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We propose a novel approach to sufficient dimension reduction in
regression, based on estimating contour directions of small variation in the
response. These directions span the orthogonal complement of the minimal
space relevant for the regression and can be extracted according to two
measures of variation in the response, leadingrtple andgeneral contour
regression (SCR and GCR) methodology. In comparison with existing
sufficient dimension reduction techniques, this contour-based methodology
guarantees exhaustive estimation of the central subspace under ellipticity of
the predictor distribution and mild additional assumptions, while maintaining
J/n-consistency and computational ease. Moreover, it proves robust to
departures from ellipticity. We establish population properties for both SCR
and GCR, and asymptotic properties for SCR. Simulations to compare
performance with that of standard techniques such as ordinary least squares,
sliced inverse regression, principal Hessian directions and sliced average
variance estimation confirm the advantages anticipated by the theoretical
analyses. We demonstrate the use of contour-based methods on a data set
concerning soil evaporation.

1. Introduction and background. Consider the regression of a response
on a vector of continuous predictor¥ = (Xl,...,Xp)T € RP. Sufficient
dimension reduction is a body of theory and methods for reducing the dimension
of X while preserving information on the regression, that is, on the conditional
distribution of Y| X (see [7, 15, 16]). Adimension reduction subspace [3, 4] is
defined as the column space of gny d (d < p) matrix n such that

1) Y 1L X|n" X,

where 1L indicates independence. Thus, conditioning xgnX, ¥ and X are
independent, or equivalently, the conditional distributionYoX equals that of
Y|nT X. Because relation (1) is unaffected by multiplyingrom the right by a
nonsingular matrix, what matters is the column space K&Hther than its specific
form. Also note that there can be many subspaces satisfying (1), because if it holds
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for n, then it also holds for any other matrix whose column space includes that
of n. Naturally, we are interested in the subspace with the minimal dimension.
Under mild conditions that are almost always verified in practice, the minimal
subspace is uniquely defined and coincides with the intersection of all subspaces
satisfying (1) (see [1, 4]). This intersection is called tleetral subspace, denoted

by 8y|x, and its dimension is called tis&ructural dimension, denoted by;.

The central subspace can be estimated without estimating a response surface,
and without strong assumptions on the form of the dependence bekvaedX .
Well-known estimation methods include ordinary least squares (OLS, [17]),
sliced inverse regression (SIR, [15]; see also [9]), principal Hessian directions
(PHD, [16]) and sliced average variance estimation (SAVE, [7]). These methods
constitute effective premodeling tools to reduce high-dimensional regressions
to equivalent ones comprising only a few linear combinations of the original
predictors. Such a reduction greatly facilitates model building, as well as the
use of nonparametric techniques. Dimension reduction methods also provide
a comprehensive visualization of the data whenever the estimated structural
dimension is 1, 2 or possibly 3, which is the case in a vast majority of practical
applications. In this sense, sufficient dimension reduction provides a foundation
for regression graphics, as argued in [4] and [1].

In many studies attention is restricted to the location component of the
dependence betweehn and X, that is, to the regression functiadfi(Y|X). The
central mean subspace, $£(y|x), was introduced by Cook and Li [5]. Because
the conditional mearE(Y|X) is determined by the distribution of | X, the
central mean subspace is always contained in the central subspace. Cook and Li
investigated the above mentioned methods in relation to their ability to estimate
directions within theSgy|x), and proposed alternative methods to target this
subspace directly. See also [14].

The above methods enjoy the advantage of being computationally inexpensive
and /n-consistent regardless of the original predictor dimensiomnd the
structural dimensiog, thus avoiding the “curse of dimensionality” often affecting
nonparametric techniques. Tk -consistency is achieved because these methods
exploit global features of the dependence Bfon X, in the sense they involve
averaging among fixed portions of the data, regardless of the sample size. For
instance, OLS employs sample moments, and SIR involves averaging predictors
within slices ofY, where the size of each slice need not go to zermo-as cc.

The above methods also have common limitations, however. First, they require
linear conditional means among predictors ([4], page 57), which is often imposed
by assuming ellipticity of the distribution ak. When this condition fails, the
estimators may converge to directions outsigex. Second, even when linearity
holds, OLS, PHD and SIR are not guaranteed to be exhaustive: they may converge
at the/n-rate to a set of vectors that aredpx but do not sparfy|x. This lack
of exhaustiveness is arguably one of the most important shortcomings of these
methods. An instance is the heavy reliance of methods such as OLS and SIR on
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monotone trends in the dependencé& aln X. For example, it = (87 X)2 +o¢

with g e R? andX ~ N(0, I,), OLS and SIR will estimate 0 and therefore fail

to detectg itself. Based on early results obtained by Peters, Redner and Decell
[19] in the special context of feature extraction, it can be shown that SAVE is
indeed exhaustive iX|Y is normally distributed. However, as we will see in
Section 3, this assumption is very restrictive in the regression context. Thus, it
is of both practical and theoretical significance to pursue exhaustive estimation
under reasonably general sufficient conditions.

At the opposite end of the spectrum are adaptive methods that ekmiait
features of the dependence ¥fon X [13, 23]. The strength of these methods is
that they require much weaker assumptions (virtually none) on the distrikkition
However, because they employ multivariate kernels that shrink with the sample
size, their convergence rates are generally slower ffianin addition, they are
computationally intensive, as they iterate between nonparametric estimation of
a multivariate unknown function and numerical maximization of the estimated
function over a potentially high-dimensional space.

Here we propose a novel approach that targets contour directions, that is,
directions along which the response surface is flat. Since contour directions
span the orthogonal complement of the central subspace, estimating the former
is equivalent to estimating the latter. We propose to extract contour directions
according to two measures of variation in the response, leading to two methods:
simple andgeneral contour regression (SCR and GCR). Unlike traditional global
methods such as OLS, SIR, PHD and SAVE, contour regression guarantees
exhaustive estimation of the central subspace under ellipticity and very mild
additional assumptions. It also proves robust to violations of ellipticity. At the same
time, unlike local methods, contour regression achie¥esconsistency regardless
of the dimensiong andg, and it is computationally inexpensive.

The remainder of the paper is organized as follows: Section 2 concerns
population-level properties and asymptotic properties of SCR, and Section 3
presents sufficient conditions for exhaustiveness of SCR. Section 4 concerns
population-level properties of GCR. Section 5 discusses the robustness of GCR
against violations of predictor ellipticity. Section 6 presents simulations comparing
the performance of SCR and GCR with that of OLS, SIR, PHD and SAVE.
Section 7 reports the analysis of a data set. Section 8 contains final remarks. The
main proofs are reported in the body of the paper, but some technical details are
relegated to the Appendix.

2. Simplecontour regression.

2.1. Basic concepts. Let (X1, Y1), ..., (X,, ¥,) be independent copies of the
random pair(X, Y), whereX € R? andY € R, let Fxy be the joint distribution
of (X,Y), and letF, be the corresponding empirical distribution. We will be
concerned with matrix-valued estimators of the fofmF,). If the columns of
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T (Fxy) belong to4dy|x, then we say thal'(F,) is unbiased at the population
level. If the columns of' (Fxy) actually spandyx, then we say thal (F),) is
exhaustive at the population level. Tf(F,,) converges at the/n-rate toT (Fxy)

in the first case, then we say that it\j§:-consistent. If the/n-convergence holds

in the second case, then we say tii@f;,) is  /n-exhaustive. In this section we

will introduce simple contour regression and establish its exhaustiveness at the
population level, as well as itgn-exhaustiveness.

To illustrate the basic intuition underlying contour regression, it is helpful to
make an analogy between tleapirical directions employed in this approach
andempirical distributions. In defining an empirical distribution we put an equal
probability mass at each observed point, based on the rationale that all the
information about the random vect&rcarried by the random samplé,, ..., X,
is captured by the positions of the observations themselves. With a similar
rationale, it can be argued that all theectional information aboutX carried by
the data is captured by the empirical directieis — X;), i # j,i,j=1,...,n.

Since dimension reduction is about finding a specific set of directions—those along
which the conditional distribution of | X genuinely depends ok—it is natural

to focus on thes¢,) empirical directions. Roughly, contour regression extracts a
subset of the empirical directions characterized by having small variatibnand

then performs a principal component analysis on the extracted directions. Since
contour directions form the orthogonal complement of the central subspace, an
estimator of the latter is obtained from the components with smallest eigenvalues.

It is also important to remark that many global methods (see Introduction)
gather directional information by slicing the response and processing predictor ob-
servations separately within each slice. This way, interslice directional information
relevant to the regression, if any, is lost. On the other hand, empirical directions
(X; — X ;) can “cut across” response slices, thus allowing contour regression to
exploit interslice information.

For ease of exposition we will first introduce population-level quantities and
then construct estimators by analogy.

2.2. Population-level exhaustiveness. Let (X, ¥) be an independent copy of
(X, Y) and suppose that the central subspége for the regression of on X is
spanned by the column space gb & ¢ matrix 8 with ¢ < p. Consider the matrix

K@©=EX-X)X-X)"[IY Y| =<c]

We will show that the eigenvectors df (¢) corresponding to its smallest
eigenvalues span the central subspace. For this purpose we need the following
assumption.

ASsSUMPTION2.1. For any choice of vectoise 8y |y andw € (5y|X)J‘ such
that||v|| = ||w|| = 1, and some constant- 0, we have

2) vaiw! (X = X)||Y = Y| <c]>valv! (X = X)||Y = Y| <c].
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This assumption is a reasonable one: because the conditional distribution of
Y|X depends on’ X but not onw’ X, we expectt’ to vary more withv” X than
it does withw” X. Hence, intuitively, within the same incrementitfw’ X should
vary more tharv” X does. In Section 3 we will prove that Assumption 2.1 holds
under fairly general conditions. Here we give a few examples to illustrate its wide
applicability. For reasons that will become clear later on, we will always impose
this assumption on the standardized predictors with mean 0 and variance fpatrix

EXAMPLE 2.1. Suppos& = (X1, X2)7 ~ N(0, I) andY = X3 + o¢, with
el X ande ~ N(0O,1). For this regressioBy x is the one-dimensional span of
B = (0,17, and the conditional variances on the left- and right-hand sides of (2)
are, respectively,

M=E[X1—-XD?||Y —Y|<c] and ip=E[(X2—X2)?||Y —Y|<c].

BecauseX1 is independent ofX2 ande, it is independent of. Therefore the

first conditional expectation equals the unconditional expectafign; — X1)2,
which is 2. We have computed the second conditional expectation numerically
on a grid of valueg =0.1,0.5,1,...,3 andoc =0.1,0.2,0.3,..., 2. In all cases

A2 < A1 = 2. Below is the tabulation correspondingste= 0.3 and selected values

of c:

¢ 010 050 100 150 2.00 250 3.00
A2 085 090 104 120 134 145 154

We note that this is the case where OLS and SIR will estimate zero, providing no
information about the central subspace.

EXAMPLE 2.2. LetX = (X1, X2)T ande be as in Example 2.1, and =
(X2 — 1)3 + o0e. We again used numerical integration to comphgefor ¢ =
0.1,05,1,...,3ando =0.1,0.2,0.3, ..., 2, and again obtained values below 2
in all cases. A table fos = 0.3 and selected values offollows:

c 010 050 1.00 150 2.00 250 3.00
A2 024 028 0.36 0.45 0.53 0.61 0.67

We checked numerically numerous other response functions such as polyno-
mials, exponential and logarithmic functions, trigopnometric functions and so on,
never encountering a violation of Assumption 2.1. In the next example, we verify
Assumption 2.1 for a regression with a binary response. This example also helps
to emphasize that Assumption 2.1 should be imposed on the standardized, rather
than the original, predictor.

EXAMPLE 2.3. LetY ~ Bernoulli1l/2) and X € R2. The regression is
described through the inverse conditional distributi&i(Y = y) ~ N(u,, I2),
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with o = (0,—1)7 and p1 = (0,1)7. Thus, heresyx is again the one-
dimensional span o = (0, 1) and the conditional variances on the left- and
right-hand sides of Assumption 2.1 ake and A, as defined in the previous
examples. Simple calculations show that, for0 <1,

EX=X)X-XTY=Y1=E[(X-X)X-X)Tly=Y=0]
=2EXXT|Y=0)—-2EX|Y =0)E(XT|Y =0)
=2vanX|Y =0)=21/.

Therefore 1 = A2 = 2, and Assumption 2.1 fails. However, if we standardize the
predictor vector at the outset, the assumption holds also for this binary regression.
Note thatE (X) =0 and

Y =varnX) = (é g)
It follows that
E(Z-2)(Z—-2)T|Y =7]
=2 PE[(X - 0)X - X) |y =7z 2 =251

BecauseX is diagonal, the central subspagg,z for the regression of on the
standardized predictoZ = 12X is still the span of(0,1)” (see, e.g., [4],
page 106). Thus, on thé-scaler; =1 < 2= As.

In the next theorem and corollary we prove tha ifs elliptically contoured and
Assumption 2.1 holds, then the population vectors from SCR exhaust the central
subspacefy|x. We first consider the standardiz&d

THEOREM 2.1. Suppose that X has an elliptical distribution with E(X) =0
and var(X) = I,. If Assumption 2.1 holds, then the eigenvectors of K(c)
corresponding to its smallest ¢ eigenval ues span the central subspace 8y/x .

PROOF Suppose, without loss of generality, that #heolumns of 8 form
an orthonormal set ilR”. Letyy, ..., y,—, be an orthonormal basis fQKY|X)J‘.
We need to show that (iy1, ..., yp,—, are eigenvectors ok (c), and (ii) their
corresponding eigenvalues are the largest among its eigenvalues. If (i) and (ii)
hold, then the eigenvectors &f(¢) corresponding to its smallegt eigenvalues
will coincide with sparig) = 8y|x, as desired.

(i) Let B = (y1,....¥p—q, B1...., By) and W = BT X. By Proposition 6.3
of [4], page 106, the central subspace for the regressiori oh W, 8y w, is
spanned by the vectos 181, ..., B~18,. Note thatB~18; = ¢,_,+;, that is, the
vector inR” with a 1 in the(p — ¢ + i)th position and 0’s in all remaining ones.
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By constructionW still has a spherical distribution with mean 0 and variange
Next, let(X, ¥) be an independent copy 6k, Y), W = BT X, and

Ki(c) = E[(W —W)(W —W)T [|Y — Y| <c].

It is easy to see thak1(c) = B~1K(c)B, and hence thay; is an eigenvector
of K (c) if and only if BT y; is an eigenvector ok1(c). Thus, it suffices to show
thatey, ..., e,_, are eigenvectors a1 (c).

Let¢; :R?P —RP,i=1,..., p—q, be the map that changes the sign ofitie
element of a vector iR? [e.g.,¢1(x) = (—x1, x2, . ..,x,,)T]. Observe that; is
an invertible mapping withbi_1 = ¢;, and thatx, ¢1(x), ..., ¢,_,(x) are on the
same sphere centered at the origin. Cdbe any measurable set. Then

PH(W € C) =PI(W € ¢;(C)) =Pr(¢ (W) € C) = Pr(¢i (W) € C),

where the first equality follows becaus& has a spherical distribution and

x — ¢;(x) is an orthogonal transformation, and the third equality follows because
¢ = ¢>i‘l. ThusW and¢; (W) have the same distribution. Furthermore, because
of the conditional independence,

YIL (W, ..., W)IWp_gt1, ..., W,

the conditional distributions of |[W andY|¢; (W) (wherei =1,..., p — g) are
both equal to the conditional distribution &fW,_,.1,..., W,. It follows that
(W, Y) and(¢; (W), Y) have the same distribution. Consequently,

Ki(c) = E[(W — W)(W = W)T [|Y — Y| <c]
= E[(¢i (W) — g (W) (s (W) — s (W) | 1Y — Y| <c].

So the matrixK1(c) can be re-expressed as the average of the right-hand sides of
the first and the second lines above; that is,

E[3W = W)W = W) + 3(¢: (W) — s W) (s (W) — s (W) 1Y — Y| <c].

Denote the above matrix b¥(4; | |Y — Y| < ¢) in the obvious way. Then it is
easy to see that th€,i)th element ofA; is (W; — W;)2 and the(, j)th and
(j, i)th elements are identically O whenevges i. Hence, fori =1, ..., p — ¢,
e; is an eigenvector ok 1(c) corresponding to the eigenvalig= E (W; — W;)? |
Y — Y| <o)

(if) From (i) it follows thatyx, ..., y,—, are eigenvectors df (c) corresponding
to the eigenvaluesy, ..., A, 4. Lety, 441, ..., v, be the othey eigenvectors
of K (c), corresponding to the eigenvalues_, 1, ..., A,. By construction these
g vectors sparfy|x. The eigenvalues;, i =1, ..., p, can be expressed as

ri=y K@)y =valy (X —X)||Y = Y| <cl.
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But becauseri, ..., y,—q are vectors iy x)* andy,_441, ..., y, are vectors
in 8y;x, Assumption 2.1 suffices to ensure that,...,1,_, are the largest
eigenvalues oK (¢). O

Let us now turn toX with an arbitrary elliptically contoured distribution
having mearu and nonsingular variance matr®®. Theorem 2.1 asserts that if
we let Z = 2~Y2(X — p), then the eigenvectons,_,1, ..., y, corresponding
to the smallesty eigenvalues of the matrixE[(Z — Z)(Z — Z)T | |Y —

Y| < c] span 48y|z. Consequently, by Proposition 6.3 of [4], page 106, the
vectors =Y2y,_11,...,27Y2y, span 8yx. Thus we have the following
generalization of Theorem 2.1:

COROLLARY 2.1. Suppose that X has an elliptically contoured distribution
with mean p and nonsingular variance matrix . Suppose that Assumption 2.1
holds with X and X replaced by ©Y2(X — ) and ©Y2(X — p). Let
Yp—q+1. - - -, ¥p DEthe eigenvectors of the matrix

SPEX - X)X -X)T )Y —Y|<cx~Y2

corresponding to its smallest ¢ eigenvalues. Then the vectors =42y, .1, ...,
Y2y, span Sy x.

Note that since the corollary postulates Assumption 2.1 on the standardized
predictor, it does also apply to regressions with discrete responses, such as the one
described in Example 2.3.

2.3. Estimation and /n-exhaustiveness. We now construct a sample estimate
of the matrixK (c). As before let(X, Y) be an independent copy oK, Y), and
consider the matrix

3) HCe)=E[(X-X)X-X)T1(Y —Y|<0o)].

SinceK (¢) and H (¢) differ only by the proportionality constant @ — Y| < ¢),
their eigenvectors coincide. We will thus consider an estimateHof) for
simplicity. Let (X1, Y1), ..., (X,, Y,) be an independent sample from the random
pair (X, Y). The estimating procedure will mimic the theoretical development in
Section 2.2:

(a) Compute sample mean and variance matrix of the predictor

n n
p=ntYy X, T=nty Xi-pXi-p'
i=1 i=1
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(b) Compute the matrix-valued-statistic:
~ 1
(4) He) = Y X =XoX; =X 1(Y; - Yi| <o),
¢/ (i,j)eN

whereN is the index set(i, j):i =2,...,n; j=1...,i=-1}.

(c) Compute the spectral decompositionsof/2H (c)E /2 and letp,,-1,

.., ¥p be the eigenvectors corresponding to the smajlesgenvalues.

(d) The span of these eigenvectors estim#&igs, whereZ is the standardized

version ofX. Thus, our estimate of the central subspace is

ZY|X = Spaﬁffl/z)?p_q_kl, co ey iil/zj;p).

In practice, as for other sufficient dimension reduction methods, a testing
procedure will be needed to determine statistically how many eigenvectors to take.
Here we assume the dimensigmof the central subspace to be known, leaving the
development of an appropriate testing procedure for future investigation. However,
in the next section we lay the groundwork for constructing such a procedure by
further exploring the eigenvalue structure of the makiéc). Before doing so, we
demonstrate thg/n-exhaustiveness of SCR.

THEOREM2.2. Supposethat ¥ isnonsingular and that the components of X
have finite fourth moments. Then
S 2HEE Y2 =2 2H()E Y2+ 0,07 3.
PRoOOE SinceX has finite fourth momentﬁ is a 4/n-consistent estimator
of = by the central limit theorem. Since is nonsingular, we have thai—%/? is a

J/n-consistent estimator & ~%/2 by the continuous mapping theorem. It follows
that

S127 ()52 — 512 (o) —1/2
=2 Y2(H() - HO)= Y24+ 0,7 Y?),

Next, let veg-) be the operator that stacks the columns of a matrix Hor
with columnsas, ..., a, vedA) = (al,...,al)T], and let veé(.) denote the
transpose of vge). Note thatH (c) is a matrix-valued/ -statistic with elements
having finite second moments. By the central limit theoremlfastatistics ([20],

Chapter 5) it easily follows tha\t/ﬁvec(ﬁ(c) — H(c)) converges in distribution to
a p2-dimensional multivariate normal vector with mean 0 and variance matrix

AE[ved Hy(X, Y; c))ved (Hi(X,Y;c))] — 4ved H(c))ved (H(c)),
whereH1(X, Y; ¢) is the conditional expectation

E[(X-X)X-X)TI(Y -Y|<0)I|X, Y]
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Consequentlﬁ(c) — H(c) = 0,(1/4/n), which completes the proof.C]

As a consequence of this theorepp, 11, ..., 7, provide a./n-exhaustive es-
timator of 8yz, and henc&~Y2p,_,.1,..., =2, provide a,/n-exhaustive
estimator of§yx.

The role played by the constanthere is similar to the width of a slice in
SIR and SAVE. It differs from the width of a kernel in a typical nonparametric
estimator in that it need not go to 0 as»> oco. The thresholding can actually be
implemented in two ways: fixing a numerical value &ror fixing a proportion of
empirical directionst; — X ; [out of (5)]. This distinction is relevant for theoretical
analysis and simulation. We find that using the 5—-15% empirical directions ranking
lowest in terms of response absolute difference works well in simulation studies
(see Section 6). A more careful investigation of the thresholding rule is important,
but goes beyond the scope of the present article—we expect good thresholding to
depend on the dimensign ¢, and possibly other factors.

The asymptotic analyses we present here are all carried out for the thresholding
based on a fixed value of However, they can be easily paralleled for thresholding
based on a fixed proportion: Modulo the fact thateed not go to 0 as — oo,
the comparison of these two thresholding options is analogous to that between a
kernel and a nearest-neighbor estimator [18, 21, 22].

2.4. Toward testing hypothesis. In this section we will show that, under an
additional assumption, the largegt— ¢ eigenvalues of ~Y2K (c)x /2 are
identically 2, so that, ..., y,—, are the eigenvectors of— 2K (¢)5~1/2
corresponding to eigenvalues equal to 0. This paves the way for constructing a
test statistic to determine the dimension&fz (and hence$y|x), because the
problem now is converted into testing how many of the smallest eigenvalues of
21, — 27 Y2K ()2 Y2 are 0. Tests of this type can be constructed using the
asymptotic distribution of small singular values developed by Eaton and Tyler [10].
Similar tests have been constructed in other contexts in [15, 16]; [4], Chapter 11
and [2, 5, 14]. We expect that a test statistic and related sampling distribution for
SCR can be obtained analogously. The additional assumption is usually referred
to as the constant conditional variance assumption, and is often evoked when
developing such tests:

ASSUMPTIONZ2.2. If B is a matrix whose columns form a basiséif x, then
the conditional variance vax |87 X) is a nonrandom matrix.

The next lemma states various implications of conditional independence, which
will be used in the subsequent development.

LEmMmA 2.1. (a)lf Vi,..., Vs are random vectors satisfying (Vy, V2, V3) 1L
(Va, Vs, V), V1 L V| V3 and Vg UL V5| Vg, then (V, Vi) AL (V2, Vs)[(V3, Ve).
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(b) If V1, ..., V4 arerandom vectors satisfying (V1, V) AL (V3, V), then Vq AL
Va|(V2, Va).
(c) If V1, Vo, V3 arerandom vectors satisfying (V1, Vo) AL V3, then Vq UL V3| V5.

Part (c) is a special case of a well-known result; see, for example, [8] and [4],
Proposition 4.6. The proofs of (a) and (b) are similar to those used in these papers,
and are given in the Appendix.

THEOREM 2.3. Suppose that X has an dliptical distribution and that
Assumptions 2.1 and 2.2 hold. Let g be the dimension of 8y|x. Then the p — ¢
largest eigenvalues of ¥ ~Y/2K (¢) X ~1/2 areidentically 2.

PROOF Let g be ap x g matrix whose columns spady|x, and Z =
2 ~Y2(X — ). Then the columns of = =/28 spansy|z and= 12K (¢) = ~1/2
is the matrix

Ki(©)=E[(Z-2)(Z—-2)T ||Y = Y| <cl= E(A1A] ||A2] <o),

where we have abbreviated — Z and Y — Y by A1 and Ap, respectively.
Because(Z,Y,n'Z) 1L (Z,Y,n7Z), Z L Y|nTZ and Z 1L Y|nT Z, we have,
by Lemma 2.1(a), thatZ, Z) AL (Y, Y)|n"Z,»nTZ. This in turn implies that
A1 L AsnTZ, nT Z. Consequently,

E(AAT [|A2l <) = E[E(AAT 10T Z, 0" Z, 1Azl < ©) | |A2] < c]
= E[E(MATInT 2,0 Z) | |8zl < el

The conditional expectation inside the brackets on the right-hand side can be
decomposed as the sum of four terms:

EZzz"n"z,n"2)-EZZ"\n"z,0" 2)

(5) 5
—EZZ" Wz ")+ EZZ" 1" 2.0 2).

Since(Z, n” Z) 1L n” Z, we havez 1L nT Z|»T Z by Lemma 2.1(c). Hence the first
term becomes

EZz"n"z)=varz|n"z) + EZInT 2)EZzT 10" 7).

Let P = n(n"n)~1n" be the orthogonal projection onty |z and letQ = I — P be
the orthogonal projection ont@&y|z)+. Then it can be shown by Assumption 2.2
that vaxZ|n’ Z) = Q. BecauseZ has a spherical distributio® (Z|nT Z) = PZ

so that the first term in (5) reduces @ + PZZ" P. By Lemma 2.1(b), the
second term in (5) factorizes inteE(Z|nT Z, nT Z)E(ZT |nT Z, »T Z), which by
Lemma 2.1(c) further reduces toE(Z|n" Z)E(ZT|nT Z). Hence, again using
sphericity of Z, the second term in (5) is PZZ” P. By similar arguments the
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third and fourth terms in (5) aree PZZT P and Q + PZZT P, respectively.
Therefore

(6) E(AMAT | |Az <0) =20 + PE(AAT 1Az <o) P.

Letv be a vector in(8y|z)*, and multiply this matrix by” from the left and by
from the right to obtain vaw’ A1 | |[As| < ¢) = 2. This completes the proof.]

Note that without Assumption 2.1 the theorem still holds to an extent, in the
sense that the eigenvectorslb(fAlA{ | |Az| < ¢) orthogonal to spam) still have
eigenvalues equal to 2. However, without this assumption exhaustiveness would be
lost, because we cannot rule out the possibility that eigenvalues other than these
may also be 2.

This eigenvalue structure is similar to that of SAVE. For same0 andy, let
S(c) be the sliced averaged variangé) = var(X | |Y — y| < ¢). In this notation
I, — S(c) is the SAVE matrix for a slice centered at Under ellipticity and
Assumption 2.2, we have

S)=Q0+ PS(c)P

(see [7]). Thus the eigenvalues corresponding to the eigenvectSig)othat are
orthogonal to the central subspace are identically 1. However, there are important
differences between contour regression methods and SAVE; these will be briefly
discussed at the end of Section 4.3.

3. Sufficient conditions for exhaustive estimation. In order to place the
theory of simple contour regression on a firmer foundation, we devote this section
to deriving a sufficient condition for Assumption 2.1. As shown in the previous
sections, if this assumption holds, then SCR provigésexhaustive estimation
of the central subspacdyyx; that is, the estimating vectors converge with
Jn-rate to a set of vectors that spdg x in its entirety. Sufficient conditions
of this type are extremely elusive; to our knowledge none has been established
with reasonable generality for othgfrn-consistent methods such as OLS, PHD,
SIR or SAVE. Results from an early, prescient paper by Peters, Redner and Decell
[19] lead to exhaustiveness of SAVE under the condition #jat is multivariate
normal. However, this condition is very restrictive—note that even in a typical
location regression of the fori= f(X) + ¢ with X ande independent and both
normally distributed, this assumption is not met unlggs is linear. Because of
its generality, the sufficient condition given here for SCR is the first of its kind.

We will need the notion of stochastic ordering. Leand 7' be two random
variables. We say thaf is stochastically less than or equal Toif, for any real
numberr, PrS < r) > Pr(T <r), and write this as§ <, T. If, in addition, the
inequality is strict on a subset of the real line with positive Lebesgue measure, we
say thatS is stochastically (strictly) less thah and writeS <, T'. The following
lemma is obvious, and its proof will be omitted.
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LEMMA 3.1. Supposethat S and 7 are random variables taking valuesin a
common set @ C R, and that S <4 T. Then:

(@) E(S) < E(T).

(b) Given a monotone real-valued function g: Q2 +— R, g(S) <4 g(T) if g(-) is
increasing, and g(T) <4 g(S) if g(-) isdecreasing.

As a special case, consider a pair of random variabt§eg’). We will write
(S|IT =11) <4 (S|IT =) if,foranyr, PU(S <r|T =11) > Pr(S <r|T =t2), with
strict inequality held on a set with positive Lebesgue measure.

The following lemma, which is proved in the Appendix, will also be used.

LEMMA 3.2. Let p(s) and ¢g(s) be the densities of nonnegative random
variables S and T taking valuesin a common support ¢ R*, and suppose that
p(s)/q(s) isdecreasing ins. Then E(S) < E(T).

In developing a sufficient condition for Assumption 2.1, we restrict ourselves to
alocation structure, that is, to regressions of the kind

(7) Y = f(BTX) +oe, el X, E(e)=0.

Ultimately, the sufficient condition will be imposed on the behaviorfof). Let
(X, %) be an independent copy 0k,¢), A=X — X, T =% — ¢, and letFr(-)
be the cumulative distribution function @f. For the statement of the following
theorem, it will be more informative to writg (87 x) merely asg(x).

THEOREM3.1. Supposethat X hasan elliptically contoured distribution with
E(X) =0 and var(X) = I,, and that Assumption 2.2 holds. Moreover, suppose
that model (7) holds with the density fr(¢) of Fr(z) being a decreasing function
of |¢]. If for any & € 8y|x and whenever 0 < §; < 8> we have

B) Ig(X+A)—gX)||[{la" Al =81} <a lg(X +A) — g(X)||{la” A] =82},
then Assumption 2.1 holds for every ¢ > 0.

Before proving the theorem, let us comment on its significance. To understand
the intuition behind condition (8), first consider the case wh¥rés a scalar
random variable. Intuitively, condition (8) should hold triviallygfis a monotone
function, because it holds pointwise X = x with <, replaced by ordinary
inequality < (see Example 3.1 below). However, condition (8) by no means
restrictsg(-) to being monotone, because being stochastically large or small is an
average behavior for all values &f, and does not require being large or small for
every single valu& = x. It then does seem to make sense to assume (at A)
is collectively farther away frong(X) if A is larger: this is simply requiring to
be reasonably variable. In the multivariate case, condition (8) requires this to hold
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along any directiom in the spaceSy|x, which is the space along whigtix) does

vary. Also the requirement th&i (1) decreases witl| is not a severe restriction,
considering that this density is symmetric about 0 by construction. Finally, the
result can be generalized straightforwardly to nonstandardized elliptical predictors.
Thus, Theorem 3.1 allows us to conclude that, for elliptical predictors with
constant conditional variance along the central subspace (Assumption 2.2), all that
is required to guarantee Assumption 2.1—and hence exhaustiveness of SCR—are
very mild conditions on the behavior of the mean function and the error termin (7)
(some instances are provided after the proof).

PROOF OF THEOREM 3.1. Leta € 4y)x and& € (SY\X)L. Theorem 2.3
implies that vatc” (X — X) | |Y — Y| < ¢) = 2, which is the same as the
unconditional variance vax” (X — X)). Hence, it suffices to show that

varla” (X — X) | |Y — Y| <c¢) <var(a’ (X — X)).

LetU =|Y —Y|andV = (a«” (X — X))2. We are then to show th#&(V|U < ¢) <
E(V). Let fy () be the density o¥/. Then

9) E(V|USc)zfooovprwEC'V:”)fv(wdv.

Pr(U <c¢)
Now, letr(v) = PrU < c|V =v)/PrU < ¢). Thenr(v) fy (v) is itself a density
onR*. By Lemma 3.2, if we can show thatv) is a decreasing function of then
the right-hand side of (9) is smaller thgh fy (v) dv and the proof is complete.
So let us show that PV < ¢|V = v) decreases in. Note that

PrU <c|V =v) = E{Pr(U <c|X, X)|V =v}.

Because(X, X) is independent of(¢, &) we can re-express the conditional
probability PXU < ¢|X, X) as

Prig(X) —g(X) —c < T < g(X) — g(X) +¢)
= Fr(g(X) — g(X) +¢) — Fr(g(X) — g(X) —c).

Because the roles of and X can be exchanged, and because= («” (X —
X))? = (T (X — X))?, we have

Pr(U < c|V =v) = E[Fr(g(X) — g(X) +¢) — Fr(g(X) — g(X) —c)|V =]
= E[Fr(g(X) — g(X) +¢) = Fr(g(X) — g(X) — )|V =v].

So P(U < ¢|V = v) can be written as the average of the two expressions on the
right-hand sides of the first and second equalities in the above display. That is, if
we writeg(X) — g(X)+c asA andg(X) — g(X) —c as—B, then PtU < c|V = v)

can be written a¥ (Fr(A) — Fr(—B) + Fr(B) — Fr(—A))/2. However, since
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Fr(-) is the cumulative distribution function of a symmetric density, we have
Fr(t) — Fr(—t) =2Fr(t) — 1 for anyr. Hence
PrU <c|V =v)
= E[Fr(g(X) — g(X) +¢)+ Fr(g(X) — g(X) +¢)|V=v] -1
=E[Fr(R+c)+Fr(=R+0)|V=v]-1=E(GR)|V =v) -1,

whereR = |g(X) — g(X)|. Thus it suffices to show th&(G (R)|V = v) decreases
with v. Becausefr(-) is symmetric about O,

G'(r = frr+o — fr(=r+o = fr(r+ecl) — frr—ch.

But sincer andc are both positiver + ¢ > |r — c|. It follows that the right-hand
side is negative, an@ () is strictly decreasing im for r > 0. By Lemma 3.1(a),
E(G(R)|V = v) will be decreasing in if, for any v, > v1 > 0,

(10) (G(R)|V = U]_) <4 (G(R)lV = vz).

However, becausd&5(R) is a decreasing function oR, by Lemma 3.1(b)
inequality (10) will hold if (R|V = v1) <4 (R|V = v2). The latter inequality is
equivalent to (8). O

To illustrate the generality of this sufficient condition we now verify it for some
examples. Let us consider the following specialization of our location structure.
In (7) takeX ~ N (0, I,) andp = (0, 1)7, so thatY = f(X>) + oe. Consider the
conditional probability

Pr(f(X2) — f(X2)| <r||X2— X2| =3).

Condition (8) will be satisfied if, for each > 0, this quantity decreases
Because the distribution df> — X» is symmetric about zero, this probability is

Pr(f(X2) — f(X2)| < r|X2 — X2=16)/2
+Pr(|f (X2) — f(X2)| <7| X2 — X2 ==8)/2.

Because the roles of and X can be interchanged, the conditioning argument
X> — X2 = -4 in the second term can be replacedX¥y— X» = §, and hence

Pr(f(X2) — f(X2)| <r||X2— X2| =)
=Pr(|f(X2) — f(X2)| <r|X2— X2=28) = W(3).

Thus (8) will hold if, for eachr > 0, W () is a decreasing function & > 0.
Now X> and X can be written as' + 7" andS — T whereS = (X2 + X2)/2 and
T = (X2 — X2)/2. Note that, by normality ok, S andT are independent. Hence,

W) =Pr(|f(S+T)— fS=T)|<r|T=8)=Pr(|f(S+8) — f(S—=8)| <r).
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So for this specialization of our location structure we only need to verify

|f(S+681) — f(S =81 <a [f(S+82) = f(§S—62)]

for S ~ N(0,1/2) and for any O< 81 < §2. The following examples both reduce
to verifying this inequality.

ExAMPLE 3.1. Suppose thaf(x2) is a continuous and monotone function
which without loss of generality can be assumed to be monotone increasing.
Then for anydy < 82, |f(s + 81) — f(s — 81| <a |f(s +82) — f(s — 82)|.

To see that the strict inequality<(;) holds, letr be a real number in the set
{f(s +81) — f(s — 81):s € R}. By continuity there is arng such thatf (so +
81) — f(so — 61) =71 < f(so + 82) — f(so — 82). Hence, in the neighborhood
of (so — 1,50), f(s +381) — f(s —61) <r < f(s +382) — f(s — 8§2). Writing
|f(S+8)— f(S—38) asR(8), we have

Pr(R(81) <r) =Pr(R(81) <r, R(82) <r)+Pr(R(81) <r, R(82) >r)
=PrR(82) <r)+Pr(R(81) <r,R(82) > r).

Because the s¢t: R(51) < r, R(82) > r} contains an open interval, @&(1) <r,
R(82) > r) > 0, and consequently BR(81) < r) < Pr(R(82) < r). Because
Pr(R(81) <r) — Pr(R(82) <r) is continuous irr, this inequality holds in an open
interval around-, which has positive Lebegue measure.

EXAMPLE 3.2. Let f(x2) = (x2 — a)?. Example 2.1 is a special case of this
regression with: = 0 ande ~ N (0, o). In this caseR(s; §) = 4|s — a|s. Hence
for 0 <81 < 82, R(s; 81) < R(s; 82) for all s. By an argument similar to the one in
Example 3.1, it is easy to see thR(S; §1) <4 R(S; 82).

4. General contour regression.

4.1. Estimation. The idea underlying SCR is to use the inequality- Y| < ¢
to identify vectors aligned with the contour directions. However, this inequality
also picks up other directions when the regression function is nonmonotone.
Under ellipticity such directions are averaged out, so that the method remains
J/n-exhaustive. Nevertheless, these “wrong” directions do tend to decrease
efficiency by blurring up the *“right” ones. In other words, the inequality
|Y — Y| <cisnot a very sensitive contour identifier for nonmonotone functions—
even though it is sufficiently sensitive to maintajm-exhaustiveness. We now
illustrate this point using the regression in Example 2.1.

To construct the left panel of Figure 1, we generated twenty observations
(X;,Y),i=1,...,20, according to the regression in Example 2.1, with 0.3.
We then used the threshold value- 0.5, connecting by a solid line segment any
two pointsX;, X ; e R? satisfying|Y; — Y;| < 0.5. Roughly speaking (note that we
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Fic. 1. Directionsidentified by |[Y — ¥| < ¢ (left panel)and those identified by V (X;, Xj,p)<c
(right panel).

have ignored the rescaling issue which has little bearing on this discussion), SCR
picks up the contour directions by a principal component analysis of the vectors
represented by these line segments. We see that, though most of the segments are
horizontal (i.e., aligned with the true contour direction), there are a considerable
number of segments pointing to arbitrary directions. This is because the response
surface isU-shaped and the inequality; — Y;| < 0.5 does not discriminate
between the segments aligned with the contour and those acrogsshaped
surface that also have small increment¥’inThough the arbitrary directions tend
to average out due to the ellipticity of the distributionof they make the picture
less sharp and the method less efficient.

To overcome this drawback we replace the contour identifier Y;| <c by a
more sensitive one. Consider the variance’adlong the line throughy; andx;.
Formally, leté(s; x;, x;) = (1 — t)x; + txj, t € R, be the straight line that goes
throughx; andx;, and define

V(xi,xj)=varY|X = £(t; x;, xj) for somer).
For a more concrete expression, l&tx;,x;) be the p x (p — 1) matrix
(81, ...,68,—1) whose columns form a basis iix; — x;)*. Then V(x;i,x;) can
be re-expressed as
(11) V(xi,x;) =var(Y 8" (xi, x )X =87 (x;, xj)xi).

We will aim at identifying contour vectors by the smallness of this conditional
variance.

The next task is to construct a sample estimaté @f;, X ;). We will denote the
line £(-; X;, X ;) by £(X;, X ;). For anyXy, letd (X, £(X;, X)) be the Euclidean
distance betweeR and the line/(X;, X ;); that is,

d(Xi, (X, X)) = r,];iHQ”Xk —L(t; Xi, X )l
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where| - || stands for the Euclidean norm. Becaugé, — £(t; X;, Xj)||2 is a
guadratic function of, this minimum distance can be expressed explicitly as

«n—&ﬂarxmqm
1X; — X; 12 '
For anyp > 0, we define the tube of radiysconnectingX; and X ; to be the set

Cij(,o) = {ind(Xk,ﬁ(X,',Xj)) <p,k= l,...,n}.

d(Xe, 6(Xi, X)) = [IIXk - Xil* -

According to this definition, each tube contains at least two points in the sample.
Next we estimate the variance Bfalong these tubes. Let; (o) be the number of
points in the tube”;; (p), and let

1

V(Xi, Xj;p) =

> - Z‘j(p))z,

7ij () x, &y

whereY;;(p) =

Z Y.

7ij(P) x, & o)

We can now identify the contour directions by the smallnes@(dfi, Xj:p).

Plotted in the right panel of Figure 1 are the same sample points as in the
left panel, but with the line segments picked up ByX;, Xj;p) <c, where
¢ =0.5andp = 0.3. We can see that many of the segments pointing to random
directions in the left panel have been removed. To get a quantitative comparison,
we calculated the first principal component for the line segments in each panel,
which equalg0.9169 0.3991)7 for the left panel and0.9991 —0.04197 for the
right panel. The latter is much closer to the directi@n0)”, the population vector
orthogonal tosy,x.

We now construct the estimator 6fx. Along lines similar to those followed
in Section 2, we standardize the predictor observations; te £~ Y2(X; — 1),
and form the matrix

_ 1 A~ A A
12)  F=m Y Zj=Z)Z;-Zd"1(V(Zi, Zj; p) <0),
(2) (i,j)eN
where N is the same index set as used in (4). The maffix) takes the place
of S~Y2H(¢)E~1/2 for the simple contour regression. As in SCR, we take

the spectral decomposition df(c), and usey,+4-1,-- -, ¥p, the eigenvectors
corresponding to the smallegteigenvalues, to form
/:g\YIX = spar{f’l/zﬁp_qﬂ, R 271/2)7[7).

Regarding the choice aof, comments similar to those made at the end of
Section 2.3 apply here. In particular, as a rule of thumb we propose to use 5%
to 15% of the(}) empirical directions.
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4.2. Population-level exhaustiveness. Assume thafX is already standardized
to E(X) =0 and vatX) = I, (so Z is X itself). The population version of the
matrix F'(c) in (12) is

FO)=E[X-X)X-X)TI1(V(X,X)<c)],
which is proportional to the matrix
G)=E[(X-X)X-X)T|V(X,X)<c].

Here we will demonstrate that, for sufficiently smallthe eigenvectors corre-
sponding to the smallest eigenvalues ofz(c) spandy,x. For this purpose we
introduce an assumption that parallels Assumption 2.1. Ag&irY) indicates an

independent copy afX, Y).

AssUMPTION4.1. For any choice of vectoise 8y x andw € (5Y|X)l such
that|v|| = ||lw| = 1, and some constant> 0, we have

(13)  vafw! (X — X)|V(X, X) <c] > vafv! (X — X)|V(X, X) <c].

The interpretation of this assumption is similar to that of Assumption 2.1,
except thatV (X, X) replaces|Y — Y| as the measure of variation af along
the line throughX and X. We now deduce population exhaustiveness under
this assumption. Once again we do so for a spherical predictor without loss of
generality.

THEOREM4.1. Supposethat X has an elliptical distribution with E(X) =0
and var(X) = I,. Then, under Assumption 4.1, the eigenvectors of G(c) corre-
sponding to its smallest ¢ eigenvalues span the central subspace $y/x .

The proof of this theorem is similar to that of Theorem 2.1 and will be given
in the Appendix. The generalization to an arbitrary elliptical distributionXds
similar to Corollary 2.1 and will be omitted.

We expect,/n-consistency to hold also for GCR estimation. However, the as-
ymptotic analysis is substantially more complex than for the SCR case, because the
estimator cannot be rendered directly dg-atatistic. Alternative techniques must
be developed for such an analysis. In this paper we will not pydveonvergence
rate for GCR, but will back up our claim by simulation in Section 6.

4.3. SQufficient conditions for exhaustive estimation. Next, following a reason-
ing similar to that in Section 3, and again in reference to the location structure
in (7), we derive a sufficient condition for Assumption 4.1.

Note that, since§y|x = sparn(f), for ap x r matrix$ (r < p) we will have

(14) var(f (BT x)187 X) > 0

unless spaiB) C spar(s); thatis, f (87 X) is not a function o8’ X unlesss spans
a space containing the central subspace.



CONTOUR REGRESSION 1599

THEOREM4.2. Supposethat X hasan elliptically contoured distribution with
E(X) =0 and var(X) = I,, and that model (7) holds. Then Assumption 4.1
is satisfied for all sufficiently small ¢ > 0 for which {(x,x):V(x,Xx) <c} isa
nonempty set.

PROOF  We first show thaV (x, ¥) > o2 for all x andx and that equality holds
for somex andx, so that, whenever > o2, {(x, ¥): V(x,%) < ¢} is nonempty.
Let § be anyp x r matrix with » < p. Becauses IL (87 X, 87 X), we have by
Lemma 2.1(cB” X 1L ¢|87 X. Hence

var(Y 8T X =) =var(f (BT X)|sT X =1) + vare|sT X =1)
=var(f(BTX)18TX =1) 4+ o2,

where for the second equality we have used the independence betvaedrX .
Now take § = §(x, %) and ¢t = 87 (x, ¥)x, wheres§(x, %) is as defined above
display (11). We see that(x, ¥) > o2, and that equality holds whenever — x)

is orthogonal to spas) = Sy x. With this in mind the assertion of the theorem
can be rewritten as: if € 8y|x andw € (5Y|X)i, then for sufficiently smakt > 0

(15)

vafw! (X = X)|V(X, X) <02+ 1] >vafv! (X = X)|V(X, X) <o?+1].
By the definition of conditional expectation,
Iirirg)var[(f( —X)IV(X,X) <o’ +t]=val(X — X)|V(X, X) =02].
T

Hence if we can show that
(16) varfv! (X — X)|V(X, X) =0o?] <vaiw! (X — X)|V(X, X) =02],

then the inequality will hold for all sufficiently smatl > 0, proving the theorem.

To prove (16), note that (15) also implies that @&’ X = 1) = o2 if and
only if var(f (87 X)|8T X =) = 0. However, because of (14), this will happen
if and only if sparif) C sparns). Takings = §(x, ¥) andr = 87 (x, X)x, we see
that V (x, ¥) = o2 if and only if sparif) C spané(x, ¥)), which is equivalent to
(x — x) L span(B). Hence the left-hand side of (16) equals 0.

It remains to show that the right-hand side of (16) is positive. First, note that the
roles of X andX are exchangeable, and hence

E[(X = X)IV(X,X) =03 =E[(X - X)|[V(X, X) =02].

However, by the definition oV (x, x), V(x,x) = V(x,x) for all x andx, and
hence

E[(X - X)IV(X,X)=0c%1=E[(X - X)|[V(X,X)=02].

It follows that both sides of this equation must be 0, and so the right-hand side
of (16) reduces t&[(wT (X — X))?|V (X, X) = o2]. If this quantity were 0, then
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w! (x — ¥) = 0 wheneverV (x, ¥) = o2, which holds wheneveg” (x — ¥) = 0.
Because the support & is spherical,(x — x) can run through every direction
in R”. Hence spafB) c spar(w)’, or equivalentlyw e span(g), which is a
contradiction. O

The conditions in Theorem 4.2 are much weaker than those in Theorem 3.1.
Predictor ellipticity and the structure in (7) are postulated in both cases. However,
constant conditional variance (Assumption 2.2) is not required in Theorem 4.2,
and essentially no requirement is posed on the behavior of the mean function
and the error term in (7). Thus, GCR will be exhaustive under settings even
more general than those required by SCR. Intuitively, this is beciise X)
possesses stronger discriminating power than- Y|: it can identify the contour
vectors of any functiorf (87 X), as long as the latter genuinely depends on all the
components o’ X [which is the case because of the minimality of the central
subspacey|x = spar(f) discussed in Section 1].

As mentioned at the end of Section 2.4, we now briefly discuss differences
between contour regression methods and SAVE. First, in Section 3 and this
section we have shown that SCR and GCR are guaranteed to be exhaustive under
population-level conditions much milder than the ones assumed for exhaustiveness
of SAVE. Second, contour regression methods break the barriers of slices, making
more efficient use of data. In comparison, slice-based methods such as SAVE
cannot exploit interslice information. Third, whereas the construction of SCR is
somewhat similar to that of SAVE, and we suspect the gain in accuracy of SCR
(which will be demonstrated by simulation) to be largely due to its efficient use of
interslice information, GCR differs more intrinsically from slice-based methods:
it employs a more sensitive contour identifier, and is thereby capable of picking
up directions not easily detected by SAVE or SCR when the regression surface is
complex. In Section 6 we show by simulation how this leads to improved accuracy
in estimating the central subspace.

5. Robustness against nonellipticity. The population exhaustiveness of our
contour-based methodology relies on ellipticity of the predictor distribution. This
is because in the theoretical development we have treated the consta(y)
and (12) as fixed with respect to the sample siz&llipticity of the distribution
of X helps to balance out the effect of line segments that are not aligned with
the contour directions. As mentioned in the Introduction, ellipticity requirements
are ubiquitous for global methods such as OLS, SIR, PHD and SAVE. They are
adopted to guarantee linear relationships among predictors, which in turn are
needed for the methods to estimate directions within the central subspace.
When the number of predictogs is relatively small, diagnosing and remedying
departures from ellipticity is relatively straightforward—in practice, scatterplot
matrices are used to search for marked curvatures, and predictor transformations or
data reweighting to mitigate such curvatures [4, 6]. However, especially wigen
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large, diagnosing and remedying departures from ellipticity becomes laborious and
complicated.

Notwithstanding the theoretical requirement, contour regression methods (es-
pecially GCR, whose contour identifier is more sensitive) can perform well even
under violations of ellipticity. In Section 6 we will address this robustness by sim-
ulation; here we motivate it from a theoretical viewpoint. We will show that, pos-
tulating again the location structure in (7), the eigenvectors corresponding to the
smallestp — ¢ eigenvalues of the matrix

A=E[X-X)X-X)T|V(X,X) =07

span the orthogonal complement of the central subsgdeey)*, even whenX

is not elliptical. This suggests that if we letdecrease to2 asn increases, then

the eigenvectors corresponding to the smalestq eigenvalues o (c) in (12)

(after appropriate transformation By~1/2) will tend to recover the whol&yx,
regardless of the shape of the distribution)afIn practice, if we make small

[i.e., close to the smallest value &f(Z;, Z;; p) in (12)], then GCR is likely to
estimate the central subspace exhaustively and effectively even if the sh&pe of
does not help the process by averaging out erroneous directions, as is the case
under ellipticity.

THEOREM 5.1. Suppose that model (7) holds and that X is a continuous
random vector with an open support X C R”. Thenthe matrix A hasexactly p — ¢
zero eigenvalues, and their corresponding eigenvectors span (48y| x)T. In symbols,

ker(A) = 8y x,
where ker(A) = {h € R”: Ah = 0} isthe kernel of A.

PROOFE Note that(f( X) is orthogonal to spam) = 4y x if and only if
spanB) C spané(X, X)), which, by the argument following (15) happens if
and only if V(X, X) = ¢2. Thus, conditioning onV (X, X) = 62, (X — X) is
orthogonal to spais). It follows that, wheneveh belongs to spe(mi), Ah =0,
and thus spai) C ker(A).

Conversely, supposebelongs to ketd). Then

h" Ah = E[(h" (X - X)))|V(X. X) =0?] =0.

Thus, wheneverV (X, X) =02 his orthogonal to(X — X). Equivalently,
whenevern X — X) is orthogonal to spaiB), (X — X) is orthogonal ta:. In other
words, if we letX* ={x —x:x € X, x € X}, then

X* N (span(B)t C X* N (sparth))=.

However, becaus¥ is an open set}(* is an open set containing 0. By Lemma A.1
in the Appendix (spar8))*~ C (sparh))*, or equivalentlys € sparg), as
desired. O
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Intuitively, the theorem shows that tloaly directions(x — x) along which the
varianceV (x, x) achieves its minimum are those aligned with the contour. This is
largely due to conditioning on the conditional variance, a population quantity. An
analogous result cannot be derived for SCR.

Theorem 5.1 also suggests that, when we are not confident about the ellipticity
of the distribution ofX, we should use a stricter thresholding in the analysis [i.e.,
choose a small value af, or include a small proportion of th§) empirical
directions]. This makes contour regression estimators more similar to kernel
estimators, whose consistency depends on the kernel width approaching 0 as
n — oo. We will return to this point in the Conclusions.

6. Simulation results. We now compare the performance of both versions of
contour regression, SCR and GCR, with that of well-known dimension reduction
methods ensuring/n-consistency, such as OLS, SIR, PHD and SAVE. For such
comparisons, we need to introduce a measure of distance between two subspaces
of R”. Let 8; and 8, be twog-dimensional subspaces Bf and letPs,, Ps, be
the orthogonal projections on#y and 4,, respectively. We use the distance

dist(81, 82) = | Ps, — Ps,

’

where|| - || is the Euclidean norm, that is, the maximum singular value of a matrix.

In the following, we present five examples covering a range of possible
regression contexts. For both SCR and GCR we need to determine the number of
empirical directions to include in the principal component analysis, and for GCR
we also need to determine the tube ragiu$hough in this paper we will not deal
with the optimal choice of these numbers, related issues will be discussed to some
extent in the examples.

In the first three examples the sample sizeand dimensiorp are relatively
small, whereas in the last two examples they are much larger. Instead of using
a fixed ¢ for thresholding, we fix the proportion of the number of empirical
directions with smallest variation (absolute response differences for SCR or tube
variances for GCR) relative @), the total number of empirical directions. For the
first three examples we use= 64n/(5) for SCR and- = 2gn/(5) for GCR, and
usep = 1 for GCR. For the last two examples we use 5% for both SCR and
GCR andp = 2 for GCR.

ExXAMPLE 6.1. Consider the regression

a7 Y =X24 Xa 4o,

where X ~ N(0, 1), so that predictor ellipticity holds; ~ N(0,1) ande AL X.
Here the central subspace is of dimensipog 2 and is spanned by the vectors
(1,0,0,007 and (0, 1,0,0)”. We compare SCR and GCR with SIR, SAVE and
PHD using three different values of the error standard deviatiens: 0.1, 0.4
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and Q8. Because OLS can pick up at most one direction, it is not included in this
comparison. For each value efwe draw 500 samples of size= 100, and on

each sample we apply the five methods to produce five estimatég of Next

we compute the distance between these estimates and the true central subspace
according to the definition at the beginning of this section. Finally, we compute

an average and a standard error from the resulting 500 distances, far @attre

and estimation method. Results are presented in Table 1 (DIST and SE columns
correspond to average and standard error of the distances, resp.).

The numbers in Table 1 indicate that both SCR and GCR outperform SIR,
SAVE and PHD in this example. Intuitively this is because SIR does not perform
well when there is no linear trend, thus failing to pick up the second direction
(0,1,0,0)7, whereas PHD, and to a lesser extent SAVE, do not perform well
when there is no quadratic trend, thus failing to give accurate estimates of the
first direction(1, 0, 0, 0)”. In contrast, both SCR and GCR, as also demonstrated
theoretically, provide comprehensive estimates of the central subspace. Note that
SAVE performs better than SIR and PHD—by inspecting a few typical cases
(results not presented) we find that SAVE does a better job at picking up the linear
trend than PHD. Nevertheless, it is much less accurate than SCR and GCR. From
the table we can also see that GCR generally outperforms SCR.

In the next example predictor ellipticity is maintained, but the comparison is
based on a more complex regression surface in which linear and quadratic trends
are not neatly separated along two coordinate directions. In this more complicated
case, SIR, SAVE and PHD can also detect both directions.

EXAMPLE 6.2. Consider the regression
Y =X1/(0.5+ (X2415)%) 4+ (1+ X% + o,

whereX ande are as defined in Example 6.1. Here, agais; 2 and the central
subspace is spanned by the vecid®, 0,0)” and(0, 1, 0, 0)”. We explore again
the same grid of values far, using the same number of samples and sample size

TABLE 1
Comparison of SCR, GCR and other methods for Example 6.1

SCR GCR SIR SAVE PHD
o DIST SE DIST SE DIST SE DIST SE DIST SE

01 023 011 016 0.07 078 024 043 025 080 021
04 025 011 020 008 079 023 054 027 079 021
08 031 013 032 016 080 023 073 025 079 021
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TABLE 2
Comparison of SCR, GCR and other methods for Example 6.2

SCR GCR SIR SAVE PHD
o DIST SE DIST SE DIST SE DIST SE DIST SE

01 044 025 028 015 039 021 061 026 071 0.25
04 047 025 033 018 040 021 065 026 070 0.25
08 054 026 045 025 049 024 073 024 073 0.24

as in Example 6.1. Results are presented in Table 2.

We see that there is still a substantial improvement by GCR over SIR, SAVE
and PHD. SIR slightly outperforms SCR, but the latter is much more accurate than
SAVE and PHD.

In Section 5 we provided a population-level argument for the robustness of GCR
against nonellipticity of the distribution of. In the next example we compare
GCR with OLS, PHD, SIR and SAVE when the distributionXofis not elliptical.

ExXAMPLE 6.3. Consider the regression
Y =sif(r X2+ 1) +oe,
with predictorX e R* uniformly distributed on the set
[0,1]1*\ {x e R*:x; <0.7,i = 1,2, 3,4},

which defines a four-dimensional cube with a corner removed (this expedient is
used to create an obvious asymmetry in the predictor distribution). We take again
e~ N(0,1) ande 1. X. Here, the central subspace is of dimensjos 1 and
is spanned by the vecta, 1,0, 0)”. We perform the comparison once again
drawing 500 samples of size= 100 for each value = 0.1, 0.2 and 03. Results
are presented in Table 3.

We see that GCR achieves a substantial improvement over OLS and PHD, and
a modest one over SIR and SAVE. It also appears that SIR and SAVE are more
robust than OLS and PHD against departures from ellipticity of

TABLE 3
Comparison of GCR and other methods for Example 6.3

GCR OLS PHD SIR SAVE
o DIST SE DIST SE DIST SE DIST SE DIST SE

01 010 005 017 o007 024 010 013 0.06 014 0.08
02 012 006 019 009 029 012 0.18 008 0.22 0.12
03 020 014 022 010 036 016 022 010 034 0.20
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Next we compare contour regression methods with existing methods on
instances where both the predictor dimensjioand the sample size are much
larger than in the previous examples.

EXAMPLE 6.4. We consider two cases with predictor dimensgiog 10. We
start with the regression

(18) Y =cog3X1/2) + X3/2+ o,

where X = (X1,..., X107 ~ N(0O, I10), ¢ 1L X ande ~ N(0, 1). The central
subspace has dimensigr= 2 and is spanned b1, 0, ..., 0)” and(0, 1,...,0)7.

As in Example 6.1, OLS is not considered in the comparison, as it can only
detect one direction. The error standard deviatiors fixed at 01, 0.4 and 08

as in Examples 6.1 and 6.2, and for each such value we draw again 500 samples.
Because of the increased dimension we now use a larger sample si&§0. The
coefficients of the two terms c(®X/2) and X% are chosen so that the “signal”

for Xg is strong for allo values, while the “signal” for cq8X1/2) is relatively

weak foro = 0.8. In this fashion, we can gather a sense of how the form of the
regression function affects the performance of the various methods.

For both SCR and GCR we use= 5% of the 500« 499/2 = 124,750 empirical
directions(X; — X ;) with the smallest; — Y;| or V(Z;, Z; p). For GCR the tube
size is taken to b = 2. Results are presented in Table 4.

Foro = 0.1, 0.4, both SCR and GCR, and especially GCR, achieve a marked
improvement over the other methods. Foe= 0.8, though GCR still achieves
some improvement, the accuracy of SCR is comparable to that of other estimators,
indicating that under this level of noise the signal of &3&/2) has dropped
below the level detectable by most methods. We also observe that with sample
sizen = 500 the accuracy of SAVE has significantly increased compared with the
previous examples where= 100, suggesting that the relatively low accuracy of
SAVE in the previous examples is probably due to its efficiency rather than the
lack of population exhaustiveness.

The choice ofp = 2 (compared to 1 used in the previous examples) is linked
to the increased dimensionality: for large observations become sparse, and
a thicker tube is needed to capture enough points. Experiments with numerous

TABLE 4
Comparison of SCR, GCR and other methods for Example 6.4, regression (18)

SCR GCR PHD SIR SAVE
o DIST SE DIST SE DIST SE DIST SE DIST SE

01 041 012 035 007 102 020 127 018 045 0.12
04 063 022 045 011 104 021 128 018 0.80 0.29
08 104 027 08 020 107 022 131 014 135 0.17
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regression specifications invariably indicate that GCR with a relatively large tube
size achieves outstanding improvements in accuracy. To benchmark the effect of
the following simple quantity is useful: Let;, X2 and X3 be three independent
observations from aw (0, I10), and consider the probability df3 falling within

the tube throughX, and X, with p = 2. This probability is easily computed by
simulation. From 500,000 simulated replicatestaf X2, X3 we find that

Pl’(d(Xg, £(X1, Xz)) < 2) ~ 2.37%

Thus for sample size = 500 there are on average+211.85~ 14 observations
in each tube. In contrast, if we talke= 1 the probability falls to approximately
9.4 x 10°°, and the expected number of observations in each tube is 2.047,
essentially equivalent to SCR.

Next, to confirm these results, we consider again the simpler regression in (17)
and keep all the specifications of Example 6.1, except for taking N (0, I10),
n =500,r = 5% andp = 2. Results are presented in Table 5.

We see that the broad patterns in Table 4 are confirmed, but the improvement by
SCR and GCR appears to be more significant. The accuracy of SCR compared with
GCR is increased somewhat, probably due to the simpler form of the regression.

In the next example we compare the performance of the above methods when
the structural directions are determined by the variance, rather than the mean,
function. This example demonstrates that, although the location structure (7)
was postulated in deriving sufficient conditions for exhaustive estimation and
robustness against nonellipticity, contour regression methods can be very effective
also for regressions that are not based on location.

ExAMPLE 6.5. We consider the regression
Y = 3(X1—a),

where X ~ N(0, I1g), € ~ N(0,1) and ¢ 1L X. Here the central subspace has
dimensiory = 1 and is spanned byt, 0, ..., 0)”". The variance of is a quadratic
function of X; centered atz, which is fixed ata = 0,0.5, 1. Once again we
generate 500 samples of size= 500, and use = 5% for SCR and GCR and

TABLE 5
Comparison of SCR, GCR and other methods for Example 6.4, regression (17)

SCR GCR PHD SIR SAVE
o DIST SE DIST SE DIST SE DIST SE DIST SE

01 034 007 031 006 134 012 141 004 047 0.23
04 036 007 036 007 135 011 141 004 080 0.36
08 044 009 049 010 134 011 141 004 135 013




CONTOUR REGRESSION 1607

TABLE 6
Comparison of SCR, GCR and other methods for Example 6.5

SCR GCR PHD SIR SAVE
a DISsT SE DIST SE DIST SE DIST SE DIST SE

00 134 012 134 011 152 013 163 019 135 0.14
05 13 010 134 011 155 015 137 011 138 0.11
10 135 011 134 011 159 014 135 011 144 0.14

o = 2 for GCR. Table 6 contains results for the comparison of SCR, GCR, PHD,
SIR and SAVE. Cook and Li [5] proved that both OLS and PHD operate within the
centralmean subspace, and are therefore incapable of estimating a direction that
only appears in the variance function. We include PHD in the comparison to serve
as a benchmark for our subspace distance statistics.

Table 6 shows that contour regression methods are indeed capable of estimating
the variance function direction, because their accuracy is much higher than the
benchmark accuracy of PHD. Overall, the accuracy of SCR and GCR is similar
to that of SIR and SAVE. We also observe that wheis small, SAVE is more
accurate than SIR, and the opposite is true whierlarge. The accuracy of contour
methods does not appear to depend markedly. dris also worth mentioning that
the errors in Table 6 are significantly larger than those in the previous examples
regardless of the method used. This simply reflects the fact that estimating variance
structures is more difficult than estimating mean structures.

Finally, we come to the issue of estimating the structural dimengioAs
mentioned in Section 2.4, we believe that an asymptotic test for SCR can be
developed along the same lines employed by existing methods such as SIR and
PHD, though this will require work beyond the scope of the present paper. The
development of an asymptotic test for GCR would hinge on an asymptotic analysis
of the GCR estimator, which has not been pursued here. Nevertheless, we can
empirically assess the capability of SCR and GCR to estimdby examining
how much the eigenvalues corresponding to the central subspace are separated
from those corresponding to its complement (i.e., the contour space).

For SCR we use the matrix

(19) 21, — £7YV2K ()72,

This is the sample version of the population matriy 2 £~1/2K (¢) £ ~Y/2. From
Theorem 2.3 we know that the eigenvalues of the population matrix corresponding
to contour directions are identically 0 and those corresponding to the central
subspace are strictly positive. Thus we expect the eigenvalues of the sample
matrix (19) to behave similarly. We consider again the simulations for regressions
(18) and (17) in Example 6.4, with = 0.4. We compute the ten eigenvalues of the
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matrix (19) for each of the 500 samples, §ayl, . ig,lo. From each of the ten
sets of simulated eigenvalugy , ..., As00,}, j = 1, ..., 10, we then compute
an averagé..; and a standard errdy. These numbers are shown in the two SCR
columns of Table 7.

For GCR we use the matrix

Goy= > Zi-Z)Zi—-Z)"

(i,j))eN

where the index seV is as defined in (4). This matrix is proportional f(c)

in (12), rescaled so that it estimatE§(Z; — Z;)(Z; — Zj)T| |I; — 1j] <c]instead

of E[(Z; — Z))(Z; — ZJ-)TI(|Ii —1j| < ¢)]. Though we did not prove a theorem

for GCR analogous to Theorem 2.3, we mimic the SCR case and compare the
eigenvalues of B, — G(c) (it is the separation of eigenvalues that matters here).
The simulation averages and standard errors of these eigenvalues over 500 samples
for regressions (18) and (17) (with= 0.4) are shown in the two GCR columns

of Table 7.

From Table 7 we see that for both methods, and in both regressions, the
eigenvaluedg ; andi1o ;, which correspond to vectors in the central subspace, are
significantly larger than the other eigenvalues. Furthermore, the contrast between
Ag j and)qoj and the remaining eigenvalues appears to be stronger for GCR than
for SCR, suggesting that GCR is more sensitive in identifying the central subspace.

TABLE 7
Averages (EVAL) and standard errors (SE) of eigenvalues from SCR and GCR

MODEL | MODEL |1
EVAL (SE) SCR GCR SCR GCR

i1 (F) -0.26 (005) —055(012) —0.23(004) —0.48(011)
P2 (32) -0.18(004) —037(010) —0.15(004) —0.32(009)
i3 (3) —0.11(004) —0.23(008) —0.09(003) —0.21(008)
ia (24) —0.05(004) —0.11(008) —0.04(003) —0.10 (007)
35 (%5) 0.01(004)  000(007)  002(004) 000 (0.06)
i (26) 007 (004)  011(007)  007(004) Q10 (Q07)
7 (37) 0.14(004)  023(008)  013(004) 020 (007)
ig () 0.23(005)  037(008)  021(005)  033(007)
3.9 (3 041(008)  091(011)  072(007) 108 (007)
10 (F10) 1.17(006)  123(007)  114(007) 121 (007)

MODEL | is regression (18) witlw = 0.4, and MODEL Il is regression (17)
with o = 0.4 and a ten-dimensional predicta
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7. An application. We consider a data set concerning the effect on soil
evaporation of various air and soil conditions such as temperature, humidity and
wind speed ([12]; it is available in th&rc package—see http://www.stat.umn.edu/
arc/software.html). There are = 10 predictors: average daily air temperature
(Avat), area under the daily humidity curve (Avh), area under the daily soail
temperature curve (Avst), maximum daily air temperature (Maxat), maximum
daily humidity (Maxh), maximum daily soil temperature (Maxst), minimum daily
air temperature (Minat), minimum daily humidity (Minh), minimum daily soil
temperature (Minst) and total wind speed in mjlesur (Wind). The response is
daily soil evaporation (Evap). The data are collected over a period of 46 days, but
do not show any obvious serial dependence. Hence for simplicity we treat the data
as independent replicates with= 46.

Figure 2 is the scatterplot matrix of the ten predictors, which does not seem
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FIG. 2. Scatterplot matrix for the predictorsin the soil evaporation data.
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to suggest serious departures from ellipticity. Furthermore, simultaneous Box—
Cox transformations of these predictors do not lead to significant improvements
in ellipticity. Hence we use the untransformed predictors for our analysis. We
apply both SIR and GCR to the data, using the negative Evap @ke two upper
panels of Figure 3 are the scatterplotofersus the first two SIR directions, SIR1
and SIR2, on the standardized scleThe scatterplot fot’ versus SIR1 (upper-

left panel) shows a strong monotone trend which is almost linear. In contrast,
the scatterplot ot versus SIR2 (upper-right panel) does not show a detectable
pattern. The two lower panels of Figure 3 are the scatterplo¥swarsus the first

two GCR directions, GCR1 and GCR2, on the standardized <alEhe plot

for Y versus GCR1 (lower-left panel) also shows a clear monotone, but slightly
nonlinear, trend. What is interesting, however, is that the scatterplbtwarsus
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FiG. 3. Scatterplots of the response (—Evap)versusthe first two SR directions (upper panelsand
the first two GCR directions (lower panelsfor the soil evaporation data.



CONTOUR REGRESSION 1611

GCR2 (lower-right panel) suggestdashaped pattern. A three-dimensional spin
plot of Y versus (GCR1, GCR2) shows a mean surface that, roughly speaking, is
folded in the GCR2 direction and tilted upwards in the GCR1 direction. In the
Y-versus-GCR2 scatterplot, five points (labeled by’ sit above theU-shape

near GCR2= 0, appearing to weaken tlie-shaped pattern. However, these points
are far out in the direction of GCR1 with high valuesiofcorresponding to the

five points labeled by-" in the perspective scatterplot in Figure 4.

Because in this data spt= 10 andn = 46, as discussed in Section 6 (following
Example 6.4) we need to choose a rather large ragdioscapture enough points in
each tube. For this application of GCR we ugeg 3.5 (on theZ-scale) and 15%
of the (%) = 1035 pairs (i.e., 155 pairs) of points among whittZ;, Z;; p = 3.5)
are the smallest. For SIR we used six slices defined so as to contain roughly the
same number of points.

Although without a formal testing procedure we cannot yet determine the
statistical significance of GCR2, the 2D and 3D scatterplots from our GCR analysis
do suggest that a second direction might be relevant in the evaporation data. Due to
its small sample size relative to the dimension of the predictor, this example does
not allow us to draw strong conclusions, but it demonstrates once again that GCR is
more sensitive than classical methods in detecting complex regression surfaces—
in this instance monotone in one direction atidshaped in another. This was
anticipated by theoretical analysis in Section 4 and supported by simulation studies
in Section 6.

m GCR1

FiG. 4. Aview of the 3D plot of the response (—Evap)versus the first two GCR directions in the
soil evaporation data.
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8. Conclusions. The contour regression methods introduced in this paper
have strength in several aspects. First, under mild conditions they achieve
exhaustive estimation of the central subspace at {heconvergence rate.

In comparison with existing global estimators such as OLS, PHD and SIR,
contour regression estimators are more comprehensive, capable of picking up all
directions in the central subspace without relying on special response patterns
(e.g., monotone ot/ -shaped trends). In particular, GCR achieves exhaustiveness
essentially without any assumption other than that of ellipticity of the distribution
of X. Second, by design contour regression methods are capable of exploiting
interslice information which is not accessible to methods based on slicing. This
partly explains their improved accuracy over SIR and SAVE, which we have
discussed from an analytical standpoint and documented through simulations. In
fact, we think that the advantage of contour methods over SAVE is due to the
gain in efficiency such as achieved via the use of interslice information, and not
the structural inability of SAVE to capture linear trends. Third, GCR achieves a
degree of robustness against nonellipticity of the distributioX olin this respect
contour regression is akin to the adaptive methods mentioned in the Introduction.
Unlike adaptive methods, however, contour methods are computationally simple,
the level of computational burden being essentially that of principal component
analysis. In particular, they do not require iterative maximization of a multivariate
nonparametric function, which can be a substantial advantage, especially if the
dimension is large, or if multiple local maxima are present in the iterative
maximization.

Because contour vectors are extracted according to a threshold on response
variation, our methods are logically analogous to a one-dimensional kernel or
nearest-neighbor estimator. If the distribution of the predidids elliptical, the
threshold need not go to zero in our asymptotic arguments for SCR, which makes
it possible to achieve thg/n-rate regardless of the dimensiopsandg. In this
respect contour regression is similar to traditional global methods such as OLS,
PHD, SIR and SAVE. However, if ellipticity fails and/or is difficult to establish
through predictor transformations, we can employ a relatively small threshold,
operating in a spirit more similar to that of adaptive methods.

We do not claim that contour regression estimators will outperform other
methods under all circumstances. For example, OLS is the maximum likelihood
estimator if the regression surface is linear and the error term is normal, and tends
to perform very well if the surface is nearly linear or clearly monotone. Similarly
favorable circumstances exist for PHD, SIR and SAVE as well.

The ideas of contour regression raise many questions that have not been
addressed within the the scope of this paper. In particular, the asymptotic properties
of GCR, as well as test statistics for estimating the structural dimegsioave not
yet been developed. We do expect tyat-convergence can be achieved by GCR if
the threshold is taken as fixed, because this in effect includes in the computation
a number of line segments proportional to the total number of observation pairs.
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We also expect that test statistics for determinjngan be constructed based on
Theorem 2.3, along lines similar to those in [2, 14]. Also, we have not provided a
systematic method for choosing the thresholding constéotthe ratior) for SCR

and GCR, as well as the tube radipdor GCR, which should ideally be based

on data-driven criteria. Other useful developments will concern the asymptotic
behavior of GCR when the threshoidis allowed to go to zero as the sample
sizen tends to infinity. Theorem 5.1 suggests that even without ellipticity tfe
correct asymptotic behavior would still be guaranteed. However, in this case we do
not expect a/n-convergence rate—at least not for all structural dimensions. To
further improve efficiency it may be helpful to experiment with windows other
than the current rectangular ones in selecting contour vectors. It may also be
possible to apply an idea similar to local linear regression [11] to correct the
possible edge effect caused by the line segments lying in the outskirts of the data
cloud. Another worthwhile line of research would be to extend contour methods to
dependent data, for example, to weakly dependent Gaussian time series (see [23]).
Finally, as we have seen from Example 2.3 (binary response), contour methods do
apply to discrete numerical responses. Moving forward along this direction, we
could generalize contour methods to ordinal categorical or even purely categorical
responses. This will require appropriate renditions for the concep&bsofute
difference (e.g., “the same” and “not the same”) adidtributional spread (e.qg.,

a concentration index) for categorical modalities; these could be used to define
contour direction identifiers for SCR and GCR, respectively. We leave these issues
to future studies.

APPENDIX

PROOF OFLEMMA 2.1. (a) Letf;; denote the joint densities aiV;, V;),
and so on. For examplef; is the density ofVy and fi»3 is the joint density
of (V1, V2, V3). Similarly, let f;;x and so on denote conditional densities. For
example, f234 is the conditional joint density ofV, V3) given V4. We need to
show that

(20)  f124536(v1, V2, V4, U5|U3, V6) = f1436(V1, Va|v3, Ve) f2536(V2, Us|U3, V).

Without loss of clarity we can omity, ..., vg from the density. Thus the above
equality becomegi24536 = f14/36f2536. The left-hand side of (20) is
f123456/ f36.

BecausgVy, Vo, V3) AL (V4, Vs, V), V1 AL V| V3 and V, AL V5| Ve, the numerator

in the above ratio is factorized intfy 3 233 fai6 f516 f6 = f13/23 4656/ (f3f6).
and the denominator is factorized infa fs. Thus the left-hand side reduces to

f13f23fa6fs6/(f3fs)?. The right-hand side of (20) is the ratifi3s/2536/ 4
Becausé V1, Vo, Va) AL (V4, Vs, Ve) this ratio becomesis f46 f23 56/ (f3.f6)2, the
same quantity to which the left-hand side of (20) is reduced.



1614 B. LI, H. ZHA AND F. CHIAROMONTE

(b) SupposéVi, Vo) 1L (V3, V4). We want to show that

(21) f1324= f1)24/324-

The left-hand side igf1234/ f24, Which, becausé&Vy, Vo) 1 (V3, V4), reduces to
f12f34/(f2f4). The right-hand side of (21) if12af324/(f24)2 = frofafofas/
(f2/2)? = fr2f34/(f2f4), which completes the proof.C]

PrROOF OFTHEOREM4.1. Because the proof is basically the same as that of
Theorem 2.1, we only highlight the differences. There is no change in paragraphs
1, 2, 3, 4, 6 of the proof of Theorem 2.1 except for replacing, wherever applicable,
¥ — Y| <cby V(X,X) <c, K(c) by G(c), Ki(c) by

G1(c)=E[(Z - Z)Z - 2)T|V(Z,Z) < c],

and “Assumption 2.1” by “Assumption 4.1.”

Replace the fifth paragraph by the following argument. Beca(sgY)
and (¢;(Z2),Y) have the same distribution, and becauge Y) and (Z,Y)
are independent, the distributions 6%,Y, Z,Y) and (¢;(2), Y, ¢:(Z),Y) are
identical. Hence

E(Z—-Z)Z-2)"V(Z,2) <]
= E[(¢1(2) — ¢ (D)) (9:(Z) — 6:( D)) |1V ($:(2), $:(2)) < c].
We claim that, for any: andb in R?, V (a, b) = V(¢;(a), ¢; (b)). By definition,
V(a,b)=varY|Z = (1—t)a + tb for somet).

Because(Z, Y) and (¢;(Z), Y) have the same distribution, the condition in the
above conditional variance can be replacedgp§Z) = (1 — t)a + tb or Z =
¢>i‘1((1 — t)a + tb). Because, as we have notef}, = ¢i‘1, and also because
¢; :R?” — R? is a linear function, the condition can be replaced by (1 —
t)¢;(a) + t¢;(b). Therefore,

V(a,b)=var(Y|Z = (1 —t)¢i(a) + t¢; (b) for somer) = V(¢;(a), ¢i (b)),
as claimed. Consequently,
E(Z-2)Z-2)"|V(Z,2) <c]
= E[(¢1(2) — $:(2))($:(2) — $1(2))" 1V (2, 2) < c].
Now follow through the rest of the fifth paragraph in the proof of Theorem 2.1,
replacinglY — Y| <cby V(X, X) <cinone place. (I

PROOF OFLEMMA 3.2. By Fubini’s theorem we have

_ o o &_ _ o0
E(S)—E(T)_/(; /; (q(s) 1>q(s)dsdt_/o G()dt.
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We now show thaiG(r) < O for all + > 0. Becausep(s)/q(s) is a decreasing

function and because
o0
| (&)q<s>ds=1,
0 \q(s)

the functionp(s) /g (s) is greater than 1 at= 0, equal to 1 at somg > 0 and less
than 1 afterward. Henc€'(t) = q(¢) — p(¢) is less than O for < sg and greater
than O forr > s9. SOG (¢) first decreases and then increases. However, it is easy to
see thatG(0) =0 and lim_ o G(t) =0. HenceG(tr) <Oforallr > 0. O

LEMMA A.1l. Let 87 and 8> be two linear subspaces of R” and let A be an
open set in R? containing the origin. Suppose A N 81 C AN §2. Then 81 C 4>.

PROOF Letv be avector in§1. Becausel is an open set containing the origin,
for sufficiently smallh > 0, v € A. Hencelv € AN 4$1. Becaused N 81 C AN 4o,
Av also belongs tal N 4. Hencelv belongs ta$,. Becauses; is a linear subspace,
v belongs to$,. O
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