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CLOSED-FORM LIKELIHOOD EXPANSIONS
FOR MULTIVARIATE DIFFUSIONS

BY YACINE AÏT-SAHALIA1

Princeton University

This paper provides closed-form expansions for the log-likelihood func-
tion of multivariate diffusions sampled at discrete time intervals. The coef-
ficients of the expansion are calculated explicitly by exploiting the special
structure afforded by the diffusion model. Examples of interest in financial
statistics and Monte Carlo evidence are included, along with the convergence
of the expansion to the true likelihood function.

1. Introduction. Diffusions and, more generally, continuous-time Markov
processes are generally specified in economics and finance by their evolution over
infinitesimal instants, that is, by writing down the stochastic differential equation
followed by the state vector. However, for most estimation strategies relying on
discretely sampled data, we need to be able to infer the implications of the in-
finitesimal time evolution of the process for the finite time intervals at which the
process is actually sampled, say daily or weekly. The transition function plays a
key role in that context. Unfortunately, the transition function is, in most cases,
unknown.

At the same time, continuous-time models in finance, which until recently have
been largely univariate, now predominantly include multiple state variables. Typi-
cal examples include asset pricing models with multiple explanatory factors, term
structure models with multiple yields or factors and stochastic volatility or stochas-
tic mean reversion models (see Sundaresan [28] for a recent survey). Motivated by
this trend and the need for effective representation methods, I construct closed-
form expansions for the log-transition function of a large class of multivariate dif-
fusions. Because diffusions are Markov processes, the log-likelihood function of
observations from such a process sampled at finite time intervals reduces to the
sum of the log-transition function of successive pairs of observations. A closed
form expansion for the latter therefore makes quasi-likelihood inference feasible
for these models.

The paper is organized as follows. Section 2 sets out the model and assumptions.
In Section 3, I introduce the concept of reducibility of a diffusion and provide a
necessary and sufficient condition for the reducibility of a multivariate diffusion.
In an earlier work (Aït-Sahalia [2]), I constructed explicit expansions for the tran-
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sition function of univariate diffusions based on Hermite series. The natural ex-
tension of the Hermite method to the multivariate case is applicable only if the
diffusion is reducible, which all univariate, but few multivariate, diffusions are.
So, this paper proposes an alternative method, which determines the coefficients
in closed form by requiring that the expansion satisfies the Kolmogorov equations
describing the evolution of the process up to the order of the expansion itself. When
a diffusion is reducible, the coefficients of the expansion are obtained as a series in
the time variable, which I show in Section 4. When the diffusion is not reducible,
the expansion involves a double series in the time and state variables, described in
Section 5. Section 6 then studies the convergence of the likelihood expansion and
the resulting maximizer to the theoretical (but incomputable) maximum likelihood
estimator. Section 7 contains examples of multivariate diffusions and Monte Carlo
simulation results. Proofs are in Section 8 and Section 9 concludes the paper.

2. Setup and assumptions. Consider the multivariate time-homogenous dif-
fusion

dXt = μ(Xt) dt + σ(Xt) dWt,(1)

where Xt and μ(Xt) are m × 1 vectors, σ(Xt) is an m × m matrix and Wt is an
m × 1 vector of independent Brownian motions. Independence is without loss of
generality since arbitrary correlation structures between the shocks to the differ-
ent equations can be modeled through the inclusion of off-diagonal terms in the σ

matrix, which, furthermore, need not be symmetric. In time-inhomogeneous dif-
fusions, the coefficients are allowed to depend on time directly, as in μ(Xt , t)

and σ(Xt , t), beyond their dependence on time via the state vector. The time-
inhomogeneous case can be reduced to the time-homogenous case by treating time
as an additional state variable and so it suffices to return to the model specified
in (1).

The objective of this paper is to derive closed-form approximations to the log of
the transition function pX(x|x0,�), that is, the conditional density of Xt+� = x

given Xt = x0 induced by the model (1). From an inference perspective, the pri-
mary use of this construction is to make feasible the computation of the MLE. As-
sume that we parametrize (μ,σ ) as functions of a parameter vector θ and observe
X at dates {t = i� | i = 0, . . . , n}, where � > 0 is fixed. The Markovian nature of
(1), which the discrete data inherit, implies that the log-likelihood function has the
simple form

�n(θ,�) ≡
n∑

i=1

lX
(
Xi�|X(i−1)�,�

)
,(2)

where lX ≡ lnpX and where the asymptotically irrelevant density of the initial
observation, X0, has been left out. In practice, the issue is that for most models of
interest, the function pX, hence lX, is not available in closed form.

I will use the following notation. Let SX, a subset of R
m, denote the domain of

the diffusion X, assumed, for simplicity, to be of the following form.
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ASSUMPTION 1. SX is a product of m intervals with limits x
¯
i and x̄i , where

possibly x
¯
i = −∞ and/or x̄i = +∞, in which case, the intervals are open at infi-

nite limits.

I will use T to denote transposition and, for a function η(x) = (η1(x), . . . ,

ηd(x))T , differentiable in x, I will write ∇η(x) for the Jacobian matrix of η, that
is, the matrix ∇η(x) = [∂ηi(x)/∂xj ]i=1,...,d;j=1,...,m. For x ∈ R

m, ‖x‖ denotes the
usual Euclidean norm. If a = [aij ]i,j=1,...,m is an m × m invertible matrix, then I
write a−1 for the matrix inverse, with elements [a−1]ij . Det[a] and tr[a] denote
the determinant of a and its trace, respectively. If a = [ai]i=1,...,m is a vector, tr[a]
denotes the sum of the elements of a. a = diag[ai]i=1,...,m denotes the m × m di-
agonal matrix with diagonal elements ai. When a function η(x) is invertible in x,

I write ηinv(y) for its inverse.
In some instances, it may be more natural to directly parametrize the infinitesi-

mal variance–covariance matrix of the process

v(x) ≡ σ(x)σT (x)(3)

than σ(x) itself. Every characterization of the process, such as its transition prob-
ability, depends, in fact, on (μ, v). In particular, it can be shown that, should there
exist a continuum of solutions in σ to equation (3), then the transition probability
of the process is identical for each of these σ (see Remark 5.1.7 and Section 5.3
in Stroock and Varadhan [27]). This is also quite clear from inspection of the in-
finitesimal generator AX of the process, which depends on v rather than σ . For
functions f (�,x) that are suitably differentiable on its domain, AX has the action

AX · f = ∂f (x,�)

∂�
+

m∑
i=1

μi(x)
∂f (x,�)

∂xi

+ 1

2

m∑
i,j=1

vij (x)
∂2f (x,�)

∂xi ∂xj

.(4)

The domain of AX includes at least those functions that, for each x0 ∈ SX, are
once continuously differentiable in � in R+, twice continuously differentiable in
x ∈ SX and have compact support.

As this will play a role in the likelihood expansions, define

Dv(x) ≡ 1
2 ln(Det[v(x)]).(5)

I will assume that this matrix v satisfies the following regularity condition:

ASSUMPTION 2. The matrix v(x) is positive definite for all x in the interior
of SX.

Further assumptions are required to ensure the existence and uniqueness of a
solution to (1) and to make the computation of likelihood expansions possible.
I will assume the following.

ASSUMPTION 3. μ(x) and σ(x) are infinitely differentiable in x on SX.
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Assumption 3 ensures the uniqueness of solutions to (1). Indeed, Assumption 3
implies in particular, that the coefficients of the stochastic differential equation
are locally Lipschitz under their assumed (once) differentiability, which can be
seen by applying the mean value theorem. This ensures that a solution, if it exists,
will be unique (see, e.g., Theorem 5.2.5 in Karatzas and Shreve [21]). The infinite
differentiability assumption in x is unnecessary for that purpose, but it allows the
computation of expansions of the transition density, which, as we will see, involves
repeated differentiation of the coefficient functions μ and σ. There exist models of
interest in finance, such as Feller’s square root diffusion used in the Cox, Ingersoll
and Ross model of the term structure, that fail to satisfy the Lipschitz condition
since they violate the differentiability requirement of Assumption 3 at a boundary
of SX: for instance, σ(x) = σ0x

1/2 is not differentiable at the left boundary 0 of
SX. It is then possible to weaken Assumption 3 to cover such cases (see Watanabe
and Yamada [30] and Yamada and Watanabe [32]).

The next assumption restricts the growth behavior of the coefficients near the
boundaries of the domain.

ASSUMPTION 4. The drift and diffusion functions satisfy linear growth con-
ditions, that is, there exists a constant K such that for all x ∈ SX and i, j ,

|μi(x)| ≤ K(1 + ‖x‖) and |σij (x)| ≤ K(1 + ‖x‖).(6)

Their derivatives exhibit at most polynomial growth.

The role of Assumption 4 is to ensure the existence of a solution to the sto-
chastic differential equation (1) by preventing explosions of the process in finite
expected time. While it can be relaxed in specific examples, it is not possible to
do so in full generality. In dimension one, however, finer results are available (see
the Engelbert–Schmidt criterion in Theorem 5.5.15 of Karatzas and Shreve [21]),
allowing linear growth to be imposed only when the drift coefficient pulls the
process toward an infinity boundary (see Proposition 1 of Aït-Sahalia [2]). In all
dimensions, the linear growth condition in Assumption 4 is only an issue near the
boundaries of SX. In the special case where SX is compact, the growth condition
(boundedness, in fact) follows from the continuity of the functions. The additional
assumption that the derivatives of the drift and diffusion functions grow at most
polynomially simplifies matters in light of the exponential tails of the transition
density pX.

Finally, the diffusion process X is fully defined by the specification of the func-
tions μ and σ and its behavior at the boundaries of SX. In many examples, the
specification of μ and σ predetermines the boundary behavior of the process, but
this will not be the case for models that represent limiting situations. For instance,
in Cox, Ingersoll and Ross processes with affine μ and v, the behavior at the 0
boundary depends upon the values of the parameters. When this situation occurs
for a particular model, the behavior of the likelihood expansion near such a bound-
ary will be specified exogenously to match that of the assumed model.
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3. Reducible diffusions. Whenever possible, I will first transform the diffu-
sion X into one that is more amenable to the derivation of an expansion for its
transition density. For that purpose, I introduce the following definition.

DEFINITION 1 (Reducibility). The diffusion X is said to be reducible to unit
diffusion (or reducible, in short) if and if only if there exists a one-to-one transfor-
mation of the diffusion X into a diffusion Y whose diffusion matrix σY is the iden-
tity matrix. That is, there exists an invertible function γ (x), infinitely differentiable
in X on SX , such that Yt ≡ γ (Xt) satisfies the stochastic differential equation

dYt = μY (Yt ) dt + dWt(7)

on the domain SY .

By Itô’s lemma, when the diffusion is reducible, the change of variable γ satis-
fies ∇γ (x) = σ−1(x). Every scalar (i.e., one-dimensional) diffusion is reducible,
by means of the simple transformation

Yt ≡ γ (Xt) =
∫ Xt du

σ(u)
,(8)

where the lower bound of integration is an arbitrary point in the interior of SX .
The differentiability of γ ensures that μY satisfies Assumption 3. This change of
variable, known as the Lamperti transform, played a critical role in the deriva-
tion of closed-form Hermite approximations to the transition density of univariate
diffusions in Aït-Sahalia [2]. How to deal with the case where 1/σ(u) cannot be
integrated in closed form is discussed after Proposition 2 below. Whenever a dif-
fusion is reducible, an expansion can be computed for the transition density pX

of X by first computing it for the density pY of the reduced process Y and then
transforming Y back into X, essentially proceeding by extending the univariate
method.

However, not every multivariate diffusion is reducible. Whether or not a given
multivariate diffusion is reducible depends on the specification of its σ matrix, in
the following way.

PROPOSITION 1 (Necessary and sufficient condition for reducibility). The dif-
fusion X is reducible if and only if

m∑
l=1

∂σik(x)

∂xl

σlj (x) =
m∑

l=1

∂σij (x)

∂xl

σlk(x)(9)

for each x in SX and triplet (i, j, k) = 1, . . . ,m such that k > j. If σ is nonsingular,
then the condition can be expressed as

∂[σ−1]ij (x)

∂xk

= ∂[σ−1]ik(x)

∂xj

.(10)
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Similar restrictions on the σ matrix arise in different contexts; see Doss [11]
who studied the question of when the solution X of the SDE can be expressed as
a function of the Brownian motion W and the solution of an ODE and the concept
of “commutative noise” in Section 10.6 of Cyganowski, Kloeden and Ombach
[8] where they show that restricting the σ matrix leads to a simplification of the
Milshtein scheme for X.

In the bivariate case m = 2, condition (10) reduces to

∂[σ−1]11(x)

∂x2
− ∂[σ−1]12(x)

∂x1
= ∂[σ−1]21(x)

∂x2
− ∂[σ−1]22(x)

∂x1
= 0.

For instance, consider diagonal systems: if σ12 = σ21 = 0, then the reducibility
condition becomes ∂[σ−1]11/∂x2 = ∂[σ−1]22/∂x1 = 0. Since [σ−1]ii = 1/σii in
the diagonal case, reducibility is equivalent to the fact that σii depends only on xi

for each i = 1,2. This is true more generally in dimension m. Note that this is not
the case if off-diagonal elements are present. Another set of examples is provided
by the class of stochastic volatility models. Consider the two models where either

σ(x) =
(

σ11(x2) 0
0 σ22(x2)

)
or σ(x) =

(
a(x1) a(x1)b(x2)

0 c(x2)

)
.

In the first model, the process is not reducible in light of the previous diagonal
example, as this is a diagonal system where σ11 depends on x2. However, in the
second, the process is reducible.

4. Closed-form expansion for the likelihood function of a reducible diffu-
sion. When the diffusion is reducible, I propose two approaches to construct a
sequence of explicit expansions for the log-likelihood function. The first is based
on computing the coefficients of a Hermite expansion for the density of the trans-
formed process, pY . The coefficients are found in the form of a series expansion
in �, the time separating successive observations.

The second approach takes the form of the Hermite series and determines its
coefficients by solving the Kolmogorov partial differential equations which char-
acterize the transition function pY . In both cases, given a series for pY , I obtain
a series for the original object of interest, pX , by reversing the change of variable
and the Jacobian formula. The two approaches yield the same final series.

4.1. Multivariate Hermite expansions. To motivate the form of the expan-
sion that I will propose in the multivariate case, in both the reducible and ir-
reducible cases, consider the following natural multivariate counterpart to the
univariate Hermite expansion of Aït-Sahalia [2]. Let φ(x) denote the density of
the m-dimensional multivariate Normal distribution with mean zero and iden-
tity covariance matrix. For each vector h = (h1, . . . , hm)T ∈ N

m, recall that
tr[h] = h1 + · · · + hm and let Hh(x) denote the associated Hermite polynomi-
als, which are defined by Hh(x) = ((−1)tr[h]/φ(x)) ∂ tr[h]φ(x)/dx

h1
1 · · ·dx

hm
m and
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can be computed explicitly to an arbitrary order tr[h] (see, e.g., Chapter 5 of Mc-
Cullagh [23] or Withers [31]). The polynomials are orthonormal in the sense that∫
Rm Hh(x)Hk(x)φ(x) dx = h1! · · ·hm! if h = k and 0 otherwise.

The Hermite series approximation of pY is in the form

p̆
(J )
Y (y|y0,�) = �−m/2φ

(
y − y0

�1/2

) ∑
h∈Nm:tr[h]≤J

ηh(�,y0)Hh

(
y − y0

�1/2

)
(11)

and the Hermite coefficients ηh(�,y0) can be computed as in the univariate case:
by orthonormality of the Hermite polynomials, the coefficients ηh are given by the
conditional expectation

ηh(�,y0) = 1

h1! · · ·hm!E
[
Hh

(
�−1/2(Yt+� − y0)

) |Yt = y0
]
.(12)

This expression is then amenable to computing an expansion in � using the
generator (4). To evaluate that conditional expectation, the deterministic Taylor
expansion

EY1[f (Y�,Y0,�)|Y0 = y0]
(13)

=
K∑

k=0

�k

k! Ak
Y · f (y, y0, δ)|y=y0,δ=0 + O(�K+1)

can be used, where AY is the infinitesimal generator of the process Y , the function
f is sufficiently differentiable in (y, δ) and its iterates by application of AY up to
K times remain in the domain of AY , as in Aït-Sahalia [2]. The result will be a
“small-time” expansion, in the same spirit as in Azencott [4] and Dacunha-Castelle
and Florens-Zmirou [9], except that the expansions given here are in closed form
instead of relying on moments of functionals of Brownian bridges (which are to be
computed by simulation). Replacing the unknown ηh in (11) by their expansions
in � to order K gives rises to an expansion of p̆

(J )
Y where the coefficients are

gathered in increasing powers of �, which I denote p̆
(J,K)
Y . If we gather the terms

in the right-hand side of (11) according to powers of �, we can rewrite p̆
(J,K)
Y in

the form of a truncated series in �,

p̆
(J,K)
Y (y|y0,�) = �−m/2φ

(
�−1/2(y − y0)

) K∑
k=0

c
(J,k)
Y (y|y0)

�k

k! .(14)

For the log-transition density and for any given J, or in the univariate case
where the convergence of the Hermite series is established as J → ∞, the result-
ing expansion has the form

l
(K)
Y (y|y0,�) = −m

2
ln(2π�) + C

(−1)
Y (y|y0)

�
+

K∑
k=0

C
(k)
Y (y|y0)

�k

k! ,(15)
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whose coefficients C
(k)
Y , k = −1,0,1,2, . . . ,K, are combinations of the coeffi-

cients of (11) obtained by identifying the terms in the expansion in � of the log of
(14).

The method just described is the natural extension to the multivariate setting of
the Hermite approach employed in the univariate case in Aït-Sahalia [2]. Exten-
sions of the univariate Hermite expansion results in two different univariate direc-
tions have been recently developed for time-inhomogeneous diffusions (Egorov,
Li and Hu [13]) and for models driven by Lévy processes other than Brownian
motion (Schaumburg [25] and Yu [33]). DiPietro [10] has extended the method-
ology to make it applicable in a Bayesian setting. The Hermite method requires,
however, that the diffusion be reducible since the straight Hermite expansion will
not in general converge if applied to pX directly instead of pY . And as discussed
above, while all univariate diffusions are reducible, so that such a Y exists, not all
multivariate diffusions are. This necessitates an alternative method, which I now
develop.

4.2. Connection to the Kolmogorov equations. An alternative method to ob-
tain an explicit expansion for lY is to take inspiration from the form of the solution
given by the expansion (15) and to use the Kolmogorov equations to determine its
coefficients, without any further reference to the Hermite expansion. As is often
the case when a differential operator is involved, it is easier to verify that a given
functional form, in this case the expansion in the form (15), is the right solution.

Consider the forward and backward Kolmogorov equations (see, e.g., Sec-
tion 5.1 of Karatzas and Shreve [21])

∂pY (y|y0,�)

∂�
= −

m∑
i=1

∂{μYi(y)pY (y|y0,�)}
∂yi

+ 1

2

m∑
i=1

∂2pY (y|y0,�)

∂y2
i

,(16)

∂pY (y|y0,�)

∂�
=

m∑
i=1

μYi(y0)
∂pY (y|y0,�)

∂y0i

+ 1

2

m∑
i=1

∂2pY (y|y0,�)

∂y2
0i

.(17)

The solution pY inherits the smoothness in (�,y, y0) of the coefficients μY (see,
e.g., Section 9.6 in Friedman [14]), so we are entitled to look for an approximate
solution in the form of a smooth expansion. The fact that the Hermite expansion
turns out to have exactly the right form for solving the forward and backward
equations term by term is an interesting feature of these expansions.

Focusing for now on the forward equation (16), the equivalent form for the log-
likelihood lY (which is the object of interest for MLE and which will turn out to
lead to a simple linear system) is

∂lY (y|y0,�)

∂�
= −

m∑
i=1

∂μYi(y)

∂yi

−
m∑

i=1

μYi(y)
∂lY (y|y0,�)

∂yi

(18)

+ 1

2

m∑
i=1

∂2lY (y|y0,�)

∂y2
i

+ 1

2

m∑
i=1

(
∂lY (y|y0,�)

∂yi

)2

.
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Suppose that we substitute the postulated form of the solution (15) into (18).
Since

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂l
(K)
Y (y|y0,�)

∂�
= −C

(−1)
Y (y|y0)

�2 − m

2�
+

K−1∑
k=1

C
(k)
Y (y|y0)

�k−1

(k − 1)!
∂l

(K)
Y (y|y0,�)

∂yi

= 1

�

∂C
(−1)
Y (y|y0)

∂yi

+
K∑

k=0

∂C
(−1)
Y (y|y0)

∂yi

�k

k!
∂2l

(K)
Y (y|y0,�)

∂y2
i

= 1

�

∂2C
(−1)
Y (y|y0)

∂y2
i

+
K∑

k=0

∂2C
(−1)
Y (y|y0)

∂y2
i

�k

k! ,

equating the coefficients of �−2 on both sides of (18) implies that the leading
coefficient in the expansion, C

(−1)
Y , must solve the nonlinear equation

C
(−1)
Y (y|y0) = −1

2

(
∂C

(−1)
Y (y|y0)

∂yi

)T (
∂C

(−1)
Y (y|y0)

∂yi

)
.(19)

Because the density must approximate a Gaussian density as � → 0, the appropri-
ate solution is the one with a strict maximum at y = y0, namely

C
(−1)
Y (y|y0) = −1

2‖y − y0‖2 = −1
2

m∑
i=1

(yi − y0i )
2.(20)

Considering now the coefficients of �−1 on both sides of (18), we see that

m∑
i=1

∂C
(0)
Y (y|y0)

∂yi

(yi − y0i ) =
m∑

i=1

μYi(y)(yi − y0i ).

Integrating along a line segment between y0 and y, we obtain

C
(0)
Y (y|y0) =

m∑
i=1

(yi − y0i )

∫ 1

0
μYi

(
y0 + u(y − y0)

)
du,(21)

with integration constants determined in the proof of the theorem below using
boundary conditions and the backward equation. The higher-order coefficients are
obtained using the same principle, and we have the following result.

THEOREM 1. The coefficients of the log-density expansion l
(K)
Y (y|y0,�) are

given explicitly by (20), (21) and, for k ≥ 1,

C
(k)
Y (y|y0) = k

∫ 1

0
G

(k)
Y

(
y0 + u(y − y0)|y0

)
uk−1 du.(22)
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The functions G
(k)
Y are given by

G
(1)
Y (y|y0) = −

m∑
i=1

∂μYi(y)

∂yi

−
m∑

i=1

μYi(y)
∂C

(0)
Y (y|y0)

∂yi

(23)

+ 1

2

m∑
i=1

{
∂2C

(0)
Y (y|y0)

∂y2
i

+
[
∂C

(0)
Y (y|y0)

∂yi

]2}

and, for k ≥ 2,

G
(k)
Y (y|y0) = −

m∑
i=1

μYi(y)
∂C

(k−1)
Y (y|y0)

∂yi

+ 1

2

m∑
i=1

∂2C
(k−1)
Y (y|y0)

∂y2
i

(24)

+ 1

2

m∑
i=1

k−1∑
h=0

(
k − 1

h

)
∂C

(h)
Y (y|y0)

∂yi

∂C
(k−1−h)
Y (y|y0)

∂yi

.

Theorem 1 provides the explicit form of l
(K)
Y that solves the Kolmogorov equa-

tions to the desired order �K. This does not necessarily imply that l
(K)
Y is a proper

Taylor expansion of lY at the desired order �K−1; this will be established as part
of Theorem 3 below.

4.3. Change of variable. Given lY , the expression for lX is given by the Jaco-
bian formula

lX(x|x0,�) = −1
2 ln(Det[v(x)]) + lY (�,γ (x)|γ (x0))

(25)
= −Dv(x) + lY (�,γ (x)|γ (x0)),

which I mimic at the level of the approximations of order K in �, thereby defining
l
(K)
X as

l
(K)
X (x|x0,�) = −Dv(x) + l

(K)
Y (�,γ (x)|γ (x0))

= −m

2
ln(2π�) − Dv(x)(26)

+ C
(−1)
Y (γ (x)|γ (x0))

�
+

K∑
k=0

C
(k)
Y (γ (x)|γ (x0))

�k

k!
from l

(K)
Y given in (15), using the coefficients C

(k)
Y , k = −1,0, . . . ,K , given in

Theorem 1. By construction, l
(K)
X solves the Kolmogorov equations for X at the

same order.

5. Closed-form expansion for the log-likelihood function of an irreducible
diffusion. In the reducible case, the two approaches (Hermite and solution of the
Kolmogorov equations) coincide. When the diffusion is irreducible, however, one
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no longer has the option of first transforming X to Y, computing the Hermite ex-
pansion for Y and then, via the Jacobian formula, transforming it into an expansion
for X. But, it remains possible to postulate an appropriate form of an expansion
for lX and then to determine that its coefficients satisfy the Kolmogorov equations
to the relevant order, as follows.

Mimicking the form of the expansion in � obtained in the reducible case,
namely (26), leads to the postulation of the following form for an expansion of
the log-likelihood

l
(K)
X (x|x0,�) = −m

2
ln(2π�) − Dv(x)

(27)

+ C
(−1)
X (x|x0)

�
+

K∑
k=0

C
(k)
X (x|x0)

�k

k!
and solving for the coefficients using the Kolmogorov equations. The expansion
exists because the log-transition function inherits the smoothness of the coeffi-
cients (μ, v) (see, e.g., Section 9.6 of Friedman [14]).

When written directly for the X process, as required in the irreducible case, the
equations take the form

∂lX(x|x0,�)

∂�
= −

m∑
i=1

∂μi(x)

∂xi

+ 1

2

m∑
i,j=1

∂2vij (x)

∂xi∂xj

−
m∑

i=1

μi(x)
∂lX(x|x0,�)

∂xi

+
m∑

i,j=1

∂vij (x)

∂xi

∂lX(x|x0,�)

∂xj

(28)

+ 1

2

m∑
i,j=1

vij (x)
∂2lX(x|x0,�)

∂xi ∂xj

+ 1

2

m∑
i,j=1

∂lX(x|x0,�)

∂xi

vij (x)
∂lX(x|x0,�)

∂xj

,

∂lX(x|x0,�)

∂�
=

m∑
i=1

μi(x0)
∂lX(x|x0,�)

∂x0i

+ 1

2

m∑
i,j=1

vij (x0)
∂2lX(x|x0,�)

∂x0i ∂x0j

(29)

+ 1

2

m∑
i,j=1

∂lX(x|x0,�)

∂x0i

vij (x0)
∂lX(x|x0,�)

∂x0j

.
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The solution method is as follows: as in the reducible case, substituting the pos-
tulated solution (27) into (28) provides an equation at each order in � which is
solved for the corresponding coefficient of the expansion. While the differential
equation for lX is nonlinear, it can be transformed into a linear one by exponentia-
tion and so the expansion l

(K)
X constructed in this way will approximate lX .

Start with the equation of order �−2 which determines the leading order coef-
ficient C

(−1)
X . While the leading coefficient C

(−1)
X in the case of a reducible diffu-

sion is simply C
(−1)
X (x|x0) = −‖γ (x)− γ (x0)‖2/2, the situation is more involved

when the diffusion X is not reducible. The equation that determines the coefficient
C

(−1)
X is obtained by equating the terms of order �−2 in (28), yielding

C
(−1)
X (x|x0) = −1

2

(
∂C

(−1)
X (x|x0)

∂x

)T

v(x)

(
∂C

(−1)
X (x|x0)

∂x

)
.(30)

The solution of this equation is not explicit in general, although it has a nice geo-
metric interpretation as minus one half the square of the shortest distance from x

to x0 in the metric induced in R
m by the matrix v(x)−1 (see [29]).

5.1. Time and state expansion. The analysis of the coefficient C
(−1)
X suggests

that it will generally be impossible to explicitly characterize the coefficients of
the expansion (27) since (30) will not in general admit an explicit solution. This is
where the next step in the analysis comes into play. The idea now is to derive an ex-
plicit approximation in (x − x0) of the coefficients C

(k)
X (x|x0), k = −1,0, . . . ,K.

In other words, I localize the log-likelihood function in both � and x −x0. The key
difference between what can be done in the reducible special case of Theorem 1
and in the general case of Theorem 2 is that the coefficients of the expansion in �

can be obtained directly by (20)–(22) with no need for an expansion in the state
variable.

How this works can be seen by once again considering the coefficient C
(−1)
X .

Consider a quadratic [in (x − x0)] approximation of the solution to the equation
(30) determining C

(−1)
X . The constant and linear terms are necessarily zero since

the matrix v(x) is nonsingular. Write the second-order expansion as C
(−1)
X (x|x0) =

−(1/2)(x − x0)
T V (x − x0) + o(‖x − x0‖2). Equation (30) implies the equation

V = V v(x0)V , whose solution is V = v−1(x0).

As a consequence, the leading term coming from the expansion of C
(−1)
X (x|x0)

in x − x0 is −(1/2�)(x − x0)
T v(x0)

−1(x − x0) so that the leading term in the
expansion for the log-density will correspond to that of a Normal with mean x0
and covariance matrix �v(x0).

More generally, I will derive a series in (x − x0) for each coefficient C
(k)
X , at

some order jk in (x −x0). That expansion is to be denoted by C
(jk,k)
X . One remain-

ing question is the choice of the order jk [in (x − x0)] corresponding to a given
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order k (in �). For that purpose, note that X� − X0 = Op(�1/2), so

∣∣C(k)
X (X�|X0)�

k − C
(jk,k)
X (X�|X0)�

k
∣∣ = Op(‖X� − X0‖jk�k)

(31)
= Op(�jk/2+k)

and therefore setting jk/2 + k = K + 1, that is,

jk = 2(K + 1 − k),(32)

for k = −1,0, . . . ,K, will provide an approximation error due to the expansion in
(x − x0) of the same order �K+1 for each of the terms in the series (27).

The resulting expansion will then be of the form

l̃
(K)
X (x|x0,�) = −m

2
ln(2π�) − Dv(x)

(33)

+ C
(j−1,−1)

X (x|x0)

�
+

K∑
k=0

C
(jk,k)
X (x|x0)

�k

k! .

This double expansion [in � and in (x − x0)] can be viewed, in probability, as
an expansion in � only once the process is inserted in the likelihood, in light of
(31). In general, the function need not be analytic at � = 0, hence this should be
interpreted strictly as a series expansion.

Finally, note that the term Dv(x) which arises in the reducible case from the
Jacobian transformation is independent of � and so could be built into the C

(0)
X

coefficient. Doing so, however, would subject it to being expanded in x−x0, which
is unnecessary since Dv(x) is known. If Dv(x) were being expanded along with
C

(j0,0)
X , we would lose the property that l̃

(K)
X also solves the backward equation

(29) to the corresponding order in �.

5.2. Determination of the coefficients in the irreducible case. What remains
to be done is to explicitly compute the expansion C

(jk,k)
X in x − x0 of each

coefficient C
(k)
X . Let i ≡ (i1, i2, . . . , im) denote a vector of integers and define

Ik = {i ≡ (i1, i2, . . . , im) ∈ N
m : 0 ≤ tr[i] ≤ jk} so that the form of C

(jk,k)
X is

C
(jk,k)
X (x|x0) = ∑

i∈Ik
β

(k)
i (x0)(x1 − x01)

i1(x2 − x02)
i2 · · · (xm − x0m)im.(34)

The coefficients are determined one by one, starting with the leading term
C

(j−1,−1)

X . Given C
(j−1,−1)

X , the next term C
(j0,0)
X is calculated explicitly, and so

on. Based on (32), the highest-order term (k = −1) is expanded to a higher de-
gree of precision j−1 than the successive terms. This is quite natural, given that
C

(j−1,−1)

X is an input to the differential equation determining C
(j0,0)
X , and so on.
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In order to state the main result pertaining to the closed-form solutions C
(jk,k)
X ,

I define the following functions of the coefficients and their derivatives:

G
(0)
X (x|x0) = m

2
−

m∑
i=1

μi(x)
∂C

(−1)
X (x|x0)

∂xi

+
m∑

i,j=1

∂vij (x)

∂xi

∂C
(−1)
X (x|x0)

∂xj

(35)

+ 1

2

m∑
i,j=1

vij (x)
∂2C

(−1)
X (x|x0)

∂xi ∂xj

−
m∑

i,j=1

vij (x)
∂C

(−1)
X (x|x0)

∂xi

∂Dv(x)

∂xj

,

G
(1)
X (x|x0) = −

m∑
i=1

∂μi(x)

∂xi

+ 1

2

m∑
i,j=1

∂2vij (x)

∂xi ∂xj

−
m∑

i=1

μi(x)

(
∂C

(0)
X (x|x0)

∂xi

− ∂Dv(x)

∂xi

)

+
m∑

i,j=1

∂vij (x)
∂xi

(
∂C

(0)
X (x|x0)

∂xj

− ∂Dv(x)
∂xj

)

(36)

+ 1

2

m∑
i,j=1

vij (x)

{
∂2C

(0)
X (x|x0)

∂xi∂xj

− ∂2Dv(x)

∂xi∂xj

+
(

∂C
(0)
X (x|x0)

∂xi

− ∂Dv(x)

∂xi

)

×
(

∂C
(0)
X (x|x0)

∂xj

− ∂Dv(x)

∂xj

)}

and, for k ≥ 2,

G
(k)
X (x|x0) = −

m∑
i=1

μi(x)
∂C

(k−1)
X (x|x0)

∂xi

+
m∑

i,j=1

∂vij (x)

∂xi

∂C
(k−1)
X (x|x0)

∂xj

+ 1

2

m∑
i,j=1

vij (x)
∂2C

(k−1)
X (x|x0)

∂xi ∂xj

(37)
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+ 1

2

m∑
i,j=1

vij (x)

{(
∂C

(0)
X (x|x0)

∂xi

− 2
∂Dv(x)

∂xi

)
∂C

(k−1)
X (x|x0)

∂xj

+
k−2∑
h=0

(
k − 1

h

)

× ∂C
(h)
X (x|x0)

∂xi

∂C
(k−1−h)
X (x|x0)

∂xj

}
.

Note that the computation of each function G
(k)
X requires only the ability to

differentiate the previously determined coefficients C
(−1)
X , . . . , C

(k−1)
X . The same

applies to their expansions. The following theorem can now describe how the co-
efficients C

(jk,k)
X , that is, the coefficients β

(k)
i , i ∈ Ik, are determined.

THEOREM 2. For each k = −1,0, . . . ,K, the coefficient C
(k)
X (x|x0) in (27)

solves the equation

f
(k−1)
X (x|x0) = 0,(38)

where

f
(−2)
X (x|x0) = −2C

(−1)
X (x|x0) −

m∑
i,j=1

vij (x)
∂C

(−1)
X (x|x0)

∂xi

∂C
(−1)
X (x|x0)

∂xj

,(39)

f
(−1)
X (x|x0) = −

m∑
i,j=1

vij (x)
∂C

(−1)
X (x|x0)

∂xi

∂C
(0)
X (x|x0)

∂xj

− G
(0)
X (x|x0)(40)

and, for k ≥ 1,

f
(k−1)
X (x|x0) = C

(k)
X (x|x0)

(41)

− 1

k

m∑
i,j=1

vij (x)
∂C

(−1)
X (x|x0)

∂xi

∂C
(k)
X (x|x0)

∂xj

− G
(k)
X (x|x0),

where the functions G
(k)
X , k = 0,1, . . . ,K , are given above. The coefficients β

(k)
i

solve a system of linear equations, whose solution is explicit.

G
(k)
X involves only the coefficients C

(h)
X for h = −1, . . . , k − 1, so this system

of equations can be utilized to solve recursively for each coefficient, meaning that
the equation f

(−2)
X = 0 determines C

(−1)
X ; given C

(−1)
X , G

(0)
X becomes known and

the equation f
(−1)
X = 0 determines C

(0)
X ; given C

(−1)
X and C

(0)
X , G

(1)
X becomes

known and the equation f
(0)
X = 0 then determines C

(1)
X , and so on.
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Each of these equations can be solved explicitly in the form of the expansion
C

(jk,k)
X of the coefficient C

(k)
X , at order jk in (x − x0). The coefficients β

(k)
i (x0),

i ∈ Ik , of C
(jk,k)
X are determined by setting the expansion f

(jk,k−1)
X of f

(k−1)
X to

zero. The key feature that makes this problem solvable in closed form is that the
coefficients solve a succession of systems of linear equations: first determine β

(k)
i

for tr[i] = 0, then β
(k)
i for tr[i] = 1 and so on, all the way to tr[i] = jk . Note,

in particular, for k = −1, β
(−1)
i = 0 for tr[i] = 0,1 (i.e., the polynomial has no

constant or linear terms) and the terms corresponding to tr[i] = 2 (with, of course,
j−1 ≥ 2) are ∑

i∈I−1:tr[i]=2

β
(−1)
i (x0)(x1 − x01)

i1 · · · (xm − x0m)im

= −1
2(x − x0)

T v−1(x0)(x − x0),

which are the anticipated terms, given the Gaussian limiting behavior of the tran-
sition density when � is small. Thus, with j−1 ≥ 3, we only need to determine
the terms β

(−1)
i corresponding to tr[i] = 3, . . . , j−1. Note that the solution β

(−1)
i

depends only on the specification of the v matrix (the drift functions are irrele-
vant). For k = 0, β

(0)
i = 0 for tr[i] = 0, so the polynomial has no constant term.

For k ≥ 1, the polynomials have a constant term (for k ≥ 1, β
(k)
i 
= 0 for tr[i] = 0

in general).
To obtain an expansion for the density pX instead of for the log-density lX, one

can either take the exponential of l̃
(K)
X or, alternatively, expand the exponential in

� to obtain the coefficients cX for the expansion of pX from the coefficients CX

for the expansion of lX. In general, like a Hermite expansion, neither will integrate
to one without division by the integral over SX of the density expansion. Positivity
is guaranteed, however, if one simply exponentiates the log-transition function.

5.3. Applying the irreducible method to a reducible diffusion. Theorem 2 is
more general than Theorem 1, in that it does not require that the diffusion be re-
ducible. As discussed above, in exchange for that generality, the coefficients are
available in closed form only in the form of a series expansion in x about x0. The
following proposition describes the relationship between these two methods when
Theorem 2 is applied to a diffusion that is, in fact, reducible.

PROPOSITION 2. Suppose that the diffusion X is reducible and let l
(K)
X denote

its log-likelihood expansion calculated by applying Theorem 1. Suppose, now, that
we also calculate its log-likelihood expansion, l̃

(K)
X , without first transforming X

into the unit diffusion Y , that is, by applying Theorem 2 to X directly. Then, each
coefficient C

(jk,k)
X (x|x0) from l̃

(K)
X is an expansion in (x − x0) at order jk of the

coefficient C
(k)
X (x|x0) = C

(k)
Y (γ (x)|γ (x0)) from l

(K)
X .
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In other words, applying the irreducible method to a diffusion that is, in fact,
reducible involves replacing the exact expression for C

(k)
X (x|x0) by its series in

(x − x0). Of course, there is no reason to do so when the diffusion is reducible and
the transformation γ from X to Y, defined in Definition 1, is explicit.

However, Proposition 2 is relevant in the case where the diffusion is reducible,
but the transformation γ is not available in closed form. This can occur even in di-
mension m = 1, where every diffusion is theoretically reducible. For instance, con-
sider the specification of the diffusion function in the general interest rate model
proposed in [1], namely σ 2(x) = θ−1x

−1 + θ0 + θ1x + θ2x
θ3 , where the θ ’s denote

parameters. In that case, γ (x), given in (8), involves integrating 1/σ and the result
is not explicit. Fortunately, one can use the irreducible method in that case and the
result of applying that method is given by Proposition 2. An alternative is to use
the method that has been proposed by [5].

Finally, the double series in � and (x − x0) produced by the irreducible method
matches, when applied to a reducible diffusion, the expansion produced by the
Hermite series since the coefficients of the latter [a polynomial in (x − x0), by
construction] are obtained as a series in � by computing their conditional expec-
tations, as described in (13). But the infinitesimal generator of the process in (13)
is by definition, such that the resulting coefficients solve, at each order in �, the
Kolmogorov equations. Hence, the two series match.

6. Convergence to the true log-likelihood function and the resulting ap-
proximate MLE. Theorems 1 and 2 give the expressions of the coefficients
of the expansion in the reducible and irreducible cases, respectively. I now turn
to the convergence of the resulting expansion to the object of interest, showing
that the series constructed above is a Taylor expansion of the true, but unknown,
log-likelihood function, and considering its application to likelihood inference.

Suppose that (μ,σ ) are parametrized using a parameter vector θ and that (μ,σ )

and their derivatives at all orders are three times continuously differentiable in θ.

The differentiability of the coefficients extends to lX , in light of the previously
cited results on the solutions of second-order parabolic partial differential equa-
tions (Section 9.6 of Friedman [14]), and to the expansion by construction, given
that it consists of sums and products of (μ,σ ) and their derivatives. Let the pa-
rameter space 
 be a compact subset of R

r . Let θ0 denote the true value of the
parameter. Assume, for simplicity, that for fixed n and �, θ �−→ �n(θ,�) de-
fined in (2) has a unique maximizer θ̂n,� ∈ 
. θ̂n,� is the exact (but incomputable)
MLE for θ . Consider, now, the approximate MLE θ̂

(K)
n,� obtained by maximizing

�
(K)
n (θ,�) (resp. �̃

(K)
n ), itself defined analogously to (2), but with the expansion

l
(K)
X (resp. l̃

(K)
X ) in the reducible (resp. irreducible) case instead of the true log-

transition function lX. We have the following result.
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THEOREM 3. For any n,

sup
θ∈


∣∣�̃(K)
n (θ,�) − �n(θ,�)

∣∣ → 0(42)

in Pθ0-probability as � → 0. In the reducible case, the same holds for �
(K)
n . The

approximate MLE sequence θ̂
(K)
n,� exists almost surely and satisfies θ̂

(K)
n,� − θ̂n,� → 0

in Pθ0 -probability as � → 0.

Furthermore, suppose that as → ∞, we have θ̂n,� → θ0 in Pθ0 -probability and
that there exists a sequence of nonsingular r × r matrices Sn,� such that

S−1
n,�(θ̂n,� − θ0) = Op(1).(43)

There then exists a sequence �n → 0 such that

S−1
n,�n

(
θ̂

(K)
n,�n

− θ̂n,�n

) = op(1).(44)

Intuitively, the reason that the log-approximation error (42) is small in probabil-
ity is as follows. For small �, in a small neighborhood about x0, the approximation
error is small by construction because l

(K)
X (resp. l̃

(K)
X ) is a Taylor expansion of lX

about � = 0 (and about x = x0, resp.). Away from x0, the approximation error
may not be small, unless lX is analytic, but this does not matter much because
such an error is at most polynomial, while the probability of reaching this region
in time � is exponentially small.

Note, also, that it follows from (43)–(44) that θ̂
(K)
n,� and θ̂n,� share the same

asymptotic distribution as → ∞. For instance, (43) is verified, in particular, if the
process X is stationary with positive definite Fisher information matrix F� for a
pair of successive observations, in which case Sn,� can be taken to be n−1/2F

1/2
�

(see Billingsley [6] for the required regularity conditions).

7. Examples. In this section, I apply the above results to a leading multivari-
ate diffusion example. The last example shows that the method of this paper also
applies to time-inhomogeneous models.

7.1. The Bivariate Ornstein–Uhlenbeck model. Consider the model

dXt = β(α − Xt) dt + σ dWt,(45)

where α = [αi]i=1,2, β = [βi]i=1,2 and σ = [σi,j ]i,j=1,2 and assume that β and σ

have full rank. This is the most basic model capturing mean reversion in the state
variables. Consider, now, the matrix equation βλ + λβT = σσT , whose solution
in the bivariate case is the 2 × 2 symmetric matrix λ given by

λ = 1

2 tr[β]Det[β]
(
Det[β]σσT + (β − tr[β])σσT (β − tr[β])T )

.(46)
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When the process is stationary, that is, when the eigenvalues of the matrix β have
positive real parts, λ is the stationary variance–covariance matrix of the process.
That is, the stationary density of X is the bivariate Normal density with mean α

and variance–covariance λ.

The transition density of X is the bivariate Normal density

pX(x|x0,�) = (2π)−1 Det[�(�)]−1/2

(47)
× exp

(−(
x − m(�,x0)

)T
�−1(�)

(
x − m(�,x0)

))
,

where m(�,x0) = α+exp(−β�)(x0 −α) and �(�) = λ−exp(−β�)λ exp(−βT

�), with exp denoting the matrix exponential.
Identification of the continuous-time parameters from the discrete data for this

particular model is discussed in Philips [24], Hansen and Sargent [15] and Kessler
and Rahbek [22]. If we wish to identify the parameters in θ from discrete data
sampled at the given time interval �, then we must restrict the set of admissi-
ble parameter values 
. For instance, we may restrict 
 in such a way that the
mapping β �→ exp(−β�) is invertible, for instance, by restricting the admissible
parameter matrices β to have real eigenvalues. This will be the case, for example,
if we restrict attention to matrices β which are triangular (and, of course, have real
elements). For the rest of this discussion, I will assume that 
 has been restricted
in such a way.

By applying Proposition 1, we see that the process X is reducible and that
γ (x) = σ−1x, so

dYt = (σ−1βα − σ−1βσYt ) dt + dWt ≡ κ(η − Yt ) dt + dWt,(48)

where η = σ−1α = [ηi]i=1,2 and κ = σ−1βσ = [κi,j ]i,j=1,2. One can therefore
apply Theorem 1 to obtain the coefficients of the expansion:

C
(−1)
Y (y|y0) = −1

2(y1 − y01)
2 − 1

2(y2 − y02)
2,

C
(0)
Y (y|y0) = −1

2(y1 − y01)
(
(y1 + y01 − 2γ1)κ11 + (y2 + y02 − 2γ2)κ12

)
− 1

2(y2 − y02)
(
(y1 + y01 − 2γ1)κ21 + (

y2 + y02 − 2γ2
)
κ22

)
,

C
(1)
Y (y|y0) = 1

2

(
κ11 − (

(y01 − η1)κ11 + (y02 − η2)κ12
)2)

+ 1
2

(
κ22 − (

(y01 − η1)κ21 + (y02 − η2)κ22
)2)

− 1
2(y1 − y01)

(
(y01 − η1)(κ

2
11 + κ2

21)

+ (y02 − η2)(κ11κ12 + κ21κ22)
)

+ 1
24(y1 − y01)

2(−4κ11
2 + κ12

2 − 2κ12κ21 − 3κ2
21)

− 1
2(y2 − y02)

(
(y01 − η1)(κ11κ12 + κ21κ22)

+ (y02 − η2)(κ
2
12 + κ2

22)
)
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+ 1
24(y2 − y02)

2(−4κ2
22 + κ2

21 − 2κ12κ21 − 3κ2
12)

− 1
3(y1 − y01)(y2 − y02)(κ11κ12 + κ21κ22),

C
(2)
Y (y|y0) = − 1

12

(
2κ2

11 + 2κ2
22 + (κ12 + κ21)

2)
+ 1

6(y1 − y01)(κ12 − κ21)
(
(y01 − η1)(κ11κ12 + κ21κ22)

+ (y02 − η2)(κ
2
12 + κ2

22)
)

+ 1
12(y1 − y01)

2(κ12 − κ21)(κ11κ12 + κ21κ22)

+ 1
12(y2 − y02)

2(κ21 − κ12)(κ11κ12 + κ21κ22)

+ 1
6(y2 − y02)(κ21 − κ12)

(
(y01 − η1)(κ

2
11 + κ2

21)

+ (y02 − η2)(κ11κ12 + κ21κ22)
)

+ 1
12(y1 − y01)(y2 − y02)(κ12 − κ21)(κ

2
22 + κ2

12 − κ2
11 + κ2

21).

Because this is essentially the only multivariate model with a known closed-
form density (other than multivariate models which reduce to the superposition of
univariate processes), the Ornstein–Uhlenbeck process can serve as a useful bench-
mark for examining the accuracy of the expansions and the resulting MLE. Table 1
reports the results of 1,000 Monte Carlo simulations comparing the distribution of
the maximum-likelihood estimator θ̂ (MLE) based on the exact transition density for
this model, around the true value of the parameters θ(TRUE), to the distribution of
the difference between the MLE θ̂ (MLE) and the approximate MLE θ̂ (2) based on
the expansion with K = 2 terms shown above. To ensure full identification, the
off-diagonal term κ21 is constrained to be zero. As discussed above, this guaran-
tees that the eigenvalues of the mean reversion matrix are both real and avoids the
aliasing problem altogether. The constraints κ11 > 0 and κ22 > 0 make the process
stationary, so standard asymptotics give the asymptotic distribution of θ̂ (MLE) (the
inverse of Fisher’s information is computed as E[−∂2lX/∂θ ∂θT ]−1).

TABLE 1
Monte Carlo simulations for the bivariate Ornstein–Uhlenbeck model

Asymptotic Small sample Small sample
θ̂ (MLE) − θ(TRUE) θ̂ (MLE) − θ(TRUE) θ̂ (MLE) − θ̂ (2)

Parameter θ(TRUE) Mean Stdev Mean Stdev Mean Stdev

η1 0 0 0.065 −0.0013 0.066 −0.0000005 0.000014
η2 0 0 0.032 −0.001 0.033 −0.0000003 0.000011
κ11 5 0 1.03 0.49 1.11 0.012 0.008
κ12 1 0 1.51 0.12 1.64 0.010 0.016
κ22 10 0 1.44 0.33 1.46 0.068 0.029
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Each of the 1,000 samples is a series of n = 500 weekly observations (� =
1/52), generated using the exact discretization of the process. The results in the
table show that the difference θ̂ (MLE) − θ̂ (2) is an order of magnitude smaller than
the (inescapable) sampling error θ̂ (MLE) − θ(TRUE). Hence, for the purpose of esti-
mating θ(TRUE), θ̂ (2) can be taken as a useful substitute for the (generally incom-
putable) θ̂ (MLE). In other words, at least for this model, K = 2 provides sufficient
accuracy for the types of situations and values of the sampling interval � one
typically encounters in finance.

7.2. Comparing the accuracy of the reducible and irreducible methods. Us-
ing nonlinear transformations of the Ornstein–Uhlenbeck process, we can assess
the empirical performance of the general method for irreducible diffusions. Let Y

denote the process given in (48) and define Xt ≡ exp(Yt ) = γ inv(Yt ). From Itô’s
lemma, the dynamics of Xt are given by

dXt =
(

X1t

(1
2 + κ11(η1 − ln(X1t )) + κ12

(
η2 − ln(X2t )

))
X2t

(1
2 + κ21(η1 − ln(X1t )) + κ22

(
η2 − ln(X2t )

))
)

dt

(49)

+
(

X1t 0
0 X2t

)
dWt .

By construction, this process has a known log-transition function given by
lX(x|x0,�) = − ln(xx0)+ lY (�, ln(x)| ln(x0)) and it is reducible by transforming
Xt back to Yt = ln(Xt) = γ (Xt), with Dv(x) = ln(X1tX2t ) for that transforma-
tion.

But, in order to assess the accuracy of the irreducible method, we can directly
calculate the irreducible expansion (based on Theorem 2) for the model (49). We
can then compare it to the closed-form solution, but also to the reducible expan-
sion obtained using the order 2 expansion given in the previous section for lY and
then the Jacobian formula, lX(x|x0,�) = − ln(X1tX2t ) + lY (�, ln(x)| ln(x0)).
Based on Proposition 2, we know that in this situation, the irreducible expan-
sion involves Taylor expanding the coefficients of the reducible expansion in x

about x0. Monte Carlo simulations with the same design as in the previous section
help document the effect of that further Taylor expansion on the accuracy of the
resulting MLE. The results are given in Table 2 and they show that the difference
θ̂ (MLE) − θ̂ (2,irreducible), although larger than θ̂ (MLE) − θ̂ (2,reducible), remains smaller
than the difference θ̂ (MLE) − θ(TRUE) due to the sampling noise. In other words,
replacing θ̂ (MLE) by θ̂ (2,irreducible) has an effect which is not statistically discernible
from the sampling variation of θ̂ (MLE) around θ(TRUE). And, of course, θ̂ (MLE) is
generally incomputable, whereas θ̂ (2,irreducible) is computable.

7.3. Time-inhomogeneous models. Time-inhomogeneous models are of par-
ticular interest for the term structure of interest rates. A large swathe of the term
structure literature has proposed models designed to fit exactly the current bond
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TABLE 2
Monte Carlo simulations for the exponential transformation of the Ornstein–Uhlenbeck model:

comparing the reducible and irreducible methods

Small sample Small sample Small sample
θ̂ (MLE) − θ(TRUE) θ̂ (MLE) − θ̂ (2,reducible) θ̂ (MLE) − θ̂ (2,irreducible)

Parameter θ(TRUE) Mean Stdev Mean Stdev Mean Stdev

η1 0 −0.0019 0.065 −0.000003 0.00009 −0.0004 0.0002
η2 0 −0.003 0.034 −0.0000001 0.00001 0.0003 0.0002
κ11 5 0.48 1.06 0.012 0.007 0.08 0.04
κ12 1 −0.05 1.57 0.0087 0.016 0.025 0.03
κ22 10 0.39 1.50 0.069 0.030 0.21 0.08

prices, as well as other market data, such as bond volatilities or the implied volatil-
ities of interest rate caps, for instance. Calibrating such a model to time-varying
market data gives rise to time-varying drift and diffusion coefficients. Typical ex-
amples of this approach include the models of Ho and Lee [17], Black, Derman
and Toy [7] and Hull and White [18], where the short-term interest rate (or its log)
follows the dynamics dX1t = (α(t) − β(t)X1t ) dt + κ(t) dW1t . Markovian spe-
cializations of the Heath, Jarrow and Morton [16] model will also be, in general,
time-inhomogeneous.

The univariate results of Aït-Sahalia [2] have been extended to cover such
models by Egorov, Li and Xu [13]. With expansions now available for time-
homogenous diffusions of arbitrary specifications and dimensions, a time-inhomo-
geneous diffusion of dimension m can be simply reduced to a time-homogenous
diffusion of dimension m + 1. Indeed, consider the state vector Xt = (X1t , . . . ,

Xmt). Now, define time as the additional state variable Xm+1,t = t, whose
dynamics are dXm+1,t = dt , and consider the extended state vector as X̃t =
(X1t , . . . ,Xmt ,Xm+1,t ). This is an (m+1)-dimensional, time-homogenous, diffu-
sion.

8. Proofs.

8.1. Proof of Proposition 1. Suppose that a transformation exists and define
Yt ≡ γ (Xt), where γ (x) = (γ1(x), . . . , γm(x))T . By Itô’s lemma, the diffusion
matrix of Y is σY (Yt ) = ∇γ (Xt) σ (Xt). For σY to be Id, we must therefore have
that ∇γ (Xt) = σ−1(x) (recall that σ is assumed to be nonsingular). Thus,

[σ−1]ij (x) = ∂γi(x)

∂xj

(50)

and hence

∂[σ−1]ij (x)

∂xk

= ∂

∂xk

(
∂γi(x)

∂xj

)
= ∂

∂xj

(
∂γi(x)

∂xk

)
= ∂[σ−1]ik(x)

∂xj

,
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for all (i, j, k) = 1, . . . ,m. Continuity of the second-order partial derivatives is re-
quired for the order of differentiation to be interchangeable. Here, we have infinite
differentiability.

Conversely, suppose that σ−1 satisfies (10). Then, for each i = 1, . . . ,m, use
row i of the matrix σ−1, σ−1

i· = [[σ−1]ij ]j=1,...,m, to define the differential 1-form
ωi = ∑m

j=1[σ−1]ij dxj and calculate its differential, the differential 2-form dωi .
Condition (10) implies that dωi = 0, that is the differential 1-form ωi is closed
on SX . The domain SX is singly connected (or without holes). Therefore, by
Poincaré’s lemma (see, e.g., Theorem V.8.1 of Edwards [12]), the form ωi is
exact, that is there exists a differential 0-form γi such that dγi = ωi. In other
words, for each row i of the matrix σ−1, there exists a function γi defined by
γi(x) = ∫ xj [σ−1]ij (x) dxj (the choice of the index j is irrelevant) which satisfies
(50), has the required differentiability properties and is invertible. The function
γ is then defined by each of its d components γi, i = 1, . . . ,m, and because of
Assumptions 2 and 3, it is invertible and infinitely often differentiable. By con-
struction, Yt ≡ γ (Xt) has unit diffusion and therefore X is reducible. To prove the
equivalent characterization (9), apply Itô’s lemma from Y to X (instead of from X

to Y ) and proceed as above.

8.2. Proof of Theorem 1. To show that (15) with the coefficients given in the
statement of Theorem 1 indeed represent the Taylor expansion in � of the log-
density function lY , at order K −1, it suffices to verify that the difference between
the left- and right-hand sides in the Kolmogorov forward and backward partial
differential equations is of order �K .

Define F
(K)
Y (y|y0,�) [resp. B

(K)
Y (y|y0,�)] as the difference between the left-

and right-hand sides of the forward (resp. backward) equations when lY is replaced
by l

(K)
Y . The backward equation for lY is

∂lY (y|y0,�)

∂�
=

m∑
i=1

μYi(y0)
∂lY (y|y0,�)

∂y0i

(51)

+ 1

2

m∑
i=1

∂2lY (y|y0,�)

∂y2
0i

+ 1

2

m∑
i=1

(
∂lY (y|y0,�)

∂y0i

)2

.

Substituting in the expansion (15) and equating the coefficients of �−2 on both
sides of (51) yields

C
(−1)
Y (y|y0) = −1

2

(
∂C

(−1)
Y (y|y0)

∂y0i

)T (
∂C

(−1)
Y (y|y0)

∂y0i

)
,

which is satisfied by the (already determined) solution (20), which is therefore the
desired solution.
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Starting with the Gaussian leading term (20), we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F
(K)
Y (y|y0,�) =

K−1∑
k=−1

f
(k)
Y (y|y0)

�k

k! + O(�K)

B
(K)
Y (y|y0,�) =

K−1∑
k=−1

b
(k)
Y (y|y0)

�k

k! + O(�K)

[with the convention that (−1)! = 0! = 1]. The first term in F
(K)
Y is

f
(−1)
Y (y|y0) = −m

2
+

m∑
i=1

μYi(y)
∂C

(−1)
Y (y|y0)

∂yi

− 1

2

m∑
i=1

∂2C
(−1)
Y (y|y0)

∂y2
i

− 1

2

m∑
i=1

2
∂C

(−1)
Y (y|y0)

∂yi

∂C
(0)
Y (y|y0)

∂yi

= −
m∑

i=1

(yi − y0i )μY i(y) +
m∑

i=1

(yi − y0i )
∂C

(0)
Y (y|y0)

∂yi

.

Solving the equation f
(−1)
Y (y|y0) = 0 for C

(0)
Y (y|y0) yields the full solution

C
(0)
Y (y|y0) =

m∑
i=1

(yi − y0i )

∫ 1

0
μYi

(
y0 + u(y − y0)

)
du

(52)

+
m∑

i,j=1, j 
=i

α
(0)
ij

yi − y0i

yj − y0j

+ M
(0)
Y ,

where the α
(0)
ij and M

(0)
Y are integration constants in the differential equation

f
(−1)
Y = 0, hence arbitrary functions of y0. The boundary condition that C

(0)
Y be

finite when passing through the axes yj = yj0 for all j = 1, . . . ,m imposes the

condition α
(0)
ij = 0. To determine M

(K)
Y , (51) gives

b
(−1)
Y (y|y0) = −

m∑
i=1

(yi − y0i )μY i(y) −
m∑

i=1

(yi − y0i )
∂C

(0)
Y (y|y0)

∂y0i

and the candidate solution (52) must satisfy b
(−1)
Y = 0. Thus, we must have

m∑
i=1

∂M
(0)
Y (y0)

∂y0i

(yi − y0i ) = 0

for all y and y0 and so M
(0)
Y (y0) is constant. Since the limiting behavior of pY is

N(0, I ) as � → 0 and

lim
�→0

(
l
(K)
Y (y|y0,�) + m

2
ln(2π�) + 1

2�
‖y − y0‖2

)
= C

(0)
Y (y|y0),
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we must have M
(0)
Y = 0 to ensure that as � → 0, the limiting density integrates to

one [otherwise, it integrates to exp(M
(0)
Y )].

The next term is

f
(0)
Y (y|y0) = C

(1)
Y (y|y0) +

m∑
i=1

(yi − y0i )
∂C

(1)
Y (y|y0)

∂yi

+
m∑

i=1

∂μYi(y)

∂yi

+
m∑

i=1

μYi(y)
∂C

(0)
Y (y|y0)

∂yi

− 1

2

m∑
i=1

{
∂2C

(0)
Y (y|y0)

∂y2
i

+
[
∂C

(0)
Y (y|y0)

∂yi

]2}

= C
(1)
Y (y|y0) +

m∑
i=1

(yi − y0i )
∂C

(1)
Y (y|y0)

∂yi

− G
(1)
Y (y|y0),

where G
(1)
Y is given in (23) and depends on the previously determined C

(−1)
Y and

C
(0)
Y .

Solving the equation f
(0)
Y (y|y0) = 0, which is linear in C

(1)
Y , similarly yields the

explicit solution

C
(1)
Y (y|y0) =

∫ 1

0
G

(1)
Y

(
y0 + u(y − y0)|y0

)
du

+
m∑

i,j=1,j 
=i

α
(1)
ij

yi − y0i

(yj − y0j )2 + M
(1)
Y ,

which includes generic integration constants α
(1)
ij and M

(1)
Y . The solution has

α
(1)
ij = 0 when imposing finiteness of l

(K)
Y when passing through the axes yj = yj0

for all j = 1, . . . ,m. As for M
(1)
Y , invoking the backward equation (51) yields

M
(1)
Y (y0) −

m∑
i=1

∂M
(1)
Y (y0)

∂y0i

(yi − y0i ) = 0,

whose only solution valid for all (y, y0) is M
(1)
Y (y0) = 0. This yields the coefficient

C
(1)
Y .

More generally, the term f
(k−1)
Y , k ≥ 1, is given by

f
(k−1)
Y (y|y0) = C

(k)
Y (y|y0) + 1

k

m∑
i=1

(yi − y0i )
∂C

(k)
Y (y|y0)

∂yi

− G
(k)
Y (y|y0),

where G
(k)
Y is given in (24) and depends on the previously determined C

(−1)
Y ,C

(0)
Y ,

. . . , C
(k−1)
Y . Solving the equation f

(k)
Y (y|y0) = 0 for C

(k)
Y (with the same boundary
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condition as for C
(0)
Y and C

(1)
Y ) yields the explicit solution (22). In this case, the

full solution including generic integration constants αij and M
(k)
Y , is

C
(k)
Y (y|y0) = k

∫ 1

0
G

(k)
Y

(
y0 + u(y − y0)|y0

)
uk−1 du

+
m∑

i,j=1,j 
=i

α
(k)
ij

yi − y0i

(yj − y0j )k+1 + M
(k)
Y .

Thus, by construction, the solution C
(k)
Y , k = −1,0, . . . ,K given in the statement

of the theorem is such that F
(K)
Y (y|y0,�) = O(�K). Similarly, B

(K)
Y (y|y0,�) =

O(�K). The fact that solving the Kolmogorov equations to order �K yields a Tay-
lor expansion of order K − 1 of lY is established as part of the proof of Theorem 3
below.

8.3. Proof of Theorem 2. Let F
(K)
X and F̃

(K)
X (resp. B

(K)
X and B̃

(K)
X ) denote

the difference between the left- and right-hand sides of (28) [resp. (29)] when lX

is replaced by the expansion l
(K)
X (resp. l̃

(K)
X ). We have

F
(K)
X (x|x0,�) =

K−1∑
k=−2

f
(k)
X (x|x0)

�k

k! + O(�K)

[with the convention that (−2)! = 2 and (−1)! = 0! = 1]. The highest-order term
is f

(−2)
X , given by (39), and the coefficient function C

(−1)
X is such that it sets f

(−2)
X

to zero. We have then successively determined C
(0)
X by setting f

(−1)
X in (40) to zero

and, more generally, given C
(−1)
X , C

(0)
X , . . . , C

(k−1)
X , the expression (41) for f

(k−1)
X

is defined and can be set to zero to determine the next coefficient C
(k)
X . The form

of the log-likelihood adopted in (27) with Dv kept separate from C
(0)
X is essential

to obtain B̃
(K)
X (x|x0,�) = O(�K) in addition to F̃

(K)
X (x|x0,�) = O(�K).

To determine the expansions in x−x0 for each coefficient C
(k)
X , k ≥ −1, replace

C
(k)
X by C

(jk,k)
X in each equation in turn. Starting with (39), calculate an expansion

of f̃
(−2)
X in (x − x0) to order j−1. This determines a system of equations in the

unknown coefficients β
(−1)
i , i ∈ I−1 [which appear when C

(−1)
X is expanded, as

in (34)]. By construction, there are as many equations as unknowns (both are given
by the number of elements in I−1). This system of equations can always be solved
explicitly because it has the following form. First, β

(−1)
i = 0 for tr[i] = 0,1 (i.e.,

the polynomial has no constant or linear terms) and the terms corresponding to
tr[i] = 2 (with, of course, j−1 ≥ 2) are∑

i∈I−1:tr[i]=2

β
(−1)
i (x0)(x1 − x01)

i1 · · · (xm − x0m)im

= −(x − x0)
T v−1(x0)(x − x0),
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which is the anticipated term, given the Gaussian limiting behavior of the transi-
tion density when � is small. Thus, with j−1 ≥ 3, we only need to determine the
terms β

(−1)
i corresponding to tr[i] = 3, . . . , j−1. Then, the next order coefficients

in (x −x0), that is, the coefficients corresponding to tr[i] = 3, each appear linearly
in a separate equation. That is, we have a system �

(−1)
3 (x0) ·β(−1)

3 (x0) = a
(−1)
3 (x0)

whose explicit solution is given by β
(−1)
3 (x0) = Inv[�(−1)

3 (x0)] · a(−1)
3 (x0). Given

the previously determined coefficients corresponding to tr[i] = 0, . . . , r, the equa-
tions determining the coefficients for tr[i] = r + 1 are given by a linear system
�

(−1)
r+1 (x0) · β

(−1)
r+1 (x0) = a

(−1)
r+1 (x0), where the matrix �

(−1)
r+1 and the vector a

(−1)
r+1

are functions of the previously determined coefficients β
(−1)
i , for tr[i] = 0, . . . , r,

and x0.
The same principle applies to all values of k. For k = 0, β

(0)
i = 0 for tr[i] = 0,

so the polynomial has no constant term. For k ≥ 1, the polynomials have a constant
term (for k ≥ 1, β

(k)
i 
= 0 for tr[i] = 0, in general). The same principle applies to

each equation in turn: once C
(j−1,−1)

X is determined, a Taylor expansion of (40)

determines the coefficients β
(0)
i , i ∈ I0, and so on.

8.4. Proof of Proposition 2. If the diffusion X is reducible, then C
(k)
X (x|x0) =

C
(k)
Y (γ (x)|γ (x0)). By construction (see the proof of Theorem 2), the coefficients

C
(jk,k)
X are then Taylor expansions of the coefficients C

(k)
X (which are the solutions

of the equations f
(k−1)
X = 0).

8.5. Proof of Theorem 3. Consider the irreducible case; everything also ap-
plies to the reducible case, by simply eliminating the arguments relative to the
additional expansion in x − x0. The expansion p̃

(K)
X , constructed as an expansion

in � and (x − x0) of exp(l̃
(K)
X ), satisfies the linear backward equation, but with a

remainder term B̃
(K)
X :

B̃
(K)
X (x|x0,�) = ∂p̃

(K)
X (x|x0,�)

∂�
−

m∑
i=1

μi(x0)
∂p̃

(K)
X (x|x0,�)

∂y0i

(53)

− 1

2

m∑
i,j=1

vij (x0)
∂2p̃

(K)
X (x|x0,�)

∂x0i ∂x0j

.

Indeed, the coefficients C
(jk,k)
X , k = −1, . . . ,K , are constructed in such a way

that the terms of order �K−1 and higher of the right-hand side of (53) are zero. The
remainder term is of the form B̃

(K)
X (x|x0,�) = �Kp̃

(K)
X (x|x0,�) ψ̃

(K)
X (x|x0,�)

where ψ̃
(K)
X (x|x0,�) is a sum of products of the functions μi , vij , the coefficients

C
(jk,k)
X , k = −1, . . . ,K, and their derivatives. Specifically, ψ̃

(K)
X (x|x0,�) = cK
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f
(K)
X (x|x0) + o(�), where the functions f

(k)
X are given in Theorem 2 and where

cK is a constant.
The coefficients and their derivatives exhibit at most polynomial growth as a

result of the explicit expressions given in Sections 4 and 5, combined with As-
sumption 4 on (μ, v) and their derivatives. Thus, ψ̃(K)

X exhibits at most polynomial

growth and we have ψ̃
(K)
X (x|x0,�) = O(1) uniformly for all (x, x0) in a compact

subset of the interior of S2
X and for all θ in 
, by virtue of the continuity of the

functions and their derivatives with respect to the parameter vector in the compact
set 
.

The solution p̃
(K)
X of the approximate PDE with remainder, (53), is an approx-

imation of the solution pX of the exact PDE without remainder term due to the
following. Writing r̃

(K)
X = p̃

(K)
X − pX, it is clear, by linearity of the PDE for pX ,

that r̃
(K)
X also satisfies equation (53) with the same remainder B̃

(K)
X , but now with

initial condition r̃
(K)
X (x|x0,�) → 0 as � → 0 (whereas pX and p̃

(K)
X both con-

verge to a Dirac mass at x0 as � → 0). The solution is given by

r̃
(K)
X (x|x0,�) =

∫
SX

∫ �

0
B̃

(K)
X (x|z, τ )pX(z|x0,� − τ ) dτ dz,(54)

which follows from the facts that (54) produces the correct initial boundary be-
havior and, as can be seen by computing the relevant partial derivatives of this
expression for r̃

(K)
X , satisfies (53). The function B̃

(K)
X pX is integrable because pX

has exponentially decaying tails in a neighborhood of � = 0 (see below), whereas
φ

(K)
X has polynomial growth. It follows that we have r̃

(K)
X (x|x0,�) = O(�K) uni-

formly for all (x, x0) in a compact subset of the interior of S2 and for all θ in 
.
Let

R̃
(K)
X (x|x0,�) ≡ sup

θ∈


∣∣r̃ (K)
X (x|x0,�)

∣∣
and consider the expectation

E
[
R̃

(K)
X (X�|X0,�)|X0 = x0

] =
∫
SX

R̃
(K)
X (x|x0,�)pX(x|x0,�)dx.(55)

In the integral above, divide the region SX ⊆ R
m into two parts—a neighborhood

of x0 of the form N = ∏m
i=1[x0i −�1/2c�, x0i +�1/2c�], where c� is a sequence

of positive numbers such that c� → ∞ and �1/2c� → 0, and the complement
SX\N of that neighborhood.

From above, there exist constants C and M such that |R̃(K)
X (x|x0,�)| ≤ M�K

for all x ∈ N , so ∫
N

R̃
(K)
X (x|x0,�)pX(x|x0,�)dx = O(�K).(56)

Outside the neighborhood N , the approximation error R̃
(K)
X need not be small;

however, it is at most polynomial in (x − x0). In a neighborhood of � = 0, the
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tail behavior of the transition function pX is driven by the term exp(−m
2 ln(�) +

C
(j−1,−1)

X (x|x0)�
−1), with C

(j−1,−1)

X (x|x0) = −(1/2)(x −x0)
T v−1(x0)(x −x0)+

o(‖x − x0‖2).
Therefore, to bound

∫
SX\N r̃

(K)
X pX dx, one needs to integrate a polynomial error

term in r
(K)
X , say ‖x −x0‖b, b ≥ 0, against the exponential tails of pX . This results

in integrals of the form (written in the univariate case m = 1, for simplicity, and
near an infinity boundary)

�−1/2
∫ +∞
�1/2c�

|x − x0|b exp
(−(x − x0)

2/(2�v(x0))
)
dx

(57)

= �b/2
∫ +∞
c�

|z − z0|b exp
(−(z − z0)

2/(2v(x0))
)
dz,

with the change of variable z − z0 = (x − x0)/�
1/2, and similarly on the interval

[−∞,−�1/2c�]. Since c� → ∞, the above integral converges to zero.
It follows from (56) and (57) that E[R̃(K)

X (X�|X0,�)|X0] → 0 as � → 0.

Similar calculations show that this is also the case for Var[R̃(K)
X (X�|X0,�)|X0].

Therefore, R̃
(K)
X (X�|X0,�) → 0 in Pθ0 -probability, given X0, which follows by

Chebyshev’s inequality from the convergence to zero of the conditional expected
value and variance of R̃

(K)
X . Convergence to zero of the conditional probability

implies convergence to zero of the unconditional probability, since

Pr
(∣∣R̃(K)

X (Xt+�|Xt,�)
∣∣ > ε

)

=
∫
SX

Pr
(∣∣R̃(K)

X (Xt+�|Xt,�)
∣∣ > ε|Xt = x0

)
πt(x0) dx0,

where πt(x0) denotes the marginal density of X at time t. Since probabilities are
between 0 and 1 and since πt integrates to 1, the convergence of the uncondi-
tional probability follows by Lebesgue’s dominated convergence theorem. Next,
the convergence in Pθ0 -probability for the log-density follows from the continu-

ity of the logarithm and the convergence of R̃
(K)
X . Then, for fixed n, the conver-

gence stated in (42) follows from that of l̃
(K)
X to lX . From the assumed existence

of the maximizer θ̂n,� of �̃n(θ,�) in 
 and the (just obtained) proximity of the
two objective functions, it follows from standard arguments that the maximizer
of �̃

(K)
n (θ,�), that is, θ̂

(K)
n,�, exists almost surely, is in 
 and is close to θ̂n,� as

� → 0, in the sense that θ̂
(K)
n,� − θ̂n,� → 0 in Pθ0 -probability. Finally, the speed at

which θ̂
(K)
n,� − θ̂n,� converges to zero can be made arbitrarily small for any n by

taking � → 0 sufficiently fast. In particular, as → ∞, a sequence �n → 0 can be
taken to be such that (44) is satisfied.
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9. Conclusions. This paper provides a method to derive closed-form Taylor
expansions to the likelihood function of arbitrary multivariate diffusions. While
these expansions are local in nature, at least in the irreducible case, they have been
shown to produce useful approximations in the context of maximum likelihood
estimation. Aït-Sahalia and Kimmel [3] apply this method to popular stochastic
volatility models. Likelihood expansions for these models are derived, as well as a
Monte Carlo investigation of the properties of maximum likelihood estimators of
the parameters computed from these expansions.

Once the expansion is computed for the diffusion model at hand, it can be ap-
plied to the estimation of parameters by a variety of other estimation methods
which require an expression for the transition density of the state variables, such
as Bayesian methods where one wishes to obtain a posterior distribution for the
parameters of a stochastic differential equation, or to generate simulated data at
the desired frequency from the continuous-time model or to serve as the instru-
mental or auxiliary model in indirect inference and simulated or efficient moments
methods. The explicit nature of the expansion as a function of all of the relevant
variables makes these computations, whether maximization of the classical likeli-
hood or computation of posterior distributions, straightforward and computation-
ally very efficient.

Other methods can be used to approximate the transition function: they involve
numerically solving a partial differential equation, simulating the process to Monte
Carlo integrate the transition density or approximating the process with binomial
trees. However, none of these alternative methods provides closed-form formulae.
Jensen and Poulsen [20], Stramer and Yan [26] and Hurn, Jeisman and Lindsay
[19] compare the accuracy and speed of the different methods, showing the advan-
tages of this closed-form approach.
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