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CONTOUR REGRESSION: A GENERAL APPROACH TO
DIMENSION REDUCTION1

BY BING LI, HONGYUAN ZHA AND FRANCESCACHIAROMONTE

Pennsylvania State University

We propose a novel approach to sufficient dimension reduction in
regression, based on estimating contour directions of small variation in the
response. These directions span the orthogonal complement of the minimal
space relevant for the regression and can be extracted according to two
measures of variation in the response, leading tosimple andgeneral contour
regression (SCR and GCR) methodology. In comparison with existing
sufficient dimension reduction techniques, this contour-based methodology
guarantees exhaustive estimation of the central subspace under ellipticity of
the predictor distribution and mild additional assumptions, while maintaining√

n-consistency and computational ease. Moreover, it proves robust to
departures from ellipticity. We establish population properties for both SCR
and GCR, and asymptotic properties for SCR. Simulations to compare
performance with that of standard techniques such as ordinary least squares,
sliced inverse regression, principal Hessian directions and sliced average
variance estimation confirm the advantages anticipated by the theoretical
analyses. We demonstrate the use of contour-based methods on a data set
concerning soil evaporation.

1. Introduction and background. Consider the regression of a responseY

on a vector of continuous predictorsX = (X1, . . . ,Xp)T ∈ R
p. Sufficient

dimension reduction is a body of theory and methods for reducing the dimension
of X while preserving information on the regression, that is, on the conditional
distribution ofY |X (see [7, 15, 16]). Adimension reduction subspace [3, 4] is
defined as the column space of anyp × d (d ≤ p) matrixη such that

Y ⊥⊥ X|ηT X,(1)

where ⊥⊥ indicates independence. Thus, conditioning onηT X, Y and X are
independent, or equivalently, the conditional distribution ofY |X equals that of
Y |ηT X. Because relation (1) is unaffected by multiplyingη from the right by a
nonsingular matrix, what matters is the column space ofη rather than its specific
form. Also note that there can be many subspaces satisfying (1), because if it holds
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for η, then it also holds for any other matrix whose column space includes that
of η. Naturally, we are interested in the subspace with the minimal dimension.
Under mild conditions that are almost always verified in practice, the minimal
subspace is uniquely defined and coincides with the intersection of all subspaces
satisfying (1) (see [1, 4]). This intersection is called thecentral subspace, denoted
by SY |X, and its dimension is called thestructural dimension, denoted byq.

The central subspace can be estimated without estimating a response surface,
and without strong assumptions on the form of the dependence betweenY andX.
Well-known estimation methods include ordinary least squares (OLS, [17]),
sliced inverse regression (SIR, [15]; see also [9]), principal Hessian directions
(PHD, [16]) and sliced average variance estimation (SAVE, [7]). These methods
constitute effective premodeling tools to reduce high-dimensional regressions
to equivalent ones comprising only a few linear combinations of the original
predictors. Such a reduction greatly facilitates model building, as well as the
use of nonparametric techniques. Dimension reduction methods also provide
a comprehensive visualization of the data whenever the estimated structural
dimension is 1, 2 or possibly 3, which is the case in a vast majority of practical
applications. In this sense, sufficient dimension reduction provides a foundation
for regression graphics, as argued in [4] and [1].

In many studies attention is restricted to the location component of the
dependence betweenY and X, that is, to the regression functionE(Y |X). The
central mean subspace, SE(Y |X), was introduced by Cook and Li [5]. Because
the conditional meanE(Y |X) is determined by the distribution ofY |X, the
central mean subspace is always contained in the central subspace. Cook and Li
investigated the above mentioned methods in relation to their ability to estimate
directions within theSE(Y |X), and proposed alternative methods to target this
subspace directly. See also [14].

The above methods enjoy the advantage of being computationally inexpensive
and

√
n-consistent regardless of the original predictor dimensionp and the

structural dimensionq, thus avoiding the “curse of dimensionality” often affecting
nonparametric techniques. The

√
n-consistency is achieved because these methods

exploit global features of the dependence ofY on X, in the sense they involve
averaging among fixed portions of the data, regardless of the sample size. For
instance, OLS employs sample moments, and SIR involves averaging predictors
within slices ofY , where the size of each slice need not go to zero asn → ∞.

The above methods also have common limitations, however. First, they require
linear conditional means among predictors ([4], page 57), which is often imposed
by assuming ellipticity of the distribution ofX. When this condition fails, the
estimators may converge to directions outsideSY |X. Second, even when linearity
holds, OLS, PHD and SIR are not guaranteed to be exhaustive: they may converge
at the

√
n-rate to a set of vectors that are inSY |X but do not spanSY |X. This lack

of exhaustiveness is arguably one of the most important shortcomings of these
methods. An instance is the heavy reliance of methods such as OLS and SIR on
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monotone trends in the dependence ofY onX. For example, ifY = (βT X)2 + σε

with β ∈ R
p andX ∼ N(0, Ip), OLS and SIR will estimate 0 and therefore fail

to detectβ itself. Based on early results obtained by Peters, Redner and Decell
[19] in the special context of feature extraction, it can be shown that SAVE is
indeed exhaustive ifX|Y is normally distributed. However, as we will see in
Section 3, this assumption is very restrictive in the regression context. Thus, it
is of both practical and theoretical significance to pursue exhaustive estimation
under reasonably general sufficient conditions.

At the opposite end of the spectrum are adaptive methods that exploitlocal
features of the dependence ofY on X [13, 23]. The strength of these methods is
that they require much weaker assumptions (virtually none) on the distributionX.
However, because they employ multivariate kernels that shrink with the sample
size, their convergence rates are generally slower than

√
n. In addition, they are

computationally intensive, as they iterate between nonparametric estimation of
a multivariate unknown function and numerical maximization of the estimated
function over a potentially high-dimensional space.

Here we propose a novel approach that targets contour directions, that is,
directions along which the response surface is flat. Since contour directions
span the orthogonal complement of the central subspace, estimating the former
is equivalent to estimating the latter. We propose to extract contour directions
according to two measures of variation in the response, leading to two methods:
simple andgeneral contour regression (SCR and GCR). Unlike traditional global
methods such as OLS, SIR, PHD and SAVE, contour regression guarantees
exhaustive estimation of the central subspace under ellipticity ofX and very mild
additional assumptions. It also proves robust to violations of ellipticity. At the same
time, unlike local methods, contour regression achieves

√
n-consistency regardless

of the dimensionsp andq, and it is computationally inexpensive.
The remainder of the paper is organized as follows: Section 2 concerns

population-level properties and asymptotic properties of SCR, and Section 3
presents sufficient conditions for exhaustiveness of SCR. Section 4 concerns
population-level properties of GCR. Section 5 discusses the robustness of GCR
against violations of predictor ellipticity. Section 6 presents simulations comparing
the performance of SCR and GCR with that of OLS, SIR, PHD and SAVE.
Section 7 reports the analysis of a data set. Section 8 contains final remarks. The
main proofs are reported in the body of the paper, but some technical details are
relegated to the Appendix.

2. Simple contour regression.

2.1. Basic concepts. Let (X1, Y1), . . . , (Xn,Yn) be independent copies of the
random pair(X,Y ), whereX ∈ R

p andY ∈ R, let FXY be the joint distribution
of (X,Y ), and letFn be the corresponding empirical distribution. We will be
concerned with matrix-valued estimators of the formT (Fn). If the columns of



CONTOUR REGRESSION 1583

T (FXY ) belong toSY |X, then we say thatT (Fn) is unbiased at the population
level. If the columns ofT (FXY ) actually spanSY |X, then we say thatT (Fn) is
exhaustive at the population level. IfT (Fn) converges at the

√
n-rate toT (FXY )

in the first case, then we say that it is
√

n-consistent. If the
√

n-convergence holds
in the second case, then we say thatT (Fn) is

√
n-exhaustive. In this section we

will introduce simple contour regression and establish its exhaustiveness at the
population level, as well as its

√
n-exhaustiveness.

To illustrate the basic intuition underlying contour regression, it is helpful to
make an analogy between theempirical directions employed in this approach
andempirical distributions. In defining an empirical distribution we put an equal
probability mass at each observed point, based on the rationale that all the
information about the random vectorX carried by the random sampleX1, . . . ,Xn

is captured by the positions of the observations themselves. With a similar
rationale, it can be argued that all thedirectional information aboutX carried by
the data is captured by the empirical directions(Xi − Xj), i �= j , i, j = 1, . . . , n.
Since dimension reduction is about finding a specific set of directions—those along
which the conditional distribution ofY |X genuinely depends onX—it is natural
to focus on these

(n
2

)
empirical directions. Roughly, contour regression extracts a

subset of the empirical directions characterized by having small variation inY , and
then performs a principal component analysis on the extracted directions. Since
contour directions form the orthogonal complement of the central subspace, an
estimator of the latter is obtained from the components with smallest eigenvalues.

It is also important to remark that many global methods (see Introduction)
gather directional information by slicing the response and processing predictor ob-
servations separately within each slice. This way, interslice directional information
relevant to the regression, if any, is lost. On the other hand, empirical directions
(Xi − Xj) can “cut across” response slices, thus allowing contour regression to
exploit interslice information.

For ease of exposition we will first introduce population-level quantities and
then construct estimators by analogy.

2.2. Population-level exhaustiveness. Let (X̃, Ỹ ) be an independent copy of
(X,Y ) and suppose that the central subspaceSY |X for the regression ofY on X is
spanned by the column space of ap × q matrixβ with q < p. Consider the matrix

K(c) = E[(X̃ − X)(X̃ − X)T | |Ỹ − Y | ≤ c].
We will show that the eigenvectors ofK(c) corresponding to its smallestq
eigenvalues span the central subspace. For this purpose we need the following
assumption.

ASSUMPTION2.1. For any choice of vectorsv ∈ SY |X andw ∈ (SY |X)⊥ such
that‖v‖ = ‖w‖ = 1, and some constantc > 0, we have

var[wT (X̃ − X) | |Ỹ − Y | ≤ c] > var[vT (X̃ − X) | |Ỹ − Y | ≤ c].(2)
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This assumption is a reasonable one: because the conditional distribution of
Y |X depends onvT X but not onwT X, we expectY to vary more withvT X than
it does withwT X. Hence, intuitively, within the same increment ofY , wT X should
vary more thanvT X does. In Section 3 we will prove that Assumption 2.1 holds
under fairly general conditions. Here we give a few examples to illustrate its wide
applicability. For reasons that will become clear later on, we will always impose
this assumption on the standardized predictors with mean 0 and variance matrixIp.

EXAMPLE 2.1. SupposeX = (X1,X2)
T ∼ N(0, I2) andY = X2

2 + σε, with
ε ⊥⊥ X andε ∼ N(0,1). For this regressionSY |X is the one-dimensional span of
β = (0,1)T , and the conditional variances on the left- and right-hand sides of (2)
are, respectively,

λ1 = E[(X̃1 − X1)
2 | |Ỹ − Y | ≤ c] and λ2 = E[(X̃2 − X2)

2 | |Ỹ − Y | ≤ c].
BecauseX1 is independent ofX2 and ε, it is independent ofY . Therefore the
first conditional expectation equals the unconditional expectationE(X1 − X̃1)

2,
which is 2. We have computed the second conditional expectation numerically
on a grid of valuesc = 0.1,0.5,1, . . . ,3 andσ = 0.1,0.2,0.3, . . . ,2. In all cases
λ2 < λ1 = 2. Below is the tabulation corresponding toσ = 0.3 and selected values
of c:

c 0.10 0.50 1.00 1.50 2.00 2.50 3.00
λ2 0.85 0.90 1.04 1.20 1.34 1.45 1.54

We note that this is the case where OLS and SIR will estimate zero, providing no
information about the central subspace.

EXAMPLE 2.2. Let X = (X1,X2)
T and ε be as in Example 2.1, andY =

(X2 − 1)3 + σε. We again used numerical integration to computeλ2 for c =
0.1,0.5,1, . . . ,3 andσ = 0.1,0.2,0.3, . . . ,2, and again obtained values below 2
in all cases. A table forσ = 0.3 and selected values ofc follows:

c 0.10 0.50 1.00 1.50 2.00 2.50 3.00
λ2 0.24 0.28 0.36 0.45 0.53 0.61 0.67

We checked numerically numerous other response functions such as polyno-
mials, exponential and logarithmic functions, trigonometric functions and so on,
never encountering a violation of Assumption 2.1. In the next example, we verify
Assumption 2.1 for a regression with a binary response. This example also helps
to emphasize that Assumption 2.1 should be imposed on the standardized, rather
than the original, predictor.

EXAMPLE 2.3. Let Y ∼ Bernoulli(1/2) and X ∈ R
2. The regression is

described through the inverse conditional distribution:X|(Y = y) ∼ N(µy, I2),
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with µ0 = (0,−1)T and µ1 = (0,1)T . Thus, hereSY |X is again the one-
dimensional span ofβ = (0,1)T and the conditional variances on the left- and
right-hand sides of Assumption 2.1 areλ1 and λ2 as defined in the previous
examples. Simple calculations show that, for 0≤ c ≤ 1,

E[(X̃ − X)(X̃ − X)T |Y = Ỹ ] = E[(X̃ − X)(X̃ − X)T |Y = Ỹ = 0]
= 2E(XXT |Y = 0) − 2E(X|Y = 0)E(XT |Y = 0)

= 2var(X|Y = 0) = 2I2.

Therefore,λ1 = λ2 = 2, and Assumption 2.1 fails. However, if we standardize the
predictor vector at the outset, the assumption holds also for this binary regression.
Note thatE(X) = 0 and

� = var(X) =
(

1 0
0 2

)
.

It follows that

E[(Z̃ − Z)(Z̃ − Z)T |Y = Ỹ ]
= �−1/2E[(X̃ − X)(X̃ − X)T |Y = Ỹ ]�−1/2 = 2�−1.

Because� is diagonal, the central subspaceSY |Z for the regression ofY on the
standardized predictorZ = �−1/2X is still the span of(0,1)T (see, e.g., [4],
page 106). Thus, on theZ-scaleλ1 = 1 < 2 = λ2.

In the next theorem and corollary we prove that ifX is elliptically contoured and
Assumption 2.1 holds, then the population vectors from SCR exhaust the central
subspaceSY |X. We first consider the standardizedX.

THEOREM 2.1. Suppose that X has an elliptical distribution with E(X) = 0
and var(X) = Ip. If Assumption 2.1 holds, then the eigenvectors of K(c)

corresponding to its smallest q eigenvalues span the central subspace SY |X.

PROOF. Suppose, without loss of generality, that theq columns ofβ form
an orthonormal set inRp. Let γ1, . . . , γp−q be an orthonormal basis for(SY |X)⊥.
We need to show that (i)γ1, . . . , γp−q are eigenvectors ofK(c), and (ii) their
corresponding eigenvalues are the largest among its eigenvalues. If (i) and (ii)
hold, then the eigenvectors ofK(c) corresponding to its smallestq eigenvalues
will coincide with span(β) = SY |X, as desired.

(i) Let B = (γ1, . . . , γp−q, β1, . . . , βq) and W = BT X. By Proposition 6.3
of [4], page 106, the central subspace for the regression ofY on W , SY |W , is
spanned by the vectorsB−1β1, . . . ,B

−1βq . Note thatB−1βi = ep−q+i , that is, the
vector inR

p with a 1 in the(p − q + i)th position and 0’s in all remaining ones.
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By constructionW still has a spherical distribution with mean 0 and varianceIp.
Next, let(X̃, Ỹ ) be an independent copy of(X,Y ), W̃ = BT X̃, and

K1(c) = E[(W̃ − W)(W̃ − W)T | |Ỹ − Y | ≤ c].
It is easy to see thatK1(c) = B−1K(c)B, and hence thatγi is an eigenvector
of K(c) if and only if BT γi is an eigenvector ofK1(c). Thus, it suffices to show
thate1, . . . , ep−q are eigenvectors ofK1(c).

Let φi :Rp 
→ R
p, i = 1, . . . , p − q, be the map that changes the sign of theith

element of a vector inRp [e.g.,φ1(x) = (−x1, x2, . . . , xp)T ]. Observe thatφi is
an invertible mapping withφ−1

i = φi , and thatx,φ1(x), . . . , φp−q(x) are on the
same sphere centered at the origin. LetC be any measurable set. Then

Pr(W ∈ C) = Pr
(
W ∈ φi(C)

) = Pr
(
φ−1

i (W) ∈ C
) = Pr

(
φi(W) ∈ C

)
,

where the first equality follows becauseW has a spherical distribution and
x 
→ φi(x) is an orthogonal transformation, and the third equality follows because
φi = φ−1

i . ThusW andφi(W) have the same distribution. Furthermore, because
of the conditional independence,

Y ⊥⊥ (W1, . . . ,Wp)|Wp−q+1, . . . ,Wp,

the conditional distributions ofY |W andY |φi(W) (wherei = 1, . . . , p − q) are
both equal to the conditional distribution ofY |Wp−q+1, . . . ,Wp. It follows that
(W,Y ) and(φi(W),Y ) have the same distribution. Consequently,

K1(c) = E[(W̃ − W)(W̃ − W)T | |Ỹ − Y | ≤ c]
= E

[(
φi(W̃ ) − φi(W)

)(
φi(W̃ ) − φi(W)

)T | |Ỹ − Y | ≤ c
]
.

So the matrixK1(c) can be re-expressed as the average of the right-hand sides of
the first and the second lines above; that is,

E
[1

2(W̃ − W)(W̃ − W)T + 1
2

(
φi(W̃ ) − φi(W)

)(
φi(W̃ ) − φi(W)

)T | |Ỹ − Y | ≤ c
]
.

Denote the above matrix byE(Ai | |Ỹ − Y | ≤ c) in the obvious way. Then it is
easy to see that the(i, i)th element ofAi is (W̃i − Wi)

2 and the(i, j)th and
(j, i)th elements are identically 0 wheneverj �= i. Hence, fori = 1, . . . , p − q,
ei is an eigenvector ofK1(c) corresponding to the eigenvalueλi = E((Wi − W̃i)

2 |
|Y − Ỹ | ≤ c).

(ii) From (i) it follows thatγ1, . . . , γp−q are eigenvectors ofK(c) corresponding
to the eigenvaluesλ1, . . . , λp−q . Let γp−q+1, . . . , γp be the otherq eigenvectors
of K(c), corresponding to the eigenvaluesλp−q+1, . . . , λp. By construction these
q vectors spanSY |X. The eigenvaluesλi , i = 1, . . . , p, can be expressed as

λi = γ T
i K(c)γi = var[γ T

i (X − X̃) | |Y − Ỹ | ≤ c].
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But becauseγ1, . . . , γp−q are vectors in(SY |X)⊥ andγp−q+1, . . . , γp are vectors
in SY |X, Assumption 2.1 suffices to ensure thatλ1, . . . , λp−q are the largest
eigenvalues ofK(c). �

Let us now turn toX with an arbitrary elliptically contoured distribution
having meanµ and nonsingular variance matrix�. Theorem 2.1 asserts that if
we let Z = �−1/2(X − µ), then the eigenvectorsγp−q+1, . . . , γp corresponding
to the smallestq eigenvalues of the matrixE[(Z̃ − Z)(Z̃ − Z)T | |Ỹ −
Y | ≤ c] span SY |Z . Consequently, by Proposition 6.3 of [4], page 106, the
vectors �−1/2γp−q+1, . . . ,�

−1/2γp span SY |X. Thus we have the following
generalization of Theorem 2.1:

COROLLARY 2.1. Suppose that X has an elliptically contoured distribution
with mean µ and nonsingular variance matrix �. Suppose that Assumption 2.1
holds with X and X̃ replaced by �−1/2(X − µ) and �−1/2(X̃ − µ). Let
γp−q+1, . . . , γp be the eigenvectors of the matrix

�−1/2E[(X̃ − X)(X̃ − X)T | |Ỹ − Y | ≤ c]�−1/2

corresponding to its smallest q eigenvalues. Then the vectors �−1/2γp−q+1, . . . ,

�−1/2γp span SY |X.

Note that since the corollary postulates Assumption 2.1 on the standardized
predictor, it does also apply to regressions with discrete responses, such as the one
described in Example 2.3.

2.3. Estimation and
√

n-exhaustiveness. We now construct a sample estimate
of the matrixK(c). As before let(X̃, Ỹ ) be an independent copy of(X,Y ), and
consider the matrix

H(c) = E[(X̃ − X)(X̃ − X)T I (|Ỹ − Y | ≤ c)].(3)

SinceK(c) andH(c) differ only by the proportionality constant Pr(|Ỹ − Y | ≤ c),
their eigenvectors coincide. We will thus consider an estimate ofH(c) for
simplicity. Let (X1, Y1), . . . , (Xn,Yn) be an independent sample from the random
pair (X,Y ). The estimating procedure will mimic the theoretical development in
Section 2.2:

(a) Compute sample mean and variance matrix of the predictorX:

µ̂ = n−1
n∑

i=1

Xi, �̂ = n−1
n∑

i=1

(Xi − µ̂)(Xi − µ̂)T .
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(b) Compute the matrix-valuedU -statistic:

Ĥ (c) = 1(n
c

) ∑
(i,j)∈N

(Xj − Xi)(Xj − Xi)
T I (|Yj − Yi | ≤ c),(4)

whereN is the index set{(i, j) : i = 2, . . . , n; j = 1, . . . , i − 1}.
(c) Compute the spectral decomposition of�̂−1/2Ĥ (c)�̂−1/2 and letγ̂p+q−1,

. . . , γ̂p be the eigenvectors corresponding to the smallestq eigenvalues.
(d) The span of these eigenvectors estimatesSY |Z , whereZ is the standardized

version ofX. Thus, our estimate of the central subspace is

ŜY |X = span(�̂−1/2γ̂p−q+1, . . . , �̂
−1/2γ̂p).

In practice, as for other sufficient dimension reduction methods, a testing
procedure will be needed to determine statistically how many eigenvectors to take.
Here we assume the dimensionq of the central subspace to be known, leaving the
development of an appropriate testing procedure for future investigation. However,
in the next section we lay the groundwork for constructing such a procedure by
further exploring the eigenvalue structure of the matrixK(c). Before doing so, we
demonstrate the

√
n-exhaustiveness of SCR.

THEOREM 2.2. Suppose that � is nonsingular and that the components of X

have finite fourth moments. Then

�̂−1/2Ĥ (c)�̂−1/2 = �−1/2H(c)�−1/2 + Op(n−1/2).

PROOF. SinceX has finite fourth moment,̂� is a
√

n-consistent estimator
of � by the central limit theorem. Since� is nonsingular, we have that̂�−1/2 is a√

n-consistent estimator of�−1/2 by the continuous mapping theorem. It follows
that

�̂−1/2Ĥ (c)�̂−1/2 − �−1/2H(c)�−1/2

= �−1/2(Ĥ (c) − H(c)
)
�−1/2 + Op(n−1/2).

Next, let vec(·) be the operator that stacks the columns of a matrix [forA

with columnsa1, . . . , ak , vec(A) = (aT
1 , . . . , aT

k )T ], and let vecT (·) denote the
transpose of vec(·). Note thatĤ (c) is a matrix-valuedU -statistic with elements
having finite second moments. By the central limit theorem forU statistics ([20],
Chapter 5) it easily follows that

√
nvec(Ĥ (c)−H(c)) converges in distribution to

ap2-dimensional multivariate normal vector with mean 0 and variance matrix

4E
[
vec

(
H1(X,Y ; c))vecT

(
H1(X,Y ; c))] − 4vec(H(c))vecT (H(c)),

whereH1(X,Y ; c) is the conditional expectation

E[(X̃ − X)(X̃ − X)T I (|Ỹ − Y | ≤ c)|X,Y ].
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ConsequentlŷH(c) − H(c) = Op(1/
√

n ), which completes the proof.�

As a consequence of this theorem,γ̂p−q+1, . . . , γ̂p provide a
√

n-exhaustive es-
timator ofSY |Z , and hencê�−1/2γ̂p−q+1, . . . , �̂

−1/2γ̂p provide a
√

n-exhaustive
estimator ofSY |X.

The role played by the constantc here is similar to the width of a slice in
SIR and SAVE. It differs from the width of a kernel in a typical nonparametric
estimator in that it need not go to 0 asn → ∞. The thresholding can actually be
implemented in two ways: fixing a numerical value forc, or fixing a proportion of
empirical directionsXi −Xj [out of

(n
2

)
]. This distinction is relevant for theoretical

analysis and simulation. We find that using the 5–15% empirical directions ranking
lowest in terms of response absolute difference works well in simulation studies
(see Section 6). A more careful investigation of the thresholding rule is important,
but goes beyond the scope of the present article—we expect good thresholding to
depend on the dimensionp, q, and possibly other factors.

The asymptotic analyses we present here are all carried out for the thresholding
based on a fixed value ofc. However, they can be easily paralleled for thresholding
based on a fixed proportion: Modulo the fact thatc need not go to 0 asn → ∞,
the comparison of these two thresholding options is analogous to that between a
kernel and a nearest-neighbor estimator [18, 21, 22].

2.4. Toward testing hypothesis. In this section we will show that, under an
additional assumption, the largestp − q eigenvalues of�−1/2K(c)�−1/2 are
identically 2, so thatγ1, . . . , γp−q are the eigenvectors of 2Ip − �−1/2K(c)�−1/2

corresponding to eigenvalues equal to 0. This paves the way for constructing a
test statistic to determine the dimension ofSY |Z (and henceSY |X), because the
problem now is converted into testing how many of the smallest eigenvalues of
2Ip − �−1/2K(c)�−1/2 are 0. Tests of this type can be constructed using the
asymptotic distribution of small singular values developed by Eaton and Tyler [10].
Similar tests have been constructed in other contexts in [15, 16]; [4], Chapter 11
and [2, 5, 14]. We expect that a test statistic and related sampling distribution for
SCR can be obtained analogously. The additional assumption is usually referred
to as the constant conditional variance assumption, and is often evoked when
developing such tests:

ASSUMPTION2.2. If β is a matrix whose columns form a basis inSY |X, then
the conditional variance var(X|βT X) is a nonrandom matrix.

The next lemma states various implications of conditional independence, which
will be used in the subsequent development.

LEMMA 2.1. (a)If V1, . . . , V6 are random vectors satisfying (V1,V2,V3) ⊥⊥
(V4,V5,V6), V1 ⊥⊥ V2|V3 and V4 ⊥⊥ V5|V6, then (V1,V4) ⊥⊥ (V2,V5)|(V3,V6).
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(b) If V1, . . . , V4 are random vectors satisfying (V1,V2) ⊥⊥ (V3,V4), then V1 ⊥⊥
V3|(V2,V4).

(c) If V1,V2,V3 are random vectors satisfying (V1,V2) ⊥⊥ V3, then V1 ⊥⊥ V3|V2.

Part (c) is a special case of a well-known result; see, for example, [8] and [4],
Proposition 4.6. The proofs of (a) and (b) are similar to those used in these papers,
and are given in the Appendix.

THEOREM 2.3. Suppose that X has an elliptical distribution and that
Assumptions 2.1 and 2.2 hold. Let q be the dimension of SY |X. Then the p − q

largest eigenvalues of �−1/2K(c)�−1/2 are identically 2.

PROOF. Let β be a p × q matrix whose columns spanSY |X, and Z =
�−1/2(X − µ). Then the columns ofη = �1/2β spanSY |Z and�−1/2K(c)�−1/2

is the matrix

K1(c) = E[(Z̃ − Z)(Z̃ − Z)T | |Ỹ − Y | ≤ c] ≡ E(	1	
T
1 | |	2| ≤ c),

where we have abbreviated̃Z − Z and Ỹ − Y by 	1 and 	2, respectively.
Because(Z,Y, ηT Z) ⊥⊥ (Z̃, Ỹ , ηT Z̃), Z ⊥⊥ Y |ηT Z and Z̃ ⊥⊥ Ỹ |ηT Z̃, we have,
by Lemma 2.1(a), that(Z, Z̃) ⊥⊥ (Y, Ỹ )|ηT Z,ηT Z̃. This in turn implies that
	1 ⊥⊥ 	2|ηT Z,ηT Z̃. Consequently,

E(	1	
T
1 | |	2| ≤ c) = E[E(	1	

T
1 |ηT Z,ηT Z̃, |	2| ≤ c) | |	2| ≤ c]

= E[E(	1	
T
1 |ηT Z,ηT Z̃) | |	2| ≤ c].

The conditional expectation inside the brackets on the right-hand side can be
decomposed as the sum of four terms:

E(ZZT |ηT Z,ηT Z̃) − E(Z̃ZT |ηT Z,ηT Z̃)

− E(ZZ̃T |ηT Z,ηT Z̃) + E(Z̃Z̃T |ηT Z,ηT Z̃).
(5)

Since(Z,ηT Z) ⊥⊥ ηT Z̃, we haveZ ⊥⊥ ηT Z̃|ηT Z by Lemma 2.1(c). Hence the first
term becomes

E(ZZT |ηT Z) = var(Z|ηT Z) + E(Z|ηT Z)E(ZT |ηT Z).

Let P = η(ηT η)−1ηT be the orthogonal projection ontoSY |Z and letQ = I −P be
the orthogonal projection onto(SY |Z)⊥. Then it can be shown by Assumption 2.2
that var(Z|ηT Z) = Q. BecauseZ has a spherical distribution,E(Z|ηT Z) = PZ,
so that the first term in (5) reduces toQ + PZZT P . By Lemma 2.1(b), the
second term in (5) factorizes into−E(Z̃|ηT Z,ηT Z̃)E(ZT |ηT Z,ηT Z̃), which by
Lemma 2.1(c) further reduces to−E(Z̃|ηT Z̃)E(ZT |ηT Z). Hence, again using
sphericity ofZ, the second term in (5) is−P Z̃ZT P . By similar arguments the
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third and fourth terms in (5) are−PZZ̃T P and Q + P Z̃Z̃T P , respectively.
Therefore

E(	1	
T
1 | |	2| ≤ c) = 2Q + PE(	1	

T
1 | |	2| ≤ c)P .(6)

Let v be a vector in(SY |Z)⊥, and multiply this matrix byvT from the left and byv
from the right to obtain var(vT 	1 | |	2| ≤ c) = 2. This completes the proof.�

Note that without Assumption 2.1 the theorem still holds to an extent, in the
sense that the eigenvectors ofE(	1	

T
1 | |	2| ≤ c) orthogonal to span(η) still have

eigenvalues equal to 2. However, without this assumption exhaustiveness would be
lost, because we cannot rule out the possibility that eigenvalues other than these
may also be 2.

This eigenvalue structure is similar to that of SAVE. For somec > 0 andy, let
S(c) be the sliced averaged varianceS(c) = var(X | |Y − y| ≤ c). In this notation
Ip − S(c) is the SAVE matrix for a slice centered aty. Under ellipticity and
Assumption 2.2, we have

S(c) = Q + PS(c)P

(see [7]). Thus the eigenvalues corresponding to the eigenvectors ofS(c) that are
orthogonal to the central subspace are identically 1. However, there are important
differences between contour regression methods and SAVE; these will be briefly
discussed at the end of Section 4.3.

3. Sufficient conditions for exhaustive estimation. In order to place the
theory of simple contour regression on a firmer foundation, we devote this section
to deriving a sufficient condition for Assumption 2.1. As shown in the previous
sections, if this assumption holds, then SCR provides

√
n-exhaustive estimation

of the central subspaceSY |X; that is, the estimating vectors converge with√
n-rate to a set of vectors that spanSY |X in its entirety. Sufficient conditions

of this type are extremely elusive; to our knowledge none has been established
with reasonable generality for other

√
n-consistent methods such as OLS, PHD,

SIR or SAVE. Results from an early, prescient paper by Peters, Redner and Decell
[19] lead to exhaustiveness of SAVE under the condition thatX|Y is multivariate
normal. However, this condition is very restrictive—note that even in a typical
location regression of the formY = f (X) + ε with X andε independent and both
normally distributed, this assumption is not met unlessf (·) is linear. Because of
its generality, the sufficient condition given here for SCR is the first of its kind.

We will need the notion of stochastic ordering. LetS andT be two random
variables. We say thatS is stochastically less than or equal toT if, for any real
numberr , Pr(S ≤ r) ≥ Pr(T ≤ r), and write this asS ≤d T . If, in addition, the
inequality is strict on a subset of the real line with positive Lebesgue measure, we
say thatS is stochastically (strictly) less thanT and writeS <d T . The following
lemma is obvious, and its proof will be omitted.
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LEMMA 3.1. Suppose that S and T are random variables taking values in a
common set 
 ⊂ R, and that S <d T . Then:

(a) E(S) < E(T ).
(b) Given a monotone real-valued function g :
 
→ R, g(S) <d g(T ) if g(·) is

increasing, and g(T ) <d g(S) if g(·) is decreasing.

As a special case, consider a pair of random variables(S, T ). We will write
(S|T = t1) <d (S|T = t2) if, for any r , Pr(S ≤ r|T = t1) ≥ Pr(S ≤ r|T = t2), with
strict inequality held on a set with positive Lebesgue measure.

The following lemma, which is proved in the Appendix, will also be used.

LEMMA 3.2. Let p(s) and q(s) be the densities of nonnegative random
variables S and T taking values in a common support 
 ⊂ R

+, and suppose that
p(s)/q(s) is decreasing in s. Then E(S) < E(T ).

In developing a sufficient condition for Assumption 2.1, we restrict ourselves to
a location structure, that is, to regressions of the kind

Y = f (βT X) + σε, ε ⊥⊥ X,E(ε) = 0.(7)

Ultimately, the sufficient condition will be imposed on the behavior off (·). Let
(X̃, ε̃) be an independent copy of(X, ε), 	 = X̃ − X, T = ε̃ − ε, and letFT (·)
be the cumulative distribution function ofT . For the statement of the following
theorem, it will be more informative to writef (βT x) merely asg(x).

THEOREM3.1. Suppose that X has an elliptically contoured distribution with
E(X) = 0 and var(X) = Ip, and that Assumption 2.2 holds. Moreover, suppose
that model (7) holds with the density fT (t) of FT (t) being a decreasing function
of |t |. If for any α ∈ SY |X and whenever 0≤ δ1 < δ2 we have

|g(X + 	) − g(X)| ∣∣ {|αT 	| = δ1} <d |g(X + 	) − g(X)| ∣∣ {|αT 	| = δ2},(8)

then Assumption 2.1holds for every c > 0.

Before proving the theorem, let us comment on its significance. To understand
the intuition behind condition (8), first consider the case whereX is a scalar
random variable. Intuitively, condition (8) should hold trivially ifg is a monotone
function, because it holds pointwise inX = x with <d replaced by ordinary
inequality < (see Example 3.1 below). However, condition (8) by no means
restrictsg(·) to being monotone, because being stochastically large or small is an
average behavior for all values ofX, and does not require being large or small for
every single valueX = x. It then does seem to make sense to assume thatg(X+	)

is collectively farther away fromg(X) if 	 is larger: this is simply requiringg to
be reasonably variable. In the multivariate case, condition (8) requires this to hold
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along any directionα in the spaceSY |X, which is the space along whichg(x) does
vary. Also the requirement thatfT (t) decreases with|t | is not a severe restriction,
considering that this density is symmetric about 0 by construction. Finally, the
result can be generalized straightforwardly to nonstandardized elliptical predictors.
Thus, Theorem 3.1 allows us to conclude that, for elliptical predictors with
constant conditional variance along the central subspace (Assumption 2.2), all that
is required to guarantee Assumption 2.1—and hence exhaustiveness of SCR—are
very mild conditions on the behavior of the mean function and the error term in (7)
(some instances are provided after the proof ).

PROOF OF THEOREM 3.1. Let α ∈ SY |X and ξ ∈ (SY |X)⊥. Theorem 2.3
implies that var(ξT (X̃ − X) | |Ỹ − Y | ≤ c) = 2, which is the same as the
unconditional variance var(αT (X̃ − X)). Hence, it suffices to show that

var
(
αT (X̃ − X) | |Ỹ − Y | ≤ c

)
< var

(
αT (X̃ − X)

)
.

Let U = |Ỹ −Y | andV = (αT (X̃ −X))2. We are then to show thatE(V |U ≤ c) <

E(V ). Let fV (·) be the density ofV . Then

E(V |U ≤ c) =
∫ ∞

0
v

Pr(U ≤ c|V = v)

Pr(U ≤ c)
fV (v) dv.(9)

Now, let r(v) = Pr(U ≤ c|V = v)/Pr(U ≤ c). Thenr(v)fV (v) is itself a density
onR

+. By Lemma 3.2, if we can show thatr(v) is a decreasing function ofv, then
the right-hand side of (9) is smaller than

∫
vfV (v) dv and the proof is complete.

So let us show that Pr(U ≤ c|V = v) decreases inv. Note that

Pr(U ≤ c|V = v) = E{Pr(U ≤ c|X, X̃)|V = v}.
Because(X, X̃) is independent of(ε, ε̃) we can re-express the conditional
probability Pr(U ≤ c|X, X̃) as

Pr
(
g(X) − g(X̃) − c ≤ T ≤ g(X) − g(X̃) + c

)
= FT

(
g(X) − g(X̃) + c

) − FT

(
g(X) − g(X̃) − c

)
.

Because the roles ofX and X̃ can be exchanged, and becauseV = (αT (X̃ −
X))2 = (αT (X − X̃))2, we have

Pr(U ≤ c|V = v) = E
[
FT

(
g(X) − g(X̃) + c

) − FT

(
g(X) − g(X̃) − c

)|V = v
]

= E
[
FT

(
g(X̃) − g(X) + c

) − FT

(
g(X̃) − g(X) − c

)|V = v
]
.

So Pr(U ≤ c|V = v) can be written as the average of the two expressions on the
right-hand sides of the first and second equalities in the above display. That is, if
we writeg(X)−g(X̃)+c asA andg(X)−g(X̃)−c as−B, then Pr(U ≤ c|V = v)

can be written asE(FT (A) − FT (−B) + FT (B) − FT (−A))/2. However, since
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FT (·) is the cumulative distribution function of a symmetric density, we have
FT (t) − FT (−t) = 2FT (t) − 1 for anyt . Hence

Pr(U ≤ c|V = v)

= E
[
FT

(
g(X) − g(X̃) + c

) + FT

(
g(X̃) − g(X) + c

)|V = v
] − 1

= E[FT (R + c) + FT (−R + c)|V = v] − 1 ≡ E
(
G(R)|V = v

) − 1,

whereR = |g(X̃)−g(X)|. Thus it suffices to show thatE(G(R)|V = v) decreases
with v. BecausefT (·) is symmetric about 0,

G′(r) = fT (r + c) − fT (−r + c) = fT (|r + c|) − fT (|r − c|).
But sincer andc are both positive,r + c > |r − c|. It follows that the right-hand
side is negative, andG(r) is strictly decreasing inr for r ≥ 0. By Lemma 3.1(a),
E(G(R)|V = v) will be decreasing inv if, for any v2 > v1 ≥ 0,(

G(R)|V = v1
)
<d

(
G(R)|V = v2

)
.(10)

However, becauseG(R) is a decreasing function ofR, by Lemma 3.1(b)
inequality (10) will hold if (R|V = v1) <d (R|V = v2). The latter inequality is
equivalent to (8). �

To illustrate the generality of this sufficient condition we now verify it for some
examples. Let us consider the following specialization of our location structure.
In (7) takeX ∼ N(0, I2) andβ = (0,1)T , so thatY = f (X2) + σε. Consider the
conditional probability

Pr
(|f (X̃2) − f (X2)| ≤ r | |X̃2 − X2| = δ

)
.

Condition (8) will be satisfied if, for eachr > 0, this quantity decreases inδ.
Because the distribution of̃X2 − X2 is symmetric about zero, this probability is

Pr
(|f (X̃2) − f (X2)| ≤ r|X̃2 − X2 = δ

)
/2

+ Pr
(|f (X̃2) − f (X2)| ≤ r| X̃2 − X2 = −δ

)
/2.

Because the roles ofX and X̃ can be interchanged, the conditioning argument
X̃2 − X2 = −δ in the second term can be replaced byX̃2 − X2 = δ, and hence

Pr
(|f (X̃2) − f (X2)| ≤ r | |X̃2 − X2| = δ

)
= Pr

(|f (X̃2) − f (X2)| ≤ r|X̃2 − X2 = δ
) ≡ �(δ).

Thus (8) will hold if, for eachr > 0, �(δ) is a decreasing function ofδ > 0.
Now X2 andX̃2 can be written asS + T andS − T whereS = (X2 + X̃2)/2 and
T = (X2 − X̃2)/2. Note that, by normality ofX, S andT are independent. Hence,

�(δ) = Pr
(|f (S + T ) − f (S − T )| ≤ r|T = δ

) = Pr
(|f (S + δ) − f (S − δ)| ≤ r

)
.
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So for this specialization of our location structure we only need to verify

|f (S + δ1) − f (S − δ1)| <d |f (S + δ2) − f (S − δ2)|
for S ∼ N(0,1/2) and for any 0≤ δ1 < δ2. The following examples both reduce
to verifying this inequality.

EXAMPLE 3.1. Suppose thatf (x2) is a continuous and monotone function
which without loss of generality can be assumed to be monotone increasing.
Then for anyδ1 < δ2, |f (s + δ1) − f (s − δ1)| ≤d |f (s + δ2) − f (s − δ2)|.
To see that the strict inequality (<d ) holds, let r be a real number in the set
{f (s + δ1) − f (s − δ1) : s ∈ R}. By continuity there is ans0 such thatf (s0 +
δ1) − f (s0 − δ1) = r < f (s0 + δ2) − f (s0 − δ2). Hence, in the neighborhood
of (s0 − τ, s0), f (s + δ1) − f (s − δ1) < r < f (s + δ2) − f (s − δ2). Writing
|f (S + δ) − f (S − δ)| asR(δ), we have

Pr
(
R(δ1) ≤ r

) = Pr
(
R(δ1) ≤ r,R(δ2) ≤ r

) + Pr
(
R(δ1) ≤ r,R(δ2) > r

)
= Pr

(
R(δ2) ≤ r

) + Pr
(
R(δ1) ≤ r,R(δ2) > r

)
.

Because the set{s :R(δ1) ≤ r,R(δ2) > r} contains an open interval, Pr(R(δ1) ≤ r,

R(δ2) > r) > 0, and consequently Pr(R(δ1) ≤ r) < Pr(R(δ2) ≤ r). Because
Pr(R(δ1) ≤ r) − Pr(R(δ2) ≤ r) is continuous inr , this inequality holds in an open
interval aroundr , which has positive Lebegue measure.

EXAMPLE 3.2. Letf (x2) = (x2 − a)2. Example 2.1 is a special case of this
regression witha = 0 andε ∼ N(0, σ 2). In this caseR(s; δ) = 4|s − a|δ. Hence
for 0≤ δ1 < δ2, R(s; δ1) < R(s; δ2) for all s. By an argument similar to the one in
Example 3.1, it is easy to see thatR(S; δ1) <d R(S; δ2).

4. General contour regression.

4.1. Estimation. The idea underlying SCR is to use the inequality|Y − Ỹ | ≤ c

to identify vectors aligned with the contour directions. However, this inequality
also picks up other directions when the regression function is nonmonotone.
Under ellipticity such directions are averaged out, so that the method remains√

n-exhaustive. Nevertheless, these “wrong” directions do tend to decrease
efficiency by blurring up the “right” ones. In other words, the inequality
|Y − Ỹ | ≤ c is not a very sensitive contour identifier for nonmonotone functions—
even though it is sufficiently sensitive to maintain

√
n-exhaustiveness. We now

illustrate this point using the regression in Example 2.1.
To construct the left panel of Figure 1, we generated twenty observations

(Xi, Yi), i = 1, . . . ,20, according to the regression in Example 2.1, withσ = 0.3.
We then used the threshold valuec = 0.5, connecting by a solid line segment any
two pointsXi,Xj ∈ R

2 satisfying|Yi −Yj | ≤ 0.5. Roughly speaking (note that we
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FIG. 1. Directions identified by |Y − Ỹ | ≤ c (left panel)and those identified by V̂ (Xi,Xj ,ρ) ≤ c

(right panel).

have ignored the rescaling issue which has little bearing on this discussion), SCR
picks up the contour directions by a principal component analysis of the vectors
represented by these line segments. We see that, though most of the segments are
horizontal (i.e., aligned with the true contour direction), there are a considerable
number of segments pointing to arbitrary directions. This is because the response
surface isU -shaped and the inequality|Yi − Yj | ≤ 0.5 does not discriminate
between the segments aligned with the contour and those across theU -shaped
surface that also have small increments inY . Though the arbitrary directions tend
to average out due to the ellipticity of the distribution ofX, they make the picture
less sharp and the method less efficient.

To overcome this drawback we replace the contour identifier|Yi − Yj | ≤ c by a
more sensitive one. Consider the variance ofY along the line throughxi andxj .
Formally, let�(t;xi, xj ) = (1 − t)xi + txj , t ∈ R, be the straight line that goes
throughxi andxj , and define

V (xi, xj ) = var
(
Y |X = �(t;xi, xj ) for somet

)
.

For a more concrete expression, letδ(xi, xj ) be the p × (p − 1) matrix
(δ1, . . . , δp−1) whose columns form a basis in(xj − xi)

⊥. ThenV (xi, xj ) can
be re-expressed as

V (xi, xj ) = var
(
Y |δT (xi, xj )X = δT (xi, xj )xi

)
.(11)

We will aim at identifying contour vectors by the smallness of this conditional
variance.

The next task is to construct a sample estimate ofV (Xi,Xj ). We will denote the
line �(·;Xi,Xj ) by �(Xi,Xj ). For anyXk , let d(Xk, �(Xi,Xj )) be the Euclidean
distance betweenXk and the line�(Xi,Xj ); that is,

d
(
Xk, �(Xi,Xj )

) = min
t∈R

‖Xk − �(t;Xi,Xj )‖,
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where‖ · ‖ stands for the Euclidean norm. Because‖Xk − �(t;Xi,Xj )‖2 is a
quadratic function oft , this minimum distance can be expressed explicitly as

d
(
Xk, �(Xi,Xj )

) =
[
‖Xk − Xi‖2 − {(Xk − Xi)

T (Xj − Xi)}2

‖Xj − Xi‖2

]1/2

.

For anyρ > 0, we define the tube of radiusρ connectingXi andXj to be the set

Cij (ρ) = {
Xk :d

(
Xk, �(Xi,Xj )

) ≤ ρ, k = 1, . . . , n
}
.

According to this definition, each tube contains at least two points in the sample.
Next we estimate the variance ofY along these tubes. Letnij (ρ) be the number of
points in the tubeCij (ρ), and let

V̂ (Xi,Xj ;ρ) = 1

nij (ρ)

∑
Xk∈Cij (ρ)

(
Yk − Ȳij (ρ)

)2
,

whereȲij (ρ) = 1

nij (ρ)

∑
Xk∈Cij (ρ)

Yk.

We can now identify the contour directions by the smallness ofV̂ (Xi,Xj ;ρ).
Plotted in the right panel of Figure 1 are the same sample points as in the

left panel, but with the line segments picked up bŷV (Xi,Xj ;ρ) ≤ c, where
c = 0.5 andρ = 0.3. We can see that many of the segments pointing to random
directions in the left panel have been removed. To get a quantitative comparison,
we calculated the first principal component for the line segments in each panel,
which equals(0.9169,0.3991)T for the left panel and(0.9991,−0.0417)T for the
right panel. The latter is much closer to the direction(1,0)T , the population vector
orthogonal toSY |X.

We now construct the estimator ofSY |X. Along lines similar to those followed
in Section 2, we standardize the predictor observations toẐi = �̂−1/2(Xi − µ̂),
and form the matrix

F̂ (c) = 1(n
2

) ∑
(i,j)∈N

(Ẑj − Ẑi)(Ẑj − Ẑi)
T I

(
V̂ (Ẑi, Ẑj ;ρ) ≤ c

)
,(12)

whereN is the same index set as used in (4). The matrixF̂ (c) takes the place
of �̂−1/2Ĥ (c)�̂−1/2 for the simple contour regression. As in SCR, we take
the spectral decomposition of̂F(c), and useγ̂p+q−1, . . . , γ̂p, the eigenvectors
corresponding to the smallestq eigenvalues, to form

ŜY |X = span(�̂−1/2γ̂p−q+1, . . . , �̂
−1/2γ̂p).

Regarding the choice ofc, comments similar to those made at the end of
Section 2.3 apply here. In particular, as a rule of thumb we propose to use 5%
to 15% of the

(n
2

)
empirical directions.
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4.2. Population-level exhaustiveness. Assume thatX is already standardized
to E(X) = 0 and var(X) = Ip (so Z is X itself ). The population version of the
matrix F̂ (c) in (12) is

F(c) = E
[
(X − X̃)(X − X̃)T I

(
V (X, X̃) ≤ c

)]
,

which is proportional to the matrix

G(c) = E[(X − X̃)(X − X̃)T |V (X, X̃) ≤ c].
Here we will demonstrate that, for sufficiently smallc, the eigenvectors corre-
sponding to the smallestq eigenvalues ofG(c) spanSY |X. For this purpose we
introduce an assumption that parallels Assumption 2.1. Again(X̃, Ỹ ) indicates an
independent copy of(X,Y ).

ASSUMPTION4.1. For any choice of vectorsv ∈ SY |X andw ∈ (SY |X)⊥ such
that‖v‖ = ‖w‖ = 1, and some constantc > 0, we have

var[wT (X̃ − X)|V (X, X̃) ≤ c] > var[vT (X̃ − X)|V (X, X̃) ≤ c].(13)

The interpretation of this assumption is similar to that of Assumption 2.1,
except thatV (X, X̃) replaces|Ỹ − Y | as the measure of variation ofY along
the line throughX and X̃. We now deduce population exhaustiveness under
this assumption. Once again we do so for a spherical predictor without loss of
generality.

THEOREM 4.1. Suppose that X has an elliptical distribution with E(X) = 0
and var(X) = Ip. Then, under Assumption 4.1, the eigenvectors of G(c) corre-
sponding to its smallest q eigenvalues span the central subspace SY |X.

The proof of this theorem is similar to that of Theorem 2.1 and will be given
in the Appendix. The generalization to an arbitrary elliptical distribution forX is
similar to Corollary 2.1 and will be omitted.

We expect
√

n-consistency to hold also for GCR estimation. However, the as-
ymptotic analysis is substantially more complex than for the SCR case, because the
estimator cannot be rendered directly as aU -statistic. Alternative techniques must
be developed for such an analysis. In this paper we will not prove

√
n-convergence

rate for GCR, but will back up our claim by simulation in Section 6.

4.3. Sufficient conditions for exhaustive estimation. Next, following a reason-
ing similar to that in Section 3, and again in reference to the location structure
in (7), we derive a sufficient condition for Assumption 4.1.

Note that, sinceSY |X = span(β), for ap × r matrix δ (r ≤ p) we will have

var
(
f (βT X)|δT X

)
> 0(14)

unless span(β) ⊂ span(δ); that is,f (βT X) is not a function ofδT X unlessδ spans
a space containing the central subspace.
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THEOREM4.2. Suppose that X has an elliptically contoured distribution with
E(X) = 0 and var(X) = Ip, and that model (7) holds. Then Assumption 4.1
is satisfied for all sufficiently small c > 0 for which {(x, x̃) :V (x, x̃) ≤ c} is a
nonempty set.

PROOF. We first show thatV (x, x̃) ≥ σ 2 for all x andx̃ and that equality holds
for somex and x̃, so that, wheneverc ≥ σ 2, {(x, x̃) :V (x, x̃) ≤ c} is nonempty.
Let δ be anyp × r matrix with r ≤ p. Becauseε ⊥⊥ (βT X, δT X), we have by
Lemma 2.1(c)βT X ⊥⊥ ε|δT X. Hence

var(Y |δT X = t) = var
(
f (βT X)|δT X = t

) + var(ε|δT X = t)

= var
(
f (βT X)|δT X = t

) + σ 2,
(15)

where for the second equality we have used the independence betweenε andX.
Now take δ = δ(x, x̃) and t = δT (x, x̃)x, where δ(x, x̃) is as defined above
display (11). We see thatV (x, x̃) ≥ σ 2, and that equality holds whenever(x̃ − x)

is orthogonal to span(β) = SY |X. With this in mind the assertion of the theorem
can be rewritten as: ifv ∈ SY |X andw ∈ (SY |X)⊥, then for sufficiently smallτ > 0

var[wT (X̃ − X)|V (X, X̃) ≤ σ 2 + τ ] > var[vT (X̃ − X)|V (X, X̃) ≤ σ 2 + τ ].
By the definition of conditional expectation,

lim
τ↓0

var[(X̃ − X)|V (X, X̃) ≤ σ 2 + τ ] = var[(X̃ − X)|V (X, X̃) = σ 2].

Hence if we can show that

var[vT (X̃ − X)|V (X, X̃) = σ 2] < var[wT (X̃ − X)|V (X, X̃) = σ 2],(16)

then the inequality will hold for all sufficiently smallτ > 0, proving the theorem.
To prove (16), note that (15) also implies that var(Y |δT X = t) = σ 2 if and

only if var(f (βT X)|δT X = t) = 0. However, because of (14), this will happen
if and only if span(β) ⊂ span(δ). Taking δ = δ(x, x̃) and t = δT (x, x̃)x, we see
that V (x, x̃) = σ 2 if and only if span(β) ⊂ span(δ(x, x̃)), which is equivalent to
(x − x̃) ⊥ span(β). Hence the left-hand side of (16) equals 0.

It remains to show that the right-hand side of (16) is positive. First, note that the
roles ofX andX̃ are exchangeable, and hence

E[(X − X̃)|V (X, X̃) = σ 2] = E[(X̃ − X)|V (X̃,X) = σ 2].
However, by the definition ofV (x, x̃), V (x, x̃) = V (x̃, x) for all x and x̃, and
hence

E[(X − X̃)|V (X, X̃) = σ 2] = E[(X̃ − X)|V (X, X̃) = σ 2].
It follows that both sides of this equation must be 0, and so the right-hand side
of (16) reduces toE[(wT (X̃ − X))2|V (X, X̃) = σ 2]. If this quantity were 0, then
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wT (x − x̃) = 0 wheneverV (x, x̃) = σ 2, which holds wheneverβT (x − x̃) = 0.
Because the support ofX is spherical,(x − x̃) can run through every direction
in R

p. Hence span(β)⊥ ⊂ span(w)⊥, or equivalentlyw ∈ span(β), which is a
contradiction. �

The conditions in Theorem 4.2 are much weaker than those in Theorem 3.1.
Predictor ellipticity and the structure in (7) are postulated in both cases. However,
constant conditional variance (Assumption 2.2) is not required in Theorem 4.2,
and essentially no requirement is posed on the behavior of the mean function
and the error term in (7). Thus, GCR will be exhaustive under settings even
more general than those required by SCR. Intuitively, this is becauseV (X, X̃)

possesses stronger discriminating power than|Ỹ − Y |: it can identify the contour
vectors of any functionf (βT X), as long as the latter genuinely depends on all the
components ofβT X [which is the case because of the minimality of the central
subspaceSY |X = span(β) discussed in Section 1].

As mentioned at the end of Section 2.4, we now briefly discuss differences
between contour regression methods and SAVE. First, in Section 3 and this
section we have shown that SCR and GCR are guaranteed to be exhaustive under
population-level conditions much milder than the ones assumed for exhaustiveness
of SAVE. Second, contour regression methods break the barriers of slices, making
more efficient use of data. In comparison, slice-based methods such as SAVE
cannot exploit interslice information. Third, whereas the construction of SCR is
somewhat similar to that of SAVE, and we suspect the gain in accuracy of SCR
(which will be demonstrated by simulation) to be largely due to its efficient use of
interslice information, GCR differs more intrinsically from slice-based methods:
it employs a more sensitive contour identifier, and is thereby capable of picking
up directions not easily detected by SAVE or SCR when the regression surface is
complex. In Section 6 we show by simulation how this leads to improved accuracy
in estimating the central subspace.

5. Robustness against nonellipticity. The population exhaustiveness of our
contour-based methodology relies on ellipticity of the predictor distribution. This
is because in the theoretical development we have treated the constantc in (4)
and (12) as fixed with respect to the sample sizen. Ellipticity of the distribution
of X helps to balance out the effect of line segments that are not aligned with
the contour directions. As mentioned in the Introduction, ellipticity requirements
are ubiquitous for global methods such as OLS, SIR, PHD and SAVE. They are
adopted to guarantee linear relationships among predictors, which in turn are
needed for the methods to estimate directions within the central subspace.
When the number of predictorsp is relatively small, diagnosing and remedying
departures from ellipticity is relatively straightforward—in practice, scatterplot
matrices are used to search for marked curvatures, and predictor transformations or
data reweighting to mitigate such curvatures [4, 6]. However, especially whenp is
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large, diagnosing and remedying departures from ellipticity becomes laborious and
complicated.

Notwithstanding the theoretical requirement, contour regression methods (es-
pecially GCR, whose contour identifier is more sensitive) can perform well even
under violations of ellipticity. In Section 6 we will address this robustness by sim-
ulation; here we motivate it from a theoretical viewpoint. We will show that, pos-
tulating again the location structure in (7), the eigenvectors corresponding to the
smallestp − q eigenvalues of the matrix

A = E[(X̃ − X)(X̃ − X)T |V (X, X̃) = σ 2]
span the orthogonal complement of the central subspace,(SY |X)⊥, even whenX
is not elliptical. This suggests that if we letc decrease toσ 2 asn increases, then
the eigenvectors corresponding to the smallestp − q eigenvalues of̂F(c) in (12)
(after appropriate transformation bŷ�−1/2) will tend to recover the wholeSY |X,
regardless of the shape of the distribution ofX. In practice, if we makec small
[i.e., close to the smallest value of̂V (Ẑi, Ẑj ;ρ) in (12)], then GCR is likely to
estimate the central subspace exhaustively and effectively even if the shape ofX

does not help the process by averaging out erroneous directions, as is the case
under ellipticity.

THEOREM 5.1. Suppose that model (7) holds and that X is a continuous
random vector with an open support X ⊂ R

p. Then the matrix A has exactly p−q

zero eigenvalues, and their corresponding eigenvectors span (SY |X)⊥. In symbols,

ker(A) = SY |X,

where ker(A) = {h ∈ R
p :Ah = 0} is the kernel of A.

PROOF. Note that(X̃ − X) is orthogonal to span(β) = SY |X if and only if
span(β) ⊂ span(δ(X, X̃)), which, by the argument following (15), happens if
and only if V (X, X̃) = σ 2. Thus, conditioning onV (X, X̃) = σ 2, (X̃ − X) is
orthogonal to span(β). It follows that, wheneverh belongs to span(β), Ah = 0,
and thus span(β) ⊂ ker(A).

Conversely, supposeh belongs to ker(A). Then

hT Ah = E
[(

hT (X̃ − X)
)2|V (X, X̃) = σ 2] = 0.

Thus, wheneverV (X, X̃) = σ 2, h is orthogonal to(X̃ − X). Equivalently,
whenever(X̃ − X) is orthogonal to span(β), (X̃ − X) is orthogonal toh. In other
words, if we letX∗ = {x̃ − x : x̃ ∈ X, x ∈ X}, then

X∗ ∩ (span(β))⊥ ⊂ X∗ ∩ (span(h))⊥.

However, becauseX is an open set,X∗ is an open set containing 0. By Lemma A.1
in the Appendix (span(β))⊥ ⊂ (span(h))⊥, or equivalentlyh ∈ span(β), as
desired. �
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Intuitively, the theorem shows that theonly directions(x − x̃) along which the
varianceV (x, x̃) achieves its minimum are those aligned with the contour. This is
largely due to conditioning on the conditional variance, a population quantity. An
analogous result cannot be derived for SCR.

Theorem 5.1 also suggests that, when we are not confident about the ellipticity
of the distribution ofX, we should use a stricter thresholding in the analysis [i.e.,
choose a small value ofc, or include a small proportion of the

(n
2

)
empirical

directions]. This makes contour regression estimators more similar to kernel
estimators, whose consistency depends on the kernel width approaching 0 as
n → ∞. We will return to this point in the Conclusions.

6. Simulation results. We now compare the performance of both versions of
contour regression, SCR and GCR, with that of well-known dimension reduction
methods ensuring

√
n-consistency, such as OLS, SIR, PHD and SAVE. For such

comparisons, we need to introduce a measure of distance between two subspaces
of R

p. Let S1 andS2 be twoq-dimensional subspaces ofR
p and letPS1, PS2 be

the orthogonal projections ontoS1 andS2, respectively. We use the distance

dist(S1,S2) = ∥∥PS1 − PS2

∥∥,
where‖ · ‖ is the Euclidean norm, that is, the maximum singular value of a matrix.

In the following, we present five examples covering a range of possible
regression contexts. For both SCR and GCR we need to determine the number of
empirical directions to include in the principal component analysis, and for GCR
we also need to determine the tube radiusρ. Though in this paper we will not deal
with the optimal choice of these numbers, related issues will be discussed to some
extent in the examples.

In the first three examples the sample sizen and dimensionp are relatively
small, whereas in the last two examples they are much larger. Instead of using
a fixed c for thresholding, we fix the proportionr of the number of empirical
directions with smallest variation (absolute response differences for SCR or tube
variances for GCR) relative to

(n
2

)
, the total number of empirical directions. For the

first three examples we user = 6qn/
(n
2

)
for SCR andr = 2qn/

(n
2

)
for GCR, and

useρ = 1 for GCR. For the last two examples we user = 5% for both SCR and
GCR andρ = 2 for GCR.

EXAMPLE 6.1. Consider the regression

Y = X2
1 + X2 + σε,(17)

whereX ∼ N(0, I4), so that predictor ellipticity holds,ε ∼ N(0,1) andε ⊥⊥ X.
Here the central subspace is of dimensionq = 2 and is spanned by the vectors
(1,0,0,0)T and (0,1,0,0)T . We compare SCR and GCR with SIR, SAVE and
PHD using three different values of the error standard deviations:σ = 0.1, 0.4
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and 0.8. Because OLS can pick up at most one direction, it is not included in this
comparison. For each value ofσ we draw 500 samples of sizen = 100, and on
each sample we apply the five methods to produce five estimates ofSY |X. Next
we compute the distance between these estimates and the true central subspace
according to the definition at the beginning of this section. Finally, we compute
an average and a standard error from the resulting 500 distances, for eachσ value
and estimation method. Results are presented in Table 1 (DIST and SE columns
correspond to average and standard error of the distances, resp.).

The numbers in Table 1 indicate that both SCR and GCR outperform SIR,
SAVE and PHD in this example. Intuitively this is because SIR does not perform
well when there is no linear trend, thus failing to pick up the second direction
(0,1,0,0)T , whereas PHD, and to a lesser extent SAVE, do not perform well
when there is no quadratic trend, thus failing to give accurate estimates of the
first direction(1,0,0,0)T . In contrast, both SCR and GCR, as also demonstrated
theoretically, provide comprehensive estimates of the central subspace. Note that
SAVE performs better than SIR and PHD—by inspecting a few typical cases
(results not presented) we find that SAVE does a better job at picking up the linear
trend than PHD. Nevertheless, it is much less accurate than SCR and GCR. From
the table we can also see that GCR generally outperforms SCR.

In the next example predictor ellipticity is maintained, but the comparison is
based on a more complex regression surface in which linear and quadratic trends
are not neatly separated along two coordinate directions. In this more complicated
case, SIR, SAVE and PHD can also detect both directions.

EXAMPLE 6.2. Consider the regression

Y = X1/
(
0.5+ (X2 + 1.5)2) + (1+ X2)

2 + σε,

whereX andε are as defined in Example 6.1. Here, again,q = 2 and the central
subspace is spanned by the vectors(1,0,0,0)T and(0,1,0,0)T . We explore again
the same grid of values forσ , using the same number of samples and sample size

TABLE 1
Comparison of SCR, GCR and other methods for Example 6.1

SCR GCR SIR SAVE PHD

σ DIST SE DIST SE DIST SE DIST SE DIST SE

0.1 0.23 0.11 0.16 0.07 0.78 0.24 0.43 0.25 0.80 0.21
0.4 0.25 0.11 0.20 0.08 0.79 0.23 0.54 0.27 0.79 0.21
0.8 0.31 0.13 0.32 0.16 0.80 0.23 0.73 0.25 0.79 0.21
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TABLE 2
Comparison of SCR, GCR and other methods for Example 6.2

SCR GCR SIR SAVE PHD

σ DIST SE DIST SE DIST SE DIST SE DIST SE

0.1 0.44 0.25 0.28 0.15 0.39 0.21 0.61 0.26 0.71 0.25
0.4 0.47 0.25 0.33 0.18 0.40 0.21 0.65 0.26 0.70 0.25
0.8 0.54 0.26 0.45 0.25 0.49 0.24 0.73 0.24 0.73 0.24

as in Example 6.1. Results are presented in Table 2.

We see that there is still a substantial improvement by GCR over SIR, SAVE
and PHD. SIR slightly outperforms SCR, but the latter is much more accurate than
SAVE and PHD.

In Section 5 we provided a population-level argument for the robustness of GCR
against nonellipticity of the distribution ofX. In the next example we compare
GCR with OLS, PHD, SIR and SAVE when the distribution ofX is not elliptical.

EXAMPLE 6.3. Consider the regression

Y = sin2(πX2 + 1) + σε,

with predictorX ∈ R
4 uniformly distributed on the set

[0,1]4 \ {x ∈ R
4 :xi ≤ 0.7, i = 1,2,3,4},

which defines a four-dimensional cube with a corner removed (this expedient is
used to create an obvious asymmetry in the predictor distribution). We take again
ε ∼ N(0,1) and ε ⊥⊥ X. Here, the central subspace is of dimensionq = 1 and
is spanned by the vector(0,1,0,0)T . We perform the comparison once again
drawing 500 samples of sizen = 100 for each valueσ = 0.1, 0.2 and 0.3. Results
are presented in Table 3.

We see that GCR achieves a substantial improvement over OLS and PHD, and
a modest one over SIR and SAVE. It also appears that SIR and SAVE are more
robust than OLS and PHD against departures from ellipticity ofX.

TABLE 3
Comparison of GCR and other methods for Example 6.3

GCR OLS PHD SIR SAVE

σ DIST SE DIST SE DIST SE DIST SE DIST SE

0.1 0.10 0.05 0.17 0.07 0.24 0.10 0.13 0.06 0.14 0.08
0.2 0.12 0.06 0.19 0.09 0.29 0.12 0.18 0.08 0.22 0.12
0.3 0.20 0.14 0.22 0.10 0.36 0.16 0.22 0.10 0.34 0.20
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Next we compare contour regression methods with existing methods on
instances where both the predictor dimensionp and the sample sizen are much
larger than in the previous examples.

EXAMPLE 6.4. We consider two cases with predictor dimensionp = 10. We
start with the regression

Y = cos(3X1/2) + X3
2/2+ σε,(18)

where X = (X1, . . . ,X10)
T ∼ N(0, I10), ε ⊥⊥ X and ε ∼ N(0,1). The central

subspace has dimensionq = 2 and is spanned by(1,0, . . . ,0)T and(0,1, . . . ,0)T .
As in Example 6.1, OLS is not considered in the comparison, as it can only
detect one direction. The error standard deviationσ is fixed at 0.1,0.4 and 0.8
as in Examples 6.1 and 6.2, and for each such value we draw again 500 samples.
Because of the increased dimension we now use a larger sample size;n = 500. The
coefficients of the two terms cos(3X1/2) andX3

2 are chosen so that the “signal”
for X3

2 is strong for allσ values, while the “signal” for cos(3X1/2) is relatively
weak forσ = 0.8. In this fashion, we can gather a sense of how the form of the
regression function affects the performance of the various methods.

For both SCR and GCR we user = 5% of the 500×499/2 = 124,750 empirical
directions(Xi −Xj) with the smallest|Yi −Yj | or V̂ (Ẑi, Ẑj ;ρ). For GCR the tube
size is taken to beρ = 2. Results are presented in Table 4.

For σ = 0.1,0.4, both SCR and GCR, and especially GCR, achieve a marked
improvement over the other methods. Forσ = 0.8, though GCR still achieves
some improvement, the accuracy of SCR is comparable to that of other estimators,
indicating that under this level of noise the signal of cos(3X1/2) has dropped
below the level detectable by most methods. We also observe that with sample
sizen = 500 the accuracy of SAVE has significantly increased compared with the
previous examples wheren = 100, suggesting that the relatively low accuracy of
SAVE in the previous examples is probably due to its efficiency rather than the
lack of population exhaustiveness.

The choice ofρ = 2 (compared to 1 used in the previous examples) is linked
to the increased dimensionality: for largep observations become sparse, and
a thicker tube is needed to capture enough points. Experiments with numerous

TABLE 4
Comparison of SCR, GCR and other methods for Example 6.4,regression (18)

SCR GCR PHD SIR SAVE

σ DIST SE DIST SE DIST SE DIST SE DIST SE

0.1 0.41 0.12 0.35 0.07 1.02 0.20 1.27 0.18 0.45 0.12
0.4 0.63 0.22 0.45 0.11 1.04 0.21 1.28 0.18 0.80 0.29
0.8 1.04 0.27 0.85 0.20 1.07 0.22 1.31 0.14 1.35 0.17
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regression specifications invariably indicate that GCR with a relatively large tube
size achieves outstanding improvements in accuracy. To benchmark the effect ofρ,
the following simple quantity is useful: LetX1, X2 andX3 be three independent
observations from anN(0, I10), and consider the probability ofX3 falling within
the tube throughX1 andX2 with ρ = 2. This probability is easily computed by
simulation. From 500,000 simulated replicates ofX1,X2,X3 we find that

Pr
(
d
(
X3, �(X1,X2)

) ≤ 2
) ≈ 2.37%.

Thus for sample sizen = 500 there are on average 2+ 11.85≈ 14 observations
in each tube. In contrast, if we takeρ = 1 the probability falls to approximately
9.4 × 10−5, and the expected number of observations in each tube is 2.047,
essentially equivalent to SCR.

Next, to confirm these results, we consider again the simpler regression in (17)
and keep all the specifications of Example 6.1, except for takingX ∼ N(0, I10),
n = 500,r = 5% andρ = 2. Results are presented in Table 5.

We see that the broad patterns in Table 4 are confirmed, but the improvement by
SCR and GCR appears to be more significant. The accuracy of SCR compared with
GCR is increased somewhat, probably due to the simpler form of the regression.

In the next example we compare the performance of the above methods when
the structural directions are determined by the variance, rather than the mean,
function. This example demonstrates that, although the location structure (7)
was postulated in deriving sufficient conditions for exhaustive estimation and
robustness against nonellipticity, contour regression methods can be very effective
also for regressions that are not based on location.

EXAMPLE 6.5. We consider the regression

Y = 1
2(X1 − a)2ε,

whereX ∼ N(0, I10), ε ∼ N(0,1) and ε ⊥⊥ X. Here the central subspace has
dimensionq = 1 and is spanned by(1,0, . . . ,0)T . The variance ofY is a quadratic
function of X1 centered ata, which is fixed ata = 0,0.5,1. Once again we
generate 500 samples of sizen = 500, and user = 5% for SCR and GCR and

TABLE 5
Comparison of SCR, GCR and other methods for Example 6.4,regression (17)

SCR GCR PHD SIR SAVE

σ DIST SE DIST SE DIST SE DIST SE DIST SE

0.1 0.34 0.07 0.31 0.06 1.34 0.12 1.41 0.04 0.47 0.23
0.4 0.36 0.07 0.36 0.07 1.35 0.11 1.41 0.04 0.80 0.36
0.8 0.44 0.09 0.49 0.10 1.34 0.11 1.41 0.04 1.35 0.13
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TABLE 6
Comparison of SCR, GCR and other methods for Example 6.5

SCR GCR PHD SIR SAVE

a DIST SE DIST SE DIST SE DIST SE DIST SE

0.0 1.34 0.12 1.34 0.11 1.52 0.13 1.63 0.19 1.35 0.14
0.5 1.36 0.10 1.34 0.11 1.55 0.15 1.37 0.11 1.38 0.11
1.0 1.35 0.11 1.34 0.11 1.59 0.14 1.35 0.11 1.44 0.14

ρ = 2 for GCR. Table 6 contains results for the comparison of SCR, GCR, PHD,
SIR and SAVE. Cook and Li [5] proved that both OLS and PHD operate within the
centralmean subspace, and are therefore incapable of estimating a direction that
only appears in the variance function. We include PHD in the comparison to serve
as a benchmark for our subspace distance statistics.

Table 6 shows that contour regression methods are indeed capable of estimating
the variance function direction, because their accuracy is much higher than the
benchmark accuracy of PHD. Overall, the accuracy of SCR and GCR is similar
to that of SIR and SAVE. We also observe that whena is small, SAVE is more
accurate than SIR, and the opposite is true whena is large. The accuracy of contour
methods does not appear to depend markedly ona. It is also worth mentioning that
the errors in Table 6 are significantly larger than those in the previous examples
regardless of the method used. This simply reflects the fact that estimating variance
structures is more difficult than estimating mean structures.

Finally, we come to the issue of estimating the structural dimensionq. As
mentioned in Section 2.4, we believe that an asymptotic test for SCR can be
developed along the same lines employed by existing methods such as SIR and
PHD, though this will require work beyond the scope of the present paper. The
development of an asymptotic test for GCR would hinge on an asymptotic analysis
of the GCR estimator, which has not been pursued here. Nevertheless, we can
empirically assess the capability of SCR and GCR to estimateq by examining
how much the eigenvalues corresponding to the central subspace are separated
from those corresponding to its complement (i.e., the contour space).

For SCR we use the matrix

2Ip − �̂−1/2K̂(c)�̂−1/2.(19)

This is the sample version of the population matrix 2Ip −�−1/2K(c)�−1/2. From
Theorem 2.3 we know that the eigenvalues of the population matrix corresponding
to contour directions are identically 0 and those corresponding to the central
subspace are strictly positive. Thus we expect the eigenvalues of the sample
matrix (19) to behave similarly. We consider again the simulations for regressions
(18) and (17) in Example 6.4, withσ = 0.4. We compute the ten eigenvalues of the
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matrix (19) for each of the 500 samples, sayλ̂�,1, . . . , λ̂�,10. From each of the ten
sets of simulated eigenvalues{λ̂1,j , . . . , λ̂500,j }, j = 1, . . . ,10, we then compute
an averagêλ·j and a standard error̂τj . These numbers are shown in the two SCR
columns of Table 7.

For GCR we use the matrix

Ĝ(c) = ∑
(i,j)∈N

(Ẑi − Ẑj )(Ẑi − Ẑj )
T

× I
(
V̂ (Ẑi, Ẑj ;ρ) ≤ c

)/ ∑
(i,j)∈N

I
(
V̂ (Ẑi, Ẑj ;ρ) ≤ c

)
,

where the index setN is as defined in (4). This matrix is proportional tôF(c)

in (12), rescaled so that it estimatesE[(Zi −Zj)(Zi −Zj)
T | |Ii − Ij | ≤ c] instead

of E[(Zi − Zj)(Zi − Zj)
T I (|Ii − Ij | ≤ c)]. Though we did not prove a theorem

for GCR analogous to Theorem 2.3, we mimic the SCR case and compare the
eigenvalues of 2Ip − Ĝ(c) (it is the separation of eigenvalues that matters here).
The simulation averages and standard errors of these eigenvalues over 500 samples
for regressions (18) and (17) (withσ = 0.4) are shown in the two GCR columns
of Table 7.

From Table 7 we see that for both methods, and in both regressions, the
eigenvalueŝλ9,j andλ̂10,j , which correspond to vectors in the central subspace, are
significantly larger than the other eigenvalues. Furthermore, the contrast between
λ̂9,j andλ̂10,j and the remaining eigenvalues appears to be stronger for GCR than
for SCR, suggesting that GCR is more sensitive in identifying the central subspace.

TABLE 7
Averages (EVAL) and standard errors (SE) of eigenvalues from SCR and GCR

MODEL I MODEL II

EVAL(SE) SCR GCR SCR GCR

λ̂·1 (τ̂1) −0.26 (0.05) −0.55 (0.12) −0.23 (0.04) −0.48 (0.11)
λ̂·2 (τ̂2) −0.18 (0.04) −0.37 (0.10) −0.15 (0.04) −0.32 (0.09)
λ̂·3 (τ̂3) −0.11 (0.04) −0.23 (0.08) −0.09 (0.03) −0.21 (0.08)
λ̂·4 (τ̂4) −0.05 (0.04) −0.11 (0.08) −0.04 (0.03) −0.10 (0.07)
λ̂·5 (τ̂5) 0.01 (0.04) 0.00 (0.07) 0.02 (0.04) 0.00 (0.06)
λ̂·6 (τ̂6) 0.07 (0.04) 0.11 (0.07) 0.07 (0.04) 0.10 (0.07)
λ̂·7 (τ̂7) 0.14 (0.04) 0.23 (0.08) 0.13 (0.04) 0.20 (0.07)
λ̂·8 (τ̂8) 0.23 (0.05) 0.37 (0.08) 0.21 (0.05) 0.33 (0.07)
λ̂·9 (τ̂9) 0.41 (0.08) 0.91 (0.11) 0.72 (0.07) 1.08 (0.07)
λ̂·10 (τ̂10) 1.17 (0.06) 1.23 (0.07) 1.14 (0.07) 1.21 (0.07)

MODEL I is regression (18) withσ = 0.4, and MODEL II is regression (17)
with σ = 0.4 and a ten-dimensional predictorX.
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7. An application. We consider a data set concerning the effect on soil
evaporation of various air and soil conditions such as temperature, humidity and
wind speed ([12]; it is available in theArc package—see http://www.stat.umn.edu/
arc/software.html). There arep = 10 predictors: average daily air temperature
(Avat), area under the daily humidity curve (Avh), area under the daily soil
temperature curve (Avst), maximum daily air temperature (Maxat), maximum
daily humidity (Maxh), maximum daily soil temperature (Maxst), minimum daily
air temperature (Minat), minimum daily humidity (Minh), minimum daily soil
temperature (Minst) and total wind speed in miles/hour (Wind). The response is
daily soil evaporation (Evap). The data are collected over a period of 46 days, but
do not show any obvious serial dependence. Hence for simplicity we treat the data
as independent replicates withn = 46.

Figure 2 is the scatterplot matrix of the ten predictors, which does not seem

FIG. 2. Scatterplot matrix for the predictors in the soil evaporation data.
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to suggest serious departures from ellipticity. Furthermore, simultaneous Box–
Cox transformations of these predictors do not lead to significant improvements
in ellipticity. Hence we use the untransformed predictors for our analysis. We
apply both SIR and GCR to the data, using the negative Evap asY . The two upper
panels of Figure 3 are the scatterplots ofY versus the first two SIR directions, SIR1
and SIR2, on the standardized scaleẐ. The scatterplot forY versus SIR1 (upper-
left panel) shows a strong monotone trend which is almost linear. In contrast,
the scatterplot ofY versus SIR2 (upper-right panel) does not show a detectable
pattern. The two lower panels of Figure 3 are the scatterplots ofY versus the first
two GCR directions, GCR1 and GCR2, on the standardized scaleẐ. The plot
for Y versus GCR1 (lower-left panel) also shows a clear monotone, but slightly
nonlinear, trend. What is interesting, however, is that the scatterplot ofY versus

FIG. 3. Scatterplots of the response (−Evap)versus the first two SIR directions (upper panels)and
the first two GCR directions (lower panels)for the soil evaporation data.



CONTOUR REGRESSION 1611

GCR2 (lower-right panel) suggests aU -shaped pattern. A three-dimensional spin
plot of Y versus (GCR1, GCR2) shows a mean surface that, roughly speaking, is
folded in the GCR2 direction and tilted upwards in the GCR1 direction. In the
Y -versus-GCR2 scatterplot, five points (labeled by “+”) sit above theU -shape
near GCR2= 0, appearing to weaken theU -shaped pattern. However, these points
are far out in the direction of GCR1 with high values ofY—corresponding to the
five points labeled by “+” in the perspective scatterplot in Figure 4.

Because in this data setp = 10 andn = 46, as discussed in Section 6 (following
Example 6.4) we need to choose a rather large radiusρ to capture enough points in
each tube. For this application of GCR we usedρ = 3.5 (on theẐ-scale) and 15%
of the

(46
2

) = 1035 pairs (i.e., 155 pairs) of points among whichV̂ (Ẑi, Ẑj ;ρ = 3.5)

are the smallest. For SIR we used six slices defined so as to contain roughly the
same number of points.

Although without a formal testing procedure we cannot yet determine the
statistical significance of GCR2, the 2D and 3D scatterplots from our GCR analysis
do suggest that a second direction might be relevant in the evaporation data. Due to
its small sample size relative to the dimension of the predictor, this example does
not allow us to draw strong conclusions, but it demonstrates once again that GCR is
more sensitive than classical methods in detecting complex regression surfaces—
in this instance monotone in one direction andU -shaped in another. This was
anticipated by theoretical analysis in Section 4 and supported by simulation studies
in Section 6.

FIG. 4. A view of the 3D plot of the response (−Evap)versus the first two GCR directions in the
soil evaporation data.
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8. Conclusions. The contour regression methods introduced in this paper
have strength in several aspects. First, under mild conditions they achieve
exhaustive estimation of the central subspace at the

√
n-convergence rate.

In comparison with existing global estimators such as OLS, PHD and SIR,
contour regression estimators are more comprehensive, capable of picking up all
directions in the central subspace without relying on special response patterns
(e.g., monotone orU -shaped trends). In particular, GCR achieves exhaustiveness
essentially without any assumption other than that of ellipticity of the distribution
of X. Second, by design contour regression methods are capable of exploiting
interslice information which is not accessible to methods based on slicing. This
partly explains their improved accuracy over SIR and SAVE, which we have
discussed from an analytical standpoint and documented through simulations. In
fact, we think that the advantage of contour methods over SAVE is due to the
gain in efficiency such as achieved via the use of interslice information, and not
the structural inability of SAVE to capture linear trends. Third, GCR achieves a
degree of robustness against nonellipticity of the distribution ofX. In this respect
contour regression is akin to the adaptive methods mentioned in the Introduction.
Unlike adaptive methods, however, contour methods are computationally simple,
the level of computational burden being essentially that of principal component
analysis. In particular, they do not require iterative maximization of a multivariate
nonparametric function, which can be a substantial advantage, especially if the
dimension is large, or if multiple local maxima are present in the iterative
maximization.

Because contour vectors are extracted according to a threshold on response
variation, our methods are logically analogous to a one-dimensional kernel or
nearest-neighbor estimator. If the distribution of the predictorX is elliptical, the
threshold need not go to zero in our asymptotic arguments for SCR, which makes
it possible to achieve the

√
n-rate regardless of the dimensionsp andq. In this

respect contour regression is similar to traditional global methods such as OLS,
PHD, SIR and SAVE. However, if ellipticity fails and/or is difficult to establish
through predictor transformations, we can employ a relatively small threshold,
operating in a spirit more similar to that of adaptive methods.

We do not claim that contour regression estimators will outperform other
methods under all circumstances. For example, OLS is the maximum likelihood
estimator if the regression surface is linear and the error term is normal, and tends
to perform very well if the surface is nearly linear or clearly monotone. Similarly
favorable circumstances exist for PHD, SIR and SAVE as well.

The ideas of contour regression raise many questions that have not been
addressed within the the scope of this paper. In particular, the asymptotic properties
of GCR, as well as test statistics for estimating the structural dimensionq, have not
yet been developed. We do expect that

√
n-convergence can be achieved by GCR if

the thresholdc is taken as fixed, because this in effect includes in the computation
a number of line segments proportional to the total number of observation pairs.
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We also expect that test statistics for determiningq can be constructed based on
Theorem 2.3, along lines similar to those in [2, 14]. Also, we have not provided a
systematic method for choosing the thresholding constantc (or the ratior) for SCR
and GCR, as well as the tube radiusρ for GCR, which should ideally be based
on data-driven criteria. Other useful developments will concern the asymptotic
behavior of GCR when the thresholdc is allowed to go to zero as the sample
sizen tends to infinity. Theorem 5.1 suggests that even without ellipticity ofX the
correct asymptotic behavior would still be guaranteed. However, in this case we do
not expect a

√
n-convergence rate—at least not for all structural dimensions. To

further improve efficiency it may be helpful to experiment with windows other
than the current rectangular ones in selecting contour vectors. It may also be
possible to apply an idea similar to local linear regression [11] to correct the
possible edge effect caused by the line segments lying in the outskirts of the data
cloud. Another worthwhile line of research would be to extend contour methods to
dependent data, for example, to weakly dependent Gaussian time series (see [23]).
Finally, as we have seen from Example 2.3 (binary response), contour methods do
apply to discrete numerical responses. Moving forward along this direction, we
could generalize contour methods to ordinal categorical or even purely categorical
responses. This will require appropriate renditions for the concepts ofabsolute
difference (e.g., “the same” and “not the same”) anddistributional spread (e.g.,
a concentration index) for categorical modalities; these could be used to define
contour direction identifiers for SCR and GCR, respectively. We leave these issues
to future studies.

APPENDIX

PROOF OF LEMMA 2.1. (a) Letfij denote the joint densities of(Vi,Vj ),
and so on. For example,f1 is the density ofV1 and f123 is the joint density
of (V1,V2,V3). Similarly, let fij |k and so on denote conditional densities. For
example,f23|4 is the conditional joint density of(V2,V3) given V4. We need to
show that

f1245|36(v1, v2, v4, v5|v3, v6) = f14|36(v1, v4|v3, v6)f25|36(v2, v5|v3, v6).(20)

Without loss of clarity we can omitv1, . . . , v6 from the density. Thus the above
equality becomesf1245|36 = f14|36f25|36. The left-hand side of (20) is

f123456/f36.

Because(V1,V2,V3) ⊥⊥ (V4,V5,V6), V1 ⊥⊥ V2|V3 andV4 ⊥⊥ V5|V6, the numerator
in the above ratio is factorized intof1|3f2|3f3f4|6f5|6f6 = f13f23f46f56/(f3f6),
and the denominator is factorized intof3f6. Thus the left-hand side reduces to
f13f23f46f56/(f3f6)

2. The right-hand side of (20) is the ratiof1436f2536/f
2
36.

Because(V1,V2,V3) ⊥⊥ (V4,V5,V6) this ratio becomesf13f46f23f56/(f3f6)
2, the

same quantity to which the left-hand side of (20) is reduced.
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(b) Suppose(V1,V2) ⊥⊥ (V3,V4). We want to show that

f13|24 = f1|24f3|24.(21)

The left-hand side isf1234/f24, which, because(V1,V2) ⊥⊥ (V3,V4), reduces to
f12f34/(f2f4). The right-hand side of (21) isf124f324/(f24)

2 = f12f4f2f34/

(f2f4)
2 = f12f34/(f2f4), which completes the proof.�

PROOF OFTHEOREM 4.1. Because the proof is basically the same as that of
Theorem 2.1, we only highlight the differences. There is no change in paragraphs
1, 2, 3, 4, 6 of the proof of Theorem 2.1 except for replacing, wherever applicable,
|Ỹ − Y | ≤ c by V (X, X̃) ≤ c, K(c) by G(c), K1(c) by

G1(c) = E[(Z − Z̃)(Z − Z̃)T |V (Z̃,Z) ≤ c],
and “Assumption 2.1” by “Assumption 4.1.”

Replace the fifth paragraph by the following argument: Because(Z,Y )

and (φi(Z),Y ) have the same distribution, and because(Z,Y ) and (Z̃, Ỹ )

are independent, the distributions of(Z,Y, Z̃, Ỹ ) and (φi(Z),Y,φi(Z̃), Ỹ ) are
identical. Hence

E[(Z̃ − Z)(Z̃ − Z)T |V (Z, Z̃) ≤ c]
= E

[(
φi(Z̃) − φi(Z)

)(
φi(Z̃) − φi(Z)

)T |V (
φi(Z),φi(Z̃)

) ≤ c
]
.

We claim that, for anya andb in R
p, V (a, b) = V (φi(a),φi(b)). By definition,

V (a, b) = var
(
Y |Z = (1− t)a + tb for somet

)
.

Because(Z,Y ) and (φi(Z),Y ) have the same distribution, the condition in the
above conditional variance can be replaced byφi(Z) = (1 − t)a + tb or Z =
φ−1

i ((1 − t)a + tb). Because, as we have noted,φi = φ−1
i , and also because

φi :Rp 
→ R
p is a linear function, the condition can be replaced byZ = (1 −

t)φi(a) + tφi(b). Therefore,

V (a, b) = var
(
Y |Z = (1− t)φi(a) + tφi(b) for somet

) = V
(
φi(a),φi(b)

)
,

as claimed. Consequently,

E[(Z̃ − Z)(Z̃ − Z)T |V (Z, Z̃) ≤ c]
= E

[(
φi(Z̃) − φi(Z)

)(
φi(Z̃) − φi(Z)

)T |V (Z, Z̃) ≤ c
]
.

Now follow through the rest of the fifth paragraph in the proof of Theorem 2.1,
replacing|Y − Ỹ | ≤ c by V (X, X̃) ≤ c in one place. �

PROOF OFLEMMA 3.2. By Fubini’s theorem we have

E(S) − E(T ) =
∫ ∞

0

∫ ∞
t

(
p(s)

q(s)
− 1

)
q(s) ds dt ≡

∫ ∞
0

G(t) dt.
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We now show thatG(t) < 0 for all t > 0. Becausep(s)/q(s) is a decreasing
function and because ∫ ∞

0

(
p(s)

q(s)

)
q(s) ds = 1,

the functionp(s)/q(s) is greater than 1 ats = 0, equal to 1 at somes0 > 0 and less
than 1 afterward. HenceG′(t) = q(t) − p(t) is less than 0 fort < s0 and greater
than 0 fort > s0. SoG(t) first decreases and then increases. However, it is easy to
see thatG(0) = 0 and limt→∞ G(t) = 0. HenceG(t) < 0 for all t > 0. �

LEMMA A.1. Let S1 and S2 be two linear subspaces of R
p and let A be an

open set in R
p containing the origin. Suppose A ∩ S1 ⊂ A ∩ S2. Then S1 ⊂ S2.

PROOF. Letv be a vector inS1. BecauseA is an open set containing the origin,
for sufficiently smallλ > 0,λv ∈ A. Henceλv ∈ A∩S1. BecauseA∩S1 ⊂ A∩S2,
λv also belongs toA∩S2. Henceλv belongs toS2. BecauseS2 is a linear subspace,
v belongs toS2. �
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[20] SERFLING, R. (1980).Approximation Theorems of Mathematical Statistics. Wiley, New York.
[21] STONE, C. J. (1977). Consistent nonparametric regression (with discussion).Ann. Statist. 5

595–645.
[22] WATSON, G. S. (1964). Smooth regression analysis.Sankhyā Ser. A 26 359–372.
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