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MULTIDIMENSIONAL TRIMMING BASED ON
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As estimators of location parameters, univariate trimmed means are well
known for their robustness and efficiency. They can serve as robust alterna-
tives to the sample mean while possessing high efficiencies at normal as well
as heavy-tailed models. This paper introduces multidimensional trimmed
means based on projection depth induced regions. Robustness of these depth
trimmed means is investigated in terms of the influence function and finite
sample breakdown point. The influence function captures the local robust-
ness whereas the breakdown point measures the global robustness of estima-
tors. It is found that the projection depth trimmed means are highly robust
locally as well as globally. Asymptotics of the depth trimmed means are in-
vestigated via those of the directional radius of the depth induced regions.
The strong consistency, asymptotic representation and limiting distribution
of the depth trimmed means are obtained. Relative to the mean and other
leading competitors, the depth trimmed means are highly efficient at normal
or symmetric models and overwhelmingly more efficient when these models
are contaminated. Simulation studies confirm the validity of the asymptotic
efficiency results at finite samples.

1. Introduction. The sample mean is a very standard estimator of the “cen-
ter” of a given data set and possesses many desirable properties. Indeed, it is
the most efficient estimator at normal models. It, however, is notorious for be-
ing extremely sensitive to unusual observations (outliers) and heavy-tailed dis-
tributions. Indeed, the mean possesses the lowest breakdown point. To be more
robust, the sample median is employed. It has the best breakdown point among
all reasonable location estimators. The median, however, is not efficient at nor-
mal and other light-tailed distributions. Realizing the drawbacks of the mean and
the median and motivated by robustness and efficiency considerations, Tukey in
1948 introduced trimmed means in real data analysis [28]. These estimators can
strike a desirable balance between robustness and efficiency and serve as com-
promises between the two extremes—the mean and the median. Despite numer-
ous competitors introduced since 1948, the robustness and efficiency advantages
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keep the trimmed mean as the most prevailing estimator of location parameters
(see, e.g., [2, 3, 11, 27, 30]).

Data from the real world, however, are often multidimensional and contain “out-
liers” or “heavy tails.” The outliers in high dimensions are far more difficult to de-
tect or identify than in the univariate case since it is often difficult to plot the data
and the outliers are not always in the single coordinates. A good sample of a real
data set of the latter case is given on page 57 of [23]. A robust procedure such as
multidimensional trimming that can automatically detect the outliers or heavy tails
is thus desirable. The task of trimming in high dimensions, however, turns out to be
nontrivial, for there is no natural order principle in high dimensions. On the other
hand, data depth has shown to be a promising tool for providing a center-outward
ordering of multidimensional observations; see [14, 29, 37], for example. Points
deep inside a data cloud get high depth and those on the outskirts get lower depth.
With a depth induced ordering, it becomes quite straightforward to define multi-
variate trimmed means. Indeed, examples are given in [4, 5, 18, 19, 21, 32], all for
Tukey halfspace depth trimming; in [14] and [6] for Liu simplicial depth trimming;
and in [34] for general depth trimming (see Section 6 for a detailed discussion).

A natural question raised for depth induced multidimensional trimmed means
is: Do they share the same robustness and efficiency advantages of their univariate
counterparts over the sample mean? No answer has been given in the literature.
Indeed, except for a very few sporadic discussions, very little attention has been
paid to the depth based multivariate trimmed means and little is known about their
robustness and efficiency. To answer the aforementioned question and to shed light
on the robustness and the efficiency aspects of a class of depth trimmed means, the
projection depth trimmed means, is the objective of this article. Although the paper
focuses on projection depth trimmed means, the technical approaches are applica-
ble to other (such as halfspace) depth trimmed means and covariance matrices as
well. Motivation for selecting projection depth is addressed in Section 6.

The paper investigates the local as well as the global robustness of the depth
trimmed means via the influence function and breakdown point, respectively. De-
riving the influence function of the depth trimmed means is exceptionally involved.
The difficulty lies in handling the distribution-dependent depth trimming region.

To investigate the large sample behavior (such as asymptotic relative efficiency)
of the sample projection depth trimmed means, we have to establish their limiting
distributions. The trimming nature of the estimators makes the study of the asymp-
totics very challenging. Standard asymptotic theory falls short of the goal. Indeed,
even establishing the limiting distribution of the regular univariate trimmed means
is not as straightforward as one might imagine. One misconception about this is
that the task should be similar to or not much more challenging than the one for the
sample mean. In fact, the limiting distribution of the regular trimmed means which
were introduced as early as 1948 by Tukey (or perhaps earlier) was not established
until 1965 by Bickel. Classical textbooks today still do not prove the limiting dis-
tribution and only point out the ad hoc proof of Bickel [2] or Stigler [26] without
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details. Another misconception about the limiting distribution is that it just fol-
lows in a straightforward fashion after one derives the influence function. This
actually is not always the case (as shown here in this paper and elsewhere). The
challenging task of establishing limiting distributions in this paper for the multi-
dimensional depth trimmed means is accomplished by utilizing empirical process
theory (see [32] or [20]).

The paper shows that the projection depth trimmed means (with robust choices
of univariate location and scale measures) are highly robust locally (with bounded
influence functions) and globally (with the best breakdown point among affine
equivariant competitors), as well as highly efficient relative to the mean (and depth
medians) at normal and heavy-tailed models. The latter is especially true when
the models are slightly contaminated. Findings in the paper indicate that the pro-
jection depth trimmed means represent very favorable choices, among the leading
competitors, of robust and efficient location estimators for multivariate data.

The rest of the paper is organized as follows. Section 2 introduces projection
depth induced regions and trimmed means and discusses some fundamental prop-
erties. Section 3 is devoted to the study of the local (the influence function) as well
as the global (the finite sample breakdown point) robustness of the depth trimmed
estimators. Asymptotic representations and asymptotics are established in Sec-
tion 4. Section 5 addresses the efficiency issue of the projection depth trimmed
means. Concluding remarks in Section 6 end the main body of the paper. Selected
proofs of main results and auxiliary lemmas are reserved for the Appendix.

2. Projection depth regions and trimmed means.

2.1. Projection depth functions and regions. Let µ and σ be univariate loca-
tion and scale measures of distributions. Typical examples of µ and σ include the
pair mean and standard deviation (SD) and the pair median (Med) and median ab-
solute deviations (MAD). Define the outlyingness of x ∈ R

d with respect to (w.r.t.)
the distribution F of X in R

d (d ≥ 1) as ([4] and [25])

O(x,F ) = sup
u∈Sd−1

|g(x,u,F )|,(1)

where Sd−1 = {u :‖u‖ = 1}, g(x,u,F ) = (u′x − µ(Fu))/σ (Fu) is the “general-
ized standard deviation” of u′x w.r.t. Fu and Fu is the distribution of u′X. If u′x −
µ(Fu) = σ(Fu) = 0, we define the generalized standard deviation g(x,u,F ) = 0.
The projection depth of x ∈ R

d w.r.t. the given F , PD(x,F ), is then defined as

PD(x,F ) = 1/
(
1 + O(x,F )

)
.(2)

Sample versions of g(x,u,F ), O(x,F ) and PD(x,F ) are obtained by replac-
ing F with its empirical version Fn. With µ and σ being the Med and the MAD,
respectively, Liu [15] first suggested the use of 1/(1 + O(x,Fn)) as a depth func-
tion. Zuo and Serfling [37] defined and studied (2) with (µ,σ ) = (Med, MAD).
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Since PD depends on the choice of (µ,σ ), a further study with general µ and σ is
carried out in [33]. It turns out PD possesses desirable properties for depth func-
tions (see [37]). For example, it is affine invariant, maximized at the center of a
symmetric distribution, monotonically decreasing when a point moves along a ray
stemming from the deepest point, and vanishes at infinity. For motivation, exam-
ples and other related discussions of (2), see [33].

For any 0 < α < α∗ = supx∈Rd PD(x,F ) ≤ 1, the αth projection depth region is

PDα(F ) = {x : PD(x,F ) ≥ α}.(3)

It is a multivariate analogue of the univariate αth quantile region [F−1(α),

F−1(1−α)]. The set {x : PD(x,F ) = α} is called the αth projection depth contour,
which is the boundary ∂PDα(F ) of PDα(F ) under some conditions (see [33]).
Structural properties and examples of projection depth regions and contours are
discussed in [33]. Note that α in (3) can also be determined by the probability con-
tent of the resulting region. For example, define α(λ) = sup{α :PX(x : PD(x,F ) ≥
α) ≥ λ}; then PX(PDα(λ)(F )) = λ for a smooth distribution function F . A sample
version of PDα(F ), PDα

n , is obtained by replacing F with its empirical version Fn.
We assume throughout that µ(FsY+c) = sµ(FY ) + c and σ(FsY+c) = |s|σ(FY )

(affine equivariance) for any scalars s and c and random variable Y ∈ R
1, and that

(C0) supu∈Sd−1 µ(Fu) < ∞, 0 < infu∈Sd−1 σ(Fu) ≤ supu∈Sd−1 σ(Fu) < ∞.

This holds for typical location and scale functionals; see Remark 2.4 of [33].
It follows that PDα(F ) is compact and has a nonempty interior that contains the
maximum depth point θ with PD(θ,F ) = α∗ (Theorems 2.2 and 2.3 of [33]). By
the affine invariance of the projection depth functions, we can assume without
loss of generality that θ = 0 ∈ R

d in our following discussion. The depth region
PDα(F ) can then be characterized by the “directional radius functional” Rα(u,F ),

Rα(u,F ) = sup{r ≥ 0 : ru ∈ PDα(F )} ∀u ∈ Sd−1,(4)

which is the same as inf{r ≥ 0 : ru /∈ PDα(F )}. For simplicity, we sometimes write
R(u,F ) or R(u) for Rα(u,F ) and Rn(u) for Rα(u,Fn) for fixed α and F .

2.2. Projection depth trimmed means and fundamental properties. With depth
regions, one can define the αth projection depth trimmed mean (PTM) by

PTMα(F ) =
∫

PDα(F )
w

(
PD(x,F )

)
x dF(x)

/∫
PDα(F )

w
(
PD(x,F )

)
dF(x),(5)

where w(·) is a suitable (bounded) weight function on [0,1] such that the denomi-
nator is nonzero. The latter is true for typical nonzero w(·). Note that the numerator
is bounded since PDα is; see Theorem 2.3 of [33]. Thus PTMα(F ) is well defined.
Again we may suppress α and (or) F in PTMα(F ) for convenience.

When w is a (nonzero) constant, (5) gives equal nonzero weight to each point
within the depth region PDα(F ), and zero weight to any point outside the region.
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FIG. 1. PTMα(Fn) based on a N(0, I2) sample of size 900. Left: α = 0 and
PTMα(Fn) = (−0.05798,−0.02476). Right: α = 0.36 and PTMα(Fn) = (−0.05571,−0.05848).

Thus we have exactly the same (0–1) weighting scheme as that of the regular uni-
variate trimmed mean. Two such PTMα(Fn)’s with w = c > 0 are illustrated in
Figure 1 with a bivariate standard normal sample of size 900 and α = 0 and 0.36.
To treat a broader class of multidimensional trimmed means, in our following dis-
cussion w is allowed to be any suitable nonconstant function, though.

On the other hand, it is noteworthy that in the degenerate one-dimensional case
(with a nonzero constant w), (5) yields a new type of trimmed mean that is different
from the regular one. The difference lies in the trimming scheme. For example,
at the sample level the regular trimming is based on the ranks of sample points
whereas (5) is based on the values of the generalized standard deviations. The
latter can lead to more robust and efficient estimators (see Sections 3.3 and 5).

It can be seen that PTMα(·) is affine equivariant, that is, PTMα(FAX+b) =
A(PTMα(FX))+b for any nonsingular d ×d matrix A and b ∈ R

d , since PD(x,F )

is affine invariant. Hence PTMα does not depend on the underlying coordinate
system or measurement scale. If X ∼ F is centrally symmetric about θ ∈ R

d [i.e.,
±(X − θ) have the same distribution], then PTMα(F ) is Fisher consistent about θ ,
that is, PTMα(F ) = θ , and PTMα(Fn) is also centrally symmetric about θ since
PTMα(AX1 + b, . . . ,AXn + b) = APTMα(Xa, . . . ,Xn) + b for any nonsingular
matrix A and b ∈ R

d . The latter also implies that PTMα(Fn) is unbiased for θ .

3. Robustness. Robustness is a fundamental issue in statistics. It has long
been recognized as a principal performance criterion for statistical procedures. We
address the local and the global robustness of depth trimmed means in this section.

One popular (qualitative) robustness measure of a statistical procedure is its in-
fluence function. Let F be a given distribution, let δx be the point-mass probability
distribution at a fixed point x ∈ R

d and let F(ε, δx) = (1 − ε)F + εδx , ε ∈ [0,1],
be the point-mass contaminated distribution. The influence function (IF) of a sta-
tistical functional T at x ∈ R

d for the given F is defined as [10]

IF(x;T ,F ) = lim
ε→0+

(
T

(
F(ε, δx)

) − T (F )
)
/ε,(6)
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which describes the relative effect (influence) on T of an infinitesimal point-mass
contamination at x, and captures the local robustness of T . A functional with a
bounded influence function thus is robust and desirable. The supremum norm of
IF(x;T ,F ) is called the gross error sensitivity of T at F [10],

GRE(T ,F ) = sup
x∈Rd

‖IF(x;T ,F )‖,(7)

the maximum relative effect on T of an infinitesimal point-mass contamination.
It is well known that the mean functional has an unbounded influence func-

tion whereas that of the regular univariate trimmed mean functional is bounded;
see [24], for example. The natural concern now is whether the influence function
of the projection depth trimmed mean functional is bounded.

Note that the integral region in the definition of PTMα(F ) is a functional of F .
An infinitesimal point-mass contamination hence affects this region. The deriva-
tion of the influence function of PTMα(F ) thus becomes challenging. Our strategy
to attack the problem is “divide and conquer”: to work out the influence function
of the projection depth region first and then the influence function of the projection
depth region induced trimmed mean functional based on the preliminary results.

3.1. Influence function of depth region. Here we establish the influence func-
tion of Rα(u,F ). Denote by Fu(ε, δx) the projected distribution of F(ε, δx) to a
unit vector u. Then Fu(ε, δx) = (1 − ε)Fu + εδu′x . For simplicity we sometimes
write Fε and Fεu for F(ε, δx) and Fu(ε, δx), respectively, for the fixed x ∈ R

d .
We need the following itemized conditions. Denote by ox(1) a quantity that may
depend on a given point x ∈ R

d but approaches 0 as ε → 0 for the fixed x.

(C1) µ(·) and σ(·) at Fu and Fεu are continuous in u ∈ Sd−1 and σ(Fu) > 0,
(C2) |µ(Fεu) − µ(Fu)| = ox(1), |σ(Fεu) − σ(Fu)| = ox(1) uniformly in u ∈

Sd−1,
(C3) µ(Fu(ε,δx))−µ(Fu)

ε
= IF(u′x;µ,Fu)+ox(1), σ(Fu(ε,δx))−σ(Fu)

ε
= IF(u′x;σ,

Fu) + ox(1) uniformly in u ∈ Sd−1 for fixed x ∈ R
d .

Conditions (C1)–(C3) hold for smooth M-estimators of location and scale (and
also for the Med and MAD); see [12, page 136] and [33, page 1468]. Note that
(C0)–(C3) are connected (nested) in the sense that (C1) implies (C0), (C3) implies
(C2) if IF(u′x;µ,Fu) and IF(u′x;σ,Fu) are bounded in u, and (C2) holds when
(C1) holds and µ(Fεu) − µ(Fu) = ox(1) and σ(Fεu) − σ(Fu) = ox(1) for any
u = u(ε) → u0. The latter holds trivially for continuous functionals µ(·) and σ(·),
that is, µ(G) → µ(F) and σ(G) → σ(F ) as G converges weakly to F .

When µ(Fu) and σ(Fu) are continuous in u and σ(Fu) > 0, there is a unit vec-
tor v(x) such that g(x, v(x),F ) = O(x,F ) for x ∈ R

d . With v(x) we can drop
sup‖u‖=1 in the definition of O(x,F ), which greatly facilitates technical treat-
ments. Define

U(x) = {
v(x) :g

(
x, v(x),F

) = O(x,F )
}
, x ∈ R

d .(8)
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It is usually a singleton (or a finite set) for continuous F and x ∈ ∂PDα(F ) (see
comments after Theorem 2). Indeed, to construct a counterexample is difficult. In
the following we consider the case that U is a singleton for the sake of conve-
nience.

THEOREM 1. Assume that IF(v(y)′x;µ,Fv(y)) and IF(v(y)′x;σ,Fv(y)) are
continuous in v(y) for y ∈ ∂PDα(F ) with y/‖y‖ ∈ A ⊆ Sd−1 and U(y) is a sin-
gleton for any y ∈ ∂PDα(F ). Then under (C1)–(C3) with β(α) = (1 − α)/α,

Rα(u,F (ε, δx)) − Rα(u,F )

ε

= β(α)IF(v(y)′x;σ,Fv(y)) + IF(v(y)′x;µ,Fv(y))

u′v(y)
+ ox(1),

uniformly in u ∈ A with y = Rα(u,F )u. The influence function of Rα(u,F ) is thus
given by the first term on the right-hand side.

The proof of the theorem, technically very demanding and challenging, is given
in the Appendix. The influence function of Rα(u,F ) at x is determined by those
of µ and σ at v(y)′x for the projected distribution Fv(y) with y = Rα(u,F )u.
Since u′v(y) is bounded below from 0 uniformly in u (shown in the proof of the
theorem), IF(x;Rα(u,F ),F ) is bounded as long as those of µ and σ are bounded
for Fv(y).

The continuity in v(y) of the influence functions of µ and σ at the point v(y)′x
for Fv(y) with y ∈ ∂PDα and y/‖y‖ ∈ A is important. This and the other condi-
tions in the theorem are met with A = Sd−1 by typical smooth location and scale
measures such as the mean and the standard deviation and other M-type location
and scale measures (see [12]). They are also met by less smooth ones such as
the Med and the MAD for suitable (such as elliptically symmetric) distributions.

A random vector X ∼ F is elliptically symmetric about θ if u′(X − θ)
d= √

u′	uZ

for u ∈ Sd−1, some positive definite matrix 	 and some random variable Z ∈ R
1

with Z
d= −Z, where “ d=” stands for “equal in distribution.” Denote by Fθ,	 such

a distribution F . Assume, w.l.o.g., that θ = 0 and MAD(Z) = m0.

COROLLARY 1. Let (µ,σ ) = (Med, MAD) and F = Fθ,	 with Z having a
density hz that is continuous and positive in small neighborhoods of 0 and m0.
Then(

Rα(
u,F (ε, δx)

) − Rα(u,F )
)
/ε

=
(

β(α) sign(|u′	−1x| − ‖	−1/2u‖m0)

4hz(m0)
+ sign(u′	−1x)

2hz(0)

)/
‖	−1/2u‖

+ ox(1),



2218 Y. ZUO

uniformly in u ∈ A, where A is Sd−1 if x = 0 or consists of all u ∈ Sd−1 ex-
cept those u’s with u′	−1x = 0 or u′	−1x = ±‖	−1/2u‖m0. Hence the influence
function of Rα(u,F ), the first term on the right-hand side, is bounded for u ∈ A.

By Theorem 1 and Corollary 1, IF(x;Rα(u,F ),F ) is continuous in v(y) with
y = Rα(u,F )u for u ∈ A and depends on α through β(α) only. Its existence and
behavior for u ∈ Sd−1−A are of little interest for IF(x;PTMα(F ),F ), the ultimate
goal of all the discussion in this subsection, and not covered by the above results.

The influence function in Corollary 1 is bounded in x ∈ R
d for any u ∈ A. This,

however, is not true if we select nonrobust µ and σ . For example, if µ and σ are
the mean and the standard deviation (SD), then for u ∈ A = Sd−1

IF
(
x;Rα(u,F ),F

)

=
(

(1 − α)((u′	−1x)2 − (‖	−1/2u‖σz)
2)

2α‖	−1/2u‖σz

+ u′	−1x

)/
u′	−1u,

with σ 2
z = var(Z), which is no longer bounded in x ∈ R

d . To illustrate graphically
this influence function and the one in the corollary, we consider F = N2(0, I )

and α = 0.2 for simplicity. By orthogonal equivariance, we can just consider
u0 = (1,0)′. The influence functions for (Med, MAD) and (mean, SD) become
respectively

sign(|x1| − c)/f (c) + sign(x1)/(2f (0)), 2x2
1 + x1 − 2 for x = (x1, x2)

′,

with c = 
−1(3/4) and f the density of N(0,1), which are plotted in Figure 2.
Figure 2 indicates that IF(x;Rα(u,F ),F ) with (µ,σ ) = (Med, MAD) is a step

function jumping at |x1| = 0 and c and is bounded, whereas with (µ,σ ) = (mean,
SD) it is continuous everywhere but unbounded.

Equipped with preliminary results in this subsection, we are now in position to
pursue the influence function of the projection depth region induced means.

FIG. 2. The influence functions of Rα(u,F ) with F = N2(0, I ), α = 0.2 and u = (1,0)′. Left:
(µ,σ ) = (Med, MAD); right: (µ,σ ) = (mean, SD).
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3.2. Influence function of depth trimmed means. To work out the influence
function of the depth trimmed mean functional, we need these conditions:

(C4) U(y) is a singleton for y ∈ B ⊆ PDα(F ) with PF (PDα(F ) − B) = 0,
(C5) IF(u′x;µ,Fu) and IF(u′x;σ,Fu) are bounded in u ∈ Sd−1 and continu-

ous in u for u ∈ {v(y) :y ∈ B} with
∫
Sd−1−{v(y) : y∈B∩∂PDα} du = 0.

In light of the discussion and examples in the last subsection, (C4)–(C5) hold for
continuous F and common location and scale functions µ and σ in general. Under
these conditions and by virtue of Theorem 1, IF(x;Rα(u,F ),F ) exists for fixed
x, α and F and for any u ∈ A = {y/‖y‖ :y ∈ B ∩ ∂PDα} with

∫
Sd−1−A du = 0.

Now assume that F (1) = f and w(1) exists; then we can define for fixed α

l1(x) =
∫
Sd−1(R(u)u − PTM(F ))w(α)f (R(u)u)|J (u,R(u))|IF(x;R(u),F )du∫

PDα(F ) w(PD(y,F )) dF (y)
,

l2(x) =
∫

PDα(F )(y − PTM(F ))w(1)(PD(y,F ))h(x, y) dF (y)∫
PDα(F ) w(PD(y,F )) dF (y)

,

l3(x) = (x − PTM(F ))w(PD(x,F ))I (x ∈ PDα(F ))∫
PDα(F ) w(PD(y,F )) dF (y)

,

where

h(x, y) = O(y,F )IF(v(y)′x;σ,Fv(y)) + IF(v(y)′x;µ,Fv(y))

σ (Fv(y))(1 + O(y,F ))2 ,

and J (u, r) is the Jacobian of the transformation from x ∈ R
d to (u, r) ∈ Sd−1 ×

[0,∞). If we let x1 = r cos θ1, . . . , xd−1 = r sin θ1 sin θ2 · · · sin θd−2 cos θd−1, xd =
r sin θ1 · · · sin θd−2 sin θd−1, then u = x/r and J (u, r) = rd−1 sind−2θ1 · · · sin θd−2.

THEOREM 2. Assume that F has a density f that is continuous in a small
neighborhood of ∂PDα(F ) and w(·) is continuously differentiable. Then under
(C1)–(C5), IF(x;PTMα(F ),F ) = l1(x)+ l2(x)+ l3(x), which is bounded as long
as the influence functions of µ and σ are bounded at Fu for any fixed u.

Note that µ and σ in the theorem can be very general, including mean and
SD, Med and MAD, and general M-functionals of location and scale. For robust
choices, PTMα has a bounded influence function and hence is (locally) robust.

Note that U(y) usually is a singleton for y ∈ R
d (with the center of symme-

try for symmetric F as an exception). For example, if F = F0,	 , then U(y) =
	−1y/‖	−1y‖ for all y �= 0 and any affine equivariant µ and σ . The condi-
tion (C4) in the theorem thus is quite mild. The uniqueness of v(y) ensures a
unique limit of the counterpart vε(y) of v(y) as ε → 0 (see the proof of the theo-
rem). The continuity of IF(u′x;µ,Fu) and IF(u′x;σ,Fu) in u for u ∈ {v(y) :y ∈
B} is sufficient for invoking the result in Theorem 1 and ensures the existence
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of h(x, y), the influence function of PD(y,F ) at point x for any y ∈ B . Condi-
tions in the theorem are usually met by smooth (µ,σ )’s such as (mean, SD) and
also by less smooth ones such as (Med, MAD).

When w is a nonzero constant (a special yet important case), the influence func-
tion IF(x;PTMα(F ),F ) becomes l1(x)+ l3(x) with both terms greatly simplified.

On the other hand, for specific (µ,σ ) and F such as (Med, MAD) and F =
Fθ,	 , the result in the theorem can be concretized. Since it is readily seen that

IF(x;PTMα,Fθ,	) = 	1/2IF
(
	−1/2(x − θ);PTMα,F0,I

)
,(9)

we thus will focus on the case θ = 0 and 	 = I without loss of generality. We
have:

COROLLARY 2. Let (µ,σ ) = (Med, MAD), F = F0,I with density hz of Z

continuous and > 0 in small neighborhoods of 0 and m0, and let w(1) be continu-
ous. Then

IF
(
x;PTMα(F ),F

)

=
(∫

Sd−1
c(α)w(α)f (c(α)u)u

∣∣J (
u, c(α)

)∣∣IF(
x;R(u),F

)
du

+ xc1/‖x‖ + xw
(
1/(1 + ‖x‖/m0)

)
I
(‖x‖ ≤ c(α)

))/
c0,

with c0 = ∫
‖y‖≤β(α) w(1/(1 + ‖y‖)) dF0(y), c1 = ∫

‖y‖≤β(α)(m0|y1|w(1)(1/

(1 + ‖y‖)))/(2hz(0)(1 + ‖y‖)2) dF0(y), y = (y1, . . . , yd)′, c(α) = β(α)m0 and
F0(y) = F(m0y).

The most desirable feature of an influence function, the boundedness, is guaran-
teed by the corollary. This, of course, is no longer true if we select nonrobust (µ,σ )

such as (mean, SD). To illustrate this, we consider for simplicity F = N2(0, I )

and a nonzero constant weight function w. The influence functions of PTMα for
(µ,σ ) = (mean, SD) and (Med, MAD) in this setting at x = (x1, x2)

′ are respec-
tively (∫ 2π

0
β2(α)g(β(α))u

(
2(u′x)2 + u′x − 2

)
dθ

+ xI
(‖x‖ ≤ β(α)

))/
PF

(‖y‖ ≤ β(α)
)

and∫ 2π
0 (cβ(α))2g(cβ(α))u(β(α) sign(|u′x| − c)/(4f (c)) + sign(u′x)/(2f (0))) dθ

PF (‖y‖ ≤ cβ(α))

+ xI (‖x‖ ≤ cβ(α))

PF (‖y‖ ≤ cβ(α))
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FIG. 3. The first coordinate of the influence function IF(x;PTMα(F ),F ) with F = N2(0, I ) and
α = 0.2. Left: (µ,σ ) = (Med,MAD); right: (µ,σ ) = (mean, SD).

with g(r) = e−r2/2/(2π) and u = (cos θ, sin θ)′ (and c defined after Corollary 1),
which depend on α through β(α) only and are plotted in Figure 3 with α = 0.2.

Note that the influence functions in this example are two-dimensional and the
figure plots their first coordinates only. The graphs of the second coordinates, how-
ever, are the same as the ones in the figure up to an orthogonal transformation.

Both influence functions are continuous except at points x with ‖x‖ = cβ(α) or
β(α). When ‖x‖ is smaller than these values, the corresponding influence func-
tions behave (roughly) linearly in x. The influence of PTMα with (Med, MAD) is
almost zero when ‖x‖ > cβ(α). However, in the case with (mean, SD) it becomes
unbounded eventually as ‖x‖ → ∞. All these are reflected clearly in Figure 3.

3.3. Finite sample breakdown point. The projection depth trimmed means
with robust choices of µ and σ have bounded influence functions and thus are
locally robust. This raises the question as to whether they are also globally robust.
We now answer this question via the finite sample breakdown point, a notion intro-
duced by Donoho and Huber [7] that has become a prevailing quantitative measure
of global robustness of estimators. Roughly speaking, the breakdown point of a lo-
cation estimator T is the minimum fraction of “bad” (or contaminated) points in
a data set that can render T beyond any bound. More precisely, the finite sample
breakdown point of T at the sample Xn = {X1, . . . ,Xn} in R

d is defined as

BP(Tn,X
n) = min

{
m

n
: sup

Xn
m

‖Tn(X
n
m) − Tn(X

n)‖ = ∞
}
,(10)

where Xn
m denotes a contaminated data set resulting from replacing m original

points of Xn with m arbitrary points. For a scale estimator S, we can calculate its
breakdown point by treating logS as T in the above definition.

Clearly one bad point can ruin the sample mean, hence it has a breakdown point
1/n, the lowest possible value. The univariate αth trimmed mean (trimming �αn�
data points at both ends of the data) has a breakdown point (�αn� + 1)/n, which
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can be much higher than that of the mean. Here �·� is the floor function. So the
univariate trimmed means can serve as robust alternatives to the sample mean.

For a projection depth trimmed mean, its breakdown point clearly depends on
the choice of (µ,σ ) in the definition of PD. Typical robust choices of (µ,σ ) in-
clude robust M-estimators of location and scale such as (Med, MAD). In the fol-
lowing discussion we first confine attention to the robust choice (Med, MAD) and
then comment on the general choices of (µ,σ ). We also modify MAD slightly
so that the resulting scale measure is less likely to be 0 and consequently the re-
sulting PD trimmed mean has a higher breakdown point. Specifically, we use for
1 ≤ k ≤ n

MADk = Medk

{|xi − Med{xi}|},
Medk{xi} = (

x(�(n+k)/2�) + x(�(n+k+1)/2�)
)
/2,

where x(1) ≤ · · · ≤ x(n) are the ordered values of x1, . . . , xn in R
1. The same idea

of modifying MAD to achieve a higher breakdown point for the related estimators
has been employed in [31], [9] and [33], for example. Note that when k = 1, MADk

is just the regular MAD.
For projection depth (or any other depth) trimming, an important issue in prac-

tice is how to determine an appropriate value of α so that PDα
n ∩ Xn is not empty

and hence PTMα
n is well defined. It can be shown (based on empirical process

theory) that PDα
n ∩ Xn is nonempty almost surely for suitable α under some mild

conditions including PF (PDα(F )) > 0 and sufficiently large sample size n.
For univariate data, a “pre-data” approach of determining a value of α can be

employed in practice. In this case it is not difficult to see that the projection depth
of the order statistic X(�(n+1)/2�) is always no less than 1/2. Hence PDα

n ∩ Xn is
nonempty as long as α ≤ 1/2. For multidimensional data, a “post-data” approach
can be adopted. That is, the value of α is data-dependent and determined after Xn

becomes available. Since we have to calculate PD(Xi,Fn) anyhow, an appropriate
value of α for the trimming can be determined afterward. Or we may select a data-
dependent α so that PDα

n ∩ Xn is nonempty, as is done in the following result.
A data set Xn in R

d (d ≥ 1) is in general position if there are no more
than d sample points contained in any (d − 1)-dimensional hyperplane. This is
true almost surely if the sample is from an absolutely continuous distribution F .
We have:

THEOREM 3. Let (µ,σ ) = (Med, MADk) with k = 1 for d = 1 and k = d + 1
for d > 1 and let Xn be in general position and n ≥ d + 1 for d > 1. Then

BP(PTMα,Xn) =




�(n + 1)/2�
n

, d = 1,0 < α ≤ 1/2,

�(n − d + 1)/2�
n

, d > 1,0 < α ≤ αd,
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where the weight w(r) > 0 for 0 < r ≤ 1 and αd := αd(Xn) (d > 1) satisfying

1 − αd(Xn)

αd(Xn)
= max‖u‖=1

maxi1,...,i�(n+2)/2� max1≤k,l≤�(n+2)/2� |u′(Xik − Xil )|
mini1,...,id+1 max1≤k,l≤(d+1) |u′(Xik − Xil )|/2

,(11)

and i1, . . . , ir are r arbitrary distinct integers from the set {1,2, . . . , n}.

Note that the denominator on the right-hand side of (11) is bounded below
from 0 uniformly in u since Xn is in general position. Hence αd is well defined.
It is also seen that αd(Xn) is affine invariant, that is, αd(AXn + b) = αd(Xn)

for any nonsingular matrix A and b ∈ R
d , where AXn = {AX1, . . . ,AXn}. Thus

PTMα is affine equivariant. Clearly αd(Xn) < min{1
3 , supi PD(Xi,Fn)}. Indeed, it

is seen that O(Xi,X
n
m) is no greater than the right-hand side of (11) for any origi-

nal Xi ∈ Xn and any 0 ≤ m ≤ �(n− d + 1)/2�− 1. Hence PTMα for d > 1 is well
defined.

The main idea of the proof can be briefly explained as follows. The estimator
breaks down only if PDα(Xn

m) is empty or contains points of Xn
m with arbitrarily

large norms. This cannot happen unless µ and (or) σ break(s) down. To break down
Med, �(n + 1)/2�/n contaminating points are needed. With the contaminating
points m = �(n − d + 1)/2� in R

d (d > 1), we can force MADd+1(u
′Xn

m) for the
special u to be zero or unbounded. All these can lead to the breakdown of PTMα .

The breakdown point results in the theorem are striking. In R1, PTMα for
any α ∈ (0,1/2] achieves the best breakdown point of any translation equivari-
ant location estimators (see [17]). Note that the breakdown point of the regu-
lar αth trimmed mean is only (�αn� + 1)/n, which is lower unless α ≈ 0.50
(which corresponds to the median). The difference in breakdown point between
the two types of trimmed means is due to the difference in trimming. In the
projection depth trimming case, trimming is done based on the values of the
|Xi − Med(Xn)|/MAD(Xn)’s, while in the regular trimming (equivalent to Tukey
halfspace depth trimming) case, it is done based on the ranks of the Xi ’s.

In Rd (d > 1), the breakdown point, �(n − d + 1)/2�/n, is also the best (high-
est) among existing affine equivariant location estimators, with very few excep-
tions.

Note that the theorem allows one to select very small α values (e.g., 0.05 or
0.10), which then can lead to very high efficiency for PTMα at (contaminated)
normal models (see Section 5), while enjoying very high breakdown point robust-
ness.

For simplicity, the theorem reports only the best breakdown points with the
corresponding d and k. For general k and d , it can be shown that BP(PTMα,Xn)

is �(n− k + 2)/2�/n for d = 1 and min{�(n+ k + 1 − 2d)/2�, �(n− k + 2)/2�}/n

for d > 1. The theorem can be extended for arbitrary Xn. In this case, the BP
results still hold if d is replaced by c(Xn), the maximum number of sample points
contained in any (d − 1)-dimensional hyperplane. The theorem considers robust
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choices of µ and σ . It can be extended for more general cases. For example, if
(mean, SD) is used, then BP(PTMα,Xn) is 1/n. For general (µ,σ ), the BP of
PTMα is no less than the minimum of the BPs of µ and σ at u′Xn for arbitrary
u ∈ Sd−1.

4. Asymptotics. This section investigates the large sample behavior of the
sample projection depth trimmed means. We focus on the strong consistency and
the asymptotic normality of the estimators. To this end, we (have to) characterize
the asymptotic behavior of the random convex and compact set PDα(Fn), the sam-
ple projection depth region, via that of the random directional radius Rα(u,Fn).

4.1. Strong consistency and asymptotic representation of the directional ra-
dius. Denote by Fnu the empirical distribution function of u′Xi , i = 1, . . . , n, for
u ∈ Sd−1. The following counterparts of (C1) and (C2) are needed in the sequel:

(C1′) µ(·) and σ(·) at Fu and Fnu are continuous in u ∈ Sd−1 and σ(Fu) > 0,
(C2′) sup‖u‖=1 |µ(Fnu) − µ(Fu)| = o(1), sup‖u‖=1 |σ(Fnu) − σ(Fu)| = o(1),

a.s.,

which hold for common choices of (µ,σ ) and a wide range of distributions F ;
see Remark 2.4 of [33] for a detailed account (also see [35]). Indeed, for gen-
eral M-estimators µ and σ including (Med, MAD), (C1′) holds for suitable F

(see Lemma 5.1 of [33]), which in turn implies (C2′) if µ(Fnun) and σ(Fnun)

are strongly consistent for µ(Fu) and σ(Fu), respectively, for any un → u ∈ Sd−1.
The latter is true for typical µ and σ since µ(G) and σ(G) are typically continuous
in G in the sense that µ(G∗) and σ(G∗) → µ(G) and σ(G), respectively, when-
ever G∗ becomes close enough to G in distribution (or in Smirnov–Kolmogorov
distance) sense (see Example II.1 of [20] for the median functional). We have

THEOREM 4. Under (C1′)–(C2′), supu∈Sd−1 |Rα(u,Fn) − Rα(u,F )| = o(1),

a.s.

The main idea of the proof is as follows. Condition (C1′) insures that for
a fixed x ∈ R

d there are unit vectors v(x) and vn(x) such that O(x,F ) =
g(x, v(x),F ) and O(x,Fn) = g(x, vn(x),Fn) [see (1)]. This result enables us to
bound Rα(u,Fn) − Rα(u,F ) from above and below for any fixed u ∈ Sd−1. Both
the upper and the lower bounds are then shown to be o(1) almost surely and uni-
formly in u ∈ Sd−1. A crucial step for this is to show that x′v(x) and x′vn(x)

are bounded below from 0 uniformly for any x on the boundary of PDα(F ) and
PDα(Fn), respectively.

The uniform strong consistency property of Rα(u,Fn) is illustrated in Figure 4.
Here Rα(u,F ) and Rα(u,Fn) are plotted for α = 0.5 and different n’s. For sim-
plicity, F = N2(0, I ) is selected. Rα(u,F ) then is the circle with radius 
−1(3/4).
The boundary of PDα(Fn) is Rα(u,Fn). The uniform strong consistency is clearly
demonstrated as sup‖u‖=1 |Rα(u,Fn)−Rα(u,F )| gets smaller when n gets larger.



PROJECTION DEPTH TRIMMED MEANS 2225

FIG. 4. R0.5(u,F ) (solid circle) and R0.5(u,Fn) (boundary of the shaded region) for
F = N2(0, I ). Upper: left—n = 100, right—n = 200. Lower: left—n = 300, right—n = 900.

REMARK 4.1. Under some (stronger) conditions on F , PDα(F ) are contin-
uous in Hausdorff distance sense, that is, ρ(PDα,PDα0) → 0 as α → α0, where
ρ(A,B) = inf{ε|ε > 0,A ⊂ Bε,B ⊂ Aε} and Cε = {x| inf{‖x − y‖ :y ∈ C} < ε}
(see Theorem 2.5 of [33]). With this continuity of the depth regions, the result
in the theorem can be established in a straightforward fashion. For the halfspace
depth regions and assuming this continuity, Nolan [19] first obtained the strong
consistency result for the radius of the halfspace depth region.

To establish the normality of R(u,Fn), the counterpart of (C3) is needed:

(C3′) The asymptotic representations hold uniformly in u:

µ(Fnu) − µ(Fu) = 1

n

n∑
i=1

f1(Xi, u) + op(n−1/2),

σ (Fnu) − σ(Fu) = 1

n

n∑
i=1

f2(Xi, u) + op(n−1/2).

The graphs of functions in {fj (·, u) :u ∈ Sd−1} form a polynomial discrimination
class, Efj (X,u) = 0 for u ∈ Sd−1, E(sup‖u‖=1 f 2

j (X,u)) < ∞, for j = 1 or 2,
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and

E

[
sup

|u1−u2|≤δ

|fj (X,u1) − fj (X,u2)|2
]

→ 0 as δ → 0, j = 1,2.

For the definition of a class of sets with polynomial discrimination, see [20].
Condition (C3′) holds for general M-estimators of (µ,σ ) including (Med, MAD)
and a wide range of F ; see [35] for detailed accounts. For example, when (µ,σ ) =
(Mean, SD) and E‖X‖4 exists, then f1(X,u) = u′(X − EX) and f2(X,u) =
u′((X − EX)(X − EX)′ − cov(X))u/(2

√
u′cov(X)u ) and (C3′) holds.

THEOREM 5. Let U(x) be a singleton for x ∈ ∂PDα(F ). Under (C1′)–(C3′),

Rα(u,Fn) − Rα(u,F ) = 1

n

n∑
i=1

k
(
Xi,R

α(u,F )u
) + op(n−1/2) a.s.

uniformly in u ∈ Sd−1, where k(x, y) = (β(α)f2(x, v(y)) + f1(x, v(y)))/

(y′
0v(y)), for any y0 = y/‖y‖ with y �= 0. Hence

{√
n
(
Rα(u,Fn) − Rα(u,F )

)
:u ∈ Sd−1} d−→ {Zα(u) :u ∈ Sd−1},

with Zα(u) being a zero-mean Gaussian process on the unit sphere with co-
variance structure E[k(X,Rα(u1,F )u1)k(X,Rα(u2,F )u2)] for unit vectors u1
and u2.

By virtue of the lower and upper bounds for Rα(u,Fn) − Rα(u,F ) estab-
lished in the proof of Theorem 4 and thanks to empirical process theory (see [32]
or [20]), the asymptotic representation for Rα(u,Fn) is obtained after we show
that vn(R

α(u,Fn)u) converges to v(Rα(u,F )u) uniformly in u ∈ Sd−1. The di-
rectional radius Rα(u,Fn) thus is asymptotically normal for fixed u ∈ Sd−1 and
also converges as a process to a Gaussian process indexed by u ∈ Sd−1. Conditions
in the theorem are met by typical M-estimators of location and scale and a wide
range of distribution functions F . For specific (µ,σ ), we have specific k(x, y).
For example, let (µ,σ ) = (Med, MAD) and F = F0,	 ; then the following holds.

COROLLARY 3. Let (µ,σ ) = (Med, MAD), F = F0,	 with the density hz

of Z continuous and > 0 in small neighborhoods of 0 and m0. Then Theorem 5
holds with

f1(x, u) =
√

u′	u

hz(0)

(
1

2
− I (u′x ≤ 0)

)
,

f2(x, u) =
√

u′	u

2hz(m0)

(
1

2
− I

(|u′x| ≤ √
u′	um0

))
,

and v(y) = (	−1y)/‖	−1y‖ for any y �= 0.
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The proof of this result is skipped. For related discussion, see Lemma 5.1 of
[33] and Lemma 3.2 of [35]. Equipped with the results on Rα(u,Fn), we now are
in position to discuss the asymptotics of the depth trimmed means.

4.2. Strong consistency and asymptotic representation of depth trimmed means.
Strong consistency holds for PTMα(Fn) under very mild conditions for α < α∗.

THEOREM 6. Let µ(Fu) and σ(Fu) be continuous in u and σ(Fu) > 0 for
u ∈ Sd−1 and let w(1)(·) be continuous. Then under (C2′), PTM(Fn)−PTM(F ) =
o(1), a.s.

Again the theorem focuses on strong consistency. Other types of consistency
can be established accordingly under appropriate versions of (C2′). Note that the
weight function in the theorem can be a nonzero constant.

With a standard means, the proof of the theorem seems challenging. The dif-
ficulty lies in handling the integral region PDα(Fn) [or integrand containing
I (x ∈ PDα(Fn))] in (5). The problem becomes less difficult with the help of em-
pirical process theory. The main tool employed in our proof is the generalized
Glivenko–Cantelli theorem for a class of measurable functions whose graphs form
a class with polynomial discrimination (see II.5 of [20]), or a Glivenko–Cantelli
class of measurable functions (see [32]).

We now establish the limiting distribution of PTMα(Fn) via an asymptotic rep-
resentation. Assume that F (1) = f and w(1) exist. Replace IF(x,Rα(u,F ),F ),
IF(v(y)′x,µ,Fv(y)) and IF(v(y)′x,σ,Fv(y)) with k(x,Rα(u,F )u), f1(x, v(y))

and f2(x, v(y)), respectively, in li(x) and h(x, y) and call the resulting functions
l̃i (x), i = 1,2,3, and h̃(x, y), respectively. We have:

THEOREM 7. Assume that f is continuous in a small neighborhood of
∂PDα(F ), PF (∂PDα(F )) = 0 and w(1) is continuous. Then under (C1′)–(C3′)
and (C4)

PTMα(Fn) − PTMα(F ) = 1

n

n∑
i=1

(
l̃1(Xi) + l̃2(Xi) + l̃3(Xi)

) + op

(
1/

√
n

)
.

Thus
√

n(PTMα(Fn)−PTMα(F ))
d−→ Nd(0,V ), where V = cov(l̃1(X)+ l̃2(X)+

l̃3(X)).

With standard tools, it seems extremely challenging to establish the asymptotic
representation and the normality of PTM(Fn). Thanks to empirical process the-
ory for a Donsker class of functions, especially the asymptotic tightness of the
sequence of empirical processes and the asymptotic equicontinuity result and the
central limit theorem for the empirical process indexed by a class of functions
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(see [20] or [32]), we are able to tackle the problem. One key step in our proof is
to characterize the complicated integral region PDα(G) via the directional radius
function Rα(u,G) for G = F and Fn.

With a nonzero constant w, PTMα(Fn) becomes a depth trimmed mean with
equal weight assigned to each sample point within PDα(Fn). The representation is
simplified since l2(x) vanishes and l1(x) and l3(x) also become less complicated.

Conditions in the theorem are met by typical M-estimators of location and scale
and a wide range of distributions F . For example, when (µ,σ ) = (Med, MAD)
and F is elliptically symmetric about the origin (assume 	 = I , w.l.o.g.), we have:

COROLLARY 4. Let (µ,σ ) = (Med, MAD) and F = F0,I with F ′ = f being
continuous in a small neighborhood of ‖y‖ = β(α)m0 = c(α) and the density hz

of Z being continuous and positive in small neighborhoods of 0 and m0. Let w(1)

be continuous. Then conditions in Theorem 7 hold and l̃1(x) + l̃2(x) + l̃3(x) is
(∫

Sd−1
c(α)w(α)f (c(α)u)

∣∣J (
u, c(α)

)∣∣k(
x; c(α)u

)
udu

+ c1x

‖x‖ + xw

(
1

1 + ‖x‖/m0

))/
c0,

where c0 and c1 are defined in Corollary 2 and k(x; c(α)u) = β(α)(1
2 − I (|u′x| ≤

m0))/(2hz(m0)) + (1
2 − I (u′x ≤ 0))/hz(0).

The asymptotic normality in Theorem 7 and Corollary 4 is illustrated in Fig-
ure 5. Here 2000 PTMα(Fn)’s are obtained based on N2(0, I ) with n = 300 and
α = 0.36. The two-dimensional histogram indicates a (roughly) normal shape,
and so do the one-dimensional histograms of the x- and y-coordinates of the
PTMα(Fn)’s.

5. Efficiency. Besides robustness, efficiency is another fundamental issue in
statistics. It is also a key performance criterion for any statistical procedure. Sec-
tion 3 reveals that PTMα is robust locally and globally for suitable choices of µ

and σ . A natural question is: Is PTMα also highly efficient at normal and other
models? This section answers the question at both large and finite samples.

5.1. Large sample relative efficiency. Consider for simplicity the case that
(µ,σ ) = (Med, MAD) and w = c > 0. Following the convention in the location
setting, assume that F = Fθ,	 . By affine equivariance, assume, w.l.o.g., that θ = 0
and 	 = I . Furthermore, assume that F ′ = f and the density hz of Z is continuous
and positive at 0 and m0. By Theorems 7 and 5 and Corollaries 4 and 3, we have
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FIG. 5. Upper: left—plot of 2000 PTMα
n ’s, right—histogram of PTMα

n ’s. Lower: coordinate-wise
histograms of PTMα

n ’s [α = 0.36, n = 300, w = c > 0 and F = N2(0, I )].

COROLLARY 5. Let (µ,σ ) = (Med,MAD) and F = F0,I meet the conditions
in Corollary 4. Let w = c �= 0. Then results in Theorem 4 hold with l̃2(x) = 0 and

l̃1(x) + l̃3(x)

=
∫
Sd−1 c(α)f (c(α)u)|J (u, c(α)|k(x, c(α)u)udu + xI (‖x‖ ≤ c(α))

P (‖X‖ ≤ c(α))
,

where k(x, c(α)u) = β(α) sign(|u′x| − m0)/(4hz(m0)) + sign(u′x)/(2hz(0)) and√
n(PTMα(Fn) − PTMα(F ))

d−→ Nd(0,V ), where for X = (X1, . . . ,Xd)′

V = E(X1I (‖X‖ ≤ c(α)) + ∫
Sd−1 c(α)f (c(α)u)|J (u, c(α)|k(X, c(α)u)u1 du))2

P 2(‖X‖ ≤ c(α))

× Id×d .

The key ingredient of the proof of the corollary is repeatedly taking advantage
of the symmetry of F in a nontrivial (and clever) manner. The proof, albeit not
very challenging technically, is quite involved and hence is skipped.

The explicit form of V greatly facilitates the calculation of the asymptotic rela-
tive efficiency of PTMα(Fn). Note that EX1I (‖X‖ ≤ c(α)) sign(|u′X|−m0) = 0,
which further simplifies the calculation. Call the denominator of V a and the
numerator b; then V = b/aId×d . Hence the asymptotic efficiency of PTMα(Fn)



2230 Y. ZUO

TABLE 1
ARE of depth trimmed means and medians relative to the mean

PTM0.05 PTM0.10 PTM0.15 PTM0.20 SD PM HM Mean

0.9990 0.9981 0.9927 0.8856 0.935 0.77 0.76 1.00

relative to the sample mean is (aσ 2
z )/b with σ 2

z = var(Z). For X ∼ Nd(0, I ),
we have σ 2

z = 1, a = (P (T ≤ c2(α)))2 with T ∼ χ2(d), f (c(α)u) = g(c(α)) =
e−c2(α)/2/(2π)d/2 and m0 = 
−1(3/4). When d = 2, u = (cos(θ), sin(θ)), a =
(1 − e−c2(α)/2)2 and

b = E

(
X1I

(‖X‖ ≤ c(α)
) +

∫ 2π

0
c2(α)g(c(α))k

(
X,c(α)u

)
cos(θ) dθ

)2

.

In Table 1 we list the asymptotic relative efficiency (ARE) results of PTMα

for different α’s of the Stahel–Donoho estimator (see [35]) and of the halfspace
median (HM) and the projection median (PM) (see [33]) at N2(0, I ).

It is seen that PTMα is highly efficient for small α’s and is much more efficient
than some leading competitors. Replacing Med in PTMα (and PM) with a more
efficient one at normal (and other) models, one can improve the efficiencies of
PTMα (and PM); see [33] for discussion related to PM. Our calculations indicate
that when the “tail” of F get heavier, PTMα can gets more efficient than the mean.
Furthermore, when d increases, the ARE of PTMα , as expected, increases.

5.2. Finite sample relative efficiency. The comparisons of the relative effi-
ciency results in the last subsection have all been asymptotic, and this raises the
question as to whether they are relevant at finite sample practice. Asymptotic re-
sults indeed are quite vulnerable to criticism about their practical merits. We now
address this issue in this subsection through finite sample Monte Carlo studies.

To see how PTMα performs in a neighborhood of a normal model, we gener-
ate m = 1000 samples for different sizes n from the model (1 − ε)N2((0,0)′, I) +
εN2((µ,µ)′, σ 2I) with µ = 10 and σ = 5 and ε = 0.0, 0.1 and 0.2. For simplic-
ity, we just consider the case α = 0.1. Included in our study are Stahel–Donoho
(SD) [35], PM [33] and HM estimators. We assume that all the estimators aim at
estimating the known location parameter θ = (0,0)′ ∈ R

2.
For an estimator T we calculate its “empirical mean squared error” (EMSE)∑m
i=1 ‖Ti − θ‖2/m, where Ti is the estimate based on the ith sample. The relative

efficiency (RE) of T w.r.t. the mean is obtained by dividing the EMSE of the
mean by that of T . Here (µ,σ ) = (Med, MAD), w = c �= 0. Tables 2–4 list some
efficiency results relative to the mean. The entries in parentheses are EMSE×103.

Table 2 reveals that for a perfect N2(0, I ) model PTM0.1 is extremely (and the
most) efficient. The consistency of RE’s with the ARE’s confirms the validity of
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TABLE 2
Finite sample efficiency of PTMα relative to the sample mean

N2((0,0)′, I )

n PTM0.1 SD PM HM Mean

20 0.9843 0.9381 0.7999 0.8053 1.0000
(104.24) (109.38) (128.27) (127.42) (102.61)

40 0.9985 0.9298 0.7822 0.7732 1.0000
(50.560) (54.299) (64.546) (65.296) (50.485)

60 0.9984 0.9347 0.7675 0.7671 1.0000
(32.941) (35.187) (42.850) (42.873) (32.889)

80 1.0000 0.9387 0.7782 0.7762 1.0000
(25.146) (26.787) (32.314) (32.398) (25.146)

100 0.9995 0.9338 0.7762 0.7645 1.0000
(20.014) (21.421) (25.770) (26.061) (20.003)

the results in Table 1. The SD estimator is the second most (about 93%) efficient
and the PM and HM with roughly the same efficiency are the least efficient ones.

In practice, data more often than not follow a model that is not perfectly normal.
Typical examples include contaminated normal (or mixture normal) models. This
raises the question of the practical relevance (or robustness) of the results in Ta-
ble 2. Tables 3 and 4 indicate that PTM0.1 has very (most) robust EMSE’s. Indeed
under ε = 0.1 and 0.2, the EMSE’s of PTM0.1 are still very close to those with
ε = 0.0. This robustness increasingly degenerates for SD, PM and HM. The mean
has the least robust EMSE’s. Indeed, the EMSE’s of the mean change drastically
(enlarged 100 times or more) under the contaminations. With slight departures
from normality, all the depth estimators become overwhelmingly more efficient

TABLE 3
Finite sample efficiency of PTMα relative to the sample mean

0.90N2((0,0)′, I ) + 0.10N2((10,10)′,25I)

n PTM0.1 SD PM HM Mean

20 19.688 17.746 14.392 13.851 1.0000
(121.34) (134.61) (165.99) (172.47) (2388.9)

40 37.455 29.716 21.775 21.958 1.0000
(58.615) (73.878) (100.82) (99.980) (2195.4)

60 54.039 39.880 27.763 27.848 1.0000
(39.687) (53.778) (77.249) (77.014) (2144.7)

80 71.694 49.216 32.799 32.500 1.0000
(29.620) (43.149) (64.746) (65.342) (2123.6)

100 83.543 53.948 35.536 35.198 1.0000
(24.760) (38.343) (58.210) (58.770) (2068.6)
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TABLE 4
Finite sample efficiency of PTMα relative to the sample mean

0.80N2((0,0)′, I ) + 0.20N2((10,10)′,25I)

n PTM0.1 SD PM HM Mean

20 51.779 37.573 28.653 27.416 1.0000
(167.26) (230.50) (302.25) (315.89) (8660.5)

40 89.745 52.678 35.790 34.733 1.0000
(93.209) (158.80) (233.73) (240.84) (8356.0)

60 121.86 62.637 40.018 39.876 1.0000
(68.058) (132.41) (207.24) (207.98) (8293.4)

80 155.80 68.658 43.001 42.364 1.0000
(52.973) (120.21) (191.93) (194.82) (8253.1)

100 176.39 71.282 43.807 43.385 1.0000
(46.144) (114.18) (185.80) (187.60) (8139.3)

than the mean while PTM0.1 performs substantially better than its competitors. The
results here for SD, PM and HM are very consistent with those in [35] and [33].

Our simulation studies indicate that the above findings also hold true for other
nonnormal (such as t , double-exponential and logistic) models. Furthermore, the
relative efficiency of PTMα increases as the dimension d increases.

6. Concluding remarks. We now account for the motivation of selecting
projection depth for multivariate trimming, review some related trimmed means
and studies in the literature, address the computing issues, discuss some practical
choices of α values and summarize the major results obtained in this paper.

6.1. Why projection depth trimmed means? There are a number of depth no-
tions in the literature; see [16], for example. For any given notion, one can define
and study the corresponding depth trimmed means. Among the existing notions,
the projection depth represents a very favorable one; see [33, 34, 37]. Tukey half-
space depth, also built based on projection pursuit methodology, is its major com-
petitor. The projection depth, as a center-outward strictly monotone function, con-
veys more information about data points than the halfspace depth, a center-outward
step function, does. As a matter of fact, the projection depth and its induced esti-
mators can outperform the halfspace depth and its induced estimators with respect
to two central performance criteria: robustness and efficiency. For example, the
halfspace depth itself is much less robust than the projection depth (with appropri-
ate choices of µ and σ ). Indeed, the former has the lowest breakdown point (≈ 0)
whereas the latter can have the highest breakdown point (≈ 1/2); see [34]. The
estimators induced from the halfspace depth are also less robust than those from
the projection depth. For example, the breakdown point of the halfspace median is
≤ 1/3 [6] whereas that of the projection median can be about 1/2 [33], the highest
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among all affine equivariant location estimators in high dimensions. The break-
down point of the αth trimmed mean based on the halfspace depth is (�αn�+1)/n

whereas that of the one based on the projection depth is �(n− d + 1)/2�/n (Theo-
rem 3). On the other hand, the efficiency of the bivariate halfspace median relative
to the mean is about 77% whereas that of the projection median can be as high
as 95%; see [33]. The projection depth trimmed means can also be more efficient
than those based on the halfspace depth. This is especially true when the under-
lying model slightly deviates from the assumed symmetric one (such as in the
contaminated normal model cases). The robustness and efficiency advantages mo-
tivate us to focus on projection depth trimming. Note that with general choices
of (µ,σ ) we deal with a class of depth trimmed means instead of a single one
as in the halfspace depth case. This is yet another motivation for projection depth
trimming. The approaches and techniques in this paper, however, are applicable to
other depth trimmed means and covariance matrices as well.

6.2. Related estimators and studies in the literature. First we note that by
combining the integral regions with the integrands, (5) can be trivially written as

PTMα(F ) =
∫

w∗(
PD(x,F )

)
x dF(x)

/∫
w∗(

PD(x,F )
)
dF(x),(12)

with w∗(s) = w(s)I (s ≥ α). Indeed we use this form repeatedly in the proofs. We
adopt (5) [not (12)] since it is consistent with the regular univariate trimmed mean
definition and manifests the depth trimming idea more clearly. Depth trimmed
means with the form (12) have been discussed by Dümbgen [8] for simpli-
cial depth, by Massé [18] for halfspace depth and by Zuo, Cui and He [35]
for general depth. These discussions, however, are based on the assumption that
w∗(s) is continuously differentiable, which straightforwardly excludes (12) with
w∗(s) = w(s)I (s ≥ α). The difference here between continuous differentiability
on a closed interval and discontinuity, seemingly very minor since it is understood
that one can approximate the discontinuous function by a sequence of continu-
ous differentiable ones, turns out to be crucial. The immediate problem with the
sequence approach is the unbounded derivatives of the approximating functions.
Boundedness is essential in the treatments of Dümbgen [8], Massé [18] and Zuo,
Cui and He [35]. To deal with (alleviate) the unboundedness effect one is (essen-
tially) forced to construct a random sequence depending on the convergence rate
of the process

√
n(PD(x,Fn)−PD(x,F )). This, however, seems infeasible, or the

halfspace depth median would have been asymptotically normal, which is not true,
as shown in [1].

Note that with a nonzero constant w, (5) admits a 0–1 trimming scheme, which
is the one used in the regular (univariate) trimming. This, however, is not the case
with Dümbgen [8], Massé [18] and Zuo, Cui and He [35], where a continuous
differentiable w∗ is assumed. This is yet another difference between this and the
other papers.
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Now in one dimension with the same 0–1 trimming scheme, this paper (5),
introduces a new type of trimmed mean that is different from the regular univariate
trimmed mean (which corresponds to halfspace depth trimming) as well as the
metrically trimmed mean (see [2, 13]). Indeed, the trimming in this paper is based
on the “generalized standardized deviation” (the outlyingness), whereas the regular
trimming is based on the ranks of sample points. The metrically trimmed mean
uses deviations to trim. But as in the regular trimming case, it always trims a fixed
fraction of sample points. The projection depth trimming in this paper trims sample
points only when they are “bad.” The advantages of this trimming scheme include
the gain in robustness (see comments after Theorem 3) and in efficiency for models
which slightly deviate from the assumed symmetric ones.

Based on halfspace depth, Donoho and Gasko [5] introduced a trimmed mean
[corresponding to (5) with a nonzero constant w and dF(x) replaced by dx] and
studied its breakdown point; Nolan [19] and van der Vaart and Wellner [32] studied
the asymptotic normality and the Hadamard-differentiability, respectively, of the
same estimator. When introducing the notion of simplicial depth, Liu [14] also
defined a depth trimmed mean, which is not based on depth regions, though.

6.3. Computing projection depth trimmed means. Like all other affine
equivariant high-breakdown procedures, the projection depth trimmed means are
computationally intensive. Exact computing in high dimensions, though possible
(and an algorithm for two-dimensional data exists), is infeasible. Approximate
computing is much faster and quite reliable and is sufficient in most applications.
Basic approaches include randomly selecting projection directions or selecting
among those perpendicular to the hyperplanes containing d data points. Feasible
approximate algorithms for high-dimensional data exist and are utilized in this
paper.

6.4. Choice of α values. A very legitimate practical concern for PTMα is the
choice of the α value. Empirical evidence indicates that an α value around 0.05 to
0.1 can lead to a very efficient PTMα at both light- and heavy-tailed distributions.
One, of course, might also adopt an adaptive data-driven approach to determine
an appropriate α value. For a given data set, an α value is determined based on
the behavior of the tail of the data set. Generally speaking, a small value of α

(e.g., 0.05) is selected for light-tailed data while a larger value is selected for a
heavy-tailed one.

6.5. Main results obtained in the paper. This paper introduces projection
depth trimmed means, examines their performance with respect to two principal
criteria, robustness and efficiency, and establishes their limiting distribution via as-
ymptotic representations. It turns out that the depth trimmed means can be highly
robust locally (with bounded influence functions) as well as globally (with the best
breakdown point among affine equivariant competitors). Robustness and efficiency
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do not work in tandem in general. Results obtained in the paper indicate, however,
that the depth trimmed means, unlike the mean and the (halfspace) depth median,
can keep a very good balance between the two. At normal and other light-tailed
symmetric models, they (with high relative efficiency for suitable α’s) are better
choices than the depth medians and strong competitors to the sample mean, which
is the best (in terms of efficiency) at the normal model. At contaminated (normal
or symmetric) models (the more realistic ones in practice) and heavy-tailed mod-
els, they, with very robust and overwhelmingly high efficiency, are much better
choices than the sample mean and other depth competitors. As a by-product, this
paper introduces a new type of trimmed mean in one dimension which can have
advantages over the regular and metrically trimmed means with respect to the two
central performance criteria, robustness and efficiency.

APPENDIX: SELECTED PROOFS AND AUXILIARY LEMMAS

PROOF OF THEOREM 1. To prove the theorem, we need the following lem-
mas.

LEMMA A.1. Under (C0) and (C2) and for fixed x ∈ R
d and very small

ε > 0:

(a) PD(y,F ) and PD(y,F (ε, δx)) are Lipschitz continuous in y ∈ R
d ;

(b) supy∈Rd (1 + ‖y‖)|PD(y,F (ε, δx)) − PD(y,F )| = ox(1);

(c) ∂PDα(G) = {y : PD(y,G) = α} for 0 < α < α∗ and G = F or F(ε, δx);

(d) PDα+η(F ) ⊆ PDα+η/2(F (ε, δx)) ⊆ PDα(F ) for any 0 < η ≤ α∗ − α.

PROOF. Conditions (C0) and (C2) imply that sup‖u‖=1 |µ(Fεu)| and
sup‖u‖=1 σ(Fεu) are finite for sufficiently small ε > 0. It is readily seen that
| inf‖u‖=1 σ(Fεu) − inf‖u‖=1 σ(Fu)| ≤ sup‖u‖=1 |σ(Fεu) − σ(Fu)| = ox(1). This,
together with (C0), implies that inf‖u‖ σ(Fεu) is bounded below from 0 for fixed x

and sufficiently small ε. Hence for sufficiently small ε > 0,

(C0′) sup‖u‖=1 µ(Fεu) < ∞, 0 < inf‖u‖ σ(Fεu) ≤ sup‖u‖=1 σ(Fεu) < ∞.

The Lipschitz continuity of PD(·,F ) can be established by following the proof of
Theorem 2.2 of [33]. For that of PD(·,Fε), we observe that for small ε > 0

|PD(y1,Fε) − PD(y2,Fε)| ≤ |O(y1,Fε) − O(y2,Fε)|
≤ ‖y1 − y2‖/ inf‖u‖=1

σ(Fεu).

This and (C0′) lead to the Lipschitz continuity of PD(·,Fε). Part (a) follows.
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To show part (b), first we observe that

(1 + ‖y‖)|PD(y,Fε) − PD(y,F )|
<

1 + ‖y‖
1 + O(y,Fε)

×O(y,F ) sup‖u‖=1 |σ(Fεu) − σ(Fu)| + sup‖u‖=1 |µ(Fεu) − µ(Fu)|
inf‖u‖=1 σ(Fεu)(1 + O(y,F ))

≤ 1 + ‖y‖
1 + |‖y‖ − µ(Fεy0

)|/(sup‖u‖ σ(Fεu))

×sup‖u‖=1 |σ(Fεu) − σ(Fu)| + sup‖u‖=1 |µ(Fεu) − µ(Fu)|
inf‖u‖=1 σ(Fεu)

,

where y0 = y/‖y‖. Part (b) now follows immediately from (C0′) and (C2).
Part (c) with G = F is covered by Theorem 2.3 of [33]. To show the case

G = Fε , first we note that PDα(Fε) is nonempty for sufficiently small ε > 0 since
by (b) for any θ ∈ R

d with PD(θ,F ) = α∗, PD(θ,Fε) > α for small ε > 0.
We now show that {y : PD(y,Fε) = α} ⊆ ∂PDα(Fε), the boundary of PDα(Fε).

Let PD(y,Fε) = α. Such y exists since (i) by (C0′) we can show that PD(z,Fε) →
0 as ‖z‖ → ∞ (see Theorem 2.1 of [33]) and (ii) PD(·,Fε) is Lipschitz continuous
by (a) and PD(θ,Fε) > α for sufficiently small ε > 0. Assume that y /∈ ∂PDα(Fε);
that is, y is an interior point of PDα(Fε). Then there is a small ball centered at y

with radius r and contained in the interior of PDα(Fε). By the scale equivariance
of µ we see immediately that there is a direction u0 such that

(
u′

0y − µ
(
Fεu0

))
/σ

(
Fεu0

)
> O(y,Fε) − r/ sup

‖u‖=1
σ(Fεu)

for sufficiently small ε such that sup‖u‖=1 σ(Fεu) < ∞. On the other hand, we see
that y′ = y + u0r ∈ PDα(Fε) and

O(y′,Fε) ≥ u′
0y

′ − µ(Fεu0)

σ (Fεu0)
= u′

0y − µ(Fεu0)

σ (Fεu0)
+ r

σ (Fεu0)
> O(y,Fε).

But this implies that PD(y′,Fε) < PD(y,Fε) = α, which is a contradiction.
We now show that ∂PDα(Fε) ⊆ {y : PD(y,Fε) = α}. Let y ∈ ∂PDα(Fε). Then

by the continuity of PD(·,Fε) for sufficiently small ε > 0, we conclude that
PD(y,Fε) ≥ α. If PD(y,Fε) > α, then by the continuity of PD(·,Fε) there is a
small ball B(y) centered at y with PD(z,Fε) > α for all z ∈ B(y) for sufficiently
small ε > 0. But this contradicts the assumption that y ∈ ∂PDα(Fε). Part (c) fol-
lows.

By part (a), for the given 0 < η ≤ α∗ − α and any y ∈ PDα+η/2(Fε)

PD(y,F ) ≥ PD(y,Fε) − η/2 ≥ α + η/2 − η/2 = α
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for sufficiently small ε > 0. Likewise, for any y ∈ PDα+η(F ), by part (a)

PD(y,Fε) ≥ PD(y,F ) − η/2 ≥ α + η − η/2 = α + η/2

for sufficiently small ε > 0. Part (d) follows immediately. �

LEMMA A.2. Under (C1)–(C2), sup‖u‖=1 |Rα(u,F (ε, δx)) − Rα(u,F )| =
ox(1).

PROOF. By (C1), for any x ∈ R
d there is a unit vector v(x) such that

g(x, v(x),F ) = O(x,F ), where g(x, ·,F ) is defined before (2). Let v(u) :=
v(R(u)u)). By (C1) [hence (C0)] and Lemma A.1, O(R(u)u,F ) = β(α). Thus

R(u)u′v(u) = β(α)σ
(
Fv(u)

) + µ
(
Fv(u)

)
, R(u)u′v ≤ β(α)σ (Fv) + µ(Fv)

for any v ∈ Sd−1. Likewise, for vε(u) := v(Rα(u,F (ε, δx))u) and small ε > 0

g
(
Rα(

u,F (ε, δx)
)
u, vε(u),F (ε, δx)

) = O
(
Rα(

u,F (ε, δx)
)
u,F (ε, δx)

) = β(α).

Again for convenience, write Rε(u) or Rα
ε (u) for Rα(u,F (ε, δx)). Hence we have

Rε(u)u′vε(u) = β(α)σ
(
Fεvε(u)

) + µ
(
Fεvε(u)

)
,

Rε(u)u′v ≤ β(α)σ (Fεv) + µ(Fεv)

for any unit vector v ∈ Sd−1. These and the counterparts above yield
(
β(α)

[
σ

(
Fεvε(u)

) − σ
(
Fvε(u)

)] + (
µ

(
Fεvε(u)

) − µ
(
Fvε(u)

)))
/u′vε(u)

≤ Rε(u) − R(u)

≤ (
β(α)

[
σ

(
Fεv(u)

) − σ
(
Fv(u)

)] + (
µ

(
Fεv(u)

) − µ
(
Fv(u)

)))
/u′v(u).

If we can show that both inf‖u‖ |u′v(u)| and inf‖u‖=1 |u′vε(u)| are bounded away
from 0, the desired result follows immediately from (C2).

Since PDα(F ) is assumed to contain the origin, the deepest point, thus
O(0,F ) = β(α∗) < β(α) = O(R(u)u,F ) for any ‖u‖ = 1 (Theorem 2.3 of [33]).
Hence

β(α) = u′v(u)R(u) − µ(Fv(u))

σ (Fv(u))
> O(0,F ) + γ (α,α∗)

= sup
‖u‖=1

µ(Fu)

σ (Fu)
+ γ (α,α∗)

for γ (α,α∗) := (β(α) − β(α∗))/2 and any u ∈ Sd−1, which, in turn, implies that

u′v(u)R(u)

σ (Fv(u))
> sup

‖u‖=1

µ(Fu)

σ (Fu)
+ µ(Fv(u))

σ (Fv(u))
+ γ (α,α∗) ≥ γ (α,α∗).
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Note that PDα(F ) is bounded with a nonempty interior (see Theorem 2.3 of [33]).
Hence 0 < R(u) < ∞ uniformly in u. Now we have

inf‖u‖=1
|u′v(u)| ≥

{
inf‖u‖σ(Fu)

(
γ (α,α∗)

)}/
sup

‖u‖=1
R(u) > 0.

The argument for showing inf‖u‖=1 |u′vε(u)| > 0 is the same. First we have

0 ∈ PD(α+δ)(F ) ⊆ PD(α+δ/2)(Fε) ⊆ PDα(Fε),

by Lemma A.1 for some 0 < δ < α∗ − α and sufficiently small ε, which gives

O(0,Fε) < O
(
R(α+δ/2)(u,Fε)u,Fε

)
< O

(
Rα(u,Fε)u,Fε

) = β(α),

uniformly in the unit vector u for sufficiently small ε > 0 by (c) of Lemma A.1.
Now treating O(0,Fε) as the β(α∗) above, we have the desired result by virtue of
(C1)–(C2), (C0′), Lemma A.1 and Theorem 2.3 of [33]. �

LEMMA A.3. (a) Rα(u,F ) is continuous in u if (C0) holds. (b) Rα(u,Fε)

is continuous in u for sufficiently small ε > 0 if (C0) and (C2) hold.

PROOF. (a) Suppose that Rα(u,F ) is not continuous in u. Then there is
a sequence um → u0 such that lim supm→∞ Rα(um,F ) �= Rα(u0,F ). By the
boundedness of PDα(F ), there is a subsequence umk

of um such that umk
→ u0

and limk→∞ Rα(umk
,F ) = Rα

0 �= Rα(u0,F ). Note that Rα
0 must be less than

Rα(u0,F ) since otherwise we have by the uniform continuity of PD(x,F ) in x

that

lim
k→∞ PD

(
Rα(

umk
,F

)
umk

,F
) = PD(Rα

0 u0,F ) = α = PD
(
Rα(u0,F )u0,F

)
,

which contradicts the definition of Rα(u0,F ). Thus Rα
0 < Rα(u0,F ). The quasi-

concavity of PD(·,F ) (Theorem 2.1 of [33]) implies PD(x,F ) = α for any point
x ∈ [Rα

0 u0,R
α(u0,F )u0], and further all such points x are boundary points of

PDα(F ) in light of Lemma A.1.
Let N0(ε0) be a small ball centered at the deepest point, the origin, and con-

tained in PDα(F ). Let Nx0(ε1) be a small ball centered at x0 ∈ [Rα
0 u0,R

α(u0,

F )u0] and ε1 small enough such that the ray stemming from Rα(u0,F )u0 and
passing through the ball Nx0(ε1) always passes through the ball N0(ε0). But then
there is a point y0 ∈ Nx0(ε1) and y0 /∈ PDα(F ) and a point y1 ∈ N0(ε0) such that

y0 = λy1 + (1 − λ)Rα(u0,F )u0, PD(y0,F ) < α,

for some 0 < λ < 1, which contradicts the quasi-concavity of PD(·,F ).
(b) From the proof of Lemma A.1 we see that (C0′) holds for sufficiently small

ε > 0 by virtue of (C0) and (C2). Then the quasi-concavity of PD(·,Fε) follows:

PD
(
λx + (1 − λ)y,Fε

) ≥ min{PD(x,Fε)PD(y,Fε)}
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for any 0 < λ < 1 and sufficiently small ε > 0. Now invoking Lemma A.1 and the
arguments utilized in (a) we can complete the proof. �

We now prove Theorem 1. Following the proof of Lemma A.2, we have(
β(α)

[
σ

(
Fεvε(u)

) − σ
(
Fvε(u)

)] + (
µ

(
Fεvε(u)

) − µ
(
Fvε(u)

)))
/u′vε(u)

≤ Rε(u) − R(u)

≤ (
β(α)

[
σ

(
Fεv(u)

) − σ
(
Fv(u)

)] + (
µ

(
Fεv(u)

) − µ
(
Fv(u)

)))
/u′v(u),

and inf‖u‖=1 |u′v(u)| and inf‖u‖=1 |u′vε(u)| are bounded below from 0 for suffi-
ciently small ε > 0. The desired result then follows from (C3) and the continuity
of IF(v(u)′x;σ,Fv(u)) and IF(v(u)′x;µ,Fv(u)) in v(u) for u ∈ A, provided that
we can show further that vε(u) → v(u) uniformly in u as ε → 0.

We first show that vε(u) → v(u) as ε → 0 for a fixed u. If it is not true, then
there are a sequence εn → 0 and a small η > 0 such that ‖vεn(u) − v(u)‖ ≥ η for
n ≥ 1. By the compactness of Sd−1, there is a subsequence of vεn(u), denoted still
by vεn(u) for simplicity, that converges to v0 ∈ Sd−1. Observe that

O
(
Rα(

u,Fεn

)
u,Fεn

) = (
u′vεn(u)Rα(

u,Fεn

) − µ
(
Fεnvεn (u)

))
/σ

(
Fεnvεn(u)

)
.(13)

Following the proof of Theorem 2.2 of [33] and by (C1) and (C2), we have (i) the
Lipschitz continuity of O(·,Fεn) for small ε > 0 and (ii) for large M > 0

sup
‖y‖<M

∣∣O(
y,Fεn

) − O(y,F )
∣∣ → 0 as n → ∞.(14)

These, together with (13), Lemmas A.1 and A.2 and (C1)–(C2), yield

u′v0R
α(u,F ) − µ(Fv0)

σ (Fv0)
= O

(
Rα(u,F )u,F

) = u′v(u)Rα(u,F ) − µ(Fv(u))

σ (Fv(u))
.

Uniqueness of v(u) = v(y) for y = Rα(u,F )u implies that v(u) = v0, which,
however, contradicts ‖v0 − v(u)‖ ≥ η. Hence vε(u) → v(u) for any fixed u ∈
Sd−1.

With the same argument, we can show that the convergence is uniform in the
unit vector u, since otherwise there are a sequence un ∈ Sd−1, a sequence εn

(εn ↓ 0 as n → ∞) and some small η > 0 such that |vεn(un) − v(un)| > η as
n → ∞. By the compactness of Sd−1, there is a subsequence unm of un such that
unm → u0 ∈ Sd−1, v(unm) → v0 ∈ Sd−1 and vεnm

(unm) → v1 ∈ Sd−1 as m → ∞.
We then can show that v0 = v1 = v(u0) (here we need Lemma A.3). But this con-
tradicts |vεn(unm) − v(unm)| > η as m → ∞. The desired result follows. �

PROOF OF COROLLARY 1. We first verify the conditions in Theorem 1. We
see that µ(Fu) (= 0) and σ(Fu) (= √

u′	um0 > 0) are continuous in u ∈ Sd−1

and

µ
(
Fu(ε, δx)

) = Med
{√

u′	uF−1
Z (aε), u

′x,
√

u′	uF−1
Z (bε)

}
,

σ
(
Fu(ε, δx)

) = Med
{√

u′	uF−1
Zε

(aε), |u′x − µ(Fεu)|,
√

u′	uF−1
Zε

(bε)
}
,
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where aε = (1−2ε)/(2(1−ε)), bε = 1/(2(1−ε)) and Zε = |Z−µ(Fεu)/
√

u′	u|.
It follows that both µ(Fu(ε, δx)) and σ(Fu(ε, δx)) are continuous in u ∈ Sd−1 for
sufficiently small ε > 0. Thus (C1) holds. The last two displays also lead to (C2):

sup
‖u‖=1

∣∣µ(
Fu(ε, δx)

) − µ(Fu)
∣∣ = ox(1), sup

‖u‖=1

∣∣σ (
Fu(ε, δx)

) − σ(Fu)
∣∣ = ox(1).

Note that for any y ∈ ∂PDα(F ) it can be seen that v(y) = 	−1y/‖	−1y‖,
O(y,F ) = ‖	−1/2y‖/m0 = β(α) and PD(y,F ) = (1 + O(y,F ))−1 = α. Hence
U(y) = {v(y) :g(y, v(y),F ) = O(y,F )} is a singleton for any y ∈ ∂PDα(F ).

It can be shown that for any u ∈ Sd−1

IF(u′x;µ,Fu) = √
u′	u sign(u′x)/(2hz(0)),(15)

IF(u′x;σ,Fu) = √
u′	u sign

(|u′x| − √
u′	um0

)
/(4hz(m0)).(16)

These and the expressions for µ(Fu(ε, δx)) and σ(Fu(ε, δx)) above lead to (C3).
Obviously, both IF(u′x;µ,Fu) and IF(u′x;σ,Fu) are continuous in u ∈ Sd−1

if x = 0. When x �= 0, IF(v(y)′x;µ,Fv(y)) is continuous in v(y) for any y ∈
A∗ ⊆ ∂PDα(F ) with ∂PDα(F ) − A∗ = {y :y′	−1x = 0, y ∈ ∂PDα(F )} and
P({y :y′	−1x = 0, y ∈ ∂PDα(F )}) = 0 for fixed x ∈ R

d . Likewise, when x �= 0
we see that IF(v(y)′x :σ,Fv(y)) is continuous in v(y) for any y ∈ A∗∗ ⊆ ∂PDα(F )

with ∂PDα(F ) − A∗∗ = {y :y′	−1x = ±β(α)m2
0, y ∈ ∂PDα(F )}. The latter set is

empty if ‖	−1/2x‖ < m0. Also P({y :y′	−1x = ±β(α)m2
0, y ∈ ∂PDα(F )}) = 0

for fixed x ∈ R
d . Thus there is a set A ⊆ Sd−1 with P {y :v(y) ∈ Sd−1 −

A,y ∈ ∂PDα(F )} = 0 such that IF(v(u)′x;µ,Fv(u)) and IF(v(u)′x;σ,Fv(u)) with
v(u) = v(Rα(u,F )u) are continuous in v(u) for all u ∈ A. Here A = Sd−1 if x = 0
and A = Sd−1 − {u :u′	−1x = 0} ∪ {u :u′	−1x = ±‖	−1/2u‖m0} if x �= 0.

Invoking Theorem 1 and (15) and (16), we have the desired result. �

PROOF OF THEOREM 2. To prove the theorem, we need the following lemma.

LEMMA A.4. Under (C1) and (C3)–(C5), we have
(
PD

(
y,F (ε, δx)

) − PD(y,F )
)
/ε = h(x, y) + ox(1) uniformly in y ∈ B.(17)

PROOF. By the conditions and the proof of Lemma 6.1 of [36], we have for
u(y, τ ) = {u :‖u‖ = 1,‖u − v(y)‖ ≤ τ }, τ > 0,

inf
u∈u(y,τ )

(−g(y,u,Fε) + g(y,u,F )
)

≤ −O(y,Fε) + O(y,F ) ≤ −g
(
y, v(y),Fε

) + g
(
y, v(y),F

)
,

for y ∈ B . The given conditions on µ and σ imply (C0). Hence PDα−η(F ) is
bounded (Theorem 2.3 of [33]). Conditions (C3) and (C5) imply that σ(Fεu) →
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σ(Fu) uniformly for u ∈ {v(y) :y ∈ B}. These and (C3) yield

−g(y,u,Fε) + g(y,u,F )

ε(1 + O(y,F ))

= g(y,u,F )IF(u′x;σ,Fu) + IF(u′x;µ,Fu)

σ (Fu)(1 + O(y,F ))
+ ox(1)

uniformly in y ∈ R
d and in u ∈ Sd−1. Hence we have

inf
u∈u(y,τ )

g(y,u,F )IF(u′x;σ,Fu) + IF(u′x;µ,Fu)

σ (Fu)(1 + O(y,F ))(1 + O(y,Fε))
+ ox(1)

≤ PD(y,Fε) − PD(y,F )

ε

≤ g(y, v(y),F )IF(v(y)′x;σ,Fv(y)) + IF(v(y)′x;µ,Fv(y))

σ (Fv(y))(1 + O(y,F ))(1 + O(y,Fε))
+ ox(1)

uniformly in y over B . Let τ = ε/2. By the given conditions, the result follows.
�

We now prove Theorem 2 based on the lemma. First we can write for fixed α,

PTM(Fε) − PTM(F ) =
∫

PDα(Fε)
(y − PTM(F ))w(PD(y,Fε)) dFε(y)∫
PDα(Fε)

w(PD(y,Fε)) dFε(y)
.(18)

The denominator can be written as

(1 − ε)

∫
I
(
y ∈ PDα(Fε)

)
w

(
PD(y,Fε)

)
dF(y)

+ εI
(
PD(x,Fε) ≥ α

)
w

(
PD(x,Fε)

)
,

which, with Lemma A.1 and Lebesgue’s dominated convergence theorem, yields∫
PDα(Fε)

w
(
PD(y,Fε)

)
dFε(y) =

∫
PDα(F )

w
(
PD(y,F )

)
dF(y) + ox(1).(19)

The numerator of (18) can be decomposed into three parts,

I1ε =
∫

PDα(Fε)
y∗w

(
PD(y,Fε)

)
dFε(y) −

∫
PDα(F )

y∗w
(
PD(y,Fε)

)
dFε(y),

I2ε =
∫

PDα(F )
y∗w

(
PD(y,Fε)

)
dFε(y) −

∫
PDα(F )

y∗w
(
PD(y,F )

)
dFε(y),

I3ε =
∫

PDα(F )
y∗w

(
PD(y,F )

)
dFε(y),

where y∗ = y − PTM(F ). It follows immediately that

I3ε/ε = I
(
PD(x,F ) ≥ α

)(
x − PTM(F )

)
w

(
PD(x,F )

)
.(20)
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(C1) implies (C0). This, the continuity of w(1)(·) and Lemma A.1 yield

w
(
PD(y,Fε)

) − w
(
PD(y,F )

) = (
w(1)(PD(y,F )

) + ox(1)
)
H(y,Fε),(21)

uniformly in y for the given x, where H(y,Fε) = PD(y,Fε) − PD(y,F ).
By Lemma A.4, (C5) and the boundedness of PDα(F ), it is seen that (1 +
‖y‖)IF(x;PD(y,F ),F ) is bounded uniformly in y for y ∈ B and the given
x ∈ R

d . This, together with (21), Lemma A.4 and the boundedness of PDα(F ),
immediately gives

I2ε/ε =
∫

PDα(F )

(
y − PTM(F )

)
w(1)(PD(y,F )

)
h(x, y) dF (y) + ox(1).(22)

Write �(y, ε,α) for I (PD(y,Fε) ≥ α))− I (PD(y,F ) ≥ α)). By virtue of (21),
Lemmas A.1 and A.4, the boundedness of PDα(F ) and PDα(Fε) for small ε > 0,
and the argument used in the denominator of (18), we have

1

ε
I1ε = 1

ε

∫
�(y, ε,α)y∗w

(
PD(y,F )

)
dF(y)

−
∫

�(y, ε,α)y∗w
(
PD(y,F )

)
dF(y)

+
∫

�(y, ε,α)y∗w(1)(PD(y,F )
)PD(y,Fε) − PD(y,F )

ε
dF (y) + ox(1).

Call the last three (integral) terms I1εi , i = 1,2,3, respectively. Then by
Lemma A.1, (C3), (C5), the boundedness of PDα(F ) and PDα(Fε) for small ε > 0,
the condition on w and Lebesgue’s dominated convergence theorem I1ε2 = ox(1)

and I1ε3 = ox(1). For I1ε1, by the mean value theorem and Theorem 1 we have

I1ε1 = 1

ε

∫
Sd−1

[∫ Rα(u,Fε)

Rα(u,F )

(
ru − PTM(F )

)
w

(
PD(ru,F )

)|J (u, r)|f (ru) dr

]
du

=
∫
Sd−1

((
θε(u)u − PTM(F )

)
w

(
PD

(
θε(u)u,F

))∣∣J (
u, θε(u)

)∣∣f (θε(u)u)

× (
IF

(
x;Rα(u,F ),F

) + ox(1)
))

du,

where θε(u) is a point between Rα(u,Fε) and Rα(u,F ) and ox(1) is in the uniform
sense with respect to u. By Lemmas A.1 and A.2, (C5), the conditions on f and w,
the structure of J (u, r), the boundedness of PDα(F ) and PDα(Fε) for small ε > 0
and Lebesgue’s dominated convergence theorem, we have for R∗(u) = R(u)u −
PTM,

1

ε
I1ε =

∫
Sd−1

R∗(u)w
(
PD

(
R(u)u,F

))∣∣J (
u,R(u)

)∣∣
× f (R(u)u)IF

(
x;R(u),F

)
du + ox(1).

The desired result now follows immediately from this, (19), (20) and (22). �



PROJECTION DEPTH TRIMMED MEANS 2243

PROOF OF THEOREM 3. Write u′Xn for Fnu and Xn for Fn and skip the d = 1
case.

Consider the case d > 1. We first show m = �(n − d + 1)/2� contaminating
points are enough to break down PTMα . Move m points of Xn to the same
site y. Denote the resulting data Xn

m = {Z1, . . . ,Zn}. Assume the first m points Zi

(1 ≤ i ≤ m) are at site y far away from the cloud Xn. For u ∈ Sd−1, the projected
data set (to direction u) is {u′Z1, . . . , u

′Zn}. Since m + �(n + d + 2)/2� > n,
thus |u′Zi − µ(u′Xn

m)|/σ(u′Xn
m) ≤ 2 for all 1 ≤ i ≤ m. This implies that

O(Zi,X
n
m) ≤ 2 for all 1 ≤ i ≤ m. Hence Zi ∈ PDα(Xn

m) for 1 ≤ i ≤ m by (11).
Since ‖∑m

i=1 Ziw(PD(Zi,X
n
m))‖ → ∞ as ‖y‖ → ∞, therefore PTMα(Xn

m)

breaks down.
Now we show that m = �(n − d + 1)/2� − 1 contaminating points are not

enough to break down PTMα . Again let Xn
m = {Z1, . . . ,Zn} be any contaminated

data set. Since m < �(n+1)/2� and m+�(n+d +2)/2� ≤ n, sup‖u‖=1 µ(u′Xn
m) <

∞ and sup‖u‖=1 σ(u′Xn
m) < ∞ uniformly for any contaminated data Xn

m with m

original points contaminated. Hence O(y,Xn
m) → ∞ as ‖y‖ → ∞. That is,

y /∈ PDα(Xn
m) when ‖y‖ becomes very large. So PTMα will not break down unless

PDα(Xn
m) ∩ Xn

m becomes empty. We now show that the latter cannot happen.
Denote µu = µ(u′Xn

m), σu = σ(u′Xn
m) and nσ = �(n + d + 2)/2�. Let |u′Zi1 −

µu| ≤ · · · ≤ |u′Zinσ − µu| ≤ · · · ≤ |u′Zin − µu| with the understanding that µu,
σu and Zij depend on Xn

m and u for all 1 ≤ j ≤ n. Since m + d + 1 ≤ nσ , hence
among Zi1, . . . ,Zinσ there are at least d + 1 original points from Xn. Therefore

σ(u′Xn
m) ≥ inf

i1,...,id+1
max

1≤k,l≤(d+1)

∣∣u′(Xik − Xil

)∣∣/2

for any Xn
m and u. Here i1, . . . , ir are r arbitrary distinct integers from {1, . . . , n}.

Clearly, there are at least m0 = �(n + 2)/2� + 1 original points, say (without
loss of generality) Xi , 1 ≤ i ≤ m0, uncontaminated. Then it is not difficult to see
that

|u′Xi − µ(u′Xn
m)| ≤ max

i1,...,i(m0−1)

max
1≤k,l≤(m0−1)

∣∣u′(Xik − Xil

)∣∣, 1 ≤ i ≤ m0,

for any Xn
m and u. This, in conjunction with the last display, immediately yields

O(Xi;Xn
m) ≤ sup

‖u‖=1

maxi1,...,i(m0−1)
max1≤k,l≤(m0−1) |u′(Xik − Xil )|

infi1,...,id+1 max1≤k,l≤(d+1) |u′(Xik − Xil )|/2
,

for 1 ≤ i ≤ m0. Hence Xi ∈ PDα(Xn
m) for all 1 ≤ i ≤ m0 for any 0 < α < αd . That

is, PDα(Xn
m) ∩ Xn

m is not empty. We complete the proof. �

PROOF OF THEOREM 4. The following lemma, an analogue of Lemma A.1,
is needed in the sequel. It can be proved in much the same way as Lemma A.1.

LEMMA A.5. Under (C0) and (C2′) for G = F and Fn and very large n:
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(a) supx∈Rd |PD(x,Fn) − PD(x,F )| = o(1), a.s.,
(b) PD(x,G) is Lipschitz continuous in x ∈ R

d , a.s.,
(c) ∂PDα(G) = {x : PD(x,G) = α}, a.s.,
(d) PD(α+η)(F ) ⊆ PD(α+η/2)(Fn) ⊆ PDα(F ) a.s. for any 0 < η < α∗ − α.

Now we prove the theorem. Condition (C1′) implies (C0). By Lemma A.5,
PDα(Fn) is nonempty and contains the origin a.s. for large n. Hence Rα(u,Fn)

is well defined a.s. Condition (C1′) also implies that there is a unit vector v(x)

such that g(x, v(x),F ) = O(x,F ) for any x ∈ R
d . Let v(u) := v(R(u)u)). Like-

wise, we have a unit vector vn(u) := v(Rn(u)u). By virtue of Lemma A.5,
O(R(u)u,F ) = O(Rn(u)u,Fn) = β(α) a.s. for sufficiently large n. Hence for any
v ∈ Sd−1

R(u)u′v(u) = β(α)σ
(
Fv(u)

) + µ
(
Fv(u)

)
, R(u)u′v ≤ β(α)σ (Fv) + µ(Fv).

Likewise, we can have the same displays for Rn(u), vn(u) and v. These give(
β(α)

[
σ

(
Fnvn(u)

) − σ
(
Fvn(u)

)] + (
µ

(
Fnvn(u)

) − µ
(
Fvn(u)

)))/
u′vn(u)

≤ Rn(u) − R(u)

≤ (
β(α)

[
σ

(
Fnv(u)

) − σ
(
Fv(u)

)] + (
µ

(
Fnv(u)

) − µ
(
Fv(u)

)))/
u′v(u).

If we can show that infu∈Sd−1 |u′v(u)| > 0 and infu∈Sd−1 |u′vn(u)| > 0 almost
surely for large n, then the theorem follows in a straightforward fashion from (C2′).

The proof for infu∈Sd−1 |u′v(u)| > 0 is given in the proof of Lemma A.2. The
argument for proving infu∈Sd−1 |u′vn(u)| > 0 a.s. for sufficiently large n is the
same. But we need the following two almost sure results for sufficiently large n:

(C0′′) sup‖u‖=1 µ(Fnu) < ∞, 0 < inf‖u‖=1 σ(Fnu) ≤ sup‖u‖=1 σ(Fnu) < ∞,

and O(0,Fn) < O(Rn(u)u,Fn) a.s. The first one (C0′′) follows from (C0)
and (C2′). The second one follows from Lemma A.5 since the origin is an inte-
rior point of PDα+δ(F ) ⊂ PDα(Fn) a.s. for some 0 < δ < α∗ − α and sufficiently
large n. �

PROOF OF THEOREM 5. The following lemma about the continuity of
Rα(u,F ) in u ∈ Sd−1 is needed in the proof of the theorem.

LEMMA A.6. Under (C0) and (C2′), Rα(u,Fn) is continuous in u for large n.

We now prove Theorem 5. Following the proof of Theorem 4, we have(
β(α)

[
σ

(
Fnvn(u)

) − σ
(
Fvn(u)

)] + (
µ

(
Fnvn(u)

) − µ
(
Fvn(u)

)))
/u′vn(u)

≤ Rn(u) − R(u)

≤ (
β(α)

[
σ

(
Fnv(u)

) − σ
(
Fv(u)

)] + (
µ

(
Fnv(u)

) − µ
(
Fv(u)

)))/
u′v(u),
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and infu∈Sd−1 u′v(u) > 0 and infu∈Sd−1 u′vn(u) > 0 almost surely for n large.
By the compactness of Sd−1, the continuity in (C1′) is uniform in u ∈ Sd−1.

This, in conjunction with the last display, (C3′) and standard results on empir-
ical processes (see, e.g., Problem II.18, Approximation Lemma II.25, Lemma
II.36, Equicontinuity Lemma VII.15, and (the central limit theorem for empiri-
cal processes) Theorem VII.21 of [20], or see [32]), gives the desired results if we
can show that vn(u) → v(u) uniformly in the unit vector u as n → ∞. The latter
can be done in much the same way as the uniform convergence of vε(u) → v(u)

as ε → 0 in the proof of Theorem 1. �

PROOF OF THEOREM 6. The desired result follows if we show that the nu-
merator and the denominator of PTM(Fn) converge a.s. to those of PTM(F ), re-
spectively. Clearly it suffices to treat just the numerator. The given conditions im-
ply (C0), which, combining with (C2′), Lemma A.5 and the continuity of w(1),
yields

w
(
PD(x,Fn)

) = w
(
PD(x,F )

) + o(1) a.s. and uniformly in x ∈ R
d .(23)

The boundedness of PDα′
(F ) for any α′ > 0 (see Theorem 2.3 of [33]) and

Lemma A.5 imply the almost sure boundedness of PDα(Fn) for sufficiently
large n. This, together with (23), implies that∫

PD(x,Fn)≥α
w

(
PD(x,Fn)

)
x dFn(x)

=
∫

PD(x,Fn)≥α
w

(
PD(x,F )

)
x dFn(x) + o(1) a.s.

The desired result follows if we can show that∫
PD(x,Fn)≥α

w
(
PD(x,F )

)
x dFn(x)

−
∫

PD(x,F )≥α
w

(
PD(x,F )

)
x dF(x) = o(1) a.s.

In light of the (a.s.) compactness of PDα(F ) and PDα(Fn), Lemma A.5 and
Lebesgue’s dominated convergence theorem, we see that∫ [

I
(
PD(x,Fn) ≥ α

) − I
(
PD(x,F ) ≥ α

)]
w

(
PD(x,F )

)
x dF(x) = o(1) a.s.

Thus we only need to show that∫
I
(
PD(x,Fn) ≥ α

)
w

(
PD(x,F )

)
x d(Fn − F)(x) = o(1) a.s.(24)

Let δ ∈ (0, α). Then PDα−δ(F ) is convex and compact (Theorem 2.3 of [33]).
By Lemma A.5, PDα(Fn) ⊂ PDα−δ(F ) a.s. for sufficiently large n. This and the
convexity of O(·,Fn) imply that PDα(Fn) is convex and compact and contained
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in PDα−δ(F ) a.s. Define C = {C : C ⊂ PDα−δ(F ) is compact and convex}. Then
PDα(Fn) ∈ C a.s. for sufficiently large n. By a well-known result of Ranga Rao
([22], Theorem 4.2), C is an F-Glivenko–Cantelli class (see [32], for the corre-
sponding definition and related discussion) and (24) follows from the boundedness
of w and PDα(Fn) (a.s.). �

PROOF OF THEOREM 7. The following representation of Hn(x) := √
n ×

(PD(x,Fn) − PD(x,F )), established in Lemma 5.2 of [35], is needed.

LEMMA A.7. Let µ(Fu) and σ(Fu) be continuous in u and σ(Fu) > 0 for
u ∈ Sd−1. Then under (C3′) and (C4) we have for νn = √

n(Fn − F)

√
n
(
PD(x,Fn) − PD(x,F )

) =
∫

h̃(y, x)νn(dy) + op(1) uniformly in x ∈ B

with h̃(y, x) = (O(x,F )f2(y, u(x)) + f1(y, u(x)))/(σ (Fu(x))(1 + O(x,F ))2).

We now prove Theorem 7. First we note that

PTM(Fn) − PTM(F ) =
∫

PDα(Fn)(x − PTM(F ))w(PD(x,Fn)) dFn(x)∫
PDα(Fn) w(PD(x,Fn)) dFn(x)

.

Following the proof of Theorem 6, we can see immediately that∫
PDα(Fn)

w
(
PD(x,Fn)

)
dFn(x)

(25)
=

∫
PDα(F )

w
(
PD(x,F )

)
dF(x) + o(1) a.s.

Decompose the numerator of PTM(Fn) − PTM(F ) into three parts,

I1n =
∫

PDα(Fn)
x∗W

(
PD(x,Fn)

)
dFn(x)

−
∫

PDα(F )
x∗W

(
PD(x,Fn)

)
dFn(x),

I2n =
∫

PDα(F )
x∗W

(
PD(x,Fn)

)
dFn(x)

−
∫

PDα(F )
x∗W

(
PD(x,F )

)
dFn(x),

I3n =
∫

PDα(F )
x∗W

(
PD(x,F )

)
d
(
Fn(x) − F(x)

)
,

where x∗ = x − PTM(F ). Obviously
√

nI3n =
∫ (

x − PTM(F )
)
W

(
PD(x,F )

)
I
(
x ∈ PDα(F )

)
dνn(x).(26)
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We now work on I2n. By (C3′) and the central limit theorem for empirical
processes (see, e.g., Theorem VII. 21 of [20]) we have that

sup
|u‖=1

|µ(Fnu) − µ(Fu)| = Op

(
1/

√
n

)
,

(27)
sup

|u‖=1
|σ(Fnu) − σ(Fu)| = Op

(
1/

√
n

)
,

which then imply (see Theorem 2.2 and Remark 2.5 of [33]) that

sup
x∈Rd

(1 + ‖x‖)|PD(x,Fn) − PD(x,F )| = Op

(
1/

√
n

)
.(28)

By the continuous differentiability of w on [0,1] and Lemma A.5, we have that

w
(
PD(x,Fn)

) − w
(
PD(x,F )

)
(29)

= (
w(1)(PD(x,F )

) + o(1)
)
Hn(x)/

√
n a.s.

uniformly in x ∈ R
d . This, the boundedness of PDα(F ) and (28) imply

√
nI2n =

∫
PDα(F )

(
x − PTM(F )

)
w(1)(PD(x,F )

)
Hn(x)dFn(x) + op(1).(30)

We now show that
√

nI2n =
∫

PDα(F )

(
x − PTM(F )

)
w(1)(PD(x,F )

)
Hn(x)dF (x) + op(1).(31)

Clearly, we can view Hn(·) for every n as a map into l∞(Rd), the space of all
uniformly bounded, real functions on R

d . By Lemma A.7 (and its proof; see [35])
and Theorem 1.5.4 of [32], we see that Hn is asymptotically tight on B (the set
defined in the theorem). Consequently, for every ε > 0 there are finitely many
continuous functions h1, . . . , hk on B such that

lim sup
n→∞

P

{
min

1≤i≤k
‖Hn − hi‖∞ > ε

}
≤ ε.

Since the functions I (PD(x,F ) ≥ α)(x − PTM(F ))w(1)(PD(x,F ))hi(x) are
bounded and continuous for x ∈ {PD(x,F ) ≥ α}, hence∥∥∥∥

∫
PDα(F )

(
x − PTM(F )

)
w(1)(PD(x,F )

)
Hn(x)d(Fn − F)(x)

∥∥∥∥
≤ max

1≤i≤k

∥∥∥∥
∫

PDα(F )

(
x − PTM(F )

)
w(1)(PD(x,F )

)
hi(x) d(Fn − F)(x)

∥∥∥∥
+ (2ε) sup

x∈PDα(F )

∥∥(
x − PTM(F )

)
w(1)(PD(x,F )

)∥∥

= O(ε) + o(1)
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with asymptotic probability not less than 1 − ε. Thus we obtain (31), which, in
conjunction with Lemma A.7, (C3′) and Fubini’s theorem, gives

√
nI2n =

∫ (∫
PDα(F )

(
y − PTM(F )

)
w(1)(PD(y,F )

)
h′(x, y) dF (y)

)

(32)
× dνn(x) + op(1).

We now work on I1n. Let �n(x) = I (PD(x,Fn) ≥ α) − I (PD(x,F ) ≥ α). By
(28) and (29) and the boundedness of PDα(F ) and PDα(Fn) (a.s. for sufficiently
large n) (see Lemma A.5), we have

√
nI1n = √

n

∫
�n(x)

(
x − PTM(F )

)
w

(
PD(x,F )

)
dFn(x)

+
∫

�n(x)
(
x − PTM(F )

)
w(1)(PD(x,F )

)
Hn(x)dFn(x) + op(1),

for sufficiently large n. Call two terms on the right-hand side I1n1 and I1n2, respec-
tively.

We first show that I1n2 = op(1). Observe that by (28) we have

‖I1n2‖ ≤ |Op(1)|
∫

‖x − PTM(F )‖∣∣�n(x)w(1)(PD(x,F )
)∣∣dFn(x).

Invoking the Skorohod (representation) theorem, we assume that Yn and Y are
defined on the probability space (�,F ,P ) such that Yn − Y = o(1) a.s. (P ) and
FYn = Fn and FY = F . By changing the variables in the above integral, we have

∫
‖x∗‖∣∣�n(x)w(1)(PD(x,F )

)∣∣dFn(x)

=
∫
�

‖Y ∗
n ‖∣∣�n(Yn)w

(1)(PD(Yn,F )
)∣∣dP,

where Y ∗
n = Yn −PTM(F ) and �n(Yn) → 0 a.s. by Lemma A.5. This, Lemma A.5

and Lebesgue’s dominated convergence theorem yield immediately I1n2 = op(1).

We now show that

I1n1 = √
n

∫
�n(x)

(
x − PTM(F )

)
w

(
PD(x,F )

)
dF(x) + op(1).(33)

This can be accomplished by utilizing the results of an F-Donsker class of func-
tions and the asymptotic equicontinuity (see [32]) and the fact

∫
(I (PD(x,Fn) ≥

α) − I (PD(x,F ) ≥ α))2 dF(x) → 0. Observe that

√
n

∫
�n(x)

(
x − PTM(F )

)
w

(
PD(x,F )

)
dF(x)

= √
n

∫
Sd−1

[∫ Rα(u,Fn)

Rα(u,F )

(
ru − PTM(F )

)
w

(
PD(ru,F )

)
f (ru)|J (u, r)|dr

]
du.
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Let θn(u) be a point in between Rα(u,Fn) and R
α(u,F ). Then by Theorem 4,

J (u, θn(u)) = J (u,Rα(u,F )) + o(1) a.s. uniformly in u ∈ Sd−1. By Theo-
rem 4 and Lemma A.5, w(PD(θn(u)u,F )) = w(PD(Rα(u,F )u,F )) + o(1) =
w(α) + o(1) a.s. and uniformly in u ∈ Sd−1. Finally by the continuity of f [in
a small neighborhood of ∂PDα(F )] and of Rα(u,Fn) and Rα(u,F ) uniformly
in u (see Lemmas A.3 and A.6) for large n, the compactness of Sd−1 and Theo-
rem 4, f (θn(u)u) = f (Rα(u,F )u) + o(1), a.s. uniformly in u ∈ Sd−1 for large n.
These, (33), the preceding display, the mean value theorem, the uniform conti-
nuity in u of w(PD(Rα(u,F )u,F )) and J (u,Rα(u,F )), Theorems 4 and 5, and
Fubini’s theorem, yield

I1n1 =
∫
Sd−1

(
R∗(u)w(α)

∣∣J (
u,R(u)

)∣∣f (R(u)u) + o(1)
)
Kn(u)du + op(1)

=
∫ [∫

Sd−1
R∗(u)w(α)

∣∣J (
u,R(u)

)∣∣f (R(F )u)k
(
x,R(u)u

)
du

]
dνn(x)

+ op(1),

for R∗(u) = R(u)u − PTM(F ), Kn(u) := √
n(R(u,Fn) − R(u,F )). This gives

√
nI1n =

∫ [∫
Sd−1

R∗(u)w(α)
∣∣J (

u,R(u)
)∣∣f (R(u)u)k

(
x,R(u)u

)
du

]
dνn(x)

+ op(1),

which, combining with (32), (26) and (25), gives the desired result. �
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