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QUANTILE REGRESSION WITH VARYING COEFFICIENTS

BY MI-OK KIM

University of Kentucky

Quantile regression provides a framework for modeling statistical quanti-
ties of interest other than the conditional mean. The regression methodology
is well developed for linear models, but less so for nonparametric models.
We consider conditional quantiles with varying coefficients and propose a
methodology for their estimation and assessment using polynomial splines.
The proposed estimators are easy to compute via standard quantile regres-
sion algorithms and a stepwise knot selection algorithm. The proposed Rao-
score-type test that assesses the model against a linear model is also easy to
implement. We provide asymptotic results on the convergence of the estima-
tors and the null distribution of the test statistic. Empirical results are also
provided, including an application of the methodology to forced expiratory
volume (FEV) data.

1. Introduction. Quantile regression has appeared as an alternative to least
squares in a wide range of applications. When the center of the conditional dis-
tribution of a response variable Y , given a covariate vector X, is under investiga-
tion, median regression provides a consistent estimator of the conditional median
without assuming a specific form for the conditional distribution. When other con-
ditional quantities, for example, the lower or upper tail of the conditional distrib-
ution, are of interest, quantile regression provides a way to directly estimate the
interesting quantities without assuming that such quantiles are related to X in the
same fashion as the conditional mean. A good example can be found in a study of
consumer demand for electricity, where heavy users responded much more drasti-
cally to weather and time variation than average users [17].

Quantile regression has been implemented with nonparametric methods to over-
come the limitation of a linear model. Local polynomial, smoothing spline and
B-spline smoothing methods were considered in [4, 35], [13, 24] and [14], respec-
tively. He and Shi [15] used bivariate tensor product B-splines with a partly linear
model. Wei and He [34] considered B-splines with a partly linear model for lon-
gitudinal data to model growth curves. De Gooijer and Zerom [6] and Doksum
and Koo [7] considered local polynomials and polynomial splines with additive
models. Nevertheless, compared to its development with a linear model, the non-
parametric implementation of quantile regression has been limited.
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In this paper, we consider a varying-coefficient model for the conditional quan-
tiles: for a random vector (T ,X,Y ) ∈ [0,1] × R

p+1 × R, we suppose that

qτ (t, x) = β0(t)x0 + β1(t)x1 + · · · + βp(t)xp,(1.1)

where qτ (t, x) denotes the τ th conditional quantile of Y , given that (T ,X) =
(t, x), and the βj (t) are unknown smooth functions of t for j = 0,1, . . . , p. A ran-
dom sample is modeled by

Yi = qτ (Ti,Xi) + ei, 1 ≤ i ≤ n,(1.2)

where the ei are independent random variables with τ th quantile 0 and are inde-
pendent of the (Ti,Xi).

Varying-coefficient models constitute an important class of nonparametric mod-
els: they have been widely applied to analyze conditional means due to their flex-
ibility and interpretability (see [2], [9] and [19] for examples of the analysis of
time series, survival and longitudinal data). However, a varying-coefficient model
for the conditional quantiles was considered only recently by [18] and [3], where
local polynomials were used for independent and time series data, respectively. In
this paper, we provide a more comprehensive treatment of the model for indepen-
dent data by proposing a polynomial-spline-based methodology for its estimation
and assessment.

The proposed methodology is quite general, in the sense that we do not require
the unknown coefficients βj (t) to be smooth curves of a common degree or the
ei to be identically distributed; such assumptions facilitate the development of as-
ymptotic theories covered in the later sections. The methodology is also simple
and easy to implement: the proposed estimator is readily computed by standard
quantile regression algorithms and the proposed stepwise knot selection algorithm.
Different knots can be selected for different coefficients and the algorithm can ac-
commodate varying degrees of smoothness without complicating the computation
(see [11] and [19] for discussion of this issue with respect to local polynomials and
smoothing splines). We show that the spline estimators and their derivatives attain
the optimal rates of global convergence under appropriate conditions.

The stated feature of accommodating different degrees of smoothness in the
coefficient functions is shared by any estimation method employing polynomial
splines, such as the one which appears in [21]. However, the one in [21] requires
its knots to be equispaced and selects the numbers of knots for the coefficients via
cross-validation. In addition, it uses the least squares method for estimation since
it concerns the conditional mean.

For the assessment of the model against a linear model, a Rao-score-type test is
proposed. The test uses polynomial spline smoothing to account for the structure
of the varying-coefficient design space and is therefore potentially more powerful
than a test with a nonspecific nonparametric alternative. Implementation of the test
is easy, since the test statistic has a simple asymptotic null distribution.
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Model assessment is essential in this context since a linear model will be pre-
ferred on the grounds of parsimony unless the underlying science warrants use of
the varying-coefficient model. While this issue is generally important for nonpara-
metric models, it has received little attention in quantile regression. Only recently,
He and Zhu [16] and Horowitz and Spokoiny [20] considered general lack-of-fit
tests for linear quantile regression. Both tests are consistent for any fixed alterna-
tive. However, they are not powerful in this context because their alternative space
does not take into account the structure of the varying-coefficient model. Any lack-
of-fit test with a nonspecific alternative will have the same problem and is thus not
considered here (see [12] for a survey of such general tests for the conditional
mean).

Likelihood-ratio-type tests were proposed for the conditional mean in a similar
context [1, 2, 10]. Local polynomials were used to smooth the varying-coefficient
alternative design space. In essence, these tests compared the residual sums of
squares under the null and the alternative. We adapted and used the tests to eval-
uate the performance of the proposed test in a Monte Carlo study. The results are
presented in Section 4.1.

We present a motivating example involving forced expiratory volume (FEV)
data collected on children aged three to nineteen [29]. A topic of interest is the
effect of cigarette smoking on FEV after accounting for the effects of age, sex and
height. One may speculate that the effects of the independent variables change with
age. On the other hand, the lower conditional quantiles of FEV are of independent
interest as they can provide a gauge for poor pulmonary function. Both research
equations can be investigated by fitting model (1.2) and testing for age dependency
in the effects of the independent variables. An important point is that we do not
need to assume that the effects of the independent variables are same across the
quantiles. Detailed results for this example will be given in Section 4.2.

In this paper, asymptotic results will be proven under rather simplified condi-
tions that require knots for the splines to be nonstochastic and quasi-uniformly
placed. As with most other asymptotic analyses in the literature, the results ob-
tained under such conditions can provide insight into the large-sample behavior
of the proposed methodology in more general settings. The rest of the article is
organized as follows. Sections 2 and 3 discuss model estimation and assessment.
Section 4 presents empirical results. Proofs are deferred to the Appendix.

2. Estimation.

2.1. Regression splines. The degree of smoothness of the true coefficient func-
tions determines how well the functions can be approximated. We assume that the
βj (t) are functions of t with a common degree of smoothness r defined as follows:
let Hr be the collection of all functions on [0,1] for which the mth order deriv-
ative satisfies the Hölder condition of order γ with r ≡ m + γ . That is, for each
h ∈ Hr , |h(m)(s) − h(m)(t)| ≤ W0|s − t |γ for any 0 ≤ s, t ≤ 1 and a positive finite
constant W0.
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CONDITION 1. βj (t) ∈ Hr , j = 0,1, . . . , p, for some r > 1/2.

If the βj have bounded dth order derivatives on [0,1], then Condition 1 holds
with r = d .

We shall use normalized B-splines of order m + 1 to approximate the βj (t).
We consider a sequence of positive integers {kn}, n ≥ 1, and an extended parti-
tion of [0,1] by kn quasi-uniform knots. Following [30], we denote the associated
B-spline basis functions by Bj(t), j = 1, . . . , kn + m + 1. We define πkn(t) =
(B1(t), . . . ,Bkn+m+1(t))

T and �kn(t, x) = (x0πkn(t)
T, x1πkn(t)

T, . . . , xpπkn(t)
T)T.

The proposed polynomial spline estimator of qτ (t, x) is given by

q̂kn(t, x) =
p∑

j=0

θ̂ T
j πkn(t)xj = θ̂ T

kn
�kn(t, x),(2.1)

where pkn = (p + 1)(kn + m + 1) and θ̂kn = (θ̂ T
0 , . . . , θ̂ T

p )T ∈ R
pkn solves the

minimization problem

min
θ∈R

pkn

∑
1≤i≤n

ρτ

(
Yi − θT�kn(Ti,Xi)

)
(2.2)

for ρτ (s) = s(τ − I (s < 0)). Accordingly, the polynomial spline estimator β̂j (t)

of βj (t) is given by θ̂T
j πkn(t) for each j .

2.2. Asymptotic result. The following are sufficient conditions for the pro-
posed polynomial spline estimator and its derivatives to converge at their best
possible rates as the sample size goes to infinity. For simplicity, we adopt the
following notation throughout the paper: for a vector ν, ν(j) denotes its j th ele-
ment and |ν| denotes its Euclidean norm. We use an ∼ bn to mean that there are
constants 0 < A < B < ∞ such that A ≤ an/bn ≤ B for all n.

CONDITION 2. The conditional distribution of T , given X = x, has a bounded
density fT |X : 0 < c1 ≤ fT |X(t |x) ≤ c2 < ∞ uniformly in x and t for some positive
constants c1 and c2.

CONDITION 3. X(0) = 1, E(X(j)|T ) = 0 and P {|X(j)| < M} = 1 for some
M < ∞, j = 1, . . . , p. There exist two positive definite matrices 	1 and 	2 such
that 	1 ≤ Var(X|T ) ≤ 	2 uniformly in T , where Var(X|T ) denotes the condi-
tional covariance matrix of X given T .

CONDITION 4. The ei are i.i.d. and have a density function fe that is contin-
uous at 0 with 0 < fe(0) < ∞.

With an appropriate choice of kn to balance bias and variance, the proposed
polynomial spline estimator and its derivatives attain the optimal convergence rates
established by [31], as shown in the following theorem:
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THEOREM 1. Assume Conditions 1–4. Suppose kn ∼ n1/(2r+1) and r > 1/2.
Then for j = 0,1, . . . , p,

1

n

n∑
i=1

(
β̂

(k)
j (Ti) − β

(k)
j (Ti)

)2 = Op(n−2(r−k)/(2r+1)), k = 0,1, . . . ,m.(2.3)

If piecewise linear splines are used and the βj (t) have bounded second order
derivatives, then Theorem 1 gives the rate of convergence as n−2/5.

REMARK 1. Considerable effort has been directed at relaxing the ‘nonsto-
chastic quasi-uniform knots assumption’ in least squares regression. For example,
Mao and Zhao [27] and Stone and Huang [33] investigated free-knot splines in
which both the knot locations and spline coefficients were treated as unknown pa-
rameters. Extending the methodology and theory of free-knot splines to quantile
regression is beyond the scope of this paper.

2.3. Implementation. When the B-spline basis is given, computations can be
performed using standard quantile regression algorithms. As for selecting the order
and knots for the splines, we propose a simple semi-automatic stepwise algorithm:
users determine the order and specify a set of potential knots and the knots are cho-
sen automatically from the potential knot set. The algorithm adds or deletes knots
iteratively using Rao and Wald statistics to avoid additional model fitting. It allows
different knots to be chosen for different coefficients. The algorithm terminates
when no further addition or deletion occurs or when the model at the previous it-
eration is the same as the one at the current iteration. Similar algorithms are found
in [26] and [32]. Upon termination, the algorithm finds the best fitting model using
an adapted Schwarz-type Information Criterion (SIC),

SIC(Mi) = log

(
n∑

j=1

ρτ (r
i
j )

)
+ 0.5 log(n)pi

n/n,(2.4)

where Mi denotes the ith interim model, ri
j is the j th residual from fitting Mi ,

pi
n is the number of variables in Mi and n is the sample size. For algorithmic

convenience, we use a truncated power basis. We refer to Chapter 3.2 of [22] for
more details.

2.3.1. Order of splines to fit. We suggest using lower order splines, such as
linear (m = 1) and quadratic splines (m = 2), for practical reasons. Since the ef-
fect of the splines on the model is multiplicative, higher order splines would in-
duce complicated interactions and collinearity among the variables in the model.
For example, even the simplest cubic splines (one-piece cubic polynomials) would
induce interactions of the form xj t , xj t

2 and xj t
3. We prefer linear splines in par-

ticular since with them, the coefficient estimates are easier to interpret. Moreover,
linear splines have an optimal property [24].
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2.3.2. Potential knot set. Users provide either a potential knot set or the
number of potential knots. In the latter case, the algorithm chooses as poten-
tial knots the user-provided number of equispaced knots. A helpful guideline of
min(4n1/5, n/4,N,30) is found in [32] for the number of potential knots, where
N is the number of distinct data points.

3. Model assessment. Model assessment takes the form of a hypothesis test
examining whether all of the coefficients are constant. Under Condition 1, this
hypothesis test can be represented as

H0 :qτ (t, x) ∈ L vs. H1 :qτ (t, x) ∈ G\L,(3.1)

where L and G are sets of functions defined as

L = {q(t, x) |q(t, x) = b0x0 + · · · + bpxp, for some constants bj , j = 0, . . . , p},
G = {q(t, x) |q(t, x) = β0(t)x0 + · · · + βp(t)xp, for βj (t) ∈ Hr , j = 0, . . . , p}.
We consider a transformation of �kn(t, x): 
kn(t, x) = Akn�kn(t, x) = (xT,


2,kn(t, x)T)T for some transformation matrix Akn . We denote the vector of co-
efficients of 
kn(t, x) by ξ̃ kn

= (ξ̃T
1,kn

, ξ̃T
2,kn

)T, where ξ̃1,kn
and ξ̃2,kn

correspond to
x and 
2,kn(t, x), respectively. Then the minimization problem is

min
ξ kn

∈R
pkn

n∑
i=1

ρτ

(
Yi − ξT

kn

kn(Ti,Xi)

)
(3.2)

and (3.1) can be represented as H0 : ξ̃2,kn
= 0 versus H1 : ξ̃2,kn

�= 0. We denote

the estimates of ξ̃ kn
obtained under H0 and H1 by ξ̂ kn

= (ξ̂T
1 ,0T)T and ξ̄ kn

=
(ξ̄T

1,kn
, ξ̄T

2,kn
)T, respectively.

The proposed Rao-score-type test uses the score of (3.2) evaluated at the es-
timates of ξ̃ kn

under H0. Let skn = (kn/n)1/2 ∑n
i=1 ϕτ (Yi − ξ̂T

1 Xi)
2,kn(Ti,Xi),
where ϕτ (e) = τI (e > 0) + (τ − 1)I (e < 0), the derivative of ρτ (e). Define
σ 2 = E(ϕτ (e)

2) and Qn = ∑n
i=1 
kn(Ti,Xi)
kn(Ti,Xi)

T. Let Qn(ij), i, j = 1,2,
denote the ij th block of Qn such that Qn(12) = ∑n

i=1 Xi
2,kn(Ti,Xi)
T, for exam-

ple. The test statistic is

wkn = (1/σ)(knQ(22)
n /n)1/2skn,(3.3)

where Q(22)
n = (Qn(22) − Qn(21)Qn(11)Qn(12))

−1.
The test statistic has a simple asymptotic null distribution. Suppose that kn =

k0, a positive constant. Under Conditions 1–4, for any qτ (t, x) ∈ L, |wk0 |2 −→D

χ2
(p+1)(k0+1) as n → ∞ [23]. For increasing kn, we have the following theorem:

THEOREM 2. Assume Conditions 1–4. Suppose limn→∞ k2
nn

δ−1 = 0 for some
0 < δ < 1. Then for any qτ (t, x) ∈ L,

|wkn |2 − (pkn − p − 1)√
2(pkn − p − 1)

−→D N(0,1) as pkn → ∞.
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If kn is bounded, then one uses the chi-square distribution as the limiting dis-
tribution. If kn is unbounded, then the standard normal distribution is used for the
appropriately standardized test statistic.

The proposed test is simple and straightforward: it does not require estimation of
fe(0) and the asymptotic null distribution of the test statistic is tractable. One might
consider a Wald-type test as a natural choice for ξ̃2,kn

under question. However,
this would require estimation of fe(0) and would therefore be less desirable.

For purpose of comparison, we consider the following likelihood-type-test. We
use the objective function in (3.2) in place of the likelihood function and define the
test statistic as

lkn = 2

{
n∑

i=1

ρτ (Yi − ξ̂T
1 Xi) −

n∑
i=1

ρτ

(
Yi − ξ̄T

1,kn
Xi − ξ̄T

2,kn

2,kn(Ti,Xi)

)}
.

As in the parametric case, the likelihood-type test also requires estimation of fe(0)

[23]. Following [1, 2], we simulate the null distribution via the residual bootstrap.

3.1. Heteroscedastic errors. Heteroscedastic error models are of great interest
in quantile regression. The Rao-score-type test is applicable to a scale family of
linear heteroscedastic models such that

Yi = θTXi + s(Ti,Xi)ei,(3.4)

where s(Ti,Xi) > 0 is a scale function that is consistently estimable and the ei are
i.i.d.

A heuristic argument for this is as follows. The test only requires fitting the null
model and the distribution of the test statistic relies only on the quantile estimator
under the null. Therefore, any quantile estimator with the same first order repre-
sentation under the null leads to the same limiting distribution for the test statistic.
This implies that if we can obtain a

√
n-consistent estimator σ̂i = ŝ(Ti,Xi) and

if the weighted quantile estimator minimizing
∑n

i=1 σ̂−1
i ρτ (Yi − θTXi) is first-

order equivalent to the quantile estimator with s(Ti,Xi), then we can apply the
Rao-score-type test to ((Ti,Xi)/σ̂i, Yi/σ̂i) as if the rescaled observations were
i.i.d. A primary example of interest is s(Ti,Xi) = (Ti,X

T
i )γ . We can obtain a√

n-consistent estimator γ̂ from the absolute residuals of median regression and
Koenker and Zhao [25] showed that the weighted quantile estimator minimiz-
ing

∑n
i=1 σ̂−1

i ρτ (Yi − θTXi) with σ̂i = (Ti,X
T
i )γ̂ is first-order equivalent to the

quantile estimator with γ . For general s(Ti,Xi), Zhao [36] showed that s(Ti,Xi)

can be consistently estimated using a nearest neighbor approach and that the re-
sulting weighted quantile estimator is first-order equivalent. On the contrary, the
likelihood-ratio-type test requires the alternative model to be fitted; hence, whether
(or how) it can be applied to (3.4) is unclear.
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3.2. Test consistency. Both tests encounter a problem of inconsistency when
kn is fixed since the constancy of the coefficient functions is tested via the con-
stancy of the approximating polynomial splines. To be specific, we consider a set
of functions Lkn such that

Lkn = {q(t, x) ∈ G |q(t, x) = ξ̃T
1x − Rg,kn(t, x)},

where ξ̃ kn
= (ξ̃T

1 ,0T)T and the Rg,kn(t, x) are given in Lemma A.1(ii). We note
that Lkn is a subset of G for which the approximations in the given spline space
are functions of x with constant coefficients. When kn = k0, testing (3.1) means
testing H0 :qτ (t, x) ∈ Lk0 versus H1 :qτ (t, x) ∈ G\Lk0 . Note that L ⊂ Lk0 , while
Lk0\L �= ∅. Also, any element of Lk0\L is a null model and the proposed test
will not be able to reject H0, even as n → ∞. The set Lk0\L constitutes a class
of nonconstant functions in t associated with the fixed number of knots k0, against
which the proposed test is not consistent.

When kn is allowed to grow with n, we can consider a sequence {Lkn} with
L

∗ = lim infn→∞ Lkn . With respect to this sequence, (3.1) can be restated as
H0 :qτ (t, x) ∈ L

∗ versus H1 :qτ (t, x) ∈ G\L
∗. The following lemma shows that

the test is consistent for all alternatives when kn increases.

LEMMA 1. Under Condition 1, L
∗ = L.

Fortunately, these issues do not pose a real concern in practice as the knots
are chosen adaptively. For the null, the number of adaptively chosen knots will
not grow with n and the results of [23] ensure that the proposed test is level-
appropriate. For the alternative, the number of adaptively chosen knots will grow
with n and we have the above lemma for consistency of the test along with Theo-
rem 2 to ensure that the test is level-appropriate.

4. Empirical results.

4.1. Monte Carlo studies. We conducted Monte Carlo studies for the follow-
ing i.i.d. and heteroscedastic error models in order to evaluate the proposed test
relative to the likelihood-ratio-type test:

M1: yi = γ1 + b(ti)xi + (
ei − F−1

e (τ )
)
,

M2: yi = γ2 + bxi + (γ3ti + γ4xi)
(
ei − F−1

e (0.5)
)
,

where Fe(·) denotes the distribution function of the ei , the xi are truncated standard
normal variables, that is (xi = sign(zi)min(c, |zi |) with zi standard normal and
c > 0), the γj are constants, ti ∼ U(0.5,1.5) for all i and ti is independent of xi and
ei for all i. Three different distributions were used for the ei : a standard normal, a
χ2 with 1 degree of freedom and a t with 3 degrees of freedom. M1 represents a
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TABLE 1
Power at α = 0.05 when errors are i.i.d. (M1). The parenthetical numbers in the second column

indicate the densities of the respective error distributions at the τ th quantile. “RS” and “LR”
indicate the Rao-score- and likelihood-ratio-type tests

Error constant linear quadratic sine log

τ distribution RS LR RS LR RS LR RS LR RS LR

0.5 Z (0.40) 0.062 0.072 0.71 0.80 0.69 0.80 0.84 0.90 0.75 0.86
1√
2
χ2

1 (0.67) 0.040 0.062 1 1 1 1 1 1 1 1
1√
3
t3 (0.64) 0.054 0.068 0.96 0.98 0.94 0.99 0.99 1 0.98 0.99

0.9 Z (0.18) 0.070 0.130 0.39 0.64 0.4 0.64 0.43 0.75 0.46 0.65
1√
2
χ2

1 (0.09) 0.082 0.164 0.16 0.33 0.16 0.31 0.19 0.41 0.17 0.32
1√
3
t3 (0.18) 0.056 0.130 0.40 0.62 0.49 0.70 0.50 0.78 0.55 0.72

homoscedastic error model that is a null model when b(ti) = b and an alternative
model when b(ti) is a nonconstant function of t . Four different alternatives were
considered for b(ti): a linear, quadratic, sine and log function of t . M2 represents
a heteroscedastic error model that is a null model at the conditional median (τ =
0.5).

The Monte Carlo studies were based on 500 data sets, each a sample of size
200. We used piecewise linear splines with an adaptively chosen number of uni-
form knots to fit a model to each simulated sample. The number of knots was
chosen by the adapted SIC in (2.4). This closely resembles standard practice, in
which the order of splines and knot placements are chosen nonadaptively, but the
number of knots is chosen adaptively. Piecewise linear splines were used because
they provided reasonable fits for the various alternatives considered here. For the
likelihood-ratio-type test, 200 bootstrapped samples were used to simulate the null
distribution of the test statistic. The performance of the tests was measured by
power at the significance level α = 0.05. As the knots were chosen adaptively,
powers under the null, that is the type I error rates, were expected to be higher than
the nominal significance level.

Table 1 summarizes the results for the homoscedastic error model. The
likelihood-ratio-type test was slightly more powerful, but less likely to attain the
nominal significance level, particularly when τ = 0.9. The Rao-score-type test
performed reliably with comparable power. Inherent to quantile regression, the
performances of both tests depend on the error density at the quantile under con-
sideration; power rises with increasing error density.

Table 2 summarizes the results for the heteroscedastic error median null model.
The Rao-score-type test attains type I error rates close to the nominal significance
level. The likelihood-ratio-type test was administered as if the errors were i.i.d.
since it was not clear how to simulate the null distribution of the test statistic via
the bootstrap. Quite predictably, it did not perform well.
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TABLE 2
Type I Error Rate at α = 0.05 when errors are heteroscedastic

(M2 with τ = 0.5)

Z 1√
2
χ2

1
1√
3
t3

RS LR RS LR RS LR

0.076 0.378 0.084 0.432 0.056 0.324

4.2. Example. We illustrate the prescribed methodology using the forced ex-
piratory volume (FEV) data from [29]. Measurements of FEV in liters, age (T )
in years, height (H ) in inches, sex (S = 1 for boys/S = 0 for girls) and smok-
ing status (SM = 1 for a current smoker/SM = 0 otherwise) were collected for
654 children aged 3–19 who participated in the Childhood Respiratory Disease
Study.

Of interest are the effect of cigarette smoking on FEV and the lower condi-
tional quantiles of FEV as a gauge for poor pulmonary function. The proposed
methodology enables us to investigate both research questions while allowing the
coefficients to vary with age to reflect the possibility of age-dependent covariate
effects and the lower quantiles to be related to the covariates in ways different from
those for the mean. We modeled the first quartile (q0.25) and the median (q0.5) as
follows:

qτ = β0(t) + β1(t) × S + β2(t) × H + β3(t) × (H × S) + β4(t) × SM.(4.1)

We tried both piecewise linear and quadratic splines with a set of eleven equi-
spaced knots, using the stepwise knot selection algorithm described in Section 2.3.
Both splines provided similar fits, while the fit with piecewise linear splines was
preferred by the adapted SIC. Hence, we shall discuss the results based on piece-
wise linear splines.

The estimates of β4(t) were small negative constants at both quantiles. This
implies that the effect of smoking on FEV is not age dependent at these quantiles.
This is not surprising since the current smokers in the data set were close to each
other in age.

β0(t), β2(t) and β3(t) were estimated as varying with age (see Figure 1).
At both quantiles, the estimated intercept increases linearly, implying that FEV
increases linearly with age. The height coefficient for girls was estimated as a con-
stant for q0.25, while knots were chosen at 5 and 11 for q0.5. For the coefficient of
height by sex interaction, knots were chosen at 6 for q0.25 and at 8 for q0.5. The
height coefficient estimates for boys in the bottom right panel were obtained as
β̂2(t) + β̂3(t).

We focus on the estimates for ages from 5 to 15 in Figure 1 since little data
is available outside the age range. The nonparallel intercept estimates and non-
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FIG. 1. Coefficient estimates by piecewise linear splines.

overlapping coefficient estimates imply a different regression relationship at the
first quartile than at the median. More specifically, the estimated intercept does not
grow as rapidly at the first quartile as at the median. A similar pattern is shown in
the height coefficient estimates for boys. This suggests that in boys, FEV does not
increase with age as rapidly in the lower tail of its conditional distribution as in
the middle, implying that in boys, the difference between height-adjusted typical
and poor pulmonary function increases with age. It manifests through increasing
variability in FEV over that age range, while variability in height does not neces-
sarily increase (see Figure 2). This structural heterogeneity would not have been
revealed by an ordinary regression.

We also tested for age-dependent effects of the covariates using the proposed
Rao score test. We used linear splines with the same knots selected for the re-
gressions. We rejected the constancy hypothesis with p-values near zero for both
quantiles.

While FEV is known to increase with age, it is less clear which other coefficients
change with age. In particular, do the coefficients of height and height by sex
interaction change? To address this question, we detrended the data by subtracting
age-and-gender-specific sample quartiles from the observations of respective age-
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FIG. 2. The fitted values are the quantile estimates obtained by plugging in the smoothed sam-
ple height average of each age group with the coefficient estimate. The curves are plotted over the
credible age range where 90% of data are present.

gender groups. We then modeled the conditional quartiles of the detrended data as
a function of height and height by sex interaction without an intercept. We used
piecewise splines with the same knots selected for the regressions. We rejected the
constancy hypothesis with a p-value < 0.006 for q0.25 and a p-value near zero for
q0.5. The results agreed with the nonconstant coefficient estimates obtained from
the regressions.

APPENDIX

For simplicity, proofs are provided for uniform knots and p = 2, the subscript kn

being suppressed if possible. The same proofs will work for quasi-uniform knots
and/or p > 2. We adopt the following notation:

Gn = (π(Ti), . . . , π(Tn))(π(Ti), . . . , π(Tn))
T,

X̃T
n = (�(Ti,Xi), . . . ,�(Tn,Xn))pkn×n, Hn = X̃T

nX̃n,

G = E(π(T )π(T )T), H = E(�(T ,X)�(T ,X)T), rij = rj,kn(Ti),
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Ri = Rg,kn(Ti,Xi), θ̂∗ = H1/2
n θ̂ , θ̃∗ = H1/2

n θ̃ ,

Zi = H−1/2
n �(Ti,Xi),

where H−1/2
n denotes the Moore inverse of H1/2

n . Also, for a matrix D, let D(i,j)

denote its element at the ith row and j th column. For example, Hn(aN+c, bN+d) =∑n
i=1 Bc(Ti)Bd(Ti)Xi(a)Xi(b) and H(aN+c, bN+d) = E(Bc(T )Bd(T )X(a)X(b)) for

a, b = 0,1,2 and 1 ≤ c, d ≤ kn + m + 1.
We first present lemmas that are necessary to prove the theorems. Lemma A.1

follows directly from Corollary 6.21 of [30] and the proofs of Lemmas A.2–A.4
follow lines of argument similar to those used in the proofs of lemmas in [5].
Lemma A.5 follows directly from Lemma A.4 and Condition 3. Therefore, we
omit their proofs.

LEMMA A.1. Assume Conditions 1 and 3. For some constants W1 and
W ∗

1 that depend on only (but not all of ) m, W0, p and M :

(i) there exist θ̃ T
j πkn(t), j = 0, . . . , p, such that βj (t) = θ̃ T

j πkn(t) − rj,kn(t)

and supt∈[0,1] |rj,kn(t)| ≤ W1k
−r
n ;

(ii) there exists θ̃ T
kn

�kn(t, x) such that qτ (t, x) = θ̃ T
kn

�kn(t, x) − Rg,kn(t, x)

and sup(t,x)∈[0,1]×Rp+1 |Rg,kn(t, x)| ≤ W ∗
1 k−r

n .

LEMMA A.2. Assume Conditions 1–3. For all kn, the eigenvalues of knG
and knH are bounded and depend only on m.

LEMMA A.3. Assume Conditions 1–3. Suppose limn→∞ knn
δ−1 = 0 for

some 0 < δ < 1. Except on an event which depends on {(T1,X1), (T2,X2), . . . ,

(Tn,Xn)} and whose probability tends to zero with increasing n, |Hn(aN+c,bN+d)/

n − H(aN+c,bN+d)| = Op(cnn
−1/2k

1/2
n ), uniformly in a, b,c and d , where {cn}

is a nondecreasing sequence of positive numbers for which c2
n/nk−1

n → 0 and
c2
n/ logkn → ∞.

LEMMA A.4. Assume Conditions 1–3. Suppose limn→∞ knn
δ−1 = 0 for some

0 < δ < 1. Then the eigenvalues of knGn/n and knHn/n are bounded in probabil-
ity.

LEMMA A.5. Assume Conditions 1–3. Suppose limn→∞ knn
δ−1 = 0 for some

0 < δ < 1. Then with probability one, max1≤i≤n |Zi | = O(
√

kn/n).

LEMMA A.6. Under the conditions of Theorem 1, (θ̂ − θ̃)THn(θ̂ − θ̃) =
Op(kn).
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PROOF. Since (θ̂ − θ̃)THn(θ̂ − θ̃) = (θ̂
∗ − θ̃

∗
)T(θ̂

∗ − θ̃
∗
), it suffices to show

that |θ̂∗ − θ̃
∗|2 = Op(kn). As θ̂

∗ = arg minθ∈R
pkn

∑n
i=1 ρτ (ei − (θ − θ̃

∗
)TZi −Ri)

from (2.2), with probability 1 we have
n∑

i=1

ρτ

(
ei − (θ̂

∗ − θ̃
∗
)TZi − Ri

) = inf
θ∈R

pkn

n∑
i=1

ρτ (ei − θTZi − Ri).(A.1)

Let �L = {θ |θ ∈ R
pkn , |θ | ≤ Lk

1/2
n } for some constant L > 0. Then the proof is re-

duced to showing that a solution to the optimization problem in (A.1) lies in �L for
a sufficiently large L. The following lemma and the convexity of the minimization
problem (A.1) complete the proof. �

LEMMA A.7. Assume the conditions of Theorem 1.

(i) For any sequence {Ln} satisfying 1 ≤ Ln ≤ k
η0/10
n for some 0 < η0 <

(r − 1/2)/(2r + 1), we have

sup
|θ |≤Lnk

1/2
n

k−1
n

∣∣∣∣∣
n∑

i=1

[
ρτ (ei − ZT

i θ − Ri) − ρτ (ei − Ri) + ZT
i θ

(
τ − I (ei < 0)

)

−E
(
ρτ (ei − ZT

i θ − Ri) − ρτ (ei − Ri)
)]∣∣∣∣∣ = op(1).

(ii) For any ε > 0, there exists L := Lε (sufficiently large) such that as n → ∞,

P

{
k−1
n

(
inf

|θ |=Lk
1/2
n

n∑
i=1

[
E

(
ρτ (ei − ZT

i θ − Ri) − ρτ (ei − Ri)
)]

−
∣∣∣∣∣

n∑
i=1

Zi

(
τ − I (ei < 0)

)∣∣∣∣∣
)

> 1

}
> 1 − ε.

The proof of Lemma A.7 uses the results of Lemmas A.4–A.5 and a partition of
the parameter space �L. It applies Bernstein’s inequality to bound the probabilities
over the partition. The method is similar to that used in Lemmas 3.2 and 3.3 of [14]
and so we omit the details.

By Lemma A.7, there exists some L := Lε for any ε > 0 such that as n → ∞,
we have

P

{
inf

|θ |=Lk
1/2
n

n∑
i=1

ρτ (ei − ZT
i θ − Ri) >

n∑
i=1

ρτ (ei − Ri)

}
> 1 − ε.

By Corollary 25 of [8], we have that as n → ∞,

P

{
inf

|θ |≥Lk
1/2
n

n∑
i=1

ρτ (ei − ZT
i θ − Ri) >

n∑
i=1

ρτ (ei − Ri)

}
> 1 − ε.(A.2)

By (A.2), (A.1) implies that P {|θ̂∗ − θ̃
∗| ≤ Lk

1/2
n } > 1 − ε.
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PROOF OF THEOREM 1. First, it follows from Lemma A.1(i) that

1

n

n∑
i=1

(
β̂j (Ti) − βj (Ti)

)2 ≤ 2

n

n∑
i=1

(
π(Ti)

Tθ̂j − π(Ti)
Tθ̃j

)2 + 2

n

n∑
i=1

r2
ij

≤ 2

n
(θ̂j − θ̃j )

TGn(θ̂j − θ̃j ) + 2W 2
2 k−2r

n .

As kn ∼ n1/(2r+1), by Lemma A.4, it suffices to show that |θ̂j − θ̃j |2 = Op(k2
n/n).

By Lemmas A.4 and A.6, |θ̂ − θ̃ |2 = Op(k2
n/n), which implies that |θ̂j − θ̃j |2 =

Op(k2
n/n). �

PROOF OF LEMMA 1. As L ⊂ L
∗ by definition, it suffices to show that

L
∗ ⊂ L. Suppose that L

∗/L �= ∅. Let q∗(t, x) denote an element of L
∗/L and

let {kn∗} denote a subsequence of {kn} such that q∗(t, x) ∈ Lkn∗ for all kn∗. Con-
sider Rq∗,kn∗(t, x), where Rq∗,kn∗(t, x) is given in Lemma A.1(ii) with respect to
q∗(t, x). We note that q∗ ∈ L

∗/L implies limkn∗→∞ Rg,kn∗(t, x) �= 0. This contra-
dicts Lemma A.1(ii). �

PROOF OF THEOREM 2. Let ζi = (Q(22)
n )1/2
2(Ti,Xi). Define akn = 1/σ∑n

i=1 ζiϕτ (ei) and bkn = 1/σ
∑n

i=1 ζi{ϕτ (ei − (ξ̂1 − ξ̃1)
Txi) − ϕτ (ei))}. Then

wkn = akn +bkn . We have |akn |2−(pkn−p−1)√
2(pkn−p−1)

−→D N(0,1) from Theorem 4.1 of [28]

by replacing the continuity condition on ϕτ (u) in the theorem with Condition 2.
As |aT

kn
bkn | ≤ |akn ||bkn | and pkn − p − 1 = (p + 1)(kn + m), it suffices to show

that |bkn | = op(
√

kn). The following lemma completes the proof. �

LEMMA A.8. Assuming the conditions of Theorem 2, |bkn | = op(
√

kn).

PROOF. First, Fe(t) − Fe(0) = fe(0)t + o(|t |) and E(ϕτ (s + t) − ϕτ (s))
2 =

fe(0)t + o(|t |) for sufficiently small |t |. Also, from Lemma A.5, maxi |ζi | =
O(

√
kn/n) with probability one.

Consider a function b(η) = 1/σ
∑n

i=1 ζi{ϕτ (ei − xT
i η/

√
n) − ϕτ (ei)} for some

η ∈ R
p+1. For b(j)(η), j = 1, . . . , (p + 1)(kn + m), we have

Var(b(j)(η)) ≤ 1/σ 2
n∑
i

E{ϕτ (ei − xT
i η/

√
n) − ϕτ (ei)}2ζ 2

i(j) = O(kn/
√

n)

and 1/σ maxi |ζi(j){ϕτ (ei − xT
i η/

√
n) − ϕτ (ei)}| = O(

√
kn/n). It follows from

Bernstein’s inequality that for all L > 0, ε > 0 and any |η| < L,

P {|b(j)(η) − E(b(j)(η))| > ε} ≤ 2 exp
(−√

nε2/(2kn + 2
√

kn/3)
)
.
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As the number of b(j)(η)’s to consider is (p + 1)(kn + m) and by the arbitrariness
of L > 0 and ε > 0, we have

P
{

sup
|η|≤L

|b(δ) − E(b(η))| > ε
}

≤ 2 exp
(−√

nε2/(2kn + 2
√

kn/3) + log((p + 1)(kn + m))
)
.

Under the conditions of Theorem 2, nk−2
n /(log kn)

2 → ∞ and the right-hand side
converges to zero as n → ∞. On the other hand, |E(b(η))| = O(

√
kn/n), except

for an event which depends on { (T1,X1), (T2,X2), . . . , (Tn,Xn) } and whose prob-
ability tends to zero with increasing n. Since |θ̂1kn | = Op(1/

√
n), the lemma fol-

lows. �
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