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Cook’s [J. Roy. Statist. Soc. Ser. B 48 (1986) 133–169] local influence
approach based on normal curvature is an important diagnostic tool for as-
sessing local influence of minor perturbations to a statistical model. However,
no rigorous approach has been developed to address two fundamental issues:
the selection of an appropriate perturbation and the development of influence
measures for objective functions at a point with a nonzero first derivative.
The aim of this paper is to develop a differential–geometrical framework of a
perturbation model (called the perturbation manifold) and utilize associated
metric tensor and affine curvatures to resolve these issues. We will show that
the metric tensor of the perturbation manifold provides important informa-
tion about selecting an appropriate perturbation of a model. Moreover, we
will introduce new influence measures that are applicable to objective func-
tions at any point. Examples including linear regression models and linear
mixed models are examined to demonstrate the effectiveness of using new
influence measures for the identification of influential observations.

1. Introduction. Assessing local influence of perturbing a statistical model
has been an active area of statistical research in the past twenty years since the
seminal work of Cook [7]. See, for example, Beckman, Nachtsheim and Cook [3],
Tsai and Wu [26], St. Laurent and Cook [25], Wu and Luo [31, 32], Ouwens, Tan
and Berger [21], Pan and Fang [22] and Zhu and Lee [38], among many others.
The key idea of the local influence approach is to utilize the concept of normal
curvature in differential geometry (Efron [10] and Bates and Watts [2]) in assess-
ing the local behavior of the likelihood displacement function. Zhu and Lee [37]
proposed a generalization of Cook’s [7] approach based on the Q-function in the
EM algorithm to assess local influence of a small perturbation to a class of models
with incomplete data. Zhu, He and Fung [41] developed a local influence method
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for generalized partial linear models for longitudinal data. Lee and Tang [17] ex-
amined local influence in structural equation models. Zhu and Zhang [40] used
measures of local influence to assess the extent of discrepancy between a hypo-
thetical model and the underlying model from which the data are generated. The
local influence approach is also useful for sensitivity analysis of missing data mod-
eling (Verbeke and Molenberghs [27] and Verbeke et al. [28]).

The aim of this paper is to construct influence measures in assessing local influ-
ence of perturbations to a statistical model. Specifically, we address two important
issues related to the local influence approach: the appropriate choice of a pertur-
bation vector and development of influence measures for assessing an objective
function at any point.

The first issue, selecting an appropriate perturbation vector, has been largely
neglected. This issue, however, is central to the development of the local influence
approach, because arbitrarily perturbing a model may lead to inappropriate infer-
ence about the cause (e.g., influential observations) of a large effect. For instance,
when data form clusters (e.g., subjects in longitudinal studies and families in ge-
netic studies), then perturbing a cluster with more observations likely produces a
larger effect. However, to the best of our knowledge, no diagnostic methods have
ever been developed to take into account the differing number of observations in
each cluster (see Section 4 for further discussion). Moreover, because the compo-
nents of a perturbation vector may not be orthogonal to each other, special care
should be taken when we interpret local influence measures from such a pertur-
bation. Thus, it is desirable to measure the amount of perturbation, the extent to
which each component of a perturbation vector contributes to, and the degree of
orthogonality for the components of a perturbation vector.

The second issue is the development of influence measures for objective func-
tions at a point with a nonzero first derivative. Fung and Kwan [11] showed that the
normal curvature is not scale invariant and provided some examples to illustrate
that ambiguous conclusions may be drawn when applied to objective functions
with a nonzero first derivative. However, they did not provide any methodology to
address this drawback. Conformal normal curvature (Poon and Poon [23]) is in-
variant under the conformal reparametrization at a point with a zero first derivative
(called a critical point), but it is not scale invariant at a point with a nonzero first
derivative. These difficulties have limited the application of normal curvature to
objective functions that have zero first derivative at the critical point.

We will introduce a geometrical structure, called the perturbation manifold, for
a perturbation model and use its associated metric tensor and affine connection to
address the above two issues. The metric tensor of the perturbation manifold can
measure the amount of perturbation and the orthogonality between the different
components of a perturbation vector. Thus, the properties of metric tensors (e.g.,
positive definiteness) can be used to choose an appropriate perturbation to a sta-
tistical model. Furthermore, once an appropriate perturbation is chosen, we use
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the first and second derivatives of the objective function (e.g., the likelihood dis-
placement function in Cook [7]) to construct influence measures. These influence
measures can be easily applied to any objective function evaluated at any point in
order to quantify the local influence of minor perturbations to a statistical model.

2. Perturbation manifold and influence measures.

2.1. Motivation. Let p(Y|θ) be the probability function for an M(n) × 1 ran-
dom vector YT = (Y T

1 , . . . , Y T
n ), parameterized by an unknown parameter vector

θ = (θ1, . . . , θq)
T in an open subset � of Rq . In addition, each Yi is an mi × 1

random vector, where
∑n

i=1 mi = M(n). For instance, in longitudinal studies, mi

may represent the number of observations in the ith cluster. On the basis of the
assumed model p(Y|θ) and observations in yT = (yT

1 , . . . ,yT
n ), we can then carry

out statistical inference, such as estimation and hypothesis testing.
Let ω = (ω1, . . . ,ωp)T be a perturbation vector and let ω vary in � ⊂ Rp . If

a perturbation vector ω, which is introduced to perturb p(Y|θ), has a large ef-
fect, then it is important to know the cause (e.g., influential observations or invalid
model assumptions) of such a large effect. Therefore, it is important to develop sta-
tistical methods to quantify the effect of perturbing a statistical model and pinpoint
the potential cause.

In Cook [7] a general method was developed to assess the local influence of
perturbing a statistical model by introducing ω into p(Y|θ), denoted by p(Y|θ,ω).
The proposed methodology is based on the directional curvature of an influence
graph, which is defined as

IG(ω) = (ωT , f (ω))T ,(1)

where f : Rp → R1 is a sufficiently smooth (differentiable a certain number of
times) objective function. Consider the straight line ω(t): ω(t) = ω0+ th in Euclid-
ean space Rp and the lifted line IGh(ω(t)) for any nonzero vector h, where ω0 is a
fixed column vector in Rp . The tangent vector and upward-point normal vector of

the lifted line are, respectively, given by
(Ip,

∇T
f

)
and (1 + ∇T

f ∇f )−1/2(−∇f

1

)
, where

∇f = (∂f (ω)/∂ωi) is evaluated at ω0 and Ip is the p × p identity matrix. The
normal curvature of the influence graph (Cook [7]) is given by

Ch = 1

(1 + ∇T
f ∇f )1/2

hT Hf h

hT (Ip + ∇f ∇T
f )h

,(2)

where Hf denotes the matrix (∂2f (ω)/∂ωi ∂ωj ) evaluated at ω0. The maximum
value of Ch and the corresponding direction have been widely used to assess the
effects of using ω(t) = ω0 + th to perturb a statistical model. Poon and Poon [23]
defined a conformal normal curvature at ω0 in the direction h as

Bh = 1

‖Hf ‖M

hT Hf h

hT (Ip + ∇f ∇T
f )h

,(3)
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where ‖·‖M denotes the norm of a matrix such that ‖Hf ‖M =
√

tr[Hf ]2. However,
Ch is not scale invariant at any ω with ∇f �= 0, because the normal curvature of
ÎG(ω) = (ωT , kf (ω))T is given by

Ĉh = 1

(1 + k2∇T
f ∇f )1/2

khT Hf h

hT (Ip + k2∇f ∇T
f )h

�= Ch,

which may lead to ambiguous conclusions as k varies (Fung and Kwan [11]). The
same problem also arises with Bh, that is, Bh is not scale invariant. In particular,
Fung and Kwan [11] argued that the conclusions drawn from the new graph ÎG(ω)

should be the same as those from the old graph IG(ω) = (ωT , f (ω))T .

2.2. Statistical perturbation manifold. We use p(Y|θ ,ω) to denote the density
function such that

∫
p(Y|θ ,ω) dY = 1. To assess the local influence of a model

perturbation, we are primarily interested in the behavior of p(Y|θ ,ω) as a function
of ω around ω0, not the parameter vector θ . From now on, θ is assumed to be
known or be fixed at a given value (e.g., the maximum likelihood estimate) and
p(Y|θ ,ω0) = p(Y|θ). Moreover, p(Y|θ ,ω) satisfies the four regularity conditions
on page 16 of Amari [1] and ω0 represents no perturbation.

The perturbed model p(Y|θ ,ω) is characterized by a set of perturbations ω,
which has a natural geometrical structure (Amari [1]). The perturbed model
M = {p(Y|θ ,ω) :ω ∈ �} can be regarded as a p-dimensional manifold. When
a coordinate system ω is given, ei (i = 1, . . . , p) are the natural basis of the tan-
gent space Tω of M associated with the coordinate system (Amari [1] and Li and
McCullagh [18]). Let T

(1)
ω be the vector space of M at ω, which is spanned by p

functions ∂i�(ω|Y, θ), where �(ω|Y, θ) = logp(Y|θ ,ω). A natural isomorphism
exists between these two tangent vector spaces Tω and T

(1)
ω . The vector space

T
(1)
ω is called the 1-representation of the tangent space of M . For any tangent

vector h = ∑p
i=1 hiei ∈ Tω, the 1-representation h(Y) of h in T

(1)
ω is given by

h(Y) = ∑p
i=1 hi ∂i�(ω|Y, θ), where ∂i = ∂/∂ωi .

DEFINITION 1. The inner product of two basis operators ∂i and ∂j is

gij (ω) = 〈∂i, ∂j 〉 = Eω[∂i�(ω|Y, θ) ∂j �(ω|Y, θ)],(4)

where Eω denotes the expectation taken with respect to p(Y|θ,ω). The p2 quanti-
ties gij (ω), i, j = 1, . . . , p, form the metric tensor.

The metric matrix G(ω) = (gij (ω)) is an expected Fisher information matrix
with respect to the perturbation vector ω. The elements of G(ω) measure the
amount of perturbation that all components of a perturbation vector ω contribute
to a statistical model. The (i, i)th element gii(ω) itself indicates the amount of
perturbation introduced by the ith component of ω. The off-diagonal elements
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of G(ω) represent the association between different components of ω. For in-
stance, let rij (ω) = gij (ω)/

√
gii(ω)gjj (ω). A large absolute value of rij (ω) in-

dicates strong association between the ith and j th components of ω. In particular,
if G(ω) is a diagonal matrix, then all components of ω are orthogonal to each
other in the perturbed model (Cox and Reid [9]). Moreover, if G(ω) is not posi-
tive definite for a perturbation scheme, then p operators ∂i are linearly dependent.
Thus, this indicates that some components of the perturbation vector are redun-
dant and these redundant components should be removed; for further discussion,
see Section 3.3.2.

Based on the above discussion, an appropriate perturbation to a statistical
model should satisfy at least two conditions as follows:

(a) G(ω) is positive definite in a small neighborhood of ω0;
(b) the off-diagonal elements of G(ω) at ω0 should be as small as possible.

Condition (a) is required to avoid any redundant components of ω. Condition (b)
is required to ensure that we can easily pinpoint the cause of a large effect. For
instance, if differing components of ω are highly associated, then it is difficult
to infer whether a large effect is caused by a single component of ω or by sev-
eral components of ω. Therefore, an appropriate perturbation requires that G(ω0)

should be diag(g11(ω
0), . . . , gpp(ω0)). Moreover, we can always choose a new

perturbation vector ω̃, defined by

ω̃ = ω0 + c−1/2G(ω0)1/2(ω − ω0),(5)

such that G(ω̃) evaluated at ω0 equals cIp , where c > 0. Therefore, without loss
of generality, we assume that an appropriate perturbation ω satisfies G(ω0) = cIp .
However, it is not generally possible to find a perturbation vector such that G(ω) =
cIp for all ω ∈ �.

We introduce the following geometrical quantities for the perturbed model M

based on the metric tensor. First, the length ‖h‖2 of a tangent vector h ∈ Tω is
given by

‖h‖2 = 〈h,h〉 = ∑
i,j

hihjgij (ω) = hT G(ω)h.(6)

Let C :ω(t) = (ω1(t), . . . ,ωp(t)) be a smooth curve on the manifold M connect-
ing two points ω1 = ω(t1) and ω2 = ω(t2). The distance S(ω1,ω2) from ω1 to ω2

along the curve C is given by

S(ω1,ω2) =
∫ t2

t1

√√√√∑
i,j

gij (ω(t))
dωi(t)

dt

dωj (t)

dt
dt.(7)

The skewness tensor T and a family of affine connections �α for any α ∈ R1 are,
respectively, defined as

Tijk(ω) = Eω[∂i�(ω|Y, θ) ∂j �(ω|Y, θ) ∂k�(ω|Y, θ)],
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and �α
ijk(ω) = Eω[∂i ∂j �(ω|Y, θ) ∂k�(ω|Y, θ)] + 0.5(1 − α)Tijk(ω). It can be

shown that �α
ijk(ω) = �0

ijk(ω)−αTijk(ω)/2, where �0
ijk(ω) is the Christoffel sym-

bol for the Lévi–Civita connection of the metric tensor and

�0
ijk(ω) = 1

2 [∂igjk(ω) + ∂jgik(ω) − ∂kgij (ω)].
With the above quantities, the perturbation model M is a statistical manifold,
which plays an important role in understanding the behavior of the perturbed
model (Amari [1], Kass and Vos [14], Lauritzen [15] and Zhu and Wei [39]).

DEFINITION 2. A statistical perturbation manifold (M,G(ω), T (ω)) is the
manifold M with a metric G(ω) and a covariant 3-tensor T (ω).

Now we consider a specific smooth curve in M , called an α-geodesic.

DEFINITION 3. ω(t) is called an α-geodesic with respect to the affine connec-
tion �α

ijk(ω) if it satisfies the equation

d2ωi(t)

dt2 + ∑
s,j,k

gis(ω(t))�α
jks(ω(t))

dωj (t)

dt

dωk(t)

dt
= 0,(8)

where gis(ω) is the (i, s)th element of G(ω)−1.

The geodesic is a direct extension of the straight line ω(t) = ω0 + th in Euclid-
ean space (Amari [1] and Kass and Vos [14]). In particular, as we move along a
geodesic, the tangent vector of the geodesic does not change in length and direc-
tion. If �α

ijk(ω) = 0 for all ω, then the manifold is α-flat and the geodesic equation

for this α is linear in t : ω(t) = ω0 + th.
Some important properties related to the above geometrical quantities are sum-

marized in the following lemma, whose proof can be found in Amari [1], pages 40,
51–52.

LEMMA 1. Let φ = (φ1, . . . , φp) = φ(ω) be a new coordinate system of M ,
∂a = ∂/∂φa , Ba

i = ∂φa/∂ωi and Bi
a = ∂ωi/∂φa . Then the geometrical quantities

of M in the coordinate system φ can be written as gab = ∑
i,j Bi

aB
j
b gij , Tabc =∑

i,j,k Bi
aB

j
bBk

c Tijk and �α
abc = ∑

i,j,k Bi
aB

j
bBk

c �α
ijk +∑

i,j gijB
i
c∂aB

j
b . We use the

indices i, j, k, and so on, to denote quantities related to the coordinate system ω

and the indices a, b, c, and so on, to denote quantities related to the coordinate
system φ.
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2.3. Influence measures and their properties. Let f (ω) :Rp → R1 be the ob-
jective function (e.g., the likelihood displacement function in Cook [7] or the resid-
ual sum of squares in Wu and Luo [32]), which defines the aspect of inference of
interest for sensitivity analysis. Let ω(t) be a smooth curve on M with ω(0) = ω0

and dω(t)/dt |t=0 = h ∈ Tω0 . Therefore, f (ω(t)) is a function of ω(t) defined on
the perturbation manifold M . It follows from a Taylor series expansion that

f (ω(t)) = f (ω(0)) + ḟh(0)t + 1
2 f̈h(0)t2 + o(t2).(9)

The first and second derivatives of f (ω(t)) at t = 0 are, respectively, given by

ḟh(0) = ∑
j

∂f (ω0)

∂ωj

hj = ∇T
f h and f̈h(0) = hT Hf h + ∇T

f

d2ω(0)

dt2 .(10)

If ∇f �= 0, then the first-order term ḟh(0) mainly characterizes the local influence
of a perturbation vector ω to a model. However, if ∇f = 0, then it follows from
(9) and (10) that ḟh(0) and f̈h(0) reduce to zero and hT Hf h, respectively; there-
fore, we must use the second order term f̈h(0) to assess the local behavior of the
objective function when ∇f = 0.

An important question is how to assess the local influence of minor perturba-
tions to a model when ∇f �= 0. This is the so-called first-order approach in Wu
and Luo [31]. For instance, in a transformation model, f can be defined as the
transformation parameter estimate, whose first derivative does not equal 0 at ω0

(Lawrance [16]). We introduce a first-order influence measure as follows.

DEFINITION 4. The first-order influence measure (FI) in the direction h ∈ Tω0

is defined as

FIf,h = FIf (ω0),h = hT ∇f ∇T
f h

hT Gh
,(11)

where G = G(ω0).

The proposed FI has an interesting geometrical interpretation and is invariant
with respect to arbitrary reparametrizations at any point in ω. We are now led to
the following theorem.

THEOREM 1. We have the following results:

(i) FIf,h = limt→0 [f (ω(t)) − f (ω(0))]2/S(ω(0),ω(t))2.
(ii) If φ is a diffeomorphism of ω, then FIf (ω),h is invariant with respect to any

reparametrization corresponding to φ and FIkf,h = k2FIf,h holds for any k.

PROOF. It follows from (7) that S(ω(0),ω(t))2 = t2hT Gh + o(t2). Using
l’Hôpital’s rule and (9), we can prove (i). Assuming ω = ω(φ) and φ = φ(ω),
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the Jacobian matrices of the above coordinate transformations are given by
� = ∂φ/∂ω and � = ∂ω/∂φ. Differentiating the identities φ[ω(φ)] = φ and
ω[φ(ω)] = ω with respect to φ and ω, respectively, leads to �� = �� = Ip .
Thus, we have G(φ) = �T G(ω)� and ∇f (φ0) = �T ∇f (ω0), where φ0 = ω0. Us-
ing Definition 4, we can prove (ii). �

The statistical significance of Theorem 1 is two-fold. First, Theorem 1(i) indi-
cates that the first-order measure is associated with the first derivative of f (ω(t))

on M evaluated at t = 0. If M is a Euclidean space, hT h = 1 and ω(t) = th + ω0,
then FIf,h reduces to the square of the directional derivative of f at ω0 in the di-
rection h, given by limt→0[f (ω0 + th) − f (ω0)]2/t2. Second, although ω may
not be an appropriate perturbation, we can always use G to obtain an appropriate
perturbation ω̃ in (5), which yields

FIf (ω̃),h|ω̃=ω0 = hT G−1/2∇f ∇T
f G−1/2h

hT h
.

The maximum value of FIf,h equals ∇T
f G−1∇f , which quantifies the degree

of local influence of ω̃ to a statistical model, while the corresponding direc-
tion vector h̃max = G−1/2∇f can be used for identifying influential observations
(Lawrance [16]).

We use f̈h(0) to assess the second-order local influence of ω to a statistical
model, even when ∇f �= 0. The approach which utilizes the information in f̈h(0)

is called the second-order approach (Wu and Luo [31, 32]). However, for a gen-
eral curve ω(t) on M , f̈h(0) may not be geometrically well behaved (Murray and
Rice [20]). Instead, we only consider the 0-geodesic ω(t) associated with the Lévi–
Civita connection of the metric tensor G(ω), which is unique and defined in an
interval containing 0 such that ω(t) = ω0 and dω(t)/dt = h ∈ Tω0 . Then, we can
obtain a covariant version of Taylor’s theorem (Murray and Rice [20] and McCul-
lagh and Cox [19]) as follows:

f (ω(t)) = f (ω0) + t∇T
f h + 1

2 t2hT H̃ 0
f h + o(t2),(12)

where H̃ 0
f = H̃ 0

f (ω0)
and the (i, j)th element of H̃ 0

f (ω) is given by[
H̃ 0

f (ω)

]
(i,j) = ∂i∂jf (ω) − ∑

s,r

gsr (ω)�0
ijs(ω) ∂rf (ω).

The matrix H̃ 0
f (ω) is called the covariant Hessian of f (ω) (Zhu and Wei [39] and

Murray and Rice [20]). Because �0
ijk(ω) is symmetric with respect to i and j , it

can be shown that H̃ 0
f (ω) is a symmetric matrix. In particular, H̃ 0

f (ω) satisfies the
following property (Murray and Rice [20]).

LEMMA 2. Let φ be a diffeomorphism of ω with Jacobian matrix � = ∂ω/∂φ.
Then H̃ 0

f (φ) = �T H̃ 0
f (ω)� .
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Lemma 2 shows that H̃ 0
f (ω) is a 2-tensor, so it is geometrically well behaved.

DEFINITION 5. The second-order influence measure (SI) in the direction
h ∈ Tω0 is defined as

SIf,h = SIf (ω0),h = hT H̃ 0
f h

hT Gh
.(13)

The standardized SI (SSI) in the direction h ∈ Tω0 is defined as

SSIf,h = SSIf (ω0),h = 1

‖G−1H̃ 0
f ‖M

hT H̃ 0
f h

hT Gh
.(14)

We can establish the following properties of SIf,h and SSIf,h.

THEOREM 2. We have the following results:

(i) SIf (ω0),h = limt→0 2[f (ω(t)) − f (ω(0)) − t∇T
f h]/S(ω(0),ω(t))2.

(ii) Suppose φ is a diffeomorphism of ω. Then SIf (ω0),h and SSIf (ω0),h are in-

variant with respect to any reparametrization corresponding to φ at ω0. Moreover,

SIkf (ω),h = kSIf (ω),h and SSIkf (ω),h = SSIf (ω),h,(15)

for any k �= 0 and ω ∈ �.
(iii) Let {(λi,ui), i = 1, . . . , p} be the eigenvalue–eigenvector (E–E) pairs of

H̃ 0
f with respect to G. Then, for any direction h, we have 0 ≤ SSIf,h ≤ 1,

SIf,ui
= λi and SSIf,ui

= λ̂i = λi√∑p
j=1 λ2

j

,

where λ̂i is the normalized eigenvalue.

PROOF. Using (7), (12) and l’Hôpital’s rule, we can prove Theorem 2(i). Be-
cause a diffeomorphism exists between ω and φ such that ω = ω(φ) and φ = φ(ω),
we have �� = �� = Ip . Moreover, because G(φ) is a metric tensor and H̃ 0

f (φ)

is a 2-tensor, we have

G(φ) = �T G(ω)� and H̃ 0
f (φ0)

= �T H̃ 0
f (ω0)

�.

Consider a geodesic ω(t) with ω(0) = ω0 and dω(0)/dt = h ∈ Tω0 . Then φ(ω(t))

is a geodesic in the φ-coordinate such that φ(ω0) = φ0 and dφ(ω(0))/dt = �h. If
G is positive definite, then it follows from Lemmas 1 and 2 that

SIf (φ0),�h =
hT �T H̃ 0

f (φ0)
�h

hT �T G(φ0)�h
=

hT �T �T H̃ 0
f (ω0)

��h

hT �T �T G(ω0)��h
= SIf (ω0),h.



2574 H. ZHU, J. G. IBRAHIM, S. LEE AND H. ZHANG

Similarly, we can show SSIf (φ0),�h = SSIf (ω0),h. Thus, SIf,h and SSIf,h are in-

variant with respect to reparametrization φ at ω0. For any k, we have H̃ 0
kf (ω) =

kH̃ 0
f (ω) and equation (15) holds for any ω and k �= 0. This proves Theorem 2(ii).

By using Definition 5, we thus prove Theorem 2(iii). This completes the proof of
Theorem 2. �

Theorem 2 has the following implications. First, if ω is an appropriate per-
turbation and ∇f = 0, then SSIf,h = Bh and SIf,h = Ch. We note that most of
the examples in Cook [7] fall into this scenario. In general, even though we may
choose a perturbation ω which is not appropriate, we can always use G to obtain
an appropriate perturbation ω̃ in (5). In this case, the normal curvature and the
second-order influence measures will lead to the same results when ∇f = 0 and
the chosen perturbation is appropriate. Therefore, the diagnostic method proposed
here can be regarded as an extension of Cook’s [7] local influence approach in a
more general setting. Second, SIf (ω),h and SSIf (ω),h are scale invariant even when
∇f �= 0, whereas Ch and Bh are not (Fung and Kwan [11]). This generalization fa-
cilitates new methods and techniques for doing sensitivity analyses of a statistical
model.

2.4. New local influence approach. What follows are the four key steps in
assessing local influence of perturbing a parametric model p(Y|θ):

Step 1. Choose a perturbation scheme ω such that
∫

p(Y|θ ,ω) dY = 1.
Step 2. Given the perturbed model, calculate the geometrical quantities [e.g.,

gij (ω), Tijk(ω), and �α
ijk(ω)] of the perturbation manifold.

Step 3. Check whether the perturbation ω is appropriate, that is, G(ω0) = cIp .
If yes, go to Step 4 below. Otherwise, find a new perturbation scheme and go back
to Step 2.

Step 4. Choose an objective function f (ω). If ∇f = 0, then use SI and SSI
to assess local influence of minor perturbations to a model. However, if ∇f is
nonzero, then use FI, SI and SSI together.

3. Appropriate perturbations in four examples. We examine four exam-
ples to illustrate how to calculate geometrical quantities for a perturbation mani-
fold and show how to find an appropriate perturbation in the examples. We also
consider several objective functions to assess the local influence of an appropriate
perturbation to a parametric model in each of the four examples.

3.1. Case-weight perturbation. Suppose that Y1, . . . , Yn are independent with
m1 = · · · = mn = 1 and p(y|θ) can be written as

∏n
i=1 p(yi; θ). We consider case-

weight perturbation, in which L(θ |ω) is given by

L(θ |ω) =
n∑

i=1

ωi�(yi; θ),(16)
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where �(yi; θ) = logp(yi; θ). Thus, p = n and ω0 = 1n is an n × 1 vector with all
elements equal to 1. The density of the perturbation model p(y|θ ,ω) is given by

p(y|θ ,ω) =
n∏

i=1

{
exp{ωi�(yi; θ)}[ci(ωi; θ)]−1}

,(17)

where ci(ωi; θ) = ∫
exp{ωi�(yi; θ)}dyi for all i = 1, . . . , n. After some algebraic

calculations, we have the following results.

THEOREM 3. If the four regularity conditions of Amari [1] hold for p(y|θ ,ω),
then the following results hold for case-weight perturbation:

(i) ∂i log ci(ωi; θ) = Eω[�(yi; θ)] and ∂θ log ci(ωi; θ) = ωiEω[∂θ�(yi; θ)],
where the expectation Eω is taken with respect to p(y|θ ,ω);

(ii) ∂2
i log ci(ωi; θ) = Varω[�(yi; θ)],

∂2
θ log ci(ωi; θ) = ωiEω[∂2

θ �(yi; θ)] + ω2
i Varω[∂θ�(yi; θ)]

and

∂θ∂i log ci(ωi; θ)

= Eω[∂θ�(yi; θ)]
+ ωiEω

({∂θ�(yi; θ) − Eω[∂θ�(yi; θ)]}{�(yi; θ) − Eω[�(yi; θ)]});
(iii) gij (ω) = Varω[�(yi; θ)]δij , �α

ijk(ω) = 0.5(1 − α)Tijk(ω) and

Tijk(ω) = Eω

[{�(yi; θ) − Eω[�(yi; θ)]}3]
δij δik for i, j, k = 1, . . . , n,

where δij is the Kronecker delta;
(iv) the geodesic ω = ω(t) with respect to �α

ijk(ω) satisfies∫ ω

ω0
exp

{∫
gii(ξ)�α

iii(ξ) dξ

}
dξ = hit

for i = 1, . . . , n, where ω(0) = ω0 and dω(t)/dt = h = (h1, . . . , hn)
T . In particu-

lar, ω(t) = ω0 + th is a 1-geodesic.

PROOF. The log-likelihood function of p(y|θ ,ω) is given by

�(ω|y, θ) = logp(y|η) =
n∑

i=1

[ωi�(yi; θ) − log ci(ωi; θ)],

where η = (θ ,ω). By using Eω[∂η�(ω|y, θ)] = 0 and Eω[−∂2
η�(ω|y, θ)] =

Eω{[∂η�(ω|y, θ)][∂η�(ω|y, θ)]T }, we can obtain (i) and (ii).
By differentiating �(ω|y, θ) with respect to ω, we have ∂i�(ω|y, θ) = �(yi; θ)−

∂i log ci(ωi; θ) and ∂2
i �(ω|y, θ) = −∂2

i log ci(ωi; θ). Therefore, we can directly
calculate the geometric quantities gij (ω), �α

ijk(ω) and Tijk(ω), which lead to (iii).
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The geodesic ω = ω(t) with respect to �α
ijk(ω) satisfies a second-order differ-

ential equation which is defined by d2ωi(t)/dt2 +gii(ω)�0
iii(ω)[dωi(t)/dt]2 = 0,

with initial conditions ω(0) = ω0 and dω(t)/dt = h. We can prove (iv) by solving
this second-order differential equation (Coddington [6]).

Theorem 3 establishes the manifold of case-weight perturbation in (16). If the
Yi are also identically distributed, then G(ω0) = g11(ω

0)In and the perturbation
in (16) is an appropriate one. Moreover, if we treat both responses and covariates
as random variables, the perturbation in (16) is appropriate even for the regression
case. In general, if

G = diag(Varω0[�(y1; θ)], . . . ,Varω0[�(yn; θ)]) �= cIn

for any c > 0, then we consider a new perturbation ω̃ in (5) with c = 1 such that
G(ω̃) = In at ω0 and

L(θ |ω̃) =
n∑

i=1

[
1 +

√
Varω0[�(yi; θ)](ω̃i − 1)

]
�(yi; θ).(18)

With the development above, we can now choose an objective function (e.g., the
likelihood displacement) and calculate its associated influence measures {FI, SI,
SSI} to assess local influence of the perturbation (16). For instance, if we are in-
terested in a particular component of θ , say, θ1, we may use θ̂1(ω) as an objective
function, where θ̂1(ω) is the maximum likelihood estimate of θ1 under the pertur-
bation (18). �

3.2. Location-scale family. Suppose that Y1, . . . , Yn are independent and
m1 = · · · = mn = 1. Let θ = (βT , σ 2). Each p(yi; θ) = σ−1p0(σ

−1(yi −
μ(xT

i β))) belongs to a location-scale family such that p0 is a known density satis-
fying

∫
xp0(x) = 0 and

∫
x2p0(x) = 1, where μ(·) is a given function and xi is a

q1 × 1 vector. Thus, E(yi) = μi = μ(xT
i β) and Var(yi) = σ 2.

We consider three different perturbations: case-weight perturbation, perturba-
tion of the variance and perturbation of the response. Then we establish a pertur-
bation manifold for each of these perturbations as follows.

For case-weight perturbation, since �(yi; θ) = logp0(σ
−1(yi −μi))− logσ , we

can use the transformation ei = (yi − μi)/σ to obtain gij (ω) =
Varω,0[logp0(ei)]δij . Similarly, we can calculate �α

ijk(ω) = (1 − α)Tijk(ω) and

Tijk(ω) = Eω,0({logp0(ei) − Eω,0[logp0(ei)]}2)δij δkj .
For the perturbation of variance, we consider a heterogeneous variance of y =

(y1, . . . , yn)
T such that Var(y) = σ 2 diag(1/ω2

1, . . . ,1/ω2
n). In this case, ω0 = 1n

and p = n. The log-likelihood function for the perturbed model is given by
−n logσ + ∑n

i=1 logωi + ∑n
i=1 logp0(ti), where ti = ωiσ

−1[yi −μ(xT
i β)]. After

some algebraic manipulations, we get gij (ω) = δijω
−2
i E0{[x∂x logp0(x) + 1]2},
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Tijk(ω) = δij δikω
−3
i E0{[x∂x logp0(x) + 1]3}, and

�α
ijk(ω) = −δij δikω

−3
i

(
E0{[x∂x logp0(x) + 1]2}
+ 0.5αE0{[x∂x logp0(x) + 1]3}),

where ∂x = ∂/∂x and the expectation E0 is taken with respect to p0(x).
For the perturbation of response, we consider adding a perturbation ωi to

yi such that �(ω|Y, θ) is given by −n logσ + ∑n
i=1 logp0(σ

−1[yi + ωi −
μ(xT

i β)]). Let ti = σ−1[yi +ωi −μ(xT
i β)]. With some calculations, we can obtain

gij (ω) = δijσ
−2E0{[∂x logp0(x)]2}, Tijk(ω) = δij δikσ

−3E0{[x∂x logp0(x)+ 1]3}
and �α

ijk(ω) = −0.5αTijk(ω). Thus, since �0
ijk(ω) vanishes for all i, j, k =

1, . . . , n, the straight line ω(t) = ω0 + th is a 0-geodesic.
Combining the above results, we have the following theorem.

THEOREM 4. If all p(yi; θ) = σ−1p0(σ
−1(yi −μ(xT

i β))) belong to the same
location-scale family, then

G(ω0) = cIn and Ch = cSILD(ω0),h

hold for case-weight perturbation, the perturbation of variance and the pertur-
bation of response, where LD(ω) denotes the likelihood displacement function in
Cook [7].

Theorem 4 indicates that the three perturbation schemes considered here are
appropriate perturbations. Therefore, for LD(ω) introduced in Cook [7], both
{SI,SSI} and the normal curvature lead to the same results for location-scale fam-
ilies under the three commonly used perturbations.

3.3. Linear regression model. Consider the linear regression model

Y = Xβ + ε,(19)

where Y is an n × 1 vector of responses, X is an n × q1 covariate matrix, β is a
q1 × 1 vector of unknown parameters and ε = (ε1, . . . , εn)

T is an n × 1 random
vector of errors with distribution N [0, σ 2In]. Here θ = (β, σ 2). In this section we
fix θ at its maximum likelihood estimate.

3.3.1. Perturbation of error variances. We consider a perturbation to error
variances via an n × 1 perturbation vector ω such that

Var(ε) = σ 2 diag(1/ω1, . . . ,1/ωn)(20)

and ω0 = 1n. It has been shown in Theorem 4 that gij (ω) = 0.5ω−2
i δij , Tijk(ω) =

−ω−3
i δij δjk and �α

ijk(ω) = 0.5(1−α)Tijk(ω). Thus, the perturbation (20) is an ap-
propriate one. However, for illustrative purposes, assume that we consider another
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perturbation scheme φ = (φ1, . . . , φn)
T such that

Var(ε1) = σ 2 k0

k0 − 1 + φ1
, Var(ε2) = σ 2φ−1

2 , . . . ,Var(εn) = σ 2φ−1
n ,(21)

where k0 > 0. Therefore, it can be shown that φ0 = ω0 and G(φ0) = diag(1/2k2
0,

1/2, . . . ,1/2). Thus, G(φ0) = cIn if and only if k0 = 1. That is, the perturbation
vector φ is appropriate only when k0 = 1 in (21), which reduces to (20).

The perturbation of error variances is applied to the residual sum of squares,
that is, f (ω) = −RSS(ω) = −r(ω)T r(ω), where r(ω) is the residual vector under
the perturbation (20). It can be shown that at ω0 = 1n, ∇−RSS = (−r2

1 , . . . ,−r2
n)T

and H−RSS = 2D(r)PXD(r), where PX = (pij ) = X(XT X)−1XT and D(r) =
diag(r1, . . . , rn), in which ri, i = 1, . . . , n, are ordinary residuals when ω0 = 1n.
Because G = 0.5In, FI−RSS,h = 2(hT ∇−RSS)

2/hT h for any h. In particular, we
can obtain the maximum value of FI−RSS,h as

∑n
i=1 r4

i and the corresponding

direction vector is given by hmax = ∇−RSS/
√∑

j=1 r4
j , which is the same as

Lawrance’s [16] diagnostic. Subsequently, we use SI−RSS,h to assess the local in-
fluence of the perturbation (20) to model (19). For α = 0, it can be shown that
H̃ 0−RSS = 2D(r)PXD(r)−D(r2), where D(r2) = diag(r2

1 , . . . , r2
n). Thus, we have

SI−RSS,Ei
= 2r2

i (2pii −1.0)σ−2 ≈ −2r2
i σ−2 for i = 1, . . . , n, where Ei is an n×1

vector with ith element one and zero otherwise for i = 1, . . . , n. Therefore, if an
observation has a large absolute residual, then it will be identified as influential by
using hmax and SI−RSS,Ei

.

3.3.2. Perturbation of the explanatory vector. Consider the perturbation

Xω = X + WS,(22)

where W = (ωik) is an n × q1 matrix of perturbations, S = diag(s1, . . . , sq1) with
si �= 0 for each i and sk converts ωik to the appropriate size and unit so that skωik

is compatible with the (i, k)th element of X. With some calculations, it can be
shown that G(ω) = SββT S ⊗ In/σ

2, where ⊗ is the Kronecker product of two
matrices. Because ∂�(ω|Y, θ)/∂ωik for k = 1, . . . , q1 are linearly dependent, the
metric matrix is only positive semidefinite. In this case, the singularity of G(ω)

indicates that we have introduced too many perturbation parameters; and therefore,
some perturbation parameters should be removed. One possibility is to transform
ω ∈ Rp into ω∗ ∈ Rr (p > r) and make the metric tensor positive definite in the
new coordinate system.

Another perturbation scheme is

Xω = X + W ∗1∗S,(23)

where W ∗ = diag(ω1, . . . ,ωn) and 1∗ is an n × q1 matrix with all elements equal
to 1. After some calculations, we can obtain gij (ω) = δij (

∑q1
k=1 skβk)

2/σ 2 and
Tijk(ω) = �α

ijk(ω) = 0 for all i, j, k = 1, . . . , n. The corresponding perturbation
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manifold is α-flat for any α ∈ R1 (Amari [1]). Moreover, the commonly considered
line ω(t) = ω0 + th is a geodesic with respect to �α

ijk(ω) for any α ∈ R1 in this
perturbation manifold. In particular, the perturbation (23) is an appropriate one,
because the metric matrix G(ω) = cIn and is independent of ω.

3.4. Testing a parametric family. Suppose that Y1, . . . , Yn are independent and
identically distributed and the density of Yi , denoted by p0(yi; θ), belongs to a
certain parametric family, such as a Gaussian distribution. We consider a log-
linear expansion perturbation of p0(yi; θ) as follows (Claeskens and Hjort [5]).
Let {ψj(yi; θ) : j = 1, . . . ,m} be a set of functions such that they are orthog-
onal with respect to p0(yi; θ) and also orthogonal to ψ0(yi; θ) = 1. That is,∫

ψj(yi; θ)ψk(yi; θ)p0(yi; θ) dyi = δjkE0(ψ
2
k ) for all j , k = 0, . . . ,m and i =

1, . . . , n, where E0 denotes the expectation with respect to p0(yi; θ). For each i,
the log-linear expansion perturbation is defined by

p(yi; θ,ω) = p0(yi; θ)c(ω)−1 exp

{
m∑

j=1

ωjψj (yi; θ)

}
,(24)

where c(ω) = ∫
p0(yi; θ) exp{∑m

j=1 ωjψj (yi; θ)}dyi . Thus, the log-likelihood
function for the perturbed model is given by

�(ω|Y, θ) =
n∑

i=1

logp0(yi; θ) + n

m∑
j=1

ωjψj (θ) − nφ(ω),

where ψj(θ) = ∑n
i=1 ψj(yi; θ)/n and φ(ω) = log c(ω). In this case, ω0 = 0m, an

m × 1 vector with all elements 0, and p = m.
After some algebraic derivations, we can obtain the geometrical quantities of the

perturbation (24) as follows. Because ∂j�(ω|Y, θ) = nψj (θ) − n∂jφ(ω), we have
gjk(ω) = n∂j ∂kφ(ω), Tjkl(ω) = n∂j ∂k ∂lφ(ω) and �α

jkl(ω) = 0.5(1 − α)Tjkl(ω)

(Amari [1]). In particular, G(ω0) = ndiag(E0(ψ
2
1 ), . . . ,E0(ψ

2
m)). It can be shown

that the perturbation in (24) is an appropriate one if and only if E0(ψ
2
j ) are ho-

mogenous, that is, E0(ψ
2
1 ) = · · · = E0(ψ

2
m). Even though E0(ψ

2
j ) are not homoge-

nous, we can always choose a new perturbation ω̃ = G(ω0)1/2ω such that

p(yi; θ,ω) = p0(yi; θ)c(ω̃)−1 exp

{
m∑

j=1

ω̃jψj (yi; θ)/
√

E0(ψ
2
j )

}
.(25)

This ω̃ is an appropriate perturbation with G(ω̃)|0m
= Im.

We consider the log-likelihood ratio f (ω̃) = �(ω̃|Y, θ) − logp(Y|θ) as our ob-
jective function. Direct calculation leads to

∇f = √
n

(
ψ1(θ)√
E0(ψ

2
1 )

, . . . ,
ψm(θ)√
E0(ψ2

m)

)T

and FIf,h = hT ∇f ∇f h
hT h

.
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The maximum value of FIf,h is ∇T
f ∇f = n

∑m
j=1 ψj(θ)2/E0(ψ

2
j ), which is the

well-known score test statistic for testing H0 :ω = 0 when θ is either known
or replaced by its estimate (Claeskens and Hjort [5]). Moreover, for each Ej ,
FIf,Ej

= nψj (θ)2/E0(ψ
2
j ) is the score test statistic for testing H0 :ωj = 0, where

Ej is an m × 1 vector with ith element equal to one and zero otherwise for
j = 1, . . . ,m. We can use FIf,Ej

to detect the most influential perturbation from
all m perturbations. Under some conditions (e.g., m grows slowly with n), the score
statistic ∇T

f ∇f converges weakly to a nondegenerate random variable (Claeskens
and Hjort [5]), which can be used to characterize the asymptotic behavior of the
influence measures FIf,h.

Combining the above results, we have the following theorem.

THEOREM 5. If p0(y; θ) belongs to a certain parametric family, then the per-
turbation ω̃ in (25) is an appropriate perturbation. In particular, the maximum
value of FIf,h is the score test statistic for testing the hypothesis H0 :ω = 0.

4. Application to linear mixed models. We consider data that are composed
of a response yij and a q1 ×1 covariate vector xij for j = 1, . . . ,mi within clusters
i = 1, . . . , n. We define the linear mixed models as

yi = xiβ + εi ,(26)

where yi = (yi1, . . . , yimi
)T is an mi ×1 vector, xT

i = [xi1, . . . ,ximi
], β is a q1 ×1

vector of unknown parameters and εi is normally distributed with mean zero and
covariance matrix �i = �i(ξ), in which ξ is a q2 × 1 vector. Thus, θT = (βT , ξT )

is a q × 1 vector, where q = q1 + q2.
For the linear mixed model, because the estimates of θ (e.g., maximum likeli-

hood estimates) may heavily depend on a small portion of the data or even one
observation (or cluster), it is important to detect both influential clusters and influ-
ential individual observations. However, at either the subject or individual level,
we cannot distinguish between influence due to the specific cluster characteristics
and influence due to the characteristics of specific observations within a cluster.
For further discussion on these issues, see Ouwens, Tan and Berger [21], Zhu and
Lee [37, 38], Zhu, He and Fung [41] and Fung, Zhu, Wei and He [12], among
many others.

The likelihood displacement function (Cook [7]) will be used throughout this
section. We define L(θ) = logp(Y|θ) and L(θ |ω) = logp(Y|θ,ω). Let θ̂ and θ̂ω

be the maximum likelihood estimates of L(θ) and L(θ |ω), respectively; the
likelihood displacement function is given by LD(ω) = 2[L(θ̂) − L(θ̂ω)]. It can
be shown that HLD = 2�T (−L̈)−1�, where � is a q × p matrix with ele-
ments ∂2L(θ |ω)/∂θi ∂ωj and L̈ is a q × q Hessian matrix with elements L̈ij =
∂2L(θ)/∂θi ∂θj evaluated at θ̂ and ω0. We calculate the Hessian matrix −L̈ as

−L̈ ≈
n∑

i=1

[
xT
i �−1

i xi 0
0 0.5∂ξ�i(ξ)(�−1

i ⊗ �−1
i )∂ξ�i(ξ)T

]
,
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where ∂ξ�i(ξ) = ∂ vec(�i(ξ))/∂ξ is a q2 × m2
i matrix, in which we define

vec(Z) = (z11, . . . , z1mi
, . . . , zmi1, . . . , zmimi

)T

for any mi × mi matrix Z = (zij ). We calculate the geometrical quantities of the
perturbation manifold, the � = ∂2L/∂θ ∂ω matrix and the influence measures be-
low.

4.1. Perturbation of individual covariance matrix. We consider the perturba-
tion of the individual covariance matrix by assuming that

Cov(yi ) = ω−1
i �i for all i = 1, . . . , n.(27)

Thus, ω0 = 1n and p = n. For the perturbed model, both L(θ |ω) and �(ω|Y, θ)

equal

−1
2

n∑
i=1

log |�i | + 1
2

n∑
i=1

ni logωi − 1
2

n∑
i=1

ωi(yi − xiβ)T �−1
i (yi − xiβ).

After some calculations, we have gij (ω) = 0.5miω
−2
i δij , Tijk(ω) = −miω

−3
i ×

δij δik and �α
ijk(ω) = 0.5(1 − α)Tijk(ω). At ω0, G = diag(0.5m1, . . . ,0.5mn) in-

dicates that the amount of perturbation introduced by ωi is proportional to mi , the
number of observations in the ith cluster. Thus, ω is an appropriate perturbation if
and only if m1 = · · · = mn. Although mi may not be homogeneous, we can always
consider an appropriate perturbation ω̃ in (5) such that G(ω̃)|ω0 = In and

Cov(yi ) = [
1 + (ω̃i − 1)/

√
0.5mi

]
�i for i = 1, . . . , n.(28)

For the appropriate perturbation (28), we get

�i = ∂2L(θ |ω̃)

∂θ ∂ω̃i

= √
0.5m

−1/2
i

(
2eT

i �−1
i xi , [∂ξ�i(�

−1
i ⊗ �−1

i )vec(eieT
i )]T )T

,

where ei = yi − xiβ . For simplicity, let β be the parameter of interest. It can be
shown (Cook [7]) that

CEi
= SILD,Ei

= 2m−1
i eT

i �
−1/2
i Pii�

−1/2
i ei ,

where Pii = �
−1/2
i xi (

∑n
j=1 xT

j �−1
j xj )

−1xT
i �

−1/2
i .

4.2. Perturbation of responses.

4.2.1. Scheme one. We consider the perturbation

yi (ω) = yi + ωi1mi
.(29)
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Thus, ω0 = 0n and p = n, where 0n represents an n × 1 vector with all elements
equal to 0. For the perturbed model, both L(θ |ω) and �(ω|Y, θ) equal

−1
2

n∑
i=1

log |�i | − 1
2

n∑
i=1

(yi + ωi1mi
− xiβ)T �−1

i (yi + ωi1mi
− xiβ).

After some calculations, we have gij (ω) = 1T
mi

�−1
i 1mi

δij , Tijk(ω) = 0 and

�α
ijk(ω) = 0. In this case, G = diag(1T

m1
�−1

1 1m1, . . . ,1T
mn

�−1
n 1mn) and the ith di-

agonal element of G also depends on the number of observations in the ith cluster.
This perturbation manifold is α-flat for any α ∈ R1 and ω(t) = th is a geodesic
with respect to �α

ijk for any α. However, ω is an appropriate perturbation if and

only if 1T
m1

�−1
1 1m1 = · · · = 1T

mn
�−1

n 1mn . Therefore, ω may be not an appropriate
perturbation, but we can always consider an appropriate perturbation ω̃ in (5) such
that G(ω̃)|ω0 = In and

yi (ω̃) = yi + ωi1mi
/

√
1T
mi

�−1
i 1mi

for i = 1, . . . , n.(30)

For the perturbation ω̃ in (30), we have

�i = (
1T
mi

�−1
i xi , [∂ξ�i(�

−1
i ⊗ �−1

i )vec(1mi
eT
i )]T )T

.

Let ξ be the parameter of interest. It can be shown that

CEi
= 4(1T

mi
�−1

i 1mi
)−1

× vec(1mi
eT
i )T (�

−1/2
i ⊗ �

−1/2
i )Qii(�

−1/2
i ⊗ �

−1/2
i )vec(1mi

eT
i ),

where Qii is defined as

(�
−1/2
i ⊗ �

−1/2
i )(∂ξ�i)

T

[
n∑

j=1

(∂ξ�j )(�
−1
j ⊗ �−1

j )(∂ξ�j )
T

]−1

× (∂ξ�i)(�
−1/2
i ⊗ �

−1/2
i ).

4.2.2. Scheme two. We consider the mean shift perturbation model

yi (ω) = yi + ωi ,(31)

where ωi = (ωi1, . . . ,ωimi
)T . Thus, ω0T = (0T

m1
, . . . ,0T

mn
) and p = ∑n

i=1 mi . For
the perturbed model, both L(θ |ω) and �(ω|Y, θ) equal

−1
2

n∑
i=1

log |�i | − 1
2

n∑
i=1

(yi + ωi − xiβ)T �−1
i (yi + ωi − xiβ).

After some calculations, we have gij (ω) = �−1
i δij , Tijk(ω) = 0 and �α

ijk(ω) = 0,
where i, j and k vary from 1 to n. The structure of the metric tensor G(ω) =
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(gij (ω)) indicates that the perturbations ωi in different clusters are orthogonal to
each other, whereas the components {ωil : l = 1, . . . ,mi} of ωi are associated with
each other. This perturbation manifold is also α-flat for any α ∈ R1 and ω(t) = th
is a geodesic with respect to �α

ijk(ω) for any α. However, ω is not an appropriate
perturbation, because G(ω)|ω0 does not have the form cIM , where M = ∑n

i=1 mi .
Therefore, we consider an appropriate perturbation ω̃ in (5) with c = 1 such that
G(ω̃)|ω0 = In and

yi (ω̃) = yi + �
−1/2
i ω̃i for i = 1, . . . , n.(32)

For the perturbation ω̃ in (32), we have �i = [�−1
i xi , (eT

i �−1
i ⊗�−1

i )∂ξ�
T
i ]T .

Let ξ be the parameter of interest. It can be shown that (Cook [7])

Ri = 4�
1/2
i (eT

i �
−1/2
i ⊗ �

−1/2
i )Qii(�

−1/2
i ei ⊗ �

−1/2
i )�

1/2
i

is the submatrix of HLD corresponding to the ith perturbation vector ω̃i . Therefore,
CEi,l

= SILD,Ei,l
, which corresponds to the lth diagonal element of Ri , where Ei,l

is a p × 1 vector with a 1 at the (
∑i−1

k=1 mk + l)th element and 0 otherwise.

4.3. Yale infant growth data. The Yale infant growth data were collected to
study whether cocaine exposure during pregnancy may lead to the maltreatment of
infants after birth, such as physical and sexual abuse. A total of 298 children were
recruited from two subject groups (cocaine exposure group and unexposed group).
The key feature of this dataset is that different children had different numbers and
patterns of visits during the study period. We refer to Wasserman and Leventhal
[29] and Stier et al. [24] for a detailed description of the study design and data
collection. Recently, Zhang [34, 35] developed multivariate adaptive splines for
the analysis of longitudinal data (MASAL) to analyze the Yale infant growth data.
The importance of our reanalysis here is to develop a local influence approach for
the MASAL model.

For the Yale infant growth data, Zhang [35] selected the MASAL model

yij = xT
ijβ + εi,j ,

where xij = (1, d, (d − 120)+, (d − 200)+, (ga − 28)+, d(ga − 28)+, (d −
60)+(ga −28)+, (d −490)+(ga −28)+, sd, s(d −120)+)T , in which d and ga are
the age of visit and gestational age, respectively, and s is the indicator for gender,
with one indicating a girl and zero indicating a boy. In addition, we assume that
εi = (εi1, . . . , εimi

)T ∼ N [0,�i(ξ)] and �i(ξ) is determined by the variance and
autocorrelation parameters, which are, respectively, given as

V (d) = exp(ξ0 + ξ1d + ξ2d
2 + ξ3d

3) and ρ(l) = ξ4 + ξ5l,

where l is the lag between two visits. For simplicity, we assume that all knots
are given so that the MASAL model reduces to the linear mixed model (26). The
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total number of data points is
∑n

i=1 mi = 3176 and the total number of clusters is
n = 298. The estimated parameters are

βT = (0.744,0.029,−0.0092,−0.0059,0.204,

0.0005,−0.0007,−0.0009,−0.0026,0.0022)

and

ξ = (−0.53,0.0064,−1.9 × 10−5,2.1 × 10−8,0.929,−0.0013)T

(Zhang [35]).

We calculated the local influence measures for the three perturbations discussed
in Sections 4.1 and 4.2 and present the main findings of the local influence ap-
proach in Figures 1–3.

For the perturbation of the individual covariance matrix, the quantity SIEi
for

perturbation (28) reveals four influential subjects {141,246,269,285} (Figure 1),
whereas subjects {141,246} do not stand out as influential using normal curvature
for perturbation (27). Because m141 = 4 and m246 = 5 are much smaller than the
average number of observations 3176/298 = 10.6, a relatively large normal cur-
vature from subjects {141,246} represents a large effect. A closer inspection of
the data (not presented here) shows that the raw and fitted curves for these four
subjects differ substantially, especially at the last observation.

The metric tensor gii(ω
0) for perturbation (29) is positively correlated with

the number of observations in each subject [Figure 2(a)]. Furthermore, because
the variability of gii(ω

0) is relatively small, normal curvatures under perturba-
tion (29) are close to second-order influence measures [Figure 2(b)]. Both CEi

FIG. 1. Yale infant growth data: (a) index plot of 3176 × SIEi
/298 for the appropriate pertur-

bation (28); (b) CEi
for perturbation (27) against 3176 × SIEi

/298 for the appropriate perturba-
tion (28).
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FIG. 2. Yale infant growth dataset: (a) metric tensor gii (ω
0) for perturbation (29) and the number

of observations for each subject; (b) CEi
for perturbation (29) and 1.9 × SIEi

for the appropriate
perturbation (30).

and SIEi
reveal four influential subjects {111,116,246,274} [Figure 2(b)]. Fur-

thermore, for perturbation (32), SIEi
suggest that (3,7), (24,7), (24,8), (227,11),

(290,12), (290,13) and (109,12) are seven influential observations, where for
each (i, l), i denotes the subject number and l denotes the observation number
[Figure 3(a)–(b)].

5. Conclusion. We have introduced a local influence method to assess minor
perturbations to a statistical model. Our method extends the previous local influ-
ence method (Cook [7]) in several aspects. First, we propose to use the metric
tensor of a perturbation manifold to select an appropriate perturbation to a model.

FIG. 3. Yale infant growth data: (a) rescaled CEi,l
for perturbation (31) and SIEi,l

for the appropri-
ate perturbation (32); (b) connected curves of SIEi,l

of five influential subjects {3,24,109,227,290}
for the appropriate perturbation (32).
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The major advantage of using an appropriate perturbation is that it leads to a nice
interpretation of the effect of all elements of a perturbation vector on a statistical
model. We have shown in Sections 3.1–3.3 that most of the perturbation schemes
considered in Cook’s [7] examples are appropriate. However, we have also shown
in several examples, such as linear mixed models and testing parametric families,
that some commonly used perturbations may not yield an appropriate perturbation;
see Sections 3.4 and 4. Second, we have developed influence measures with nice
geometrical interpretations for smooth objective functions at any point. The influ-
ence measures proposed here avoid the previous drawback that the normal curva-
ture is not well defined for some objective functions at points with a nonzero first
derivative. In addition, the proposed second-order influence measures reduce to
normal curvatures for the likelihood displacement function (Cook [7]). Third, we
have established a connection between the score test statistic and the FI measures;
see Section 3.4. Finally, we have also examined a number of models to highlight
the importance of choosing an appropriate perturbation and the broad spectrum of
applications of this local influence method.

Many issues still merit further research. One major issue is calculation of the
influence measures and metric tensor under different situations, such as measure-
ment error models (Carroll, Ruppert and Stefanski [4]; Zhong, Wei and Fung [36]),
generalized linear models with missing data (Ibrahim, Chen, Lipsitz and Herring
[13]), partially linear models (Zhu, He and Fung [41]) and structural equation
models (Yuan and Bentler [33]). Another major issue is to establish relationships
between the influence measures and other influence diagnostics, such as case-
deletion measures and leverage (Cook and Weisberg [8] and Wei, Hu and Fung
[30]). It is also important to develop appropriate influence diagnostics for detect-
ing influential clusters in longitudinal data by taking into account the number of
observations in each cluster and models used to fit the longitudinal data. However,
the influence diagnostics calculated in PROC MIXED of SAS 9.1 (SAS Institute
Inc., Cary, NC) do not take into account the number of observations in each clus-
ter; therefore, these influence diagnostics may give misleading results. We expect
that the metric tensor of the perturbation manifold will play a critical role in this
new development.
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