rate of the LASSO
estimator are discussed in Section 3. The sparse Riesz and strong irrepresentable
conditions do not imply each other in general, but the sparse Riesz condition is eas-
ier to interpret and less restrictive from a practical point of view. In Section 4, we
provide sufficient conditions for the sparse Riesz condition for deterministic and
random covariates. In Section 6, we discuss some closely related work in detail
and make a few final remarks.
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2. Rate consistency of the LASSO in sparsity and bias. The linear mo-
del (1.1) can be written as

y =
p∑

j=1

βj xj + ε = Xβ + ε,(2.1)

where y ≡ (y1, . . . , yn)
′, xj are the columns of the design matrix X ≡ (xij )n×p ,

β ≡ (β1, . . . , βp)′ is the vector of regression coefficients and ε ≡ (ε1, . . . , εn)
′.

Unless otherwise explicitly stated, we treat X as a given deterministic matrix.
For a given penalty level λ ≥ 0, the LASSO estimator of β ∈ R

p is

β̂ ≡ β̂(λ) ≡ arg min
β

{‖y − Xβ‖2/2 + λ‖β‖1},(2.2)

where ‖ · ‖ is the Euclidean distance and ‖β‖1 ≡ ∑
j |βj | is the �1-norm. In this

paper,

Â ≡ Â(λ) ≡ {j ≤ p : β̂j �= 0}(2.3)

is considered as the model selected by the LASSO.
As mentioned in the Introduction, we consider model selection properties of

the LASSO under a sparsity condition on the regression coefficients and a sparse
Riesz condition on the covariates. The sparsity condition asserts the existence of
an index set A0 ⊂ {1, . . . , p} such that

#{j ≤ p : j /∈ A0} = q,
∑

j∈A0

|βj | ≤ η1.(2.4)

Under this condition, there exist at most q “large” coefficients and the �1 norm of
the “small” coefficients is no greater than η1. Thus, if q is of smaller order than
p and η1 is small, then the high-dimensional full model Xβ with p coefficients
can be approximated by a much lower-dimensional submodel with q coefficients
so that model selection makes sense. Compared with the typical assumption

|Aβ | = q, Aβ ≡ {j :βj �= 0}(2.5)

for model selection, (2.4) is mathematically weaker and much more realistic since
it specifies a connected set in the parameter space R

p of β . Let (j) be the orderings
giving |β(1)| ≥ · · · ≥ |β(p)|. Another way of stating (2.4) is

p∑
j=q+1

∣∣β(j)

∣∣ ≤ η1, A0 ≡ {(q + 1), . . . , (p)}.(2.6)

What should be the goal of model selection under the sparsity condition (2.4)?
Unlike the usual case of (2.5), condition (2.4) allows potentially many small coef-
ficients so that it is no longer reasonable to select exactly all variables with nonzero
coefficients. Instead, a sensible goal is to select a sparse model which fits the mean
vector Xβ well and thus includes most (all) variables with (very) large |βj |. Under
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the sparsity assumption (2.4), a natural definition of the sparsity of the selected
model is q̂ = O(q), where

q̂ ≡ q̂(λ) ≡ |Â| = #{j : β̂j �= 0}.(2.7)

The selected model fits the mean Xβ well if its bias

B̃ ≡ B̃(λ) ≡ ‖(I − P̂)Xβ‖(2.8)

is small, where P̂ is the projection from R
n to the linear span of the set of se-

lected variables xj and I ≡ In is the n × n identity matrix. Since the bias B̃ is
defined as the length of the difference between Xβ and its projection to the image
of P̂, B̃2 is the sum of squares of the part of the mean vector not explained by
the selected model. To measure the large coefficients for variables missing in the
selected model, we define

ζα ≡ ζα(λ) ≡
( ∑

j /∈A0

|βj |αI {β̂j = 0}
)1/α

, 0 ≤ α ≤ ∞.(2.9)

Under (2.6), ζ0 is the number of the p largest |βj | not selected, ζ2 is the Euclidean
length of these missing large coefficients and ζ∞ is their maximum. What should
be the correct order of B̃ and ζα? Example 1 below indicates that under the condi-
tions we impose, the following three quantities, or the maximum of the three, are
reasonable benchmarks for B̃2 and nζ 2

2 :

λη1, η
2
2,

qλ2

n
,(2.10)

where η2 ≡ maxA⊂A0 ‖∑
j∈A βj xj‖ ≤ maxj≤p ‖xj‖η1.

EXAMPLE 1. Suppose we have an orthonormal design with X′X/n = Ip

and i.i.d. normal error ε ∼ N(0, In). Then, (2.2) is the soft-threshold estimator
[Donoho and Johnstone (1994)] with threshold level λ/n for the individual coeffi-
cients: β̂j = sgn(zj )(|zj |−λ/n)+, with zj ≡ x′

j y/n ∼ N(βj ,1/n) being the least-
squares estimator of βj . If |βj | = λ/n for j = 1, . . . , q + η1n/λ and λ/

√
n → ∞,

then P {β̂j = 0} ≈ 1/2 so that B̃2 ≈ 2−1(q +η1n/λ)n(λ/n)2 = 2−1(qλ2/n+η1λ).

In this example, we observe that the order of B̃2 cannot be smaller than the first
and third quantities in (2.10), while the second quantity η2

2 is a natural choice of B̃2

as the maximum mean effect of variables with small coefficients. In the proof of
Theorem 1 in Section 5 (Remark 8), we show that

√
nζ2 is of order no greater than

B̃ + η2. Thus, we say that the LASSO is rate-consistent in model selection if, for
a suitable α (e.g., α = 2 or α = ∞),

q̂ = O(q), B̃ = OP (B),
√

nζα = O(B),(2.11)
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with the possibility of B̃ = O(η2) and ζα = 0 under stronger conditions, where

B ≡ max(
√

η1λ,η2,

√
qλ2/n).

As we mentioned earlier, the main result of this paper proves the rate-
consistency of the LASSO under (2.4) and a sparse Riesz condition on X. The
sparse Riesz condition controls the range of eigenvalues of covariate matrices of
subsets of a fixed number of design vectors xj . For A ⊂ {1, . . . , p}, define

XA ≡ (xj , j ∈ A), �A ≡ X′
AXA/n.(2.12)

The design matrix X satisfies the sparse Riesz condition (SRC) with rank q∗ and
spectrum bounds 0 < c∗ < c∗ < ∞ if

c∗ ≤ ‖XAv‖2

n‖v‖2 ≤ c∗ ∀A with |A| = q∗ and v ∈ R
q∗

.(2.13)

Since ‖XAv‖2/n = v′�Av, all the eigenvalues of �A are inside the interval [c∗, c∗]
under (2.13) when the size of A is no greater than q∗. While the Riesz condition
asserts the equivalence of a norm ‖∑

j vj ξj‖ and the �2 norm (
∑

j v2
j )

1/2 in an
entire (infinite-dimensional) linear space with basis {ξ1, ξ2, . . .}, the SRC provides
the equivalence of the norm ‖�1/2v‖ and the �2 norm ‖v‖ only in subspaces of a
fixed dimension in a fixed coordinate system. The quantities c∗ and c∗ have been
considered as sparse minimum and maximum eigenvalues [Meinshausen and Yu
(2006), Donoho (2006)]. We call (2.13) the sparse Riesz condition due to its close
connection to the Riesz condition as discussed above and in Section 4.2.

We prove the rate consistency (2.11) for the LASSO under the sparsity (2.4) and
SRC (2.13) conditions if they are configured in certain ways between themselves
and in relation to the penalty level λ. These relationships are expressed through the
following ratios:

r1 ≡ r1(λ) ≡
(

c∗η1n

qλ

)1/2

, r2 ≡ r2(λ) ≡
(

c∗η2
2n

qλ2

)1/2

, C ≡ c∗

c∗
,(2.14)

where {q,η1, η2, c∗, c∗} are as in (2.4), (2.10) and (2.13). The quantities in (2.14)
are invariant under scale changes {X,ε, η2,

√
c∗,

√
c∗,

√
λ} → {X,ε, η2,

√
c∗,√

c∗,
√

λ}/σ and {ε,β, η1, η2, λ} → {β, η1, η2, λ}/σ . Up to the factor c∗ for scale
adjustment, r2

1 and r2
2 are the ratios of the first two benchmark quantities to the

third in (2.10). In terms of these scale invariant quantities, we explicitly express in
our theorem the O(1) in (2.11) as

M∗
1 ≡ M∗

1 (λ) ≡ 2 + 4r2
1 + 4

√
Cr2 + 4C,(2.15)

M∗
2 ≡ M∗

2 (λ) ≡ 8
3

{1
4 + r2

1 + r2
√

2C
(
1 + √

C
) + C

(1
2 + 4

3C
)}

(2.16)

and

M∗
3 ≡ M∗

3 (λ) ≡ 8

3

{
1

4
+ r2

1 + r2
√

C
(
1 + 2

√
1 + C

)
(2.17)

+ 3r2
2

4
+ C

(
7

6
+ 2

3
C

)}
.
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Note that the quantities rj and M∗
k in (2.14)–(2.17) are all decreasing in λ. We

define a lower bound for the penalty level as

λ∗ ≡ inf{λ :M∗
1 (λ)q + 1 ≤ q∗}, inf ∅ ≡ ∞.(2.18)

Let σ ≡ (E‖ε‖2/n)1/2. With the λ∗ in (2.18) and c∗ in (2.13), we consider the
LASSO path for

λ ≥ max(λ∗, λn,p), λn,p ≡ 2σ
√

2(1 + c0)c∗n log(p ∨ an),(2.19)

with c0 ≥ 0 and an ≥ 0 satisfying p/(p ∨ an)
1+c0 ≈ 0. For large p, the lower

bound here is allowed to be of the order λn,p ∼ √
n logp with an = 0. For example,

λ∗ ≤ λn,p if (2.13) holds for q∗ ≥ (6 + 4
√

C + 4C)q + 1, η1 ≤ qλn,p/(nc∗) and
η2

2 ≤ qλ2
n,p/(nc∗), up to r1 = r2 = 1 in (2.14). For fixed p, an → ∞ is required.

For i.i.d. normal errors and large p, the false discovery increases dramatically after
the LASSO path enters the region λ < σ

√
2n logp, at least in the orthonormal

case.

THEOREM 1. Let q̂(λ), B̃(λ) and ζ2(λ) be as in (2.7), (2.8) and (2.9), respec-
tively, for the model Â(λ) selected by the LASSO with (2.2) and (2.3). Let M∗

j be as

in (2.15), (2.16) and (2.17). Suppose ε ∼ N(0, σ 2I), q ≥ 1, and the sparsity (2.4)
and sparse Riesz (2.13) conditions hold. There then exists a set �0 in the sample
space of (X,ε/σ), depending on {Xβ, c0, an} only, such that

P {(X,ε/σ) ∈ �0} ≥ 2 − exp
(

2p

(p ∨ an)1+c0

)
− 2

(p ∨ an)1+c0
≈ 1(2.20)

and the following assertions hold in the event (X,ε/σ) ∈ �0 for all λ satisfy-
ing (2.19):

q̂(λ) ≤ q̃(λ) ≡ #{j : β̂j (λ) �= 0 or j /∈ A0} ≤ M∗
1 (λ)q,(2.21)

B̃2(λ) = ∥∥(
I − P̂(λ)

)
Xβ

∥∥2 ≤ M∗
2 (λ)

qλ2

c∗n
,(2.22)

with P̂(λ) being the projection to the span of the selected design vectors {xj , j ∈
Â(λ)} and

ζ 2
2 (λ) = ∑

j /∈A0

|βj |2I {β̂j (λ) = 0} ≤ M∗
3 (λ)

qλ2

c∗c∗n2 .(2.23)

REMARK 1. The condition q ≥ 1 is not essential since it is only used to ex-
press quantities in Theorem 1 and its proof in terms of ratios in (2.14). Thus,
(2.21), (2.22) and (2.23) are still valid for q = 0 if we use r2

1q = c∗η1n/λ and
r2

2q = c∗η2
2n/λ2 to recover M∗

k q from (2.15), (2.16) and (2.17), resulting in

q̂(λ) ≤ 4c∗ η1n

λ
, B̃2(λ) ≤ 8

3
η1λ, ζ 2

2 = 0.
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REMARK 2. For η1 = 0 in (2.6), we have r1 = r2 = 0 and

M∗
1 = 2 + 4C,

M∗
2 = M∗

1

3
+ 32

9
C2,(2.24)

M∗
3 = 2

3 + 28
9 C + 16

9 C2,

all depend only on C ≡ c∗/c∗ in (2.14). In this case, (2.18) gives λ∗ = 0 for (2 +
4C)q +1 ≤ q∗ and λ∗ = ∞ otherwise. Thus, Theorem 1 requires (2+4C)q +1 ≤
q∗ in (2.4) and (2.13).

REMARK 3. The conclusions of Theorem 1 are valid for the LASSO path for
all λ ≥ max(λ∗, λn,p) in the same event (X,ε/σ) ∈ �0. This allows data-driven
selection of λ, for example, cross-validation based on prediction error. However,
the theoretical justification of such a choice of λ is unclear for model-selection
purposes. Theorem 1 and simple calculation for orthonormal designs indicate that
λn,p is a good choice for model selection when λn,p ≥ λ∗, provided we have some
idea about the unknown q and “known” {c∗, c∗, q∗}.

Theorem 1 is proved in Section 5. The following result is an immediate conse-
quence of it.

THEOREM 2. Suppose the conditions of Theorem 1 hold. Then, all variables
with β2

j > M∗
3 (λ)qλ2/{c∗c∗n2} are selected with j ∈ Â(λ), provided (X,ε/σ) ∈

�0 and λ is in the interval (2.19). Consequently, if β2
j > M∗

3 (λ)qλ2/{c∗c∗n2} for
all j /∈ A0, then, for all α > 0,

P {Ac
0 ⊂ Â, B̃(λ) ≤ η2 and ζα(λ) = 0}

(2.25)

≥ 2 − exp
(

2p

(p ∨ an)1+c0

)
− 2

(p ∨ an)1+c0
≈ 1.

Theorems 1 and 2 provide sufficient conditions under which the LASSO is rate-
consistent in sparsity and bias in the sense of (2.11). It asserts that, with large prob-
ability, the LASSO selects a model with the correct order of dimension. Moreover,
with large probability, the bias of the selected model is the smallest possible η2
in the best scenario when all the large coefficients are above an explicit threshold
level, and in the worst scenario, the bias is of the same order as what would be
expected in the much simpler case of orthonormal design. Furthermore, with large
probability, all variables with coefficients above the threshold level are selected,
regardless of the values of the other coefficients. The implications of Theorem 1
on the properties of the LASSO estimator are discussed in Section 3.

In Theorems 1 and 2, conditions are imposed jointly on the design X and the
unknown coefficients β . Since X is observable, we may think of these conditions



SPARSITY AND BIAS OF LASSO 1575

in the following way. We first impose the SRC (2.13) on X. Given the configuration
{q∗, c∗, c∗} of the SRC and thus C ≡ c∗/c∗, (2.18) requires that {q, r1, r2} satisfy
(2 + 4r2

1 + 4
√

Cr2 + 4C)q + 1 ≤ q∗. Given {q, r1, r2} and the penalty level λ, the
condition on β becomes

|Ac
0| ≤ q, η1 ≤ qλr2

1

c∗n
, η2

2 ≤ qλ2r2
2

c∗n
.

Since Theorems 1 and 2 are valid for any fixed sample (with the exception of the
“≈ 1” parts), q∗, c∗, c∗, q, r1 and r2 are all allowed to depend on n, but they could
also be considered as fixed.

The constant factors M∗
j in Theorem 1 are not sharp since crude bounds (e.g.,

Cauchy–Schwarz) are used several times in the proof. However, Theorem 1 is valid
for any fixed (n,p) with the specified configurations of the sparsity and sparse
Riesz conditions. Thus, it is necessarily invariant under the scale transformations
(X,ε) → (X,ε)/σ and (β ′,ε′) → (β ′,ε′)/σ .

The SRC (2.13) is studied in Section 4 for both deterministic and random covari-
ates. Under the Riesz condition on an infinite sequence of Gaussian covariates, we
prove that (2.13) holds with fixed 0 < c∗ < c∗ < ∞ and q∗ = a0n/{1 ∨ log(p/n)}
with large probability as (n,p) → (∞,∞) (cf. Remark 6). This allows the appli-
cation of Theorem 1 with p as large as exp(an) for a small fixed a > 0. Section 6
contains additional discussion of our and related results after we study the LASSO
estimation and SRC and prove Theorem 1.

3. The LASSO estimation. Here, we describe implications of Theorems 1
for the estimation properties of the LASSO. For simplicity, we confine this dis-
cussion to the special case where c∗, c∗, r1, r2, c0 and σ are fixed and λ/

√
n ≥

2σ
√

2(1 + c0)c∗ logp → ∞. In this case, M∗
k are fixed constants in (2.15), (2.16)

and (2.17), and the required configurations for (2.4), (2.13) and (2.19) in Theo-
rem 1 become

M∗
1 q + 1 ≤ q∗, η1 ≤

(
r2

1

c∗
)

qλ

n
, η2

2 ≤
(

r2
2

c∗
)

qλ2

n
.(3.1)

Of course, p,q and q∗ are all allowed to depend on n: for example, p � n > q∗ >

q → ∞.
Let A1 ≡ {j : β̂j (λ) �= 0 or j /∈ A0}. Set X1 ≡ XA1 and �11 ≡ �A1 as in (2.12).

Define b1 ≡ (bj , j ∈ A1)
′ for all b ∈ R

p . Consider the event (X,ε/σ) ∈ �0 in
Theorem 1, in which |A1| ≤ M∗

1 q . Since �11 ≥ c∗ by the SRC (2.13), the vector
v1 ≡ X1(β̂1 − β1) satisfies

‖v1‖2 = n‖�1/2
11 (β̂1 − β1)‖2 ≥ c∗n‖β̂1 − β1‖2.(3.2)

The inner product of β̂1 − β1 and the gradient g1 ≡ X′
1(y − Xβ̂) is

(β̂1 − β1)
′g1 = v′

1(y − X1β̂1) = v′
1(Xβ − X1β1 + ε) − ‖v1‖2.
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Since ‖g1‖∞ ≤ λ, and ‖Xβ − X1β1‖ ≤ η2,

‖v1‖ ≤ ‖Xβ − X1β1 + P1ε‖ + n−1/2‖�−1/2
11 g1‖

(3.3)

≤ η2 + ‖P1ε‖ + λ

( |A1|
c∗n

)1/2

,

where P1 ≡ X′
1�

−1
11 X1/n is the projection to the range of X1. Since rank(P1) =

|A1| ≤ M∗
1 q , we are able to show that ‖P1ε‖ is of the order σ

√
q logp under

the normality assumption. Thus, (3.2) and (3.3) lead to Theorem 3 below. The
inequality (2.21) plays a crucial role here since it controls |A1| and then allows the
application of the SRC.

THEOREM 3. Let c∗, c∗, r1, r2, c0 and σ be fixed and 1 ≤ q ≤ p → ∞. Let

λ = 2σ
√

2(1 + c′
0)c

∗n logp with a fixed c′
0 ≥ c0 and �0 be as in Theorem 1. Sup-

pose the conditions of Theorem 1 hold with configurations satisfying (3.1). There
then exist constants M∗

k depending only on c∗, c∗, r1, r2 and c′
0 and a set �̃q in the

sample space of (X,ε/σ) depending only on q such that

P {(X,ε/σ) /∈ �0 ∩ �̃q |X}
(3.4)

≤ e2/pc0 − 1 + 2

p1+c0
+

(
1

p2 + logp

p2/4

)(q+1)/2

→ 0

and the following assertions hold in the event (X,ε/σ) ∈ �0 ∩ �̃q :

‖X(β̂ − β)‖ ≤ M∗
4 σ

√
q logp(3.5)

and, for all α ≥ 1,

‖β̂ − β‖α ≡
( p∑

j=1

|β̂j − βj |α
)1/α

≤ M∗
5 σq1/(α∧2)

√
(logp)/n.(3.6)

REMARK 4. The convergence rates in (3.5) and (3.6) are sharp for the LASSO
under the given conditions since the convergence rate for (3.6) is q1/α(λ/n +
σ/

√
n), 1 ≤ α ≤ 2, for orthogonal designs and the bias for a single β̂j could be of

the order
√

q(logp)/n, even under the strong irrepresentable condition. Moreover,
by Foster and George (1994), the risk inflation factor

√
logp is optimal for (3.5)

and (3.6) with α = 2. We discuss related work in Section 6 after we study the SRC
and prove Theorem 1.

PROOF OF THEOREM 3. Define PA ≡ X′
A�−1

A XA/n with the notation
in (2.12) and

�̃q ≡
{

max
q<|A|≤p

‖PAε‖2

σ 2|A| ≤ 4 logp

}
.
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For deterministic A with rank(XA) = m, ‖PAε‖2/σ 2 ∼ χ2
m so that

P {‖PAε‖2/σ 2 ≥ m(1 + 4 logp)} ≤ {p−4(1 + 4 logp)}m/2,

by the standard large deviation inequality. It follows that

1 − P {�̃q} ≤
p∑

m=q+1

(
p

m

)
{p−4(1 + 4 logp)}m/2 ≤

(
1

p2 + logp

p2/4

)(q+1)/2

,

due to the facts that
(p
m

) ≤ pm/m! and 1 + 4 logp ≤ p2. Since q + 1 ≤ q∗, the
arguments for (3.2) and (3.3) are still valid if we require |A1| ≥ q + 1 (making A1
larger). Thus, (3.5) follows from (2.21) and (3.3), due to ‖P1ε‖ ≤ 2σ

√|A1| logp

in �̃q . Similarly, by both (3.2) and (3.3), we have, in �0 ∩ �̃q ,( ∑
j∈A1

|β̂j − βj |2
)1/2

≤ O(1)σ
√

|A1|(logp)/n

uniformly. Thus, since Ac
1 ⊆ A0, (3.6) follows from( ∑

j∈A0

|βj |α
)1/α

≤ O(1)σq1/(α∧2)
√

(logp)/n(3.7)

for α = 1,2 and α = ∞. For α = 1, (3.7) follows from the second inequality of
(3.1). For α = 2, #{j ∈ A0 : |βj | > λ/n} = O(q), by (3.7) for α = 1, so that, by the
SRC (2.13) and the third inequality of (3.1),

∑
j∈A0

β2
j I {|βj | > λ/n} ≤ O(1/n)

∥∥∥∥∥ ∑
j∈A0

βj xj I {|βj | > λ/n}
∥∥∥∥∥

2

≤ O(η2
2/n) = O(qλ2/n2).

Thus, (3.7) for α = 2 follows from α = 1. Finally, (3.7) for α = ∞ follows from
β2

j ≤ ‖βj xj‖2/(nc∗) ≤ η2
2/(nc∗). �

4. The sparse Riesz condition. In this section, we provide sufficient condi-
tions for the sparse Riesz condition. We divide the section into two subsections
respectively for deterministic and random design matrices X. In the case of ran-
dom design, the rows of X are assumed to be i.i.d. vectors, but the entries within a
row are allowed to be dependent.

We consider the sparse Riesz condition (2.13) and its general version

c∗(m) ≡ min|A|=m
min‖v‖=1

‖XAv‖2/n, c∗(m) ≡ max|A|=m
max‖v‖=1

‖XAv‖2/n,(4.1)

for ranks 0 ≤ m ≤ p, with the convention that c∗(0) ≡ c∗(0) ≡ √
c∗(1)c∗(1). This

includes (2.13) with c∗ = c∗(q∗) and c∗ = c∗(q∗). As we mentioned earlier, (4.1)
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reduces to the requirement that all of the eigenvalues of �A in (2.12) lie in the
interval [c∗(m), c∗(m)] when |A| ≤ m. If xj are standardized with x′

j xj /n = 1,

then c∗(1) = c∗(1) = 1. In general, c∗(1) ≤ ‖xj‖2/n ≤ c∗(1). It is clear that c∗(m)

is decreasing in m with c∗(n + 1) = 0, c∗(m) is increasing in m and the Cauchy-
Schwarz inequality gives the subadditivity c∗(m1 + m2) ≤ c∗(m1) + c∗(m2).

4.1. Deterministic design matrices. Proposition 1 below provides a simple
sufficient condition for (2.13). It is actually an �α-version of Geršgorin’s theorem.

PROPOSITION 1. Suppose that X is standardized with ‖xj‖2/n = 1. Let ρjk =
x′
j xk/n be the correlation. If

max|A|=q∗ inf
α≥1

{∑
j∈A

( ∑
k∈A,k �=j

|ρjk|α/(α−1)

)α−1}1/α

≤ δ < 1,(4.2)

then the sparse Riesz condition (2.13) holds with rank q∗ and spectrum bounds
c∗ = 1−δ and c∗ = 1+δ. In particular, (2.13) holds with c∗ = 1−δ and c∗ = 1+δ

if

max
1≤j<k≤p

|ρjk| ≤ δ

q∗ − 1
, δ < 1.(4.3)

REMARK 5. If δ = 1/3, then C ≡ c∗/c∗ = 2 and Theorem 1 is applicable for
(1.1) if 10q + 1 ≤ q∗ and η1 = 0 in (2.4).

PROOF OF PROPOSITION 1. Let �A = (ρjk)j∈A,k∈A be the covariance matrix
for variables in A, as in (2.12). Let |A| = q∗ and b = (b1, . . . , bq∗) be an eigenvec-
tor of �A with eigenvalue τ . Then,

bj + ∑
k �=j,k∈A

ρjkbk = τbj

so that, by the Hölder inequality,

∑
j∈A

|(1 − τ)bj |α = ∑
j∈A

∣∣∣∣∣∑
k �=j

ρjkbk

∣∣∣∣∣
α

≤ ∑
j∈A

(∑
k �=j

|ρjk|α/(α−1)

)α−1 ∑
k∈A

|bk|α.

After the cancellation of
∑

k∈A |bk|α , we find, by (4.2), that |1 − τ | ≤ δ. This
gives (2.13) with c∗ = 1 − δ and c∗ = 1 + δ as the interval [c∗, c∗] contains all
eigenvalues of �A with |A| = q∗. If (4.3) holds, then, as α → ∞,{∑

j∈A

( ∑
k∈A,k �=j

|ρjk|α/(α−1)

)α−1}1/α

≤ δ

q∗ − 1
{q∗(q∗ − 1)α−1}1/α

= δ(q∗)1/α(q∗ − 1)−1/α → δ.

The proof of Proposition 1 is complete. �



SPARSITY AND BIAS OF LASSO 1579

4.2. Random design matrices. Suppose we would like to investigate the linear
relationships between a response variable Y and infinitely many possible covari-
ates {ξk, k = 1,2, . . .}. Suppose that in the nth experiment, we collect a sample
from the dependent variable Y and p covariates so that we observe n independent
copies (y(n), x

(n)
ij , j = 1, . . . , p(n)) of the random vector (Y, ξkj

, j = 1, . . . , p) for

certain k1 < · · · < kp , p ≡ p(n). In this case, the linear model (1.1) becomes

y
(n)
i =

p∑
j=1

β
(n)
j x

(n)
ij + ε

(n)
i .(4.4)

In what follows, the superscript (n) is often omitted.
The infinite population sequence {ξj , j = 1,2, . . .} satisfies the Riesz condition

if there exist fixed 0 < ρ∗ < ρ∗ < ∞ such that

ρ∗
∞∑

j=1

b2
j ≤ E

∣∣∣∣∣
∞∑

j=1

bj ξj

∣∣∣∣∣
2

≤ ρ∗
∞∑

j=1

b2
j(4.5)

for all constants bj . Let xi ≡ (x
(n)
i1 , . . . , x

(n)
ip ) be the row vectors of X ≡

(x
(n)
ij )n×p = (x1, . . . ,xp) in (4.4). Since xi , i = 1, . . . , n, are i.i.d. copies of

(ξk1, . . . , ξkp), (4.5) implies that

ρ∗‖b‖2 ≤ E

∣∣∣∣∣
p∑

j=1

bj ξkj

∣∣∣∣∣
2

= E

n∑
i=1

(b′xi )2

n
= E‖Xb‖2

n
≤ ρ∗‖b‖2.

However, this does not guarantee that 0 < κ ≤ c∗(m) < c∗(m) ≤ 1/κ with large
probability for all m. In particular, we always have c∗(n + 1) = 0.

PROPOSITION 2. Suppose that the n rows of a random matrix Xn×p are i.i.d.
copies of a subvector (ξk1, . . . , ξkp) of a zero-mean random sequence {ξj , j =
1,2, . . .} satisfying (4.5). Let c∗(m) and c∗(m) be as in (4.1).

(i) Suppose {ξk, k ≥ 1} is a Gaussian sequence. Let εk , k = 1,2,3,4, be posi-
tive constants in (0,1) satisfying m ≤ min(p, ε2

1n), ε1 +ε2 < 1 and ε3 +ε4 = ε2
2/2.

Then, for all (m,n,p) satisfying log
(p
m

) ≤ ε3n,

P {τ∗ρ∗ ≤ c∗(m) ≤ c∗(m) ≤ τ ∗ρ∗} ≥ 1 − 2e−nε4,(4.6)

where τ∗ ≡ (1 − ε1 − ε2)
2 and τ ∗ ≡ (1 + ε1 + ε2)

2.
(ii) Suppose maxj≤p ‖ξkj

‖∞ ≤ Kn < ∞. Then, for any τ∗ < 1 < τ ∗, there ex-
ists a constant ε0 > 0 depending only on ρ∗, ρ∗, τ∗ and τ ∗ such that

P {τ∗ρ∗ ≤ c∗(m) ≤ c∗(m) ≤ τ ∗ρ∗} → 1

for m ≡ mn ≤ ε0K
−1
n

√
n/ logp, provided

√
n/Kn → ∞.
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REMARK 6. By the Stirling formula, for p/n → ∞,

m ≤ ε3n/ log(p/n) ⇒ log
(

p

m

)
≤ (

ε3 + o(1)
)
n.

Thus, Proposition 2(i) is applicable up to p = ean for some small a > 0.

REMARK 7. Supposing m = p, p/n → ε2
1 ∈ (0,1) and ξj are i.i.d. N(0,1),

Geman (1980) proved c∗(m) → (1 + ε1)
2 and Silverstein (1985) proved ρ∗ →

(1 − ε1)
2. Silverstein’s results can be directly used to prove bounds similar to (4.6)

[cf. Zhang and Huang (2006)]. We refer to Bai (1999) and Davidson and Szarek
(2001) for further discussion on random covariance matrices.

PROOF OF PROPOSITION 2. (i) Let Sm−1 be the unit sphere of R
m and

Pm : Rp → R
m be m × p projection matrices taking m out of p coordinates of

R
p . Define

τ−(Pm) ≡ inf
b∈Sm−1

‖XP′
mb‖2

E‖XP′
mb‖2 , τ+(Pm) ≡ sup

b∈Sm−1

‖XP′
mb‖2

E‖XP′
mb‖2 .

Since ρ∗ ≤ E‖XP′
mb‖2/n ≤ ρ∗, by (4.1), we have

Pm,n,p ≡ P {τ∗ρ∗ ≤ c∗(m) ≤ c∗(m) ≤ τ ∗ρ∗}
(4.7)

≥ P

{
τ∗ ≤ min

Pm

τ−(Pm) ≤ max
Pm

τ+(Pm) ≤ τ ∗
}
.

For a fixed Pm, let �m be the m × m population covariance matrices of the rows
of XP′

m and U ≡ XP′
m�

−1/2
m . Since U is then an n × m matrix of N(0,1),

τ+(Pm) = sup
b∈Sm−1

‖U�
1/2
m b‖2

n‖�1/2
m b‖2

= sup
b∈Sm−1

‖Ub‖2/n = λmax(W/n)

and τ−(Pm) = λmin(W/n), where W ≡ U′U is an m × m matrix with the Wishart
distribution Wm(I, n) [cf. Eaton (1983)]. Since m/n ≤ ε2

1 , for the prescribed τ∗
and τ ∗, Theorem II.13 of Davidson and Szarek (2001) gives

max
(
P {λmin(W/n) ≤ τ∗},P {λmax(W/n) ≥ τ ∗}) ≤ e−nε2

2/2.

Thus, since there exist a total of
(p
m

)
choices of Pm, by (4.7),

−Pm,n,p ≤
(

p

m

)(
1 − P {τ∗ ≤ λmin(W/n) ≤ λmax(W/n) ≤ τ ∗})

(4.8)

≤ 2
(

p

m

)
e−nε2

2/2 ≤ 2e−nε4 .
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(ii) Define fn(b) ≡ (‖XP′
mb‖2/n)1/2 and f (b) ≡ (Ef 2

n (b))1/2. By (4.5),
f 2(b)/‖b‖2 ∈ [ρ∗, ρ∗] for all b �= 0. Since both fn and f are norms in R

m,∣∣∣∣fn(b + b̃)

f (b + b̃)
− fn(b)

f (b)

∣∣∣∣ ≤
(

fn(̃b)

f (̃b)
+ fn(b)

f (b)

)
f (̃b)

f (b + b̃)
.

Let Sm−1
ε1

be an ε1-net in Sm−1 with 2ε1
√

ρ∗/ρ∗ ≤ 1/5. We have

τ
1/2
+ (Pm) ≤ max

b∈Sm−1
ε1

fn(b)

f (b)
+ 2τ

1/2
+ (Pm)ε1

√
ρ∗
ρ∗

≤ 5

4
max

b∈Sm−1
ε1

fn(b)

f (b)

and

τ
1/2
− (Pm) ≥ min

b∈Sm−1
ε1

fn(b)

f (b)
− 1

5
τ

1/2
+ (Pm).

Since f 2
n (b)/f 2(b) is the average of n i.i.d. variables, each with mean 1 and uni-

formly bounded by mK2
n/ρ∗, by the Bernstein inequality, we have

P {|f 2
n (b)/f 2(b) − 1| > 7/25} ≤ 2 exp

(−ε2n

mK2
n

)
for certain ε2 depending on ρ∗ only. Thus, for τ ∗ = (5/4)2(1 + 7/25) = 2 and
τ∗ = (

√
1 − 7/25 − √

2/5)2 = 8/25, we have

1 − Pm,n,p ≤ 2
(

p

m

)
|Sm−1

ε1
| exp

(−ε2n

mK2
n

)
.

Since |Sm−1
ε1

|/m! = O(1), Pm,n,p → 1 for ε2n/(mK2
n) > 2m logp. This proves (ii)

for the specific {τ∗, τ ∗}. We omit the proof for the general {τ∗, τ ∗}. �

5. Proof of Theorem 1. Taking the scale change {ε,β, λ} → {ε/σ,β/σ,λ/σ }
if necessary, we assume ε ∼ N(0, I), without loss of generality. It follows from the
Karush–Kuhn–Tucker condition that a vector b ≡ (b1, . . . , bp)′ is the solution β̂
of (2.2) and only if {

x′
j (y − Xb) = sgn(bj )λ, |bj | > 0,

|x′
j (y − Xb)| ≤ λ, bj = 0.

(5.1)

This allows us to define slightly more general versions of the Â in (2.3) and its
dimension as

{j : β̂j �= 0} ⊆ A1 ⊆ {j : |x′
j (y − Xβ̂)| = λ} ∪ Ac

0, q1 ≡ |A1|.(5.2)

Set A2 ≡ {1, . . . , p} \ A1, A3 ≡ A1 \ A0, A4 ≡ A1 ∩ A0, A5 ≡ A2 \ A0 and
A6 ≡ A2 ∩ A0. For Ak ⊂ Aj , let Qkj be the matrix representing the selection
of variables in Ak from Aj , defined as Qkjβj = βk , where βk ≡ (βj , j ∈ Ak).
For example, β ′

1 = β ′
3Q31 + β ′

4Q41 since A1 = A3 ∪ A4 and A3 ∩ A4 = ∅. We
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TABLE 1
Sets of variables considered in the proof

“Large” |βj | “Small” |βj | Quantities
j /∈ A0 j ∈ A0 to be bounded

A1 : selected j and some j /∈ A0 A3 A4 q̂ ≤ q1 ≡ |A1|
A2 : j not in A1 A5 A6 ‖(I − P̂)Xβ‖

define matrices �jk ≡ n−1X′
j Xk , and the projection P1 from R

n to the span of
{xj , j ∈ A1}. We apply all arithmetic and logic operations and univariate functions
to vectors componentwise. For example, v×|β| = (v1|β1|, . . . , vp|βp|)′. The SRC
(4.1) for a general rank m is used in most parts of the proof, rather that (2.13). Ta-
ble 1 summarizes the meanings of the index sets Aj .

We note that q̂ = q1 and P̂ = P1 when we choose the smallest possible A1 in
(5.2) and that A5 = ∅ when we choose the largest possible A1. In our analysis
of the LASSO, quantities related to the coefficients in the sets Aj , j = 0,1,2, are
often decomposed into those involving the more specific sets Aj , j = 3,4,5,6.

It follows from (5.1) that

sj ≡ X′
Aj

(y − Xβ̂)/λ ∈ [−1,1], j = 1,3,4.(5.3)

Our goal is to find upper bounds for the dimension q1 ≡ |A1| and the bias terms
‖(I−P1)Xβ‖ and ‖β5‖ for all the A1 in (5.2). By (5.1), (5.2) and Table 1, we have
|s4| = 1 for each component so that ‖s4‖2 = |A4| and q1 ≡ |A1| = |A3| + |A4| ≤
q + ‖s4‖2. Our plan is to find upper bounds for the lengths of the vectors v14, w2
and β5, where

v1j ≡ λ

n1/2 �
−1/2
11 Q′

j1sj , wk ≡ (I − P1)Xkβk,(5.4)

for j = 3,4 and k = 2, . . . ,6. Since Xβ = X1β1 + X2β2 and (I − P1)X1β1 = 0,
by (5.4) and (4.1), the fact that ‖s4‖2 = |A4| implies that

‖v14‖2 ≥ λ2(q1 − q)

nc∗(q1)
, ‖w2‖2 = ‖(I − P1)Xβ‖2.(5.5)

Thus, we proceed to find upper bounds for ‖v14‖, ‖w2‖ and ‖β5‖.
We divide the rest of the proof into three steps. Step 1 proves that the quadratic

‖v14‖2 + ‖w2‖2 is no greater than a linear function of {‖v14‖,‖w2‖,‖β5‖1,

‖P1X2β2‖} with a stochastic slope. This step is crucial since the identity and in-
equalities in the Karush–Kuhn–Tucker (5.1) must be combined in a proper way
to cancel out the cross-product term of s4 and β5. Step 2 translates the results of
Step 1 into upper bounds for q1, ‖w2‖2 and ‖β5‖2, essentially with careful appli-
cations of the Cauchy–Schwarz inequality, for a suitable level of the random slope
and the prescribed penalty levels λ. The upper bounds in Step 2 are of the same
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form as in the conclusions of the theorem, but still involve c∗(|A|) and c∗(|A|) with
random A ⊂ A1 ∪A5 instead of the c∗ and c∗ specified in (2.13). Step 3 completes
the proof by finding probabilistic bounds for the random slope and by showing
|A1 ∪ A5| ≤ q∗ for the rank q∗ in (2.13). We need a lemma for the interpretation
of (4.1).

LEMMA 1. Let c∗(m) and c∗(m) be as in (4.1). Let Ak ⊂ {1, . . . , p}, Xk ≡
(xj , j ∈ Ak) and �1k ≡ X′

1Xk/n. Then,

‖v‖2

c∗(|A1|) ≤ ‖�−1/2
11 v‖2 ≤ ‖v‖2

c∗(|A1|) , ‖βk‖2
1 ≤ ‖Xkβk‖2|Ak|

nc∗(|Ak|) ,(5.6)

for all v of proper dimension. Furthermore, if Ak ∩ A1 = ∅, then

‖βk‖2 + ‖�−1
11 �1kβk‖2 ≤ ‖(I − P1)Xkβk‖2

nc∗(|A1 ∪ Ak|) ,(5.7)

where P1 is the projection to the span of {xj , j ∈ A1}.
REMARK 8. For A5 ≡ {j : j /∈ A0, β̂j = 0}, Lemma 1 gives ζ 2

2 = ‖β5‖2 ≤
(B̃ + η2)

2/(nc∗), provided |A1 ∪ A5| ≤ q∗ under the SRC (2.13).

PROOF OF LEMMA 1. We only prove the inequality of (5.7), since the rest
of the lemma follows directly from the Cauchy–Schwarz inequality and (4.1). Let
v ≡ −�−1

11 �1kβk . Since (I − P1)Xkβk = X1v + Xkβk ,

‖(I − P1)Xkβk‖2 = (v′,β ′
k)(X1,Xk)

′(X1,Xk)

(
v
βk

)
≥ nc∗(|A1 ∪ Ak|)(‖v‖2 + ‖βk‖2).

The proof of Lemma 1 is complete. �

Step 1. In this step, we prove

‖v14‖2 + ‖w2‖2 ≤ (‖v14‖2 + ‖w2‖2)1/2|u′ε| + (‖β5‖1 + η1)λ
(5.8)

+ (‖v14‖ + ‖P1X2β2‖)
(

λ2|A3|
nc∗(q1)

)1/2

,

where u is a (random) unit vector in R
n defined as

u ≡ X1�
−1
11 Q′

41s4λ/n − w2

‖X1�
−1
11 Q′

41s4λ/n − w2‖
.(5.9)

Since the eigenvalues of �11 are no smaller than c∗(q1), we assume, without
loss of generality, that �11 is of full rank. Since Xβ̂ = X1β̂1 by (5.2), (5.3) gives
X′

1(y − X1β̂1) = s1λ so that

X′
1X1β̂1 = X′

1y − s1λ = X′
1X1β1 + X′

1X2β2 + X′
1ε − s1λ.
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This and the definition �jk ≡ X′
j Xk/n yield

β̂1 − β1 = �−1
11 �12β2 + �−1

11 X′
1ε/n − �−1

11 s1λ/n.(5.10)

Inserting (5.10) into the second part of (5.1), we find that λ is a componentwise
upper bound of the absolute value of the vector

X′
2(y − Xβ̂)

= X′
2(X1β1 + X2β2 + ε − X1β̂1)

= n�21β1 + n�22β2 + X′
2ε

− n�21(β1 + �−1
11 �12β2 + �−1

11 X′
1ε/n − �−1

11 s1λ/n)

= n(�22 − �21�
−1
11 �12)β2 + (X′

2 − �21�
−1
11 X′

1)ε + �21�
−1
11 s1λ.

Since n(�22 −�21�
−1
11 �12) = X′

2(I − P1)X2 and X′
2 −�21�

−1
11 X′

1 = X′
2(I − P1),

−λ ≤ X′
2(I − P1)X2β2 + X′

2(I − P1)ε + �21�
−1
11 s1λ ≤ λ.(5.11)

Taking the inner product of λQ′
41s4 and (5.10), we obtain, after some algebra, that,

by (5.4) and Table 1,

v′
14(v13 + v14)

= s′
4Q41�

−1
11 s1λ

2/n(5.12)

= s′
4Q41�

−1
11 �12β2λ + s′

4Q41�
−1
11 X′

1ελ/n + s′
4(β4 − β̂4)λ.

Similarly, the inner product of β2 and (5.11) yields

‖w2‖2 = β ′
2X′

2(I − P1)X2β2

≤ −β ′
2X′

2(I − P1)ε − β ′
2�21�

−1
11 λs1 + ‖β2‖1λ

= −w′
2ε − s′

1�
−1
11 �12β2λ + ‖β2‖1λ.

Since s′
4β̂4 ≥ 0, by (5.1), and ‖β2‖1 + s′

4β4 ≤ ‖β2‖1 +‖β4‖1 = ‖β5‖1 +‖β0‖1 ≤
‖β5‖1 + η1, by (2.4) and Table 1, the sum of (5.12) and the above inequality gives

‖v14‖2 + ‖w2‖2 + v′
14v13

≤ (s′
4Q41�

−1
11 X′

1λ/n − w′
2)ε

− s′
3Q31�

−1
11 �12β2λ + (‖β2‖1 + s′

4β4)λ(5.13)

≤ ‖X1�
−1
11 Q′

41s4λ/n − w2‖ · |u′ε|
+ ‖v13‖ · ‖�−1/2

11 �12β2‖
√

n + (‖β5‖1 + η1)λ,

by the definition of u in (5.9). Since ‖X1�
−1/2
11 v‖2/n = ‖v‖2 for all v ∈ R

|A1|
and w2 is orthogonal to X1, we find that ‖X1�

−1
11 Q′

41s4λ/n − w2‖ = (‖v14‖2 +
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‖w2‖2)1/2. Similarly, ‖�−1/2
11 �12β2‖

√
n = ‖P1X2β2‖. Thus, by (5.13), ‖v14‖2 +

‖w2‖2 is bounded by

(‖v14‖2 + ‖w2‖2)1/2|u′ε| + (‖β5‖1 + η1)λ + (‖v14‖ + ‖P1X2β2‖)‖v13‖.
This implies (5.8), since, by (5.3), (5.4) and (5.6),

‖v13‖2 = (λ2/n)s′
3Q31�

−1
11 Q′

31s3 ≤ λ2|A3|/{nc∗(q1)}.
Step 2. Let B1 ≡ (qλ2/{nc∗(q1)})1/2 and B2 ≡ (qλ2/{nc∗(q ∨ q1)})1/2. Con-

sider, in this step, the event

|u′ε|2 ≤ λ2(q1 ∨ 1)

4nc∗(q1)
= (q1 ∨ 1)

B2
1

4q
.(5.14)

We will later show that this event has high probability. We prove that, with q1 ≡
|A1| and in the event (5.14),

(q1 − q)+
(5.15)

≤
{

1 + 4c∗(q1)
η1n

λq
+ 4

√
c∗(q1)

c∗(q1)

(
c∗(q1)η

2
2n

λ2q

)1/2

+ 4c∗(q1)

c∗(q1)

}
q,

provided that the A1 in (5.2) contains all labels j for “large” βj ,

{j : β̂j (λ) �= 0 or j /∈ A0}
(5.16)

⊆ A1 ⊆ {
j : |xj {y − Xβ̂(λ)}| = λ or j /∈ A0

}
.

Moreover, for general A1 satisfying (5.2), we prove that in the event (5.14),

‖w2‖2 ≤ 8

3

(
B2

1

4
+ η1λ + √

2
(
1 + √

C5
)
η2B2 + B2

2

2
+ 4

3
C5B

2
2

)
,(5.17)

with C5 ≡ c∗(|A5|)/c∗(|A1 ∪ A5|), and, for c∗,5 ≡ c∗(|A1 ∪ A5|),

nc∗,5‖β5‖2 ≤ 8

3

{
B2

1

4
+ η1λ + η2

(
λ2q

nc∗(q1)

)1/2

+ λ2q

2nc∗(q1)
− 3η2

2

4

}
(5.18)

+
{

4

3

(
qλ2

nc∗,5

)1/2√
1 + c∗(|A5|)/c∗(q1) + 2η2

}2

.

By (5.14) and (5.5), we have |u′ε|2 ≤ (‖v14‖2 + B2
1 )/4 so that

(‖v14‖2 + ‖w2‖2)1/2|u′ε| ≤ 1

4
(‖v14‖2 + ‖w2‖2) + |u′ε|2

≤ 1

2

(
‖v14‖2 + ‖w2‖2 + B2

1

2

)
.
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Inserting this inequality into (5.8), we find, by algebra, that

‖v14‖2 + 3

2
‖w2‖2

(5.19)

≤ B2
1

2
+ 2(‖β5‖1 + η1)λ + 2(‖v14‖ + ‖X2β2‖)

(
λ2|A3|
nc∗(q1)

)1/2

.

We first prove (5.15) under (5.16). It follows from (5.16) and Table 1 that
A5 = ∅, so ‖β5‖1 = 0, |A3| = q ≤ q1 and ‖�−1/2

11 �12β2‖
√

n = ‖P1X2β2‖ =
‖P1X6β6‖ ≤ η2, by (2.10). Thus, (5.19) implies

‖v14‖2 + 3

2
‖w2‖2 ≤ B2

1

2
+ 2η1λ + 2(‖v14‖ + η2)B2.

Since x2 ≤ c + 2bx implies x2 ≤ (b + √
b2 + c)2 ≤ 2c + 4b2 for x = ‖v14‖, it

follows that

‖v14‖2 ≤ B2
1 + 4η1λ + 4η2B2 + 4B2

2 .

Since ‖v14‖2 ≥ (q1 − q)+λ2/{nc∗(q1)}, by (5.5), we find, by the definition of B1

and B2, that

(q1 − q)+ ≤ q + c∗(q1)n

λ2

{
4η1λ + 4η2

(
λ2q

c∗(q1)n

)1/2

+ 4qλ2

nc∗(q1)

}
.

This gives (5.15) by simple algebra.
For general A1 satisfying (5.2), A5 is no longer empty. Still, since |A3|+ |A5| ≤

q by Table 1 and ‖�−1/2
11 �12β2‖

√
n = ‖P1X2β2‖, we have, by (5.6), that(

λ2|A3|
nc∗(q1)

)1/2

‖�−1/2
11 �12β2‖

√
n + ‖β5‖1λ

≤
(

λ2|A3|
nc∗(q1)

)1/2

‖P1X2β2‖ +
(

λ2|A5|
nc∗(q)

)1/2

‖X5β5‖

≤
(

2λ2q

nc∗(q1 ∨ q)

)1/2

max(‖P1X2β2‖,‖X5β5‖).

Moreover, it follows from Table 1, (4.1), (5.4), (5.7) and (2.10) that

max(‖X2β2‖,‖X5β5‖) ≤
√

nc∗(|A5|)‖β5‖2 + ‖X6β6‖
≤ √

C5‖w5‖ + ‖X6β6‖ ≤ √
C5‖w2‖ + (

1 + √
C5

)
η2,

with C5 ≡ c∗(|A5|)/c∗(|A1 ∪ A5|). Applying these inequalities to the right-hand
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side of (5.19), we find that

‖v14‖2 + 3

2
‖w2‖2

≤ B2
1/2 + 2η1λ + 2‖v14‖

(
λ2|A3|
nc∗(q1)

)1/2

+ 2
(√

C5‖w2‖ + (
1 + √

C5
)
η2

)( 2λ2q

nc∗(q1 ∨ q)

)1/2

≤ B2
1/2 + 2η1λ + 2

(
1 + √

C5
)
η2

√
2B2

+ 2B2
(‖v14‖ + √

2C5‖w2‖)
since |A3| ≤ q and B2

2 ≡ λ2q/{nc∗(q1 ∨ q). With 2‖v14‖B2 ≤ ‖v14‖2 + B2
2 , the

above inequality gives

‖w2‖2 ≤ (2/3)
(
B2

1/2 + 2η1λ + 2
√

2
(
1 + √

C5
)
η2B2 + B2

2
)

+ (4/3)
√

2C5B2‖w2‖.
Since x2 ≤ c + bx implies that x2 ≤ 2c + b2 for x = ‖w2‖, this gives (5.17).

The proof of (5.18) differs slightly from that of (5.17). It suffices to consider
the case of ‖β5‖√nc∗,5 ≥ η2. By Table 1, (5.4), the definition of η2 with (2.10)
and (5.7), ‖w2‖ + η2 ≥ ‖w5‖ ≥ ‖β5‖√nc∗,5 with c∗,5 ≡ c∗(|A1 ∪ A5|), so
‖w2‖2 ≥ (‖β5‖√nc∗,5 − η2)

2. By (2.10) and (4.1), ‖X2β2‖ ≤ η2 + ‖X5β5‖ ≤
η2 + √

nc∗(|A5|)‖β5‖. Thus, since 2‖v14‖
√

λ2|A3|/{nc∗(q1)} ≤ ‖v14‖2 + λ2q/

{nc∗(q1)}, (5.19) implies that

3

2

(‖β5‖√nc∗,5 − η2
)2

≤ B2
1

2
+ 2(‖β5‖1 + η1)λ + λ2q

nc∗(q1)

+ 2
(
η2 + ‖β5‖

√
nc∗(|A5|))( λ2|A3|

nc∗(q1)

)1/2

.

Since ‖β5‖2
1 ≤ |A5| · ‖β5‖2 and |A3| + |A5| = q , by Cauchy–Schwarz,

‖β5‖1λ + ‖β5‖
√

nc∗(|A5|)
(

λ2|A3|
nc∗(q1)

)1/2

≤ ‖β5‖λ
(√|A5| +

√
c∗(|A5|)|A3|/c∗(q1)

)
≤ ‖β5‖λ√

q
(
1 + c∗(|A5|)/c∗(q1)

)1/2
.
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It follows from the above two inequalities that

‖β5‖2nc∗,5

≤ 2

3

{
B2

1

2
+ 2η1λ + λ2q

nc∗(q1)
+ 2η2

(
λ2q

nc∗(q1)

)1/2

+ 2‖β5‖λ√
q
(
1 + c∗(|A5|)/c∗(q1)

)1/2 + 3η2‖β5‖√nc∗,5

}
− η2

2

≤ 4

3

(
B2

1

4
+ η1λ + η2

(
λ2q

nc∗(q1)

)1/2

+ λ2q

2nc∗(q1)
− 3η2

2

4

)

+ ‖β5‖√nc∗,5

{
4λ

√
q

3
√

nc∗,5

(
1 + c∗(|A5|)/c∗(q1)

)1/2 + 2η2

}
.

Again, since x2 ≤ c+2bx implies that x2 ≤ 4b2 +2c for b2 +c ≥ 0, (5.18) follows.
Step 3. In this step, we find probabilistic bounds. We shall take more generous

bounds c∗(m) = c∗ and c∗(m) = c∗ in (4.1) for m ≤ q∗ with the given constants c∗
and c∗ in (2.13) and consider the event

q1 ≤ |A1 ∪ A5| ≤ q∗, |u′ε|2 ≤ (q1 ∨ 1)λ2

4c∗n
.(5.20)

In this event, we have C5 = C = c∗/c∗ by (2.15) and c∗,5 = c∗. Moreover,
by (2.14) and the definition of B1 and B2 in Step 2, we have r2

1 = η1λ/B2
1 ,

r2
2 = η2

2/B
2
1 and B2

2 = CB2
1 . Thus, by (2.15), (2.16) and (2.17), in the event (5.20),

the assertions (5.15), (5.17) and (5.18) of Step 2 become

(q1 − q)+ + q ≤ (
1 + 4r2

1 + 4
√

Cr2 + 4C
)
q + q = M∗

1 (λ)q,(5.21)

‖w2‖2 ≤ 8

3

{
1

4
+ r2

1 + r2
√

C
(√

2 + √
2C

) + C

(
1

2
+ 4

3
C

)}
B2

1

(5.22)

= M∗
2 (λ)

qλ2

c∗n
and

nc∗‖β5‖2

≤ 8

3

(
1

4
+ r2

1 + r2
√

C + C

2
− 3r2

2

4

)
B2

1

+
(

4

3

√
C

√
1 + C + 2r2

)2

B2
1(5.23)

= 8

3

{
1

4
+ r2

1 + r2
√

C
(
1 + 2

√
1 + C

) + 3r2
2

4
+ C

(
7

6
+ 2

3
C

)}
B2

1

= M∗
3 (λ)

qλ2

c∗n
.
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We note that since the constants r1, r2 and C depend only on (λ, q, η1, η2, c∗, c∗)
and (5.16) simply requires larger A1, (5.21) holds for all A1 satisfying (5.2). This
is not the case in Step 2 since c∗(q1) and c∗(q1) are used without (5.20). In view
of (5.2), (5.4) and Table 1, (5.21), (5.22) and (5.23) match the assertions of the
theorem. Thus, it remains to show that (5.20) holds for all λ satisfying (2.19) with
the probability in (2.20).

It follows from (5.9) and (5.4) that |u′ε| is no greater than

χ∗
m ≡ max|A|=m

max
s∈{±1}m

∣∣∣∣ε′ XA(X′
AXA)−1sλ − (I − PA)Xβ

‖XA(X′
AXA)−1sλ − (I − PA)Xβ‖

∣∣∣∣,(5.24)

for q1 = m ≥ 0. Define as Borel sets in R
n×(p+1)

�m0 ≡ {
(X,ε) :χ∗

m ≤
√

2(1 + c0)(m ∨ 1) log(p ∨ an) ∀m ≥ m0
}
.

Since 2(1 + c0)(m ∨ 1) log(p ∨ an) ≤ (m ∨ 1)λ2/(4c∗n) by (2.19),

(X,ε) ∈ �m0 ⇒ |u′ε|2 ≤ (q1 ∨ 1)λ2

4c∗n
for q1 ≥ m0 ≥ 0.(5.25)

By (5.1), (5.16) and the continuity of β̂(λ) in λ, we are able to choose A1 so that it
changes one-at-a-time, beginning from the initial λ = ∞ with β̂ = 0 to the lower
bound in (2.19). Thus, since M∗

1 (λ)q +1 ≤ q∗, by (2.19) and (2.18) for such λ, and
since the path of q1 cannot cross the gap between M∗

1 (λ)q , and M∗
1 (λ)q + 1 due to

the continuity of M∗
1 (λ) in λ, (5.21) and (5.25) imply that for all λ satisfying (2.19),

(X,ε) ∈ �q

(5.26)
⇒ q1 ≡ #{j : |xj (y − Xβ̂)| = λ or j /∈ A0} ≤ M∗

1 (λ)q.

By (5.24), χ∗
m is the maximum of

(p
m

)
2m∨1 standard normal variables, so

1 − P {(X,ε) ∈ �0}

≤
∞∑

m=0

2m∨1
(

p

m

)
exp

(−(m ∨ 1)(1 + c0) log(p ∨ an)
)

(5.27)

≤ 2

(p ∨ an)1+c0
+ exp

(
2p

(p ∨ an)1+c0

)
− 1.

The proof is complete, since (5.20) follows from (5.25), (5.26) and (5.27). �

6. Related results and final remarks. In this section, we discuss some re-
lated results and make a few final remarks.

Meinshausen and Buhlmann (2006) and Zhao and Yu (2006) proved the sign-
consistency P {sgn(β̂j ) = sgn(βj ) ∀j} → 1, with the convention sgn(0) ≡ 0, for
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the LASSO under (2.5) and the strong irrepresentable condition

‖�21�
−1
11 s1‖∞ < 1 − κ, for some κ > 0,(6.1)

where �jk ≡ XAj
XAk

/n and s1 ≡ sgn(β1), with β1 ≡ (βj , j ∈ A1), A1 ≡
{j :βj �= 0} and A2 ≡ Ac

1. We note that the definition of A1 here is different from
(5.2) or (5.16). Between the two papers, Zhao and Yu (2006) imposed weaker con-
ditions on {n,p, q,β, λ} as

λ ≥ nκ1
√

n logp, min
βj �=0

β2
j ≥ nκ2

qλ2

n2 , n ≥ nκ3q logp,(6.2)

for large n and some constants κj > 0, where q ≡ #{j :βj �= 0}.
Although (6.2) is not sharp, a careful study of the arguments in these two papers

reveals that under (6.1), condition (6.2) can be weakened to

κλ

σ
≥ √

na2n, s1

(
β1 − λ

n
�11s1

)
≥ σ

√
a1n diag(�−1

11 )/n(6.3)

(for each component), for the sign-consistency, via (5.10) and (5.11), provided
ε ∼ N(0, σ 2I), ‖xj‖2 = n ∀j , 2 log(p − q) ≤ a2n → ∞ and 2 logq ≤ a1n → ∞.
This approach was taken in Wainwright (2006) under a stronger version of (6.3).
Furthermore, for random designs X with i.i.d. Gaussian rows, Wainwright (2006)
proved that the empirical version of his conditions on X follow from a population
version of them.

Compared with these results on the sign-consistency, our focus is the properties
of the model Â selected by the LASSO under milder conditions. We impose the
sparse Riesz condition (2.13), instead of (6.1), to prove the rate-consistency (2.11)
in Theorem 1 in terms of the sparsity, bias and the norm of missing large coeffi-
cients. We replace the nκj , j = 1,2,3, in (6.2) by specific constants in, respec-
tively, (2.19), Theorem 2 and Proposition 2. The second and third inequalities
in (6.2) are not imposed as conditions in Theorem 1. Moreover, we allow many
small nonzero coefficients, as long as the sum of their absolute values is of the
order O(qλ/n). Desirable properties of the LASSO estimator follow as in Sec-
tion 3 once we establish the appropriate upper bound for the dimension |Â| of the
LASSO selection.

Zhao and Yu (2006) and Zou (2006) (for fixed p) showed that the irrepre-
sentable condition is necessary for the zero-consistency: βj �= 0 ⇔ β̂j �= 0 with
high probability. It follows from the Karush–Kuhn–Tucker condition (5.1) that
when ε = 0, the weaker version of (6.1) with κ = 0 is necessary and sufficient
for (2.2) to be zero-consistent. However, the irrepresentable condition is some-
what restrictive. As mentioned in Zhao and Yu (2006), (6.1) holds for all possible
signs of β if and only if the norm of �21�

−1
11 is less than 1−κ as a linear mapping

from (Rq,‖ · ‖∞) to (Rp−q,‖ · ‖∞). Without knowing the set A1 of nonzero βj , it
is not clear how to verify (6.1), other than using simple bounds on the correlation
x′
j xk for j �= k, as in Zhao and Yu (2006). Since ‖�−1

11 s1‖2 is typically of the order
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‖s1‖2 = q , (6.1) is not a consequence of the �2-based sparse Riesz condition (2.13)
in general. For certain large data sets, it is reasonable to expect large ‖s1‖2 = q ,
even under the assumption q � min(n,p). In this case, (6.1) is quite restrictive.

Bunea, Tsybakov and Wegkamp (2006) and var de Geer (2007) studied con-
vergence rates of ‖Xβ̂ − Xβ‖2 and ‖β̂ − β‖1 under the sparsity condition (2.5)
and for random designs of the form xij = ψj(x

i), where xi are i.i.d. variables
and ψj are suitable basis functions, that is, with the rows of X being i.i.d. copies
of (ξ1, . . . , ξp) as in Section 4.2. Bunea, Tsybakov and Wegkamp (2006) ob-
tained (3.5) and (3.6) for α = 1 under two sets of conditions. The first set in-
cludes the lower bound ρ∗ > 0 in (4.5), uniform upper bounds for ‖ξj‖∞ and q ≤
c0ρ∗

√
n/ logp as in Proposition 2(ii). The second set relaxes the restriction on q to

q ≤ c0
√

n/ logp, but relies on the correlation bound |corr(ψj ,ψk)| ≤ 1/(45q) for
βk �= 0 = βj , which has the flavor of the strong irrepresentable condition (6.1). In
fact, the sample version of this condition implies |�21�

−1
11 s1| ≤ 1/{45λmin(�11)}.

van de Geer (2007) considered more general forms of loss function and risk bounds
under maxj≤p ‖ξj‖∞ ≤ Kn. An interesting aspect of her result is the use of D(β∗)
in place of q in her version of (3.5) and (3.6), where β∗ is the solution of (2.2)
at y = Xβ and D(β) is an upper bound of (

∑
βj �=0 |bj |)2/E|∑j bjψj |2. Since

D(β) = #{j :βj �= 0}/ρ∗ works under the Riesz condition and van de Geer (2007)
does not assume (4.5) or (6.1), her upper bounds are indeed of a more general form
than (3.5) and (3.6) when the rows of X are i.i.d., although the relationship of her
risk bounds to {n,p, q} is not explicit. Bounds on ‖Xβ̂ − Xβ‖2 and ‖β̂ − β‖1
do not directly imply the rate-consistency (2.11), but the converse is true for the
LASSO as in Theorem 3, even for all the ‖ · ‖α losses with α ≥ 1. Greenshtein and
Ritov (2004) proved the persistency of a LASSO-like estimator in prediction risk
under a condition on the order of ‖β‖1 as n → ∞. Since a different performance
measurement is concerned, their result does not require (4.5) or (6.1).

For the estimation of β , Donoho (2006) proved the �2-consistency of the
LASSO estimator for p � n when X is a certain normalization of a random ma-
trix with i.i.d. N(0,1) entries. Candés and Tao (2007) proved that the LASSO-like
Dantzig estimator β̃ has the oracle property

‖β̃ − β‖2 = OP (1)
logp

n

(
σ 2 +

p∑
j=1

β2
j ∧ σ 2

)

under the sparsity condition (2.5) and a “uniform uncertainty principle”. Since (3.6)
with α = 2 is comparable to their result, we have provided an affirmative answer to
the question posed in Efron, Hastie and Tibshirani (2007), page 2363. SRC (2.13)
may still hold. Recent results on random matrices are used by Candés and Tao to
bound δ(m). For example, they allow q maxj,k u2

jk � 1/(logp)4 when X/
√

n is a
random sample of n rows from a p × p orthonormal matrix (ujk). Their results
certainly have implications on the validity of (2.13) and (4.1) for random design
matrices.
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Meinshausen and Yu (2006) proved that under (2.6) and certain other regularity
conditions,

‖β̂ − β‖2 ≤ OP

(
logp

n

mλ

c2∗(mλ)

)
+ O

(
q

mλ

)
= oP (1),(6.4)

where mλ ≡ c∗(n ∧ p)E‖y‖2n/λ2. They also obtained a version of (6.4), with
q/mλ replaced by R2/m

1−p/2
λ , when c∗(mλ) is bounded away from zero and β

belongs to a certain weak �α-ball of radius R with 0 < α < 1. In spirit, our paper
and theirs both study the LASSO under conditions on the sparse eigenvalues c∗(m)

and c∗(m), instead of (6.1), and both allow p � n and many small nonzero coeffi-
cients. While our focus is on the properties of the selected model Â in (2.3), specifi-
cally its sparsity |Â|, bias (2.8) and the norm of the missing large coefficients (2.9),
theirs is on the �2-loss ‖β̂ − β‖2. Inspired by their results, and as suggested by the
reviewers, we added Section 3 in the revision to discuss the implications of our
results on the LASSO estimation. Still, the results in the two papers are comple-
mentary to each other. While our results are based on the upper bound (2.21) for
the sparsity, Meinshausen and Yu (2006) used |Â| ≤ c∗(|Â|)‖y‖2n/λ2. This is a
crucial technical difference between the two papers.

Our main result asserts that as far as the rate consistency (2.11) in model selec-
tion is concerned, the performance of the LASSO for correlated designs under the
sparse Riesz condition is comparable to its performance in the much simpler or-
thonormal designs, as in Example 1. Although the LASSO selects all coefficients
of order larger than

√
qλ/n, by Theorem 2, and is sign-consistent under (6.1)

and (6.3), it could miss coefficients of orders between
√

qλ/n and the threshold
level λ/n. This discrepancy with a factor of

√
q is due to the interference of the

estimation bias of the LASSO estimator β̂(λ) with model selection and cannot
be removed for large q . For example, the loss measured in (2.23) cannot be recov-
ered after the LASSO selection. A possible remedy for this discrepancy is adaptive
LASSO, but for p � n the choice of the initial estimator is unclear [Zou (2006)].
Huang, Ma and Zhang (2007) proved the sign consistency of adaptive LASSO
under certain partial orthogonality condition on the pairwise correlations among
vectors {y,x1, . . . ,xp}. Threshold and other selection methods can be used to re-
move small coefficients in Â ∩ A0 after LASSO selection based on the selected
data (y,XÂ) [cf. (3.6) for α = ∞, Meinshausen and Yu (2006) and the references
therein].
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