Translator Disclaimer
December 2004 Tusnády’s inequality revisited
Andrew Carter, David Pollard
Ann. Statist. 32(6): 2731-2741 (December 2004). DOI: 10.1214/009053604000000733

Abstract

Tusnády’s inequality is the key ingredient in the KMT/Hungarian coupling of the empirical distribution function with a Brownian bridge. We present an elementary proof of a result that sharpens the Tusnády inequality, modulo constants. Our method uses the beta integral representation of Binomial tails, simple Taylor expansion and some novel bounds for the ratios of normal tail probabilities.

Citation

Download Citation

Andrew Carter. David Pollard. "Tusnády’s inequality revisited." Ann. Statist. 32 (6) 2731 - 2741, December 2004. https://doi.org/10.1214/009053604000000733

Information

Published: December 2004
First available in Project Euclid: 7 February 2005

zbMATH: 1076.62012
MathSciNet: MR2154001
Digital Object Identifier: 10.1214/009053604000000733

Subjects:
Primary: 62E17
Secondary: 62B15

Rights: Copyright © 2004 Institute of Mathematical Statistics

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.32 • No. 6 • December 2004
Back to Top