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Let ξ0, ξ1, . . . , ξω−1 be observations from the hidden Markov model
with probability distributionPθ0, and letξω, ξω+1, . . . be observations from
the hidden Markov model with probability distributionPθ1. The parameters
θ0 andθ1 are given, while the change pointω is unknown. The problem is
to raise an alarm as soon as possible after the distribution changes fromPθ0

to Pθ1, but to avoid false alarms. Specifically, we seek a stopping ruleN

which allows us to observe theξ ′s sequentially, such thatE∞N is large,
and subject to this constraint, supk Ek(N − k|N ≥ k) is as small as possible.
Here Ek denotes expectation under the change pointk, and E∞ denotes
expectation under the hypothesis of no change whatever.

In this paper we investigate the performance of the Shiryayev–Roberts–
Pollak (SRP) rule for change point detection in the dynamic system of hidden
Markov models. By making use of Markov chain representation for the
likelihood function, the structure of asymptotically minimax policy and of
the Bayes rule, and sequential hypothesis testing theory for Markov random
walks, we show that the SRP procedure is asymptotically minimax in the
sense of Pollak [Ann. Statist. 13 (1985) 206–227]. Next, we present a second-
order asymptotic approximation for the expected stopping time of such a
stopping scheme whenω = 1. Motivated by the sequential analysis in hidden
Markov models, a nonlinear renewal theory for Markov random walks is also
given.

1. Introduction. The problem of quick detection, with low false-alarm rate,
of abrupt changes in stochastic dynamic systems arises in a variety of applications,
including industrial quality control, segmentation of signals, financial engineering,
biomedical signal processing, edge detection in images, and the diagnosis of
faults in the elements of computer communication networks. A comprehensive
summary in this area was given by Basseville and Nikiforov (1993) and Lai
(1995, 2001). A typical such problem in segmentation of signals is that of
using an automatic segmentation of the signal as the first processing step, and a
segmentation algorithm splits the signal into homogeneous segments, the lengths
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of which are adapted to the local characteristics of the analyzed signal. The main
desired properties of a segmentation algorithm are few false alarms and missed
detections, and low detection delay. In the standard formulation of the change
point detection problem, there is a sequence of observations whose distribution
changes at some unknown timeω, and the goal is to detect this change as soon as
possible under false alarm constraints. The reader is referred to Braun and Müller
(1998) for a nice discussion of hidden Markov models for DNA data and change
point detection analysis.

When the observationsξn are independent with a common density functionf θ0

for n < ω and with another common density functionf θ1 for n ≥ ω, a minimax
formulation has been proposed by Lorden (1971), in which he showed that
subject to the “average run length” (ARL) constraint, Page’s CUSUM procedure
asymptotically minimizes the “worst case” detection delay. Instead of studying
the optimal detection problem via sequential testing theory, Moustakides (1986)
formulated the worst case detection delay problem subject to an ARL constraint
as an optimal solution to the optimal stopping problem. Ritov (1990) later gave a
simpler proof. For change point detection in complex dynamic systems beyond the
i.i.d. setting, Bansal and Papantoni-Kazakos (1986) extended Lorden’s asymptotic
theory to the case whereξj are stationary ergodic sequences, under the condition
that {ξj , j < ω} (before the change point) and{ξj , j ≥ ω} (after the change
point) are independent, and proved the asymptotic optimality of the CUSUM
algorithm. Further extensions to general stochastic sequencesξn were obtained
by Lai (1995, 1998). Moreover, using a change of measure argument, Lai (1998)
also established the asymptotic optimality of the CUSUM rule under several
alternative performance criteria. In the dynamic system of hidden Markov models,
Fuh (2003) proved that the CUSUM scheme is asymptotically optimal in the sense
of Lorden (1971). His method related the CUSUM procedure to certain one-sided
sequential probability ratio tests in hidden Markov models, for which they had
been shown, in Section 4 of Fuh (2003), to be asymptotically optimal for testing
simple hypotheses.

In the simple system of independent observations before and after the change,
a Bayesian formulation has been proposed by Shiryayev (1963, 1978), in which
the change point is assumed to have a geometric prior distribution, and the goal
is to minimize the expected delay subject to an upper bound on the false alarm
probability. He used optimal stopping theory to show that the Bayes rule triggers an
alarm as soon as the posterior probability that a change has occured exceeds some
fixed level. Roberts (1966) considered the non-Bayesian setting, and studied by
simulation the average run length of this rule, and found it to be very good. Pollak
and Siegmund (1975) extended Shiryayev’s work in a non-Bayesian setting. And
Pollak (1985) showed that the (modified) Shiryayev–Roberts rule is asymptotically
minimax under the formulation of Pollak and Siegmund (1975). Later Yakir (1997)
proved that the procedure is strictly optimal for a slight reformulation of the
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problem. Finally, we mention that Yakir (1994) studied Bayesian optimal detection
for a finite state Markov chain.

As noted by Basseville and Nikiforov (1993) in their monograph, there is a great
deal of literature on detection algorithms in complex systems but relatively little on
the statistical properties and optimality theory of detection procedures beyond very
simple models. The primary goal of this paper is to investigate theoretical aspects
of the Shiryayev–Roberts–Pollak (SRP) change point detection rule in hidden
Markov models. We show that the SRP procedure is asymptotically minimax in the
sense of Pollak (1985). Next, we present a second-order asymptotic approximation
for the expected stopping time of such a stopping scheme whenω = 1. Motivated
by the sequential analysis in hidden Markov models, a nonlinear renewal theory
for Markov random walks is also given.

This paper is organized as follows. In Section 2 we define the hidden Markov
model and formulate the sequential change point detection problem. Then we
provide a Markov chain representation of the likelihood ratio. A nonlinear Markov
renewal theory is given in Section 3. In Section 4 we show that the SRP rule
is asymptotically minimax under mild conditions. In Section 5 we study the
asymptotic operating characteristics of the detection procedure, and derive a
second-order asymptotic approximation for the expected stopping scheme when
ω = 1. All proofs are given in Sections 6, 7 and 8.

2. Problem formulation. A hidden Markov model is defined as a parame-
terized Markov chain in a Markovian random environment [Fuh (2003)], with the
underlying environmental Markov chain viewed as missing data. That is, for each
θ ∈ � ⊂ Rq , the unknown parameter, we considerX = {Xn,n ≥ 0} as an ergodic
(positive recurrent, irreducible and aperiodic) Markov chain on a finite state space
D = {1,2, . . . , d}, with transition probability matrixP (θ) = [pxy(θ)]x,y=1,...,d

and stationary distributionπ(θ) = (πx(θ))x=1,...,d . Suppose that an additive com-
ponentξn, taking values inR, is adjoined to the chain such that{(Xn, ξn), n ≥ 0} is
a Markov chain onD × R, satisfyingP (θ){X1 ∈ A|X0 = x, ξ0 = s} = P (θ){X1 ∈
A|X0 = x} for A ∈ B(D). And conditioning on the fullX sequence,ξn is a Markov
chain with probability

P θ {ξn+1 ∈ B|X0,X1, . . . ; ξ0, ξ1, . . . , ξn}
(2.1)

= P θ {ξn+1 ∈ B|Xn+1; ξn} = P θ(Xn+1 : ξn,B) a.s.

for eachn and B ∈ B(R), the Borel σ -algebra ofR. Note that in (2.1) the
conditional probability ofξn+1 depends onXn+1 and ξn only. Furthermore, we
assume the existence of a transition probability density for the Markov chain
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{(Xn, ξn), n ≥ 0} with respect to aσ -finite measureµ onR such that

P (θ){X1 ∈ A,ξ1 ∈ B|X0 = x, ξ0 = s0}
= P (θ){ξ1 ∈ B|X1 ∈ A,X0 = x, ξ0 = s0}P (θ){X1 ∈ A|X0 = x}

(2.2)

= ∑
y∈A

∫
B

pxy(θ)f (s;ϕy(θ)|s0) dµ(s),

wheref (ξk;ϕXk
(θ)|ξk−1) is the transition probability density ofξk given ξk−1

andXk with respect toµ, θ ∈ � is the unknown parameter, andϕy(·) is a function
defined on the parameter space� for eachy = 1, . . . , d . Here and in the sequel
we assume the Markov chain{(Xn, ξn), n ≥ 0} has stationary probability� with
probability densityπx(θ)f (·;ϕx(θ)) with respect toµ. In this paper we assume
that only one parameter is of interest and treat the other parameters as nuisance
parameters. That is, for simplicity we considerθ ∈ � ⊆ R as a one-dimensional
unknown parameter. For convenience of notation, we writeπx for πx(θ) and
pxy for pxy(θ). We call a process{ξn, n ≥ 0} a hidden Markov model if there is
a Markov chain{Xn,n ≥ 0} such that the process{(Xn, ξn), n ≥ 0} satisfies (2.1)
and (2.2).

Let ξ0, ξ1, . . . , ξω−1 be the observations from the hidden Markov model
{ξn, n ≥ 0} with distributionP θ0, and letξω, ξω+1, . . . be the observations from the
hidden Markov model{ξn, n ≥ 0} with distributionP θ1. Bothθ0 andθ1 are given,
while the change pointω is unknown. We shall usePω to denote such a probability
measure (with change timeω) and useP∞ to denote the caseω = ∞ (no change
point). DenoteEω as the corresponding expectation underPω. The objectives are
to raise an alarm as soon as possible after the change and to avoid false alarms.
A detection scheme is a stopping time on the sequence of observations and aims
to minimize the number of post change observations. Hence, the stopping timeN

should satisfy{N ≥ ω} but, at the same time, keepN − ω small. In this paper we
use the functional studied by Pollak and Siegmund (1975) and Pollak (1985) to
find a stopping timeN to minimize

sup
1≤k<∞

Ek(N − k|N ≥ k)(2.3)

subject to

E∞N ≥ γ,(2.4)

for some specified (large) constantγ . A detection scheme is called asymptotically
minimax if it minimizes (2.3), within ano(1) order, among all stopping rules that
satisfyE∞N ≥ γ , whereo(1) → 0 asγ → ∞.

To describe the SRP change point detection scheme, we need the following
notation. Fixθ0, θ1 ∈ �. Let ξ0, ξ1, . . . , ξn be the observations given from the
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hidden Markov model{ξn, n ≥ 0}. Denote

LRn := pn(ξ0, ξ1, . . . , ξn; θ1)

pn(ξ0, ξ1, . . . , ξn; θ0)

:=
d∑

x0=1

· · ·
d∑

xn=1

πx0(θ1)f
(
ξ0;ϕx0(θ1)

)

×
n∏

l=1

pxl−1xl
(θ1)f

(
ξl;ϕxl

(θ1)|ξl−1
)

(2.5)

×
[

d∑
x0=1

· · ·
d∑

xn=1

πx0(θ0)f
(
ξ0;ϕx0(θ0)

)

×
n∏

l=1

pxl−1xl
(θ0)f

(
ξl;ϕxl

(θ0)|ξl−1
)]−1

as the likelihood ratio. For 0≤ k ≤ n, let

LRk
n := pn(ξk, ξk+1, . . . , ξn; θ1)

pn(ξk, ξk+1, . . . , ξn; θ0)
(2.6)

:=
∑d

xk=1 · · ·∑d
xn=1

∏n
l=k pxl−1xl

(θ1)f (ξl;ϕxl
(θ1)|ξl−1)∑d

xk=1 · · ·∑d
xn=1

∏n
l=k pxl−1xl

(θ0)f (ξl;ϕxl
(θ0)|ξl−1)

.

Given an approximate thresholdB > 0 and settingb = logB, define the
Shiryayev–Roberts scheme

Nb := inf

{
n :

n∑
k=0

LRk
n ≥ B

}
= inf

{
n : log

n∑
k=0

LRk
n ≥ b

}
.(2.7)

A simple modification of (2.7) was given by Pollak (1985) by adding a
randomization on the initialLR0

n. This will be defined precisely in Section 4.
It is worth asking that while the SRP rule (2.5)–(2.7) is asymptotically minimax

in the i.i.d. cases [Pollak (1985)], is it nontrivial whether this is still true for hidden
Markov models? To give a definitive answer to this question, we need to study
the likelihood ratioLRn that appeared in (2.5) since (2.6) can be analyzed in the
same manner. Note that the nonadditive form of (2.5) makes it difficult to analyze.
A key idea to get rid of this difficulty is to represent the likelihood ratio (2.5) as
the ratio ofL1-norms of products of Markov random matrices. This device has
been proposed by Fuh (2003) to study SPRT and CUSUM for hidden Markov
models. Here, we carry out the same idea to have a representation of the likelihood
ratio LRn.

Given a column vectoru = (u1, . . . , ud)
t ∈ Rd , wheret denotes the transpose

of the underlying vector inRd , define theL1-norm ofu as‖u‖ =∑d
i=1 |ui|. The
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likelihood ratio (2.5) can be represented as

LRn = pn(ξ0, ξ1, . . . , ξn; θ1)

pn(ξ0, ξ1, . . . , ξn; θ0)
= ‖Mn(θ1) · · ·M1(θ1)M0(θ1)π(θ1)‖

‖Mn(θ0) · · ·M1(θ0)M0(θ0)π(θ0)‖(2.8)

where, forθ = θ0 or θ1,

M0 = M0(θ) =



f
(
ξ0;ϕ1(θ)

)
0 · · · 0

...
. . .

...
...

0 0 · · · f
(
ξ0;ϕd(θ)

)

 ,(2.9)

Mk = Mk(θ) =



p11(θ)f
(
ξk;ϕ1(θ)|ξk−1

) · · · pd1(θ)f
(
ξk;ϕ1(θ)|ξk−1

)
...

. . .
...

p1d(θ)f
(
ξk;ϕd(θ)|ξk−1

) · · · pdd(θ)f
(
ξk;ϕd(θ)|ξk−1

)

(2.10)

for k = 1, . . . , n, and

π(θ) = (
π1(θ), . . . , πd(θ)

)t
.(2.11)

Let {(Xn, ξn), n ≥ 0} be the Markov chain defined in (2.1) and (2.2). Denote
Yn := (Xn, ξn) andD′ := D × R. DefineGl(d,R) as the set of invertibled × d

matrices with real entries. For givenk = 0,1, . . . , n, andθ = θ0 or θ1, letMk(θ) be
the random matrix fromD′ × D′ to Gl(d,R), as defined in (2.9) and (2.10). For
convenience of notation, we still denoteθ = (θ0, θ1) and let

Tn(θ) = Mn(θ) · · ·M0(θ)
(2.12)

= (
Tn(θ0),Tn(θ1)

)= (
Mn(θ0) · · ·M0(θ0),Mn(θ1) · · ·M0(θ1)

)
.

Then the system{(Yn,Tn(θ)), n ≥ 0} is called a product of Markov random
matrices onD′ × Gl(d,R) × Gl(d,R). DenoteP θ

y as the probability distribution
of {(Yn,Tn(θ)), n ≥ 0} with Y0 = y, andE θ

y as the expectation underP θ
y .

Let u ∈ Rd be a d-dimensional vector,̄u := u/‖u‖ the normalization ofu
(‖u‖ 
= 0), and denoteP (Rd) as the projection space ofRd which contains all
elementsū. For givenū ∈ P (Rd) andM ∈ Gl(d,R), denoteM · ū = Mu and
Tk(θ)u = (Tk(θ0)u,Tk(θ1)u ), for k = 0, . . . , n. Let

Wθ
0 = (

Y0,T0(θ)u
)
, Wθ

1 = (
Y1,T1(θ)u

)
, . . . ,Wθ

n = (
Yn,Tn(θ)u

)
.(2.13)

Then{Wθ
n ,n ≥ 0} is a Markov chain on the state spaceD′ ×P (Rd)×P (Rd) with

the transition kernel

P
θ
(
(y, ū),A × B

) := E θ
y

(
IA×B(Y1,M1(θ)u )

)
(2.14)

for all y ∈ D′, ū := (ū, ū) ∈ P (Rd) × P (Rd), A ∈ B(D ′), andB ∈ B(P (Rd) ×
P (Rd)), the Borelσ -algebra ofP (Rd) × P (Rd). For simplicity we letPθ

(y,ū) :=
P

θ (·, ·) and denoteEθ
(y,ū) as the expectation underPθ

(y,ū). Since the Markov
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chain{(Xn, ξn), n ≥ 0} has transition probability density and the random matrix
M1(θ) is driven by {(Xn, ξn), n ≥ 0}, it implies that the induced transition
probability P(·, ·) has a density with respect toµ. Denote it asP for simplicity.
Under Condition C given below, the Markov chain{Wθ

n ,n ≥ 0} has an invariant
probability measuremθ onD′ × P (Rd) × P (Rd); see Fuh (2003).

Now, for y0, y1 ∈ D′, ū = u(θ) = (u(θ0), u(θ1) ) ∈ P (Rd) × P (Rd) and
M = M(y0, y1) = M(θ) = (M(θ0),M(θ1)) ∈ Gl(d,R) × Gl(d,R), let σ : (D′ ×
P (Rd) × P (Rd)) × (D′ × P (Rd) × P (Rd)) → R be σ((y0, ū), (y1,Mu)) =
log ‖M(θ1)u(θ1)‖/‖u(θ1)‖‖M(θ0)u(θ0)‖/‖u(θ0)‖ . For π(θ0),π(θ1) ∈ P (Rd), denote σ(W0,W0) =
log ‖T0(θ1)π(θ1)‖/‖π(θ1)‖‖T0(θ0)π(θ0)‖/‖π(θ0)‖ . Then

Sn = logLRn

= log
‖Mn(θ1) · · ·M1(θ1)M0(θ1)π(θ1)‖
‖Mn(θ0) · · ·M1(θ0)M0(θ0)π(θ0)‖

= log
‖Tn(θ1)π(θ1)‖/‖Tn−1(θ1)π(θ1)‖
‖Tn(θ0)π(θ0)‖/‖Tn−1(θ0)π(θ0)‖ + · · ·

(2.15)

+ log
‖T1(θ1)π(θ1)‖/‖T0(θ1)π(θ1)‖
‖T1(θ0)π(θ0)‖/‖T0(θ0)π(θ0)‖

+ log
‖T0(θ1)π(θ1)‖/‖π(θ1)‖
‖T0(θ0)π(θ0)‖/‖π(θ0)‖

= σ(Wθ
n−1,W

θ
n ) + · · · + σ(Wθ

0 ,Wθ
1 ) + σ(Wθ

0 ,Wθ
0 )

is an additive functional of the Markov chain{Wθ
n ,n ≥ 0}.

3. A nonlinear Markov renewal theory. Note that{Wθ
n ,n ≥ 0} defined in

(2.13) is a Markov chain on a general state spaceD′ × P (Rd) × P (Rd). In
this section, abuse the notation a little bit and let{Xn,n ≥ 0} be a Markov
chain on a general state spaceX with σ -algebraA, which is irreducible with
respect to a maximal irreducibility measure on(X,A) and is aperiodic. Let
Sn =∑n

k=1 ξk be the additive component, taking values on the real lineR, such
that{(Xn,Sn), n ≥ 0} is a Markov chain onX × R with transition probability

P {(Xn+1, Sn+1) ∈ A × (B + s)|(Xn,Sn) = (x, s)}
(3.1)

= P {(X1, S1) ∈ A × B|(X0, S0) = (x,0)} = P (x,A × B),

for all x ∈ X, A ∈ A and B ∈ B(R) (:= Borel σ -algebra onR). The chain
{(Xn,Sn), n ≥ 0} is called aMarkov random walk. In this section, letPν (Eν)

denote the probability (expectation) under the initial distribution onX0 beingν. If
ν is degenerate atx, we shall simply writePx (Ex) instead ofPν (Eν). We assume
throughout this section that there exists a stationary probability distributionπ ,
π(A) = ∫

P (x,A)dπ(x) for all A ∈ A andEπξ1 > 0.
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Let {Zn = Sn +ηn,n ≥ 0} be a perturbed Markov random walk in the following
sense:Sn is a Markov random walk,ηn is Fn-measurable, whereFn is the
σ -algebra generated by{(Xk, Sk),0 ≤ k ≤ n}, and ηn is slowly changing, that
is, max1≤t≤n |ηt |/n → 0 in probability. Let{A = A(t;λ),λ ∈ } be a family of
boundary functions for some index set. Define

T = Tλ = inf{n ≥ 1 :Zn > A(n;λ)}, inf ∅ = ∞ for eachλ ∈ .(3.2)

It is easy to see that for allλ > 0,Tλ < ∞ with probability 1. This section concerns
the approximations of the distribution of the overshoot and expected stopping
time EνT as the boundary tends to infinity.

In the case of independent and identically distributed (i.i.d.) random variablesξn

with common positive mean, nonlinear renewal theory concerning boundary
crossing times and its applications has been studied by Lai and Siegmund
(1977, 1979), Woodroofe (1976, 1977) and Zhang (1988), among others. A good
summary for this topic can be found in Woodroofe (1982) and Siegmund (1985)
and references therein. For a perturbed Markov random walk withEπξ1 > 0,
Melfi (1992) generalized Lai and Siegmund’s (1977) results to study the limiting
distribution of the overshoot crossing a constant boundary. A multidimensional
nonlinear first passage probability for perturbed Markov random walks can be
found in Fuh and Lai (2001).

A Markov chain{Xn,n ≥ 0} on a state spaceX is calledV -uniformly ergodic
if there exists a measurable functionV :X → [1,∞), with

∫
V (x) dπ(x) < ∞,

such that, for any Borel measurable functionh on X satisfying ‖h‖V :=
supx |h(x)|/V (x) < ∞, we have

lim
n→∞ sup

x∈X

{ |E(h(Xn)|X0 = x) − ∫
h(x) dπ(x)|

V (x)
:x ∈ X, |h| ≤ V

}
= 0.

In this section we shall assume that{Xn,n ≥ 0} is V -uniformly ergodic. Under
the irreducibility and aperiodicity assumption,V -uniform ergodicity implies that
there existr > 0 and 0< ρ < 1 such that for allh andn ≥ 1,

sup
x∈X

|E(h(Xn)|X0 = x) − ∫
h(y) dπ(y)|

V (x)
≤ rρn‖h‖V ;(3.3)

see pages 382 and 383 of Meyn and Tweedie (1993). WhenV ≡ 1, this reduces to
the classical uniform ergodicity condition.

The following assumptions for Markov chains will be used in this section:

A1. supx
{E(V (X1))

V (x)

}
< ∞.

A2. supx Ex|ξ1|2 < ∞ and supx
{E(|ξ1|rV (X1))

V (x)

}
< ∞ for somer ≥ 1.

A3. Let ν be an initial distribution of the Markov chain{Xn,n ≥ 0}. Assume that
for somer ≥ 1,

sup
‖h‖V ≤1

∣∣∣∣
∫
x∈X

h(x)Ex |ξ1|r dν(x)

∣∣∣∣< ∞.(3.4)
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A Markov random walk is calledlattice with spand > 0 if d is the maximal
number for which there exists a measurable functionγ :X → [0,∞) called the
shift function, such thatP {ξ1−γ (x)+γ (y) ∈ { . . . ,−2d,−d,0, d,2d, . . .}|X0 =
x,X1 = y} = 1 for almost allx, y ∈ X. If no suchd exists, the Markov random
walk is called nonlattice. A lattice random walk whose shift functionγ is
identically 0 is calledarithmetic.

To establish the nonlinear Markov renewal theorem, we shall make use of
(3.1) in conjunction with the following extension of Cramér’s (strongly nonlattice)
condition [Götze and Hipp (1983), (2.5) on page 216]: There existsδ > 0 such that
for all m,n = 1,2, . . . , δ−1 < m < n, and allθ ∈ R with |θ | ≥ δ,

Eπ

∣∣E{exp
(
iθ(ξn−m + · · · + ξn+m)

)|Xn−m, . . . ,

Xn−1,Xn+1, . . . ,Xn+m,Xn+m+1
}∣∣≤ e−δ.

By using Markov renewal theory [Kesten (1974), Alsmeyer (1994), Fuh and Lai
(2001) and Fuh (2004)] and Wald’s equations for Markov random walks [Fuh and
Lai (1998) and Fuh and Zhang (2000)], our approach is based on the investigation
of the difference betweenTλ and a stopping time crossing linear boundaries with
varying drift. That is, we first define

τ := τ (c, u) = inf{n ≥ 1 :Sn − un > c}, c ≥ 0, u ≤ Eπξ1,(3.5)

and establish the uniform integrability of|Tλ − τ (cλ, dλ)|p for p ≥ 1, for suitable
cλ anddλ. Then we derive nonlinear Markov renewal theory directly from parallel
results in the linear case via the uniform integrabilities and the weak convergence
of the overshoot.

Let P u+(x,B × R) = Px{Xτ(0,u) ∈ B} for u ≤ Eπξ1, and denote the transition
probability associated with the Markov random walk generated by the ascending
ladder variableSτ(0,u). Under theV -uniform ergodicity condition andEπξ1 > 0,
a similar argument as on pages 655–656 of Fuh and Lai (2001) yields that the
transition probabilityP u+(x, · × R) has an invariant measureπu+. Let Eu+ denote
expectation underX0 having the initial distributionπu+. When u = Eπξ1, we

denoteP Eπξ1+ asP+, andτ+ = τ (0,Eπξ1). Define

b = bλ = sup{t ≥ 1 :A(t, λ) ≥ tEπξ1}, sup∅ = 1,(3.6)

d = dλ =
(

∂A

∂t

)
(bλ;λ),(3.7)

d̄ = sup
{(

∂A

∂t

)
(t;λ); t ≥ bλ, λ ∈ 

}
,(3.8)

R = Rλ = ZT − A(T ;λ),(3.9)

R(c,u) = Sτ(c,u) − uτ(c,u) − c, u ≤ Eπξ1, c ≥ 0,(3.10)

r(u) = Eu+R2(0, u)/2Eu
+R(0, u), u ≤ Eπξ1,(3.11)
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G(r,u) =
∫ ∞
r

P u+{R(0, u) > s}ds/Eu+R(0, u), u ≤ Eπξ1, r ≥ 0.(3.12)

We shall assume thatA(t;λ) is twice differentiable int andbλ is finite so that
d andd̄ are well defined. The next theorem is a Blackwell-type nonlinear Markov
renewal theorem. In the case of i.i.d. random variables, such a result has been
developed by Lai and Siegmund (1977). Melfi (1992) has extended their result to
the Markov case under a different ergodicity assumption as in this paper. Here,
we consider a nonlinear boundary, extending Zhang’s (1988) result under the
V -uniform ergodicity assumption. Since for 1/2 < α ≤ 1, b−α(T − b) = oPν (1)

implies (3.13) withγ (b)/bα → 0, Theorem 1 implies Theorem 3 of Melfi (1992).

THEOREM 1. Assume A1 holds, and A2 and A3 hold with r = 1. Let ν be an
initial distribution on X0. Suppose there exist functions ρ(δ) > 0,

√
b ≤ γ (b) ≤ b,

γ (b)/b → 0 as b → ∞, and a constant d∗ < Eπξ1 ∈ (0,∞) such that

(Tλ − bλ)/γ (bλ) = OPν(1) as bλ → ∞,(3.13)

lim
n→∞Pν

{
max

1≤j≤ρ(δ)γ (n)
|ηn+j − ηn| ≥ δ

}
= 0 for any δ > 0,(3.14)

sup
{∣∣∣∣γ 2(b)

(
∂2A

∂t2

)
(t;λ)

∣∣∣∣ : |t − b| ≤ Kγ (b), λ ∈ 

}
< ∞(3.15)

for all K > 0

and

lim
bλ→∞dλ = d∗.(3.16)

If ξ1 − d∗ does not have an arithmetic distribution under Pν , then for any r ≥ 0,

Pν{XT ∈ B,Rλ > r}
= 1

Ed∗
+ R(0, d∗)

∫
x∈B

dπd∗
+ (x)

∫ ∞
r

P d∗
+ {R(0, d∗) > s}ds + o(1)(3.17)

as bλ → ∞.

In particular, Pν{Rλ > r} = G(r, d∗) + o(1), as bλ → ∞ for any r ≥ 0. If, in
addition, (T − bλ)/γ (bλ) converges in distribution to a random variable W as
bλ → ∞, then

lim
bλ→∞Pν{Rλ > r, Tλ ≥ bλ + tγ (bλ)} = G(r, d∗)P d∗

+ {W ≥ t},(3.18)

for every real number t with P d∗
+ {W = t} = 0.

The proof of Theorem 1 is given in Section 6.
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To study uniform integrabilities of the powers of the differences for linear
and nonlinear stopping times, we shall first give the regularity conditions on
η = {ηn,n ≥ 1}. The processη is said to beregular with p ≥ 0 and 1/2 < α ≤ 1
if there exist a random variableL, a functionf (·) and a sequence of random
variablesUn, n ≥ 1, such that

ηn = f (n) + Un for n ≥ L and sup
x∈X

ExL
p < ∞,(3.19)

max
1≤j≤√

n
|f (n + j) − f (n)| ≤ K, K < ∞,(3.20)

{
max

1≤j≤nα
|Un+j |p, n ≥ 1

}
is uniformly integrable,(3.21)

np sup
x∈X

Px

{
max

0≤j≤n
Un+j ≥ θnα

}
→ 0 asn → ∞, for all θ > 0,(3.22)

and for somew > 0, w < Eπξ1 − d̄ if α = 1,
∞∑

n=1

np−1 sup
x∈X

Px{−Un ≥ wnα} < ∞.(3.23)

We shall setf (n) to be the median ofηn whenη is not regular and extendf
to a function on[1,∞) by linear interpolation. Therefore, we can defineτ = τλ =
τ (cλ, dλ) andcλ = bλ(Eπξ1 − dλ) − f (bλ).

THEOREM 2. Assume A1 holds, and A2 and A3 hold with r = p′(p + 1)/α

for some p ≥ 1, p′ > 1 and 1/2 < α ≤ 1. Suppose η is regular with p ≥ 1, 1/2 <

α ≤ 1, and that there exist constants δ and µ∗ with 0 < δ < 1 and 0 < µ∗ < Eπξ1
such that

bp sup
x

Px{T ≤ δb} → 0 as b → ∞,(3.24)

and (
∂A

∂t

)
(t;λ) ≤ µ∗, t ≥ δb, λ ∈ .(3.25)

(i) If supx∈X Ex{|ξ1|2pp′} < ∞ for some p′ > 1 and for any K > 0,

sup
{∣∣∣∣bλ

(
∂2A

∂t2

)
(t;λ)

∣∣∣∣ :bλ − Kbα
λ ≤ t ≤ bλ + Kbα

λ, λ ∈ 

}
< ∞,(3.26)

then

{|Tλ − τλ|p; λ ∈ } is uniformly integrable under Pν.(3.27)

(ii) If ∂2A/∂t2 = 0, then (3.27) still holds without the condition
supx Ex{|ξ1|2pp′} < ∞.
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The proof of Theorem 2 is given in Section 6.
We need the following notation and definitions before stating Theorem 3. For

a given Markov random walk{(Xn,Sn), n ≥ 0}, let ν be an initial distribution
of X0 and defineν∗(B) = ∑∞

n=0 Pν(Xn ∈ B) on A. Let g = E(ξ1|X0,X1)

and Eπ |g| < ∞. Define operatorsP and Pπ by (Pg)(x) = Exg(x,X1, ξ1) and
Pπg = Eπg(X0,X1, ξ1), respectively, and setḡ = Pg. We shall consider solutions
�(x) = �(x;g) of the Poisson equation

(I − P)� = (I − Pπ)ḡ, ν∗-a.s., Pπ� = 0,(3.28)

whereI is the identity operator. Under conditions A1–A4, it is known [Theo-
rem 17.4.2 of Meyn and Tweedie (1993)] that the solution� of (3.28) exists and
is bounded.

THEOREM 3. Assume A1 holds, and A2 and A3 hold with r = 2+p for some
p > 1. Let ν be an initial distribution such that EνV (X0) < ∞. Suppose that

lim
n→∞ sup

x∈X
Px

{
max

1≤j≤√
n
|ηn+j − ηj | ≥ δ

}
= 0 for any δ > 0,(3.29)

ηn = f (n) + Un for any n ≥ L,(3.30)

and that there exist constants d∗
1 < Eπξ1 and d∗

2 such that

lim
n→∞ max

0≤j≤√
n
|f (n + j) − f (n)| = 0,(3.31)

Un converges in distribution to an integrable random variable U,(3.32)

lim
bλ→∞dλ = d∗

1 and ξ1 − d∗
1 is nonarithmetic under Pν,(3.33)

and for any constant K > 0,

lim
bλ→∞ sup

{∣∣∣∣bλ

(
∂2A

∂t2

)
(t;λ) − d∗

2

∣∣∣∣ : (t − bλ)
2 ≤ Kbλ

}
= 0.(3.34)

If {|Tλ − τλ|;λ ∈ } is uniformly integrable, then

EνTλ = bλ − (Eπξ1 − dλ)
−1f (bλ) + C0 + o(1) as bλ → ∞,(3.35)

where

C0 = (Eπξ1 − d∗
1)−1

(
r(d∗

1) + (Eπξ1 − d∗
1)−2d∗

2σ 2/2− EπU

(3.36)

−
∫

�(x)d
(
πd∗

+ (x) − ν(x)
))

.

The proof of Theorem 3 is given in Section 6.
WhenA(t, λ) = λ, we have the following:
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COROLLARY 1. Under the assumptions of Theorem 3, as λ → ∞,

EνTλ = (Eπξ1)
−1
(
λ + Eπ+S2

τ+/2Sτ+ − f (λ/Eπξ1) − EπU

(3.37)

−
∫

�(x)d
(
π+(x) − ν(x)

))+ o(1).

4. Asymptotic optimality of the SRP detection procedure. For ease of
notation, letX := D′ × P (Rd) × P (Rd) be the state space of the Markov chain
{Wθ

n ,n ≥ 0} defined in (2.13). Denotew := (y, ū, ū) andw̃ := (y0, π,π), where
y0 = (x0, π) ∈ D′ and x0 is the initial state ofX0 taken fromπ . To prove the
asymptotic optimality of the SRP rule in hidden Markov models, the following
condition C will be assumed throughout this paper.

C1. For eachθ ∈ �, the Markov chainX = {Xn,n ≥ 0} is ergodic (positive
recurrent, irreducible and aperiodic) on a finite state spaceD = {1, . . . , d}.
Moreover, the Markov chain{(Xn, ξn), n ≥ 0} is irreducible, aperiodic and
V -uniformly ergodic for someV on D′ with A1 and A2 holding. We also
assume the Markov chain{Xn,n ≥ 0} has stationary probability� with
probability densityπx(θ)f (·;ϕx(θ)) with respect toµ.

C2. For eachθ ∈ �, the random matricesM0(θ) and M1(θ) defined in
(2.9) and (2.10) are invertiblePθ almost surely and

sup
(x,ξ0)∈D×R

Eθ
x

∣∣∣∣∣
d∑

x,y=1

πx(θ)f
(
ξ0;ϕx(θ)

)
pxy(θ)ξ1f (ξ1;ϕy(θ)|ξ0)

∣∣∣∣∣< ∞.

The construction of the SRP rule and the proof of its asymptotic optimality
can be split into two steps. We first prove that it is a limit of Bayes rules, and
then we prove the asymptotic optimality. To this end, let us consider the Bayesian
formulation of change point detection in a hidden Markov model and denote it by
B(β,p, c, w̃). That is, we assume the initial state ofW0 is w̃ and supposeω has a
prior distribution

Pw̃(ω = 0) = β and Pw̃(ω = n) = (1− β)p(1− p)n−1 for n ≥ 1,

wherep andβ are known constants with 0< p ≤ 1, 0≤ β ≤ 1. The parameterω
is the (unknown) point of change of the process from a hidden Markov model.

Let N be a stopping time adapted to the system ofσ -algebras{Fn}∞n=0, where
F0 is the naturalσ -algebra{∅,X} andFn = σ(F0,W0,W1, . . . ,Wn). Following
the formulation of Shiryayev (1963, 1978) and its modification given by Yakir
(1994) for a finite state Markov chain, the risk associated with the detection policy
N is

ρ(N,ω) = Pw̃(N < ω) + c Ew̃(N − ω)+,(4.1)

wherea+ denotes max{a,0}, andc > 0 is a fixed constant.
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DEFINITION 1. For a given pair(p, w̃) ∈ (0,1] × X, we call a stopping
time N∗ aB(β,p, c, w̃)-Bayes time if

ρ(N∗,ω) = inf ρ(N,ω),

where inf is taken over the class of all proper stopping times.

The following proposition characterizes the structure of the Bayes rule in hidden
Markov models. Since the proof of the proposition is similar to Shiryayev’s proof,
it is omitted.

PROPOSITION1. Let 0< p ≤ 1, c > 0 and let

δn = δn(p, w̃) = Pw̃(ω ≤ n|Fn)

be the posterior probability that the next observation is governed by P θ1. There
exists a function Ap(·), defined on X, such that the stopping time

NA,p = inf{n ≥ 0 :δn(p, w̃) ≥ Ap(Wn)}(4.2)

is the B(β,p, c, w̃)-Bayes rule. Moreover, Ap(·) does not depend on β or on w̃.

REMARK 1. Proposition 1 remains correct when the initial pair(p, w̃) is
random (according to a measureφ). Again, the threshold function does not depend
on the initial state. (Noticethat the stopping time does depend on the distribution
of the initial state through the dependence on the initial state of the probability of
a change.) The structure of the Bayes rule plays a crucial role in the development
of the optimal detection time in the non-Bayesian setting.

Denote

r(x) = x

(1− x)p
, q = 1− p,(4.3)

and let

LRn,p = r(β)
LRn

q
+

n∑
k=0

LRk
n

q
.(4.4)

It is convenient to reformulate the stopping timeNA,p in terms of a different
sequence of statistics. By using the same idea as Lemma 2 of Pollak (1985), it
follows that

δn(p, w̃) = LRn,p

LRn,p + 1/p
.(4.5)

Since the functiony/(y +1/p) is a monotone function iny, the Bayesian stopping
time can be rewritten in terms ofLRn,p,

NA,p = inf{n ≥ 0 :δn(p, w̃) ≥ Ap(Wn)}
(4.6)

= inf{n ≥ 0 :LRn,p ≥ Bp(Wn)} = NB,p,

whereBp(·) = r(Ap(·)). For consistency of notation, we will useNB,p instead
of NA,p in the sequel.
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THEOREM 4. Assume C1 and C2 hold. Suppose that the P∞-distribution of
LR1 is nonarithmetic.

(i) There exists a δ > 0 such that for any δ < b = logB < ∞, there exist a
constant 0< c∗ < ∞ and a sequence {pi, ci}∞i=1 with pi → 0, ci → c∗ as i → ∞
such that the stopping time Nb defined in (2.7) is a limit as i → ∞ of Bayes rules
for B (β = 0,p = pi, c = ci, w̃).

(ii) For any set of Bayes problems B(β,p, c, w̃) with β = 0, p → 0, c → c∗,

lim sup
p→0, c→c∗

1− Eρ(NB,p,ω)

1− Eρ(Nb,ω)
= 1,(4.7)

where the expectation is taken in the Bayes problems B(0,p, c, w̃).
(iii) For any 1 ≤ γ < ∞, there exists a unique 1 < b = logB < ∞ such that

γ = E∞Nb.

The proof of Theorem 4 is given in Section 7.
After understanding the structure of the Bayes rules for detecting a change in

hidden Markov models and the characteristics of the limits of such rules, we can
turn our attention to the problem of detecting a change in a non-Bayesian setting.
To study randomization of the initial for the SRP change point detection rule, we
need the following notation first.

For 0≤ k ≤ n, let

Rn,p :=
n∑

k=0

1

q

pn(ξk, ξk+1, . . . , ξn; θ1)

pn(ξk, ξk+1, . . . , ξn; θ0)
.(4.8)

Note thatRn,p = LRn,p when β = 0. By using the same notation as that in
Section 2, fory0, y1 ∈ D′, ū = u(θ) = (u(θ0), u(θ1)) ∈ P (Rd) × P (Rd) and
M = M(y0, y1) = M(θ) = (M(θ0),M(θ1)) ∈ Gl(d,R) × Gl(d,R), let β : (D′ ×
P (Rd) × P (Rd)) × (D′ × P (Rd) × P (Rd)) → R be β((y0, ū), (y1,Mu)) =
‖M(θ1)u(θ1)‖/‖u(θ1)‖‖M(θ0)u(θ0)‖/‖u(θ0)‖ . For π(θ0),π(θ1) ∈ P (Rd), denote β(W0,W0) =
‖T0(θ1)π(θ1)‖/‖π(θ1)‖‖T0(θ0)π(θ0)‖/‖π(θ0)‖ . Then

pn(ξ0, ξ1, . . . , ξn; θ1)

pn(ξ0, ξ1, . . . , ξn; θ0)

= ‖Mn(θ1) · · ·M1(θ1)M0(θ1)π(θ1)‖
‖Mn(θ0) · · ·M1(θ0)M0(θ0)π(θ0)‖

(4.9) = ‖Tn(θ1)π(θ1)‖/‖Tn−1(θ1)π(θ1)‖
‖Tn(θ0)π(θ0)‖/‖Tn−1(θ0)π(θ0)‖ · · ·

× ‖T1(θ1)π(θ1)‖/‖T0(θ1)π(θ1)‖
‖T1(θ0)π(θ0)‖/‖T0(θ0)π(θ0)‖ · ‖T0(θ1)π(θ1)‖/‖π(θ1)‖

‖T0(θ0)π(θ0)‖/‖π(θ0)‖
= β(Wθ

n−1,W
θ
n ) · · ·β(Wθ

0 ,Wθ
1 ) · β(Wθ

0 ,Wθ
0 )
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is a product of the functional for the Markov chain{Wθ
n ,n ≥ 0}. Therefore, (4.8)

can be rewritten as

Rn,p =
n∑

k=0

1

q
β(Wθ

n−1,W
θ
n ) · · ·β(Wθ

k−1,W
θ
k ) whereWθ−1 = Wθ

0 .(4.10)

Define

Rn+1,p = β(Wθ
n−1,W

θ
n )

1

q
(1+ Rn,p), Nq,b := inf{n :Rn,p ≥ B},

Fn(s,w) = P∞(Rn+1,p ≤ s|Nq,b > n,Wn = w),

ρ(t, s,w,w′) = P∞(Rn+1,p ≤ s,Wn+1 ∈ dw′|Rn,p = t,Nq,b > n + 1,Wn = w),

ζ(t,w,w′) = P∞(Nq,b > n + 1,Wn+1 ∈ dw′|Rn,p = t,Nq,b > n,Wn = w).

For a given set of nonnegative boundary pointsB = {B(w) :w ∈ X} (infinity is
not excluded), consider the setSB = {(r,w) :w ∈ X,0 < r < B(w)}. Let FB be
the set of distribution functions with support inSB . Let TB be the transformation
onFB defined by

TBF (r,w) = 1

Q(F)

∫
w′∈X

∫ B(w′)

0
ρ(t, r,w,w′)ζ(t,w,w′)(4.11)

× P(w,dw′) dF (t,w′),

where

Q(F) =
∫
w,w′∈X

∫ B(w′)

0
ζ(t,w,w′)P(w,dw′) dF (t,w′).(4.12)

The idea behind (4.11) and (4.12) comes from iterated random functions, which
Pollak (1985) used to define a change point detection rule in the independent case.
Here Fn(s,w) is driven by the Markov chain{Wθ

n ,n ≥ 0}, and, hence, in the
domain of Markovian iterated random functions. Under some regularity conditions
on the Markov chain{Wθ

n ,n ≥ 0}, and the continuity property for the iterated
random functions, we will show in Lemma 8 that for eachB there is an associated
set of invariant measures�B , that is,TBφ = φ for all φ ∈ �B . Let p = 1− q and
defineφ̃ as

dφ̃(s,w) = (1+ ps) dφ(s,w)∫
w∈X

∫ B(w′)
0 (1+ pt) dφ(t,w)

.

It is easy to see that if the distribution ofR0,p is φ̃, then the distribution ofR0,p

conditional on{ω > 0} isφ. Note thatφ depends onp. By using the same argument
as that in Theorem 4, we can choose a subsequence{T i

B,pi, ci, φi} such that as
i → ∞,pi → 0, ci → c∗ andφi converges in distribution to a limitψ .
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Given the value of the initial stateW0 = w̃, the initial(R∗
0, w̃) is simulated from

the distributionψ , conditioned on the event{W0 = w̃}. Define recursively

R∗
n+1 = β(Wθ

n−1,W
θ
n )(1+ R∗

n).(4.13)

Denoteb = logB, and define the SRP rule

N
ψ
b := inf{n :R∗

n ≥ B} = inf{n : logR∗
n ≥ b}.(4.14)

Notice that each one of these detection policies is an “equalizer rule” in the
sense that

Ek(N
ψ
b − k + 1|Nψ

b ≥ k − 1) = E1N
ψ
b ,(4.15)

for all k > 1. The same is true for the case whereψ has atoms on the boundary,
since the randomization law is time independent.

Note that the threshold of the Bayes rule (4.6) depends on the current state of the
Markov chain, while the threshold of the SRP rule (4.14) is a constant. We claim
in Lemma 7 and Theorem 5 that the difference between these two rules iso(1)

asγ → ∞, by which we prove the conjecture raised by Yakir (1994) for finite
state Markov chains.

THEOREM 5. Assume C1 and C2 hold. Suppose that the P∞-distribution of
LR1 is nonarithmetic. Then for any 1 < γ < ∞, there exist a constant δ < b =
logB < ∞ and a probability measure ψ such that γ = E∞N

ψ
b and such that if

N is any stopping time which satisfies E∞N ≥ γ , then

sup
1≤ω<∞

Eω(N − ω|N ≥ ω) ≥ sup
1≤ω<∞

Eω(N
ψ
b − ω|Nψ

b ≥ ω) + o(1),(4.16)

where o(1) → 0 as γ → ∞, Eω(N
ψ
b − ω|Nψ

b ≥ ω) is a constant for 1 < ω < ∞.

The proof of Theorem 5 is given in Section 7.

5. Asymptotic approximations for the average run length. SinceN
ψ
b is an

equalizer rule in the sense ofEk(N
ψ
b − k + 1|Nψ

b ≥ k − 1) = E1N
ψ
b by (4.15), in

this section we consider only the approximation ofE1N
ψ
b . Forθ = θ0 or θ1, letπθ

denote the stationary distribution of{Xn,n ≥ 0} underP θ . For givenP
θ0 andP

θ1,
define the Kullback–Leibler information numbers as (4.2) of Fuh (2003),

K(Pθ0,P
θ1) = E

P
θ0

(
log

‖M1(θ0)M0(θ0)π
θ0‖

‖M1(θ1)M0(θ1)π
θ1‖
)
,

(5.1)

K(Pθ1,P
θ0) = E

P
θ1

(
log

‖M1(θ1)M0(θ1)π
θ1‖

‖M1(θ0)M0(θ0)π
θ0‖
)
,
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where P
θ0 (Pθ1) denotes the probability of the Markov chain{Wθ0

n , n ≥ 0}
({Wθ1

n , n ≥ 0}), andE
P

θ0 (E
P

θ1 ) refers to the expectation underP
θ0 (Pθ1).

In the rest of this section we will impose the following mild condition on the
Kullback–Leibler information numbers:

0 < K(Pθ0,P
θ1) < ∞ and 0< K(Pθ1,P

θ0) < ∞.(5.2)

To derive a second-order approximation for the average run length of the
SRP rule, we will apply relevant results from nonlinear Markov renewal theory
developed in Section 3. For this purpose, we rewrite the stopping timeNb := N

ψ
b

(we deleteψ in this section for simplicity) in the form of a Markov random walk
crossing a constant threshold plus a nonlinear term that is slowly changing. Note
that the stopping timeNb can be written in the form

Nb = inf{n ≥ 1 :Sn + ηn ≥ b}, b = logB,(5.3)

where Sn is a Markov random walk defined in (2.15) with meanE1S1 =
K(Pθ1,P

θ0), and

ηn = log

{
1+

n−1∑
k=1

e−Sk

}
.(5.4)

Forb > 0, define

N∗
b = inf{n ≥ 1 :Sn ≥ b},(5.5)

and letRb = SN∗
b

− b (on {N∗
b < ∞}) denote the overshoot of the statisticSn

crossing the thresholdb at time n = N∗
b . Whenb = 0, we denoteN∗

b in (5.5)
asN∗+. For givenw̃ ∈ X, let

G(y) = lim
b→∞ P1{Rb ≤ y|W0 = w̃}(5.6)

be the limiting distribution of the overshoot. It is known [cf. Theorem 1 of Fuh
(2004)] that

lim
b→∞ E1(Rb|W0 = w̃) =

∫ ∞
0

y dG(y) =
Em+S2

N∗+
2Em+SN∗+

,

wherem+ is defined in the same way asπ+ defined in the paragraph before (3.6)
in Section 3.

Note that by (5.3),

SNb
= b − ηNb

+ χb on {Nb < ∞},
whereχb = SNb

+ ηNb
− b is the overshoot ofSn + ηn crossing the boundaryb at

time Nb. Taking the expectations on both sides, and applying Wald’s identity for
products of Markovian random matrices [Theorem 2 of Fuh (2003)], we obtain

K(Pθ1,P
θ0)E1(Nb|W0 = w̃) −

∫
X

�(w′) dm+(w′) + �(w̃)
(5.7)

= E1
(
SNb

|W0 = w̃
)= b − E1

(
ηNb

|W0 = w̃
)+ E1(χb|W0 = w̃),
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where� : X → R solves the Poisson equation

Ew�(W1) − �(w) = EwS1 − EmS1(5.8)

for almost everyw ∈ X with Em�(W1) = 0.
The crucial observations are that the sequence{ηn,n ≥ 1} is slowly changing,

and thatηn convergesP1-a.s. asn → ∞ to the random variable

η = log

{
1+

∞∑
k=1

e−Sk

}
(5.9)

with finite expectationEm+η. Here the expectationEm+ is taken underω = 1
and the initial distribution ofW0 is m+; we omit 1 for simplicity. An important
consequence of the slowly changing property is that, under mild conditions, the
limiting distribution of the overshoot of a Markov random walk over a fixed
threshold does not changeby the addition of a slowly changing nonlinear term
(see Theorem 1).

THEOREM 6. Assume C1 and C2 hold. Let ξ0, ξ1, . . . , ξn be a sequence
of random variables from a hidden Markov model {ξn, n ≥ 0}. Assume that
S1 is nonarithmetic with respect to P∞ and P1. If 0 < K(Pθ1,P

θ0) < ∞, 0 <

K(Pθ0,P
θ1) < ∞, and E1|S1|2 < ∞, then for w̃ ∈ X, as b → ∞,

E1(Nb|W0 = w̃)

= 1

K(Pθ1,Pθ0)(5.10)

×
(
b − Em+η +

Em+S2
N∗+

2Em+SN∗+
−
∫
X

�(w)dm+(w) + �(w̃)

)
+ o(1).

The proof of Theorem 7 is given in Section 8.

REMARK 2. The constantsEm+S2
N∗+

/2Em+SN∗+ andEm+η are the subject of

the nonlinear renewal theory. The constant−∫X �(w)dm+(w) + �(w̃) is due to
Markovian dependence via the Poisson equation (5.8). Obviously, this bound is
asymptotically accurate whenK(Pθ1,P

θ0) → 0.

6. Proofs of Theorems 1–3. We will use the same notation as that in Section 3
unless specifically mentioned.

PROOF OF THEOREM 1. To prove Theorem 1, we can make use of Theo-
rem 3.1 for the one-dimensional case in Fuh and Lai (2001) as in the case of i.i.d.
ξn [see Theorem 1 of Zhang (1988)]. The details are omitted.�

To prove Theorem 2, we need some lemmas first.
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LEMMA 1. Let ν be an initial distribution such that EνV (X0) < ∞. Let
τ (c, u) be defined by (3.5), and let p and α be two constants with p ≥ 1 and
1/2< α ≤ 1.

(i) If Eν(|ξ1|p′(p+1)/αV (X0)) < ∞ for some p′ > 1, then
∞∑

n=1

np−1Pν

{
max
j≤n

|Sj − j | ≥ γ nα

}
< ∞ for any γ > 0.(6.1)

(ii) If Eν(|ξ1|2pp′
V (X0)) < ∞ for some p′ > 1, then for any K > 0,{((

τ (c, u) − (1− u)−1c
)2

/c
)p; c ≥ 1, K−1 ≤ 1− u ≤ K

}
is uniformly integrable under Pν .

PROOF. By Theorem 16.0.1 of Meyn and Tweedie (1993), theV -uniform
ergodicity condition is equivalent to the fact that there exist an extended real-
valued functionw :X → [1,∞), a measurable setC and constantsγ > 0, b < ∞,
such that∫

X
w(y)P (x, dy) − w(x) ≤ −γw(x) + bIC(x) for x ∈ X,

wherew is equivalent toV in the sense that for somec ≥ 1, c−1V ≤ w ≤ cV .
Denote�1 = � as defined in (3.28). Let̃g = E(d2

1|X0,X1) and �2(x;g) =
�(x; g̃). Since

∫
V (x) dπ(x) < ∞, A2 implies that there exists 0< c < ∞

such that for allx ∈ X, E(|ξ1|2|X0 = x) < cV (x). By Theorem 17.4.2 of Meyn
and Tweedie (1993), the solution�r satisfies�r ≤ Rr(V (x) + 1) for r = 1,2.
This implies that supi Eν |�r(Xi;g)| < Rr supi Eν(V (Xi) + 1) < ∞ for r = 1,2.
Therefore, the conditions of Theorem 2 of Fuh and Zhang (2000) hold, and, hence,
the quick convergence (i) follows from Theorem 2 of Fuh and Zhang (2000).

(ii) The proof of (ii) can be derived from (i) easily.�

Following Lemmas 2 and 3 in Zhang (1988), we have the following:

LEMMA 2. Suppose that η is regular with p ≥ 1 and 1/2 < α ≤ 1 and
that conditions (3.24)and (3.25)hold. If Eν(|ξ1|p′(p+1)/αV (X0)) < ∞ for some
p′ > 1, then

lim
b→∞bpPν{Tλ ≤ b − γ bα} = 0 for any γ > 0.

LEMMA 3. Suppose that η is regular with p ≥ 1 and 1/2 < α ≤ 1 and that
condition (3.25)holds. Denote n∗ = [b + Kbα]. If Eν(|ξ1|p′(p+1)/αV (X0)) < ∞
for some p′ > 1, then there exists a constant K > 0 such that

lim
b→∞

∞∑
n=n∗

np−1Pν{Tλ > n} = 0.
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LEMMA 4. Under the conditions of Theorem 2(i),{(
(Tλ − τ )+

)p;λ ∈ 
}

is uniformly integrable under Pν.

PROOF. For ease of notation, letT = Tλ, n1 = [b − γ bα], n∗ = [b +
Kbα], T ′ = max(n1,min(T ,n∗)) andτ ′ = max(n1,min(τ, n∗)). By Lemmas 1(i),
2 and 3,

lim
b→∞Eπ |T − T ′|p = lim

b→∞Eπ |τ − τ ′|p = 0.(6.2)

Let γ ′ = (1−µ∗)/5, whereµ∗ is defined in Theorem 2. By (6.5) in Zhang (1988),
there exists a constantK∗ < ∞, such that

∞∑
n=n0

np−1Pν{T ′ > τ ′ + n}

≤
∞∑

n=n0

np−1Pν{Sτ + n − Sτ+n ≥ γ ′n} +
∞∑

n=n0

np−1Pν

{
max

n1≤j≤n∗ U−1
j > γ ′n

}

+
∞∑

n=n0

np−1Pν{K∗(τ − b)2/b > γ ′n}

+
∞∑

n=n0

np−1Pν{K∗|τ − b|n−1/2
1 > γ ′n} + o(1).

It follows from Lemma 1(i), (ii), (3.21) and the conditionEν{|ξ1|2pp′
V (X0)} < ∞

for somep′ > 1 that
∞∑

n=n0

np−1Pν{T > τ ′ + n} → 0 as min(n0, b) → ∞.

This proves the uniform integrability of{(T −τ )+p} since the uniform integrability
of {T p;b ≤ b∗, λ ∈ } for any givenb∗ is implied by (6.2) in Zhang (1988).�

PROOF OFTHEOREM 2. (i) For ease of notation, letT = Tλ, n1 = [b − γ bα],
n2 = [b+γ bα], T ′ = max(n1,min(T ,n2)) andτ ′ = max(n1,min(τ, n2)). Though
n2 is different fromn∗ in Lemma 3,(T − T ′)+ ≤ (T − τ )+ + (τ − n2)

+, and by
Lemma 4 we have

lim
b→∞Eν |T − T ′|p = lim

b→∞Eν |τ − τ ′|p = 0.(6.3)

Clearly,

Pν{τ ′ > T ′ + n}
≤ Pν{L ≥ n1} + Pν{T ≤ n1} + Pν{τ ≥ n2}(6.4)

+ Pν{L < n1 < T ≤ T + n < τ < n2}.
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By (3.19) and Lemma 2,

∞∑
n=n0

np−1Pν{T ′ > τ ′ + n} =
n2−n1∑
n=n0

np−1Pν{T ′ > τ ′ + n}
(6.5)

≤
n2−n1∑
n=n0

np−1Pν{L < n1 < T ≤ T + n < τ < n2} + o(1).

On the event{L < n1 < T ≤ T + n < τ < n2},
ST +n + f (b) ≤ b + d(T + n − b)

(6.6)
≤ µ∗n + (

b + d(T − b) − A(T ;λ)
)+ ST + UT + f (T ),

and by an argument similar to (6.10) of Zhang (1988), there exists a finite
constantK∗ that does not depend onγ , and δ∗ = γK∗bα−1 + K∗b−1/2, and
by (6.5),

ST +n −ST ≤ µ∗n+UT + δ∗|τ ′ −T ′|+K∗(τ −b)2/b+K∗|τ −b|b−1/2.(6.7)

Therefore, it follows from (6.5) and (6.7) that forγ ′ = (1− µ∗)/5,

∞∑
n=n0

np−1Pν{τ ′ > T ′ + n}

≤
∞∑

n=n0

np−1Pν{ST + n − ST +n ≥ γ ′n} +
∞∑

n=n0

np−1Pν

{
max

n1≤j≤n2
Uj ≥ γ ′n

}
(6.8)

+
∞∑

n=n0

np−1Pν{K∗(τ − b)2/b + K∗|τ − b|n−1/2 ≥ γ ′n}

+
∞∑

n=n0

np−1Pν{δ∗(τ ′ − T ′) ≥ θ ′n} + o(1) as min(n0, b) → ∞.

Sinceγ is arbitrary, we can chooseγ small enough such that(4δ∗/γ ′)p ≤ 2.
Hence, it follows from (6.8), Lemma 1(i), (ii), (3.21) and Lemma 4 that as
min(n0, b) → ∞,

∞∑
n=n0

np−1Pν{τ ′ − T ′ > n} ≤
∞∑

n=n0

np−1Pν{δ∗(τ ′ − T ′) ≥ γ n} + o(1).(6.9)

And by (6.3) and Lemma 4,
∑∞

n=n0
np−1Pν{τ ′ − T ′ > n} = o(1), and

{|T − τ |p;λ ∈ } is uniformly integrable.

(ii) For the case where∂2A/∂t2 = 0, the term(τ −b)2/b disappears throughout
the proof of (i). �
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PROOF OF THEOREM 3. By definition,ST = R + A(T ;λ) − ηT andSτ =
R(cλ, d) + µb + d(τ − b) − f (b). It follows that

ST − Sτ − d(T − τ )
(6.10)

= R − R(cλ, d) + [A(T ;λ) − µb − d(T − b)] − [ηT − f (b)].
Recall � defined in (3.28). Letd1 = ξ1 − µ + �(x1;g) − �(x0;g), g̃ =

E(d2
1|X0,X1), σ 2 = Eπd2

1 and�2(x;g) = �(x; g̃). Since

ST − µT − Sτ + µτ

= [(
Smax(T ,τ) − µmax(T , τ )

)− (Sτ − µτ)
]

− [
(Sτ − µτ) − (

Smin(T ,τ) − µmin(T , τ )
)]

,

and A1–A3 imply that the conditions in Fuh and Zhang (2000) hold as shown in
Lemma 1, it follows from Markov Wald’s equation for Markov chains for second
moments in Corollary 1 of Fuh and Zhang (2000) that

Eν

(
ST − Sτ − µ(T − τ )

)2
= σ 2[Eν

(
max(T , τ ) − τ

)+ Eν

(
τ − min(T , τ )

)]
− 2Eν

{(
ST − Sτ − µ(T − τ )

)
�
(
X|T −τ |

)}
+ Eν

{
�2
(
X|T −τ |

)− �2(X0)
}

= (σ 2 − 2µ)Eν |T − τ | + O(1).

Therefore, by Theorem 2,ST − Sτ − d(T − τ ) is uniformly integrable. By
Anscombe’s type central limit theorem for a Harris recurrent Markov random
walk [Theorem 1 of Malinovskii (1986)],τ − b/

√
b → (µ − d∗

1)σN(0,1) in
distribution. It follows that, asb → ∞,

T − b√
b

→ σ ∗N(0,1) in distribution by (3.27),(6.11)

lim
b→∞Px{R > r} = lim Px{R(c, d) > r} = G(r, d∗) by Theorem 1,(6.12)

A(T ;λ) − µb − d(T − b) → d∗
2
(
σ ∗N(0,1)

)2
/2

(6.13)
in distribution by (3.34),

ηT − f (b) → U in distribution by (3.14), (3.31), (3.32),(6.14)

wherec = cλ = (µ − dλ)bλ − f (bλ) andσ ∗ = (µ − d∗
1)−1σ .

By an argument similar to Theorem 3(i) of Fuh and Lai (1998),R(cλ, dλ) is
uniformly integrable. Hence,

Eν

(
ST − Sτ − d(T − τ )

)= (µ − d∗
1)−2σ 2d∗

2/2− EνU + o(1),

EνT = Eντ + (µ − d∗
1)−3σ 2d∗

2/2− (µ − d∗
1)−1EνU + o(1),
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and

Eντ = (µ − d)−1c + (µ − d∗)−1
(
r(d∗) −

∫
�(x)d

(
πd∗

+ (x) − ν(x)
))+ o(1)

= bλ − (µ − d)−1f (bλ)

+ (µ − d∗
1)−1

(
r(d∗

1) −
∫

�(x)d
(
πd∗

+ (x) − ν(x)
))+ o(1).

This completes the proof.�

7. Proofs of Theorems 4 and 5. To establish asymptotic optimality of the
SRP rule and derive the second-order asymptotic approximation for the average
run length, we need to apply nonlinear Markov renewal theory developed in
Section 3. Note that the Markov chain{Wθ

n ,n ≥ 0} onX := D′ ×P (Rd)×P (Rd)

is induced by the products of random matrices{Mn,n ≥ 0}. A positivity hypothesis
on the matrices in the support of the Markov chain leads to contraction properties,
on which basis the spectral theory is developed in Fuh (2003). Another natural
hypothesis is that the transition probability possesses a density. This leads to a
classical situation in the context of the so-called “Doeblin condition” for Markov
chains. It also leads to precise results of the limiting theory and has been used
to prove a nonlinear renewal theory in Section 3. We summarize the behavior of
{Wθ

n ,n ≥ 0} in the following proposition. Note that in the case of i.i.d. iterated
random functions satisfying Lipschitz conditions, similar results can be found in
Theorems 2.1, 2.2 and Corollary 2.3 of Alsmeyer (2003). Here we generalize it to
Markovian products of random matrices.

PROPOSITION2. Consider a given hidden Markov chain as in (2.1)and (2.2)
satisfying C1 and C2, and let θ = (θ0, θ1) ∈ � × � be the parameters. Then the
induced Markov chain {Wθ

n ,n ≥ 0} defined in (2.13)is an aperiodic, µ-irreducible
and Harris recurrent Markov chain. Moreover, it is also a V -uniformly ergodic
Markov chain for some V on X. And we have supw{Ew(V (W1))/V (w)} < ∞, and
there exist a,C > 0 such that Ew(exp{aχ(M1)}) ≤ C for all w = (y, ū, ū) ∈ X.

PROOF. For simplicity of notation, we deleteθ in {Wθ
n ,n ≥ 0} in the proof.

First, we prove that{Wn,n ≥ 0} is Harris recurrent. Note that the transition
probability kernel of the Markov chain{(Xn, ξn), n ≥ 0} defined in (2.2) has
probability density function, and the random matrices defined in (2.9) and (2.10)
also have probability density with respect toµ. Therefore, there exists a
measurable functiong :X × X → [0,∞) such that

P(w,dw′) = g(w,w′) dµ(w′),(7.1)

where
∫
X g(w,w′) dµ(w′) > 0 for all w ∈ X. For an arbitrary stopping time

τ = h(Wn) for Wn, let P
τ (w, ·) := Pw(Wτ ∈ ·) for w ∈ X. For A ∈ B(D ′) and
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B ∈ B(P (Rd) × P (Rd)), define

µτ(A × B) :=
∫
X

P{Wτ(w
′) ∈ A × B}dµ(w′).

Then

P
τ+1(w,A × B) =

∫
X

P
τ (w′,A × B)g(w,w′) dµ(w′)

=
∫
X

P{Wτ(w
′) ∈ A × B}g(w,w′) dµ(w′)

for all A ∈ B(D ′) andB ∈ B(P (Rd) × P (Rd)). Therefore, given anyPm-a.s.
finite stopping timeτ for {Wn,n ≥ 0}, the family(Pτ+1(w, ·))w∈X is nonsingular
with respect toµτ .

We have thus particularly shown that, ifP has a probability density with respect
to µ, thenP

n has a probability density with respect toµ for all n ≥ 1 (with, in
general, differentµ). Let gτ be such that

P
τ+1(w,dw′) = gτ (w,w′) dµτ (w′), w ∈ X,(7.2)

where
∫
X gτ (w,w′) dµτ(w′) > 0 for all w ∈ X. It is easy to check that all

µ andµτ are absolutely continuous with respect tom.
Next, under condition C1, for eachm-positiveA × B let

�0(A × B) := {
w ∈ X :Pw{Wn ∈ A × B i.o.} = 1

}
satisfym(�0(A × B)) = 1 and, thus, alsoP(w,�0(A × B)) = 1 for m-almost all
w ∈ X. Recursively, define

�n+1(A × B) := {
w ∈ �n(A × B) :P

(
w,�n(A × B)

)= 1
}

for n ≥ 0. Thenm(�n(A × B)) = 1 for all n ≥ 0 and�n(A × B) ↓ �∞(A ×
B) := ⋂

k≥0 �k(A × B), asn → ∞, giving m(�∞(A × B)) = 1. Furthermore,
�∞(A × B) is absorbing because, by construction,P(w,�n(A × B)) = 1 for all
w ∈ �∞(A×B) andn ≥ 0, and, thus,P(w,�∞(A×B)) = limn→∞ P(w,�n(A×
B)) = 1 for all w ∈ �∞(A × B).

In particular, put τ = 1. Denote Bc as the complement ofB. Since
m(�∞(X)c) = 0, alsoµ(�∞(X)c) = 0. It is now obvious from the previous con-
siderations that we can chooseδ > 0 sufficiently small such that∫

�∞(X)

∫
X

∫
�∞(X)

1{g≥δ}(w1,w2)1{g≥δ}(w2,w3) dµ(w3) dµ(w2) dm(w1) > 0.

Hence, by Lemma 4.3 of Niemi and Nummelin (1986), there exist anm-positive
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set�1 ⊂ �∞(X) and aµ-positive set�2 ⊂ �∞(X) such that

α := inf
w1∈�1,w3∈�2

µ2{w2 ∈ X :g(w1,w2) ≥ δ, g(w2,w3) ≥ δ} > 0.

A combination of the above result with (7.1) and (7.2) implies

P
3(w1,A × B) =

∫
X

P(w2,A × B)P2(w1, dw2)

≥
∫
X

g2(w1,w2)

∫
A×B∩�2

g(w2,w3) dµ(w3) dµ(w2)(7.3)

≥ αδ2µ(A × B ∩ �2)

for all w1 ∈ �1 andA × B ∈ B(X). By definingH := �∞(X1), we obtain an
absorbing set such that�1 is a regeneration set for{Wn,n ≥ 0} restricted toH,
that is,�1 is recurrent and satisfies a minorization condition, namely (7.3). This
proves the Harris recurrence of{Wn,n ≥ 0} onH. By the previous construction, it
is easy to see thatH = X. Since{Wn,n ≥ 0} possesses a stationary distribution,
it is clearly positive Harris recurrent.

Next, we give the proof of aperiodicity. If{Wn,n ≥ 0} wereq-periodic with
cyclic classes�1, . . . ,�q , say, then theq-skeleton(Wnq)n≥0 would have stationary
distributions m(·∩�k)

m(�k)
for k = 1, . . . , q. On the other hand,Yn is aperiodic by

definition andTnq(θ)u is also a product of random matrices satisfying condition
C1 and thus possesses only one stationary distribution. Consequently,q = 1 and
{Wn,n ≥ 0} is aperiodic.

Note that we havePw{Wn ∈ A × B i.o.} = 1 for all w ∈ X and allm-positive
openA × B ∈ B(X). Denoteρ(B) as the first return time toB for Wn. Hence,
m(int(X)) > 0 ensuresPw(ρ(X) < ∞) = 1 for all w ∈ X, which easily yields the
µ-irreducibility of {Wn,n ≥ 0}.

Under conditions C1 and C2, the property ofV -uniform ergodicity is taken from
Lemma 4 of Fuh (2003). The finiteness A1–A3 of the moments comes from C2
and a simple calculation. The details are omitted.�

To prove the main results in Section 4, our first aim is to find a sequence ofp’s
that converge to 0, for which the stopping timesNB,p converge to an appropriate
stopping time. Furthermore, for technical reasons, we want all the stopping times
in the sequence to be bounded by some stopping time with finite expectation.

LEMMA 5. Consider the problem B(β = 0,p, c, w̃) described in Section 4.
Then the following hold:

(i) There exist a constant Dc and some 0 < q0 < 1,such that for all q0 ≤ q ≤ 1
and for all threshold functions B(·) with the property that B(w) ≥ Dc, for each
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w ∈ X, we have

Ew(NB,p − ω|NB,p ≥ ω) > 2c−1,(7.4)

where NB,p is defined as in (4.6).
(ii) Define ND,p,w = inf{n : LRn,p ≥ D, Wn = w}. Then for each 0 ≤ p ≤

1− q0, there exists w = w(p) such that with probability 1,

NB,p ≤ ND,p,w ≤ ND,1,w.(7.5)

Furthermore, there exist a state w1 ∈ X and a subsequence of p’s, such that (7.5)
is true with w(p) = w1 for all the p’s in the subsequence.

(iii) Let Bp(·) be the threshold function of the problem B(β,p, c, w̃), and
assume that Bp(·) →p→0 B0(·) for some function B0(·). Assume further that the
convergence is along the subsequence of p’s from (ii). Then B0(w1) ≤ Dc.

(iv) Denote D∗
c = inf{Dc|Dc as in (i)}. Then D∗

c is nonincreasing in c and
D∗

c → B0(w1)/q0 as c → ∞.

PROOF. Since the induced Markov chain{Wθ
n ,n ≥ 0} is Harris recurrent via

Proposition 2, we may assume, without loss of generality, that there exists a
recurrent statew0 of the Markov chain governed byPθ0. By making use of the
regeneration scheme for Harris recurrent Markov chains, the proof of Lemma 5 is
similar to that of Lemma 1 in Yakir (1994). The details are omitted. �

REMARK 3. Notice first that the constantDc does not depend on the initial
state(p, w̃). Lemma 5 remains true whenc = c(p) is allowed to vary withp, as
long as lim infp→0 c(p) > 0. In particular, it is correct ifc(p) converges to some
positivec.

Let (1 − ρ(N,ν))/p be the normalized risk of a stopping timeN . Using the
results of Lemma 5, we can show that forp → 0, the (normalized) risk of a
converging sequence of stopping times goes to a limit. Consider the Bayesian
problemB(β = 0,p, c, w̃), and letN be a stopping time. A similar argument to
that of Lemma 9 in Pollak (1985) implies that asp → 0,

Pπ(N > ω)

p
→ E∞N.(7.6)

LEMMA 6. Let Bp(·) be defined as in (4.6)and let ec(·) = lim infp→0Bp(·)/p.
Then with probability one, lim infc→0 ec(·) = ∞.

PROOF. Let NB,p be defined as in (4.6). Suppose for allw ∈ X,
lim inf c→0 ec(w) = e∞(w) < ∞. Then for almost allw ∈ X, Bpi

(w)/(pi(1 −
Bpi

(w)) < 1+ e∞(w) for some subsequenceci → 0,pi → 0 asi → ∞. Since

Eπ(Loss usingNB,p)

= Pπ(NB,p < ω) + cPπ(NB,p ≥ ω)Eπ(NB,p − ω|NB,p ≥ ω),
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it follows from (7.6) that
1− Eπ(Loss usingNB,p)

pi

= Pπ(NB,p ≥ ω)

pi

(
1− ciEπ(NB,p − ω|NB,p ≥ ω)

)

≤ Pπ(NB,p ≥ ω)

pi

≤ Pπ(N1+e∞ ≥ ω)

pi

≤ 1+ E∞N1+e∞

for large enoughi. Clearly,E∞N1+e∞ < ∞. Hence, one can do better by using a
CUSUM rule in the hidden Markov model with large enough upper boundary [Fuh
(2003)], and this contradicts the fact thatNB,p is a Bayes rule. �

LEMMA 7. Let N
ψ
b be defined as in (4.14),and NB,p be defined as in (4.6).

Assume the boundary B(w) defined in (4.6) is chosen as Bg(w) for a measurable
function g with

∫
X g(w)dm(w) < ∞. Then E1(NB,p|W0 = w̃) = E1(N

ψ
b |W0 =

w̃) + o(1) as p → 0 and B → ∞.

The proof of Lemma 7 is given in Section 8.

PROOF OFTHEOREM 4. By using Proposition 2 and Lemmas 5–7, the proof
of Theorem 4 is similar to that of Theorem 1 in Pollak (1985). The details are
omitted. �

LEMMA 8. For each B, let TB be defined as in (4.11) and (4.12). Then
TBFn = Fn+1, and, hence, there associates a set of invariant measures �B such
that TBφ = φ for all φ ∈ �B .

PROOF. Since

P∞(Rn,p ∈ ds,Wn+1 ∈ dw′|Nq,b > n + 1,Wn = w)

= P∞(Rn,p ∈ ds,Wn+1 ∈ dw′|Nq,b > n,Nq,b > n + 1,Wn = w)

= P∞(Nq,b > n + 1,Wn+1 ∈ dw′|Rn,p = t,Nq,b > n,Wn = w)

×
[∫

w,w′∈X

∫ B(w′)

0
P∞(Nq,b > n + 1,Wn+1 ∈ dw′|Rn,p = t,

Nq,b > n,Wn = w)

]−1

× P∞(Rn,p ∈ ds|Nq,b > n,Wn = w)P∞(Nq,b > n|Wn = w)P(w,dw′)
P∞(Rn,p ∈ ds|Nq,b > n,Wn = w)P∞(Nq,b > n|Wn = w)P(w,dw′)

= ζ(s,w,w′)P(w,dw′) dFn(s,w)∫
w,w′∈X

∫ B(w′)
0 ζ(s,w,w′)P(w,dw′) dFn(s,w)

,



OPTIMAL DETECTION IN HIDDEN MARKOV MODELS 2333

it follows that

Fn+1(s,w) =
∫
w′∈X

∫ B(w′)
0 ρ(t, s,w,w′)ζ(t,w,w′)P(w,dw′) dFn(t,w)

Q(Fn)

= TBFn(s,w).

The existence of the fixed point follows by the same argument as that of
Lemma 11 in Pollak (1985).�

For a givenγ , letNγ be the set of all detection policiesNψ
b , defined as in (4.14),

for which E∞N
ψ
b = γ . In the next lemma it is shown thatNγ is not empty.

Furthermore, this set contains a stopping rule that is a limit of Bayes stopping
rules.

LEMMA 9. There exist a sequence of p’s that converges to 0, a sequence of
randomized Bayes problems B(β = 0,p, c(p),ψp) with the appropriate Bayes

rules N
ψp

q,b, defined as the detection policy N
ψ
b in (4.14)with Rn replaced by Rq,n,

and a constant 0 < c < ∞ such that

(i) c(p) →p→0 c,

(ii) E∞N
ψ
b = γ ,

(iii) ρψp(N(β = 0,p, c(p),ψp))→p→0 (µ(ψ) + γ )(1− cE1N
ψ
b ),

where µ(ψ) = ∫
w∈X

∫∞
0 r dψ(r,w), and ρψp(N(β = 0,p, c(p),ψp)) is the

normalized Bayes risk.

PROOF. The proof is similar to that of Lemma 2 in Yakir (1994) and is
omitted. �

By Lemma 7, the difference of the expected values for the stopping rule with
constant boundary and the stopping rule with curved boundary iso(1). Therefore,
we only need to consider the stopping rule with a constant boundary in the
following lemmas. Note that in this case,ψ(s,w) = ψ(s).

LEMMA 10. Let

m(k) =




∫ B
0 s dψ(s)∫ B

0 s dψ(s) + E∞N
ψ
b

, k = 0,

P∞(N
ψ
b ≥ k)∫ B

0 s dψ(s) + E∞N
ψ
b

, k = 1,2, . . . .

If one uses N
ψpi

qi,b
in the problem B(β = 0,pi, c(pi),ψpi

), then P(ω = k|Nψpi

qi,b
≥

ω) → m(k) as i → ∞. Also, if one uses N
ψ
b instead of N

ψpi

qi,b
in problem B(β = 0,

pi, c(pi),ψpi
), then P(ω = k|Nψ

b ≥ ω) → m(k) as i → ∞.
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PROOF. Note thatP(ω = 0)/pi → ∫ B
0 s dψ(s) asi → ∞. If one usesN

ψpi

qi,b
in

problemB(β = 0,pi, c(pi),ψpi
), then by using an argument similar to the proof

of Lemmas 9 and 12 of Pollak (1985), we have

P(N
ψpi

qi,b
≥ ω)

pi

→
i→∞

∫ B

0
s dψ(s) + E∞N

ψ
b .(7.7)

Therefore,

P
(
ω = k|Nψpi

qi,b
≥ ω

)= P(N
ψpi

qi ,b
≥ k|ω = k)P(ω = k)

P(N
ψpi

qi,b
≥ ω)

→
i→∞m(k).

A similar argument applies when usingN
ψ
b instead ofN

ψpi

qi,b
. �

By using the same argument as in Lemma 13 of Pollak (1985), we also have

lim
i→∞

1− {Expected loss usingNψ
b for B(β = 0,pi, c(pi),ψpi

)}
pi

= lim
i→∞

1− {Expected loss usingN
ψpi

qi,b
for B(β = 0,pi, c(pi),ψpi

)}
pi

×
[∫ B

0
s dψ(s) + E∞N

ψ
b

]
(7.8)

×
{

1− c∗
[
E1(N

ψ
b − 1)

E∞N
ψ
b∫ B

0 s dψ(s) + E∞N
ψ
b

+
∫ B
0 s dψ(s)∫ B

0 s dψ(s) + E∞N
ψ
b

lim
i→∞ E∞(N

ψ
b |ω = 0)

]}
.

The following lemma generalizes Theorem 5 of Kesten (1973) from products
of i.i.d. random matrices to products of Markov random matrices.

LEMMA 11. Let Mn, n ≥ 0 be the random matrices defined in (2.8)and (2.9).
Assume that Em log |M1| < 0,but that for some k1 > 0,Em|M1|k1 = 1,Em|M1|k1 ×
log+ |M1| < ∞. Assume, in addition, log|M1| does not have a lattice distribution.
Then the series R =∑∞

k=0Mk · · ·M1M0 converges with probability 1, and

lim
t→∞ tk1Pm(R > t) and lim

t→∞ tk1Pm(R < −t)

exist and are finite.
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PROOF. By making use of the result that for allw ∈ X,

BPw

{
max
n≥1

‖Mn · · ·M1M0π‖ > B

}
→ C asB → ∞,

for some constantC, developed in Section 3.2 of Fuh (2004) for products of
Markov random matrices, the proof of the remainder part is similar to that of
Theorem 4 and Theorem 5 in Kesten (1973). The details are omitted.�

LEMMA 12.
∫ B
0 s dψ(s)/[∫ B

0 s dψ(s) + E∞N
ψ
b ] = O((logB)/B), where

O((logB)/B)/((logB)/B) remains bounded as B → ∞.

PROOF. Denote byFn the σ -algebra generated by{ξ0, ξ1, . . . , ξn}. Since
R∗

n+1 = β(Wθ
n−1,W

θ
n )(1 + R∗

n), it follows that E∞(R∗
n+1|Fn) = 1 + R∗

n, and,
therefore,R∗

n − n is a P∞-martingale with expectationE∞(R∗
n − n) = E∞R∗

0 =∫ B
0 s dψ(s).

By using the optional sampling theorem, we have that
∫∞
0 s dψ(s) = E∞R∗

N
ψ
b

−
E∞N

ψ
b . Therefore,

∫∞
0 s dψ(s) + E∞N

ψ
b = E∞R∗

Nb
≥ B.

It is easy to see that for alln,

ψ(s) = P∞(R∗
n ≤ s|Nψ

b > n)
(7.9)

≥ P∞(R∗
n ≤ s) →

n→∞ lim
n→∞ P∞(Rn ≤ s) = P(R ≤ s).

Note that the limit in the above equation (7.9) follows fromR∗
n − Rn =

R∗
0 exp{∑n

i=1 Si} → 0 a.s.P∞ asn → ∞. Hence,∫ B

0
s dψ(s) =

∫ B

0

[
1−

∫ s

0
dψ(t)

]
ds ≤

∫ B

0
P(R > s)ds.

Under the conditions of Lemma 10, this implies the conditions of Lemma 11 hold
with k1 = 1. And by Lemma 11,sP(R > s) → 1 ass → ∞.

It follows that limB→∞
∫ B
0 s dψ(s)/ logB ≤ 1, from which Lemma 12 follows.

�

PROOF OF THEOREM 5. Let N
ψ
b be a stopping time from the setNβ that

minimizes EkN among all stopping timesN from that set. The change point
detection policyNψ

b is a minimax policy in the sense of equations (2.3) and (2.4).
Notice that a limit of Bayes rules minimizesEkN among all stopping times in the
setNβ , hence the claim of the above theorem is not empty. By (4.15),N

ψ
b is an

equalizer rule and note that

N
ψ
b ≤ Nb ≤ min

{
n
∣∣∣ max

1≤k≤n

pk(ξ0, ξ1, . . . , ξk; θ1)

pk(ξ0, ξ1, . . . , ξk; θ0)
≥ B

}
,

which is the CUSUM stopping rule for hidden Markov models. By Theorem 7 of
Fuh (2003), we haveE1N

ψ
b = O(logB). The rest of the proof is almost identical

to the proof of Theorem 2 in Pollak (1985) and is thus omitted.�
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8. Proofs of Theorem 6 and Lemma 7.

PROOF OFTHEOREM 6. Note that the probabilityP1 and expectationE1 in
this section are taken underW0 = w̃, and we omit it for simplicity. The proof
of (5.10) rests on the nonlinear Markov renewal theory from Theorem 3 and
Corollary 1. Indeed, by (5.3), the stopping timeN

ψ
b is based on the thresholding

of the sum of the Markov random walkSn and the nonlinear termηn. Note that

ηn →
n→∞η P1-a.s. and E1ηn →

n→∞E1η,

andηn, n ≥ 1 are slowly changing underP1. In order to apply Theorem 3 and
Corollary 1, we have to check the validity of the following three conditions:

∞∑
n=1

P1{ηn ≤ −εn} < ∞ for some 0< ε < K(Pθ1,P
θ0);(8.1)

max
0≤k≤n

|ηn+k|, n ≥ 1, areP1-uniformly integrable;(8.2)

lim
b→∞b P1

{
N

ψ
b ≤ εb

K(Pθ1,Pθ0)

}
= 0 for some 0< ε < 1.(8.3)

Condition (8.1) holds trivially becauseηn ≥ 0. Sinceηn, n = 1,2 . . . , are
nondecreasing, max0≤k≤n |ηn+k| = η2n and to prove (8.2) it suffices to show that
ηn, n ≥ 1, areP1-uniformly integrable. Sinceηn ≤ η and, by (5.9),E1η < ∞, the
desired uniform integrability follows. Therefore, condition (8.2) is satisfied.

We now turn to checking condition (8.3). By usingEπξ1 > 0, and 0<

K(Pθ1,P
θ0) < ∞, we will prove that

P1

{
N

ψ
b <

(1− ε)b

K(Pθ1,Pθ0)

}
≤ e−yεb + α1(ε, b),(8.4)

whereyε > 0 for all ε > 0 and

α1(ε, b) = P1

{
max

1≤n<Kε,b

Sn ≥ (1+ ε)(1− ε)b

}
,

(8.5)
Kε,b = (1− ε)b/K(Pθ1,P

θ0).

If (8.4) is correct, then the first term on the right-hand side of (8.4) iso(1/b) as
b → ∞. All it remains to do is to show thatα1(ε, b) in (8.5) iso(1/b).

To this end, by Proposition 2 we can apply Theorem 2 of Fuh and Zhang (2000)
to have that for allε > 0 andr ≥ 0,

∞∑
n=1

nr−1
P1

{
max

1≤k≤n

(
Sk − K(Pθ1,P

θ0)k
)≥ εn

}
< ∞,(8.6)

wheneverE1|S1|2 < ∞ andE1[(S1 − K(Pθ1,P
θ0))+]r+1 < ∞. Recall that under

the conditions of Theorem 6,E1|S1|2 < ∞, and hence, the sum on the left-hand
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side of the inequality (8.6) is finite forr = 1 and allε > 0, which implies that the
summand should beo(1/n). Since

α1(ε, b) ≤ P1

{
max

n<Kε,b

(
Sn − K(Pθ1,P

θ0)n
)≥ ε(1− ε)b

}
,

it follows thatα1(ε, b) = o(1/b).
Next, we need to prove (8.4). DenoteSk

n = logLRk
n, and let N = N

ψ
b for

simplicity. For anyC > 0, by using a change of measure argument, we have

P∞
{
N < (1 − ε)bK(Pθ1,P

θ0)−1}= E1
{
1{N<(1−ε)bK(Pθ1,Pθ0)−1}e

−S
k
N
}

≥ E1
{
1{N<(1−ε)bK(Pθ1,Pθ0)−1, S

k
N<C}e

−S
k
N
}

≥ e−C
P1

{
N < (1− ε)bK(Pθ1,P

θ0)−1, max
n<(1−ε)bK(Pθ1,Pθ0)−1

S
k
n < C

}

≥ e−C

[
P1{N < (1− ε)bK(Pθ1,P

θ0)−1}

− P1

{
max

n<(1−ε)bK(Pθ1,Pθ0)−1
S

k
n ≥ C

}]
.

ChoosingC ≤ (1+ ε)(1− ε)b, we then have

P1

{
N <

(1− ε)b

K(Pθ1,Pθ0)

}
(8.7)

≤ eC
P∞{N < (1− ε)bK(Pθ1,P

θ0)−1} + α1(ε, b).

Recall thatR∗
n is defined in (4.13). Note that under the condition 0< K(Pθ1,

P
θ0) < ∞, we have

P∞
{
N < Kε,b

}=
Kε,b∑
i=1

P∞{R∗
i > B} ≤

Kε,b∑
i=1

i

B
≤ (logB)2

(K(Pθ1,Pθ0))2B
.

By choosing a suitableC, we have the first term of (8.7)≤ e−yεb, for someyε > 0,
and get the proof of (8.4).

Thus, all conditions of Theorem 3 are satisfied. The use of this theorem yields
(5.10) for a largeb. �

PROOF OF LEMMA 7. Note that the parameterλ defined in (3.2) isB in
this case. SinceB(w) = Bg(w) is independent oft and

∫
X g(w)dm(w) < ∞,

dB defined in (3.7) is 0. By (8.1)–(8.3) developed in the proof of Theorem 6, we
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can apply Corollary 1, to obtain that asB → ∞,

E1(NB,p|W0 = w̃)

= 1

Eπξ1(p)

(
b + Em+S

2
m+(p)

2Em+Sm+(p)
− Em+η −

∫
�p(w)dm+(w) + �p(w̃)

)
(8.8)

+ o(1).

Here the random variables in (8.8) are the corresponding terms of (2.15) divided
by q. We also haveEπξ1(p) → Eπξ1, Em+S

2
m+(p) → Em+S

2
m+, Em+Sm+(p) →

Em+Sm+ and�p(w) → �(w). By using Corollary 1 again, we have

E1(N
ψ
b |W0 = w̃)

= 1

Eπξ1

(
b + Em+S

2
m+

2Em+Sm+
− Em+η −

∫
�(w)dm+(w) + �(w̃)

)
+ o(1).

Hence, Lemma 7 is proved.�

REFERENCES

ALSMEYER, G. (1994). On the Markov renewal theorem.Stochastic Process. Appl. 50 37–56.
ALSMEYER, G. (2003). On the Harris recurrence of iterated random Lipschitz functions and related

convergence rate results.J. Theoret. Probab. 16 217–247.
BANSAL, R. K. and PAPANTONI-KAZAKOS, P. (1986). An algorithm for detecting a change in a

stochastic process.IEEE Trans. Inform. Theory 32 227–235.
BASSEVILLE, M. and NIKIFOROV, I. V. (1993). Detection of Abrupt Changes: Theory and

Application. Prentice Hall, Englewood Cliffs, NJ.
BRAUN, J. V. and MÜLLER, H. G. (1998). Statistical methods for DNA sequence segmentation.

Statist. Sci. 13 142–162.
FUH, C.-D. (2003). SPRT and CUSUM in hidden Markov models.Ann. Statist. 31 942–977.
FUH, C.-D. (2004). Uniform Markov renewal theory and ruin probabilities in Markovrandom walks.

Ann. Appl. Probab. 14 1202–1241.
FUH, C.-D. and LAI , T. L. (1998). Wald’s equations, first passage times and moments of ladder

variables in Markov random walks.J. Appl. Probab. 35 566–580.
FUH, C.-D. and LAI , T. L. (2001). Asymptotic expansionsin multidimensional Markov renewal

theory and first passage times for Markov random walks.Adv. in Appl. Probab. 33 652–
673.

FUH, C.-D. and ZHANG, C.-H. (2000). Poisson equation, maximal inequalities and r-quick
convergence for Markov random walks.Stochastic Process. Appl. 87 53–67.

GÖTZE, F. and HIPP, C. (1983). Asymptotic expansions for sums of weakly dependent random
vectors.Z. Wahrsch. Verw. Gebiete 64 211–239.

KESTEN, H. (1973). Random difference equations and renewal theory for products of random
matrices.Acta Math. 131 207–248.

KESTEN, H. (1974). Renewal theory for functionals of a Markov chain with general state space.
Ann. Probab. 2 355–386.

LAI , T. L. (1995). Sequential change point detection in quality control and dynamical systems (with
discussion).J. Roy. Statist. Soc. Ser. B 57 613–658.



OPTIMAL DETECTION IN HIDDEN MARKOV MODELS 2339

LAI , T. L. (1998). Information bounds and quick detection of parameter changes in stochastic
systems.IEEE Trans. Inform. Theory 44 2917–2929.

LAI , T. L. (2001). Sequential analysis: Some classical problems and new challenges (with
discussion).Statist. Sinica 11 303–408.

LAI , T. L. and SIEGMUND, D. (1977). A nonlinear renewal theory with applications to sequential
analysis. I.Ann. Statist. 5 946–954.

LAI , T. L. and SIEGMUND, D. (1979). A nonlinear renewal theory with applications to sequential
analysis. II.Ann. Statist. 7 60–76.

LORDEN, G. (1971). Procedures for reacting to a change in distribution.Ann. Math. Statist. 41 1897–
1908.

MALINOVSKII , V. K. (1986). Asymptotic expansions in the central limit theorem for recurrent
Markov renewal processes.Theory Probab. Appl. 31 523–526.

MELFI, V. F. (1992). Nonlinear Markov renewal theory with statistical applications.Ann. Probab.
20 753–771.

MEYN, S. P. and TWEEDIE, R. L. (1993).Markov Chains and Stochastic Stability. Springer, New
York.

MOUSTAKIDES, G. V. (1986). Optimal stopping times for detecting changes in distribution.Ann.
Statist. 14 1379–1387.

NIEMI , S. and NUMMELIN , E. (1986). On non-singular renewal kernels with an application to a
semigroup of transition kernels.Stochastic Process. Appl. 22 177–202.

POLLAK , M. (1985). Optimal detection of a change in distribution.Ann. Statist. 13 206–227.
POLLAK , M. (1987). Average run lengths of an optimal method of detecting a change in distribution.

Ann. Statist. 15 749–779.
POLLAK , M. and SIEGMUND, D. (1975). Approximations to the expected sample size of certain

sequential tests.Ann. Statist. 3 1267–1282.
RITOV, Y. (1990). Decision theoretic optimality of the CUSUM procedure.Ann. Statist. 18 1464–

1469.
ROBERTS, S. W. (1966). A comparison of some control chart procedures.Technometrics 8 411–430.
SHIRYAYEV, A. N. (1963). On optimum methods in quickest detection problems.Theory Probab.

Appl. 8 22–46.
SHIRYAYEV, A. N. (1978).Optimum Stopping Rules. Springer, New York.
SIEGMUND, D. (1985).Sequential Analysis. Tests and Confidence Intervals. Springer, New York.
WOODROOFE, M. (1976). A renewal theorem for curved boundaries and moments of first passage

times.Ann. Probab. 4 67–80.
WOODROOFE, M. (1977). Second order approximations for sequential point and interval estimation.

Ann. Statist. 5 984–995.
WOODROOFE, M. (1982).Nonlinear Renewal Theory in Sequential Analysis. SIAM, Philadelphia.
YAKIR , B. (1994). Optimal detection of a change in distribution when the observations form

a Markov chain with a finite state space. InChange-Point Problems (E. Carlstein,
H. G. Müller and D. Siegmund, eds.) 346–358. IMS, Hayward, CA.

YAKIR , B. (1997). A note on optimal detection of a change in distribution.Ann. Statist. 25 2117–
2126.

ZHANG, C.-H. (1988). A nonlinear renewal theory.Ann. Probab. 16 793–824.

INSTITUTE OFSTATISTICAL SCIENCE

ACADEMIA SINICA

TAIPEI, 11529
TAIWAN

REPUBLIC OFCHINA

E-MAIL : stcheng@stat.sinica.edu.tw


