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CONVERGENCE OF THE MONTE CARLO
EXPECTATION MAXIMIZATION FOR CURVED

EXPONENTIAL FAMILIES

BY GERSENDE FORT AND ERIC MOULINES

LMC-IMAG and ENST

The Monte Carlo expectation maximization (MCEM) algorithm is a
versatile tool for inference in incomplete data models, especially when
used in combination with Markov chain Monte Carlo simulation methods.
In this contribution, the almost-sure convergence of the MCEM algorithm
is established. It is shown, using uniform versions of ergodic theorems
for Markov chains, that MCEM converges under weak conditions on the
simulation kernel. Practical illustrations are presented, using a hybrid random
walk Metropolis Hastings sampler and an independence sampler. The rate of
convergence is studied, showing the impact of the simulation schedule on the
fluctuation of the parameter estimate at the convergence. A novel averaging
procedure is then proposed to reduce the simulation variance and increase the
rate of convergence.

Introduction. Many problems in computational statistics reduce to the maxi-
mization of a criterion

g(θ) :=
∫
X

h(z; θ)µ(dz), h(·; θ) > 0, µ-a.s.,(1)

on a feasible set �, when g cannot be computed in closed form. In the terminology
of the missing data problem, g is the incomplete data likelihood, that is, the
likelihood of the observations for the value of the parameter θ , z ∈ X is the
missing data vector and h is the complete data likelihood with respect to (w.r.t.)
the reference measure µ, that is, h is the likelihood of the observations and of the
missing data.

The expectation maximization (EM) algorithm [Dempster, Laird and Rubin
(1977)] is a popular iterative procedure for maximizing g. The E step of the
algorithm requires the computation of the expectation of the complete log-
likelihood w.r.t. the posterior distribution of the missing data. In many situations,
this step is intractable. To solve this problem, many approximations of the EM
algorithm, which use simulations as an intermediate step, have been proposed [see,
e.g., Tanner (1996); Celeux and Diebolt (1992); Delyon, Lavielle and Moulines
(1999)]. Perhaps the most popular algorithm for this purpose is the Monte Carlo
EM (MCEM) initially proposed by Wei and Tanner (1990) and later used and
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studied by many authors [see Sherman, Ho and Dalal (1999) and references
therein].

The basic principle behind this algorithm is to replace the expectation step
by a blending of Monte Carlo integration procedure with Markov Chain Monte
Carlo (MCMC) sampling techniques such as the Gibbs or the Metropolis Hastings
algorithm. The MCEM algorithm has been successfully applied in many different
settings, including nonlinear time-series models [Chan and Ledolter (1995)],
generalized linear mixed models with missing data [Chan and Kuk (1997)], full-
information item factor models [Meng and Schilling (1996)], genetic models [Guo
and Thompson (1991)] and blind deconvolution [Cappé, Doucet, Lavielle and
Moulines (1999)].

Analysis of the convergence of the MCEM algorithm was first formally
addressed by Biscarat (1994) as a specific example of a random iterative algorithm.
The conditions in Biscarat (1994) were later weakened by Chan and Ledolter
(1995). The assumptions in these works are, however, rather restrictive, because
they involve a uniform law of large numbers, that is, uniform convergence in
probability of the Monte Carlo expectation to the corresponding sample average
over θ in a compact subset of the feasible set �. This assumption fails to be
verified when Monte Carlo integration is carried out along a single run MCMC
algorithm in the simulation step. It can, however, be verified under reasonable
assumptions when Monte Carlo integration is done using independent chains,
as shown by Sherman, Ho and Dalal [(1999), Theorem 2]. [The difficulty when
moving from single run to multiple runs was overlooked by Chan and Ledolter
(1995).] Convergence of random iterative algorithms was also considered by
Shapiro and Wardi (1996), Pierre-Loti-Viaud (1995) and Brandière (1998), also
under restrictive assumptions.

Sherman, Ho and Dalal (1999) addressed a different class of results. They
focused on the missing data problem, for which g(θ) is the incomplete data
likelihood, depending on the sample size, say N (the dependence on this parameter
is implicit in our work; all the results we obtain are conditional to N ). They
assumed that the Monte Carlo integration was carried out by means of independent
chains and that the number of independent chains, the number of iterations for each
chain at each step and the number of iterations of the algorithm are functions of N .
Under these assumptions, they derived the rate of convergence of the Monte Carlo
estimator obtained as N → ∞.

The purpose of this paper is to complement the results above by providing
a convergence analysis of the MCEM algorithm which remains valid under
assumptions that are verified for a wide class of MCMC simulation techniques,
including both single run and multiple run chains. The proof of convergence is
rather different from the schemes used before, avoiding any form of uniform law
of large numbers. An averaging technique to improve the rate of convergence is
also presented that is based on a modification of the averaging techniques [Polyak
(1990)].
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This paper is organized as follows. In Section 1, we present the MCEM
algorithm and define the stable MCEM algorithm which guarantees the almost-
sure (a.s.) boundedness of the random recursion. In Section 2, we study the
convergence of stable MCEM for curved exponential families when the simulation
step is based on MCMC techniques by assuming a uniform ergodic behavior of
the MCMC kernels. In Section 3, the rate of convergence is derived and how
this rate can be improved, with a very small computational overhead, by using an
averaging approach, is shown. Section 4 is devoted to an application. The proofs
are postponed to Sections 5–7.

1. The Monte Carlo expectation maximization algorithm. In this contribu-
tion, we use the terminology of the missing data problem. Let � ⊆ Rl , let X ⊆ Rd

be endowed with the Borel σ -field, let µ be a σ -finite Borel measure on X and
let {h(z; θ), θ ∈ �} be a family of positive µ-integrable functions. Any iteration
of EM may be formally decomposed into two steps. At iteration n + 1, the E step
consists of evaluating

Q(θ, θn) :=
∫
X

log h(z; θ)p(z; θ)µ(dz),

where

p(z; θ) := h(z; θ)/g(θ),

so that

πθ(dz) := p(z; θ)µ(dz)

is a probability distribution which may be interpreted as the posterior distribution
of the missing data. In the M step, the new value of the parameter θn+1 is set
as the maximum over � of θ �→ Q(θ, θn), θn+1 := arg maxφ∈� Q(φ, θn). It is
assumed for simplicity that this maximum exists and is unique [see Wu (1983)
for details]. The key property of EM is that increasing Q(θ, θn) forces an increase
of g, the function to maximize. It is known that under regularity assumptions, EM
instances {θn} converge to the set of the stationary points of g [Wu (1983)]. In some
situations, the E step is intractable and to deal with these cases, Wei and Tanner
(1990) proposed to replace the expectation by a Monte Carlo integration, leading
to the so-called Monte Carlo EM. The MCMC approach consists of sampling
an X-valued Markov chain {Zn

j }j from a Markov kernel Pθn , with stationary
distribution πθn and initial distribution λ (assumed to be constant over iterations).
In the E step we compute

Qn(θ, θn) := m−1
n

mn∑
j=1

log h(Zn
j ; θ), mn ∈ Z+,

whereas the M step remains unchanged. A difficulty when dealing with the random
sequence {θn} is to guarantee the stability (a.s. boundedness). To avoid unnecessary
technical conditions, we present a simple modification of the iterative scheme by
adapting the algorithm presented by Chen, Guo and Gao (1988).



CONVERGENCE OF THE MCEM ALGORITHM 1223

The stable MCEM algorithm. A new sequence {θ ′
n} is obtained by truncating

the original recursion: whenever arg maxφ∈� Qn(φ, θ ′
n) is outside a specific set,

it is reinitialized at a point θ ′
0. In the technique proposed by Chen, Guo and Gao

(1988), the truncation bounds are random functions of the recursion index n. The
advantage of this approach (compared to projection) is that the truncation does not
modify the set of stationary points of the original recursion. More formally, let
{Kn} be a sequence of compact subsets such that, for any n ≥ 0,

Kn � Kn+1, � = ⋃
n≥0

Kn.(2)

Set p0 := 0 and choose θ ′
0 ∈ K0. The stable MCEM algorithm is defined as

follows:

if arg max
φ∈�

Qn(φ, θ ′
n) ∈ Kpn, θ ′

n+1 := arg max
φ∈�

Qn(φ, θ ′
n) and pn+1 := pn,

if arg max
φ∈�

Qn(φ, θ ′
n) /∈ Kpn, θ ′

n+1 := θ ′
0 and pn+1 := pn + 1.

(3)

Note that pn counts the number of reinitializations. It is shown in the sequel that,
under appropriate assumptions, {pn} is a.s. finite, meaning that along any trajectory
of the algorithm, the number of reinitialization is finite.

2. Convergence of the MCEM algorithm for a curved exponential family.

2.1. Model assumptions. We further restrict our attention to the case where
the complete data likelihood h is from the class of curved exponential densities.
We consider the following assumptions which are satisfied in many scenarios.

M1. � ⊆ Rl , X ⊆ Rd and µ is a σ -finite positive Borel measure on X.

Denote by 〈 · ; · 〉 the scalar product, denote by | · | the Euclidean norm and
denote by ∇ the differentiation operator. Let φ :� → R, ψ :� → Rq and S :X →
S ⊆ Rq . Define L :S × � → R and h :X × � → R+ \ {0}:

L(s; θ) := φ(θ) + 〈s;ψ(θ)〉, h(z; θ) := exp
(
L(S(z); θ)

)
.

M2. Assume that:

(a) φ, ψ are continuous on � and S is continuous on X;
(b) for all θ ∈ �, S̄(θ) := πθ(S) is finite and continuous on �;
(c) there exists a continuous function θ̂ :S → �, such that for all s ∈ S,

L(s; θ̂ (s)) = supθ∈� L(s; θ);
(d) g is positive, finite and continuous on � and, for any M > 0, the level

set {θ ∈ �, g(θ) ≥ M} is compact.
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Let L be the set of stationary points of the EM algorithm. With the notation
above, L is given by

L := {θ ∈ �, θ̂ ◦ S̄(θ) = θ}.(4)

As shown by Wu [(1983), Theorem 2], under M1 and M2, if � is open, and
φ and ψ are differentiable on �, then g is differentiable on � and L = {θ ∈ �,

∇g(θ) = 0}. Hence, the set of fixed points of EM coincides with the set of
stationary points of g.

M3. Assume either that:

(a) the set g(L) is compact or
(a′) for all compact sets K ⊆ �, g(L ∩ K) is finite.

Note that under M2(d), g(L) is compact iff L is compact.

EXAMPLE (Poisson count with random effect). For the purpose of illustration,
we consider the estimation of a location parameter in a model of Poisson counts.
This model is adapted from Zeger (1988) [see also Chan and Ledolter (1995)].
Conditional on the latent variables Z0,Z1, . . . ,Zd , the counts Y1, . . . , Yd are
independent and Poisson variables with intensity exp(θ + Zk), where θ is the
unknown translation parameter to estimate in the maximum likelihood sense.
{Zk} is a stationary autoregressive process of order 1, Zk = aZk−1 + σεk, where
{εk} is i.i.d. standard Gaussian noise and the coefficients |a| < 1, σ > 0 are known.
Set z := (z0, . . . , zd), a Rd+1-valued vector. The complete likelihood may be
written as

h(z; θ) = exp

(
θ

d∑
k=1

Yk − exp(θ)

d∑
k=1

exp(zk)

)
,(5)

the dominating measure µ is absolutely continuous w.r.t. the Lebesgue measure
on X := Rd+1 and the density is given up to an irrelevant normalization factor by

exp

(
d∑

k=1

Ykzk − (2σ 2)−1

(
d∑

k=1

(zk − azk−1)
2 + (1 − a)2z2

0

))
.(6)

Here � := R, φ(θ) := θ
∑d

k=1 Yk , ψ(θ) := −eθ and S(z) := ∑d
k=1 ezk ∈ S :=

R+ \ {0}. Assumption M2(a) is trivially verified. Observe that for y > 0, z ∈ R,
θ ∈ R, we have yθ − eθ+z ≤ −yz + y(ln(y) − 1), so that

h(z; θ) ≤ exp

(
d∑

k=1

Yk

(
log(Yk) − 1

) −
d∑

k=1

Ykzk

)
∀ z ∈ Rd+1, θ ∈ R.(7)

We easily deduce from (7) that supθ∈R g(θ) < ∞. Equation (7) also implies
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that g is uniformly bounded on � and is continuous. Since limθ→−∞ g(θ) =
limθ→+∞ g(θ) = 0, then the level sets are compact and M2(d) is verified. As g is
continuous, M2(b) is trivially checked using similar arguments. M2(c) is verified
with

θ̂ (s) := log

(
d∑

k=1

Yk

)
− log(s).

Finally, θ �→ g(θ) and its derivatives are analytic on � and analytic functions
have only a finite number of zeros in any compact set. Whereas L = {θ ∈ �,

∇g(θ) = 0}, then for all compact K ⊂ �, L ∩ K is finite and M3(a′) is verified.

2.2. Monte Carlo approximation. Let {Kn} be a sequence of compact sets
satisfying (2). Given θ ′

0 ∈ K0 and a probability measure λ on X, the stable MCEM
sequence {θ ′

n} is then defined as [see (3)]

if θ̂ (S̃n) ∈ Kpn, θ ′
n+1 := θ̂ (S̃n) and pn+1 := pn,

if θ̂ (S̃n) /∈ Kpn, θ ′
n+1 := θ ′

0 and pn+1 := pn + 1,
(8)

where

S̃n := m−1
n

mn∑
j=1

S(Zn
j ),

{Zn
j } is sampled from a Markov kernel Pθ ′

n
with invariant distribution πθ ′

n
and

Zn
0 ∼ λ. To go further, we need to control the Lp-norm of the fluctuations of the

Monte Carlo approximation of S̄(θ ′
n) by S̃n.

M4. There exist p ≥ 2 and λ, a probability measure on X, such that for any
compact set K ⊆ �,

sup
θ∈K

sup
n≥1

n−p/2Eλ,θ

[∣∣∣∣∣
n∑

k=1

{S(	k) − πθ(S)}
∣∣∣∣∣
p]

< ∞,

sup
θ∈K

sup
n≥1

∑
k≥1

|λP k
θ (S) − πθ(S)| < ∞,

where Eλ,θ is the expectation of the canonical Markov chain {	n} with
transition kernel Pθ and initial distribution λ.

We now state practical conditions upon which M4 is verified. The simplest case
is when the kernel Pθ is uniformly ergodic. [See Meyn and Tweedie (1993) for
relevant definitions on Markov chains.] Let P be a Markov kernel on X.

PROPOSITION 1. Let P be a ψ-irreducible aperiodic Markov transition
kernel on X. Assume that the whole state space is νm-small with minorizing



1226 G. FORT AND E. MOULINES

constant ε > 0. Then P possesses a unique invariant probability measure π . In
addition, for any p ≥ 2 and any bounded Borel function g :X → Rq ,

∞∑
k=1

|P kg(x) − π(g)| ≤ 2
(

sup
X

|g|
)(

1 − (1 − ε)1/m
)−1 ∀x ∈ X,

and for all n ≥ 1, x ∈ X,

Ex

∣∣∣∣∣
n∑

k=1

{g(	k) − π(g)}
∣∣∣∣∣
p

(9)

≤ 6pCp

(
sup
X

|g|p
)(

1 + 2{1 − (1 − ε)1/m}−1)p+1
np/2,

where Cp is Rosenthal’s constant [see Hall and Heyde (1980), Theorem 2.12].

The proof is given in Section 6.
Using this result, assumption M4 is verified provided that supX |S| < ∞,

Pθ is for all θ ∈ � uniformly ergodic, that is, X is νmθ
-small with minorizing

constant εθ , and for all θ in a compact subset of �, (a) εθ is bounded away from
zero and (b) mθ is bounded. This condition is often verified when X is compact
and the kernel depends continuously on θ (see Section 4 for an illustration). To
deal with noncompact state space, the following proposition (proved in Section 6)
provides convenient sufficient conditions based on the Foster–Lyapunov drift
criterion (10).

PROPOSITION 2. Let P be a ψ-irreducible aperiodic transition kernel on X
and let C be an accessible petite set. Assume that there exist some constants
0 < ρ < 1, b < ∞ and a Borel norm-like function V : X → [1,∞), bounded on C

such that

PV ≤ ρV + b1C.(10)

Let p ≥ 2. Choose M > supC V ∨ b/(1 − ρ1/p)p . Then the set {V ≤ M} is
νm-small with minorizing constant ε > 0 and for any Borel function g :X → Rq ,
|g| ≤ V 1/p, it holds that for all x ∈ X, n ≥ 1,

∞∑
k=1

|P kg(x) − π(g)| ≤ Cε−1(m + 1)M1/pA−1V 1/p(x)

and

Ex

∣∣∣∣∣
n∑

k=1

{g(	k) − π(g)}
∣∣∣∣∣
p

≤ Cε−(p+1)(m + 1)p+1M2A−2pV (x)np/2,

where A := ((1 − ρ)1/p − (b/M)1/p) and C is a constant which depends only
on p.
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Hence, if the kernel P depends on a parameter θ , all the quantities appearing
in Proposition 2 may depend on θ and the condition M4 is verified if, for any
compact subset K ⊂ �, (a) supθ∈K ρθ < 1, supθ∈K bθ < ∞, supθ∈K Mθ < ∞
and supθ∈K mθ < ∞, (b) infθ∈K εθ > 0 and (c) there exists a measure of
probability λ on X such that supθ∈K λ(Vθ ) < ∞.

Finally, we need to assume that the number of simulations at each iteration
increases at a given rate {mn}. The rate of increase depends on the control of the
fluctuation of the Monte Carlo sum. More precisely:

M5. {mn} is a sequence of integers such that
∑

n m
−p/2
n < ∞, where p is given

by M4.

EXAMPLE [Poisson count with random effect (continued)]. To impute the
missing values, we use the hybrid sampler random scan symmetric random
walk Metropolis Hastings (henceforth denoted RSM). At each iteration, a single
component of the missing data vector z drawn at random is updated using a
one-dimensional random walk Metropolis Hastings algorithm, with a proposal
distribution that has a positive, continuous and symmetric density q w.r.t. the
Lebesgue measure on R. This sampler was studied by Fort, Moulines, Roberts
and Rosenthal (2003). The key findings are summarized here:

• For any θ ∈ �, the RSM kernel Pθ is Lebesgue-irreducible and aperiodic. In
addition, for any compact sets C ⊂ Rd+1 and K ⊂ �, there exist a constant
ε > 0 and a probability measure ν on Rd+1 such that P d+1

θ (z, ·) ≥ εν(·) for all
θ ∈ K , z ∈ C.

• Choose 0 < s < 1 such that s(1 − s)1/s−1 < (2d − 2)−1 and set Vθ(z) :=
πθ(z)−s . Then, for any compact K ⊂ �,

lim sup
|z|→+∞

sup
θ∈K

PθVθ(z)
Vθ(z)

< 1.

Consequently, by applying Proposition 2, it is proved that assumption M4 holds
with any real p ≥ 2 and any probability measure λ such that for any compact set
K ⊂ �, supθ∈K λ(Vθ ) < ∞.

2.3. Almost-sure convergence. We now state the main results of our contri-
bution. Under assumptions M1 and M2, any iteration of the EM algorithm can
be written as θn+1 = θ̂ ◦ S̄(θn) =: T (θn), where T :� → � is continuous. Wu
[(1983), Theorem 1] proved that (a) {g(θn)} converges to g(θ∗) for some θ∗ in
the set L of the fixed points of T and (b) the limit points of {θn} are in L. Under
assumptions M1–M4, we obtain a similar result for the stable MCEM algorithm.
The convergence results hold almost surely w.r.t. P̄, the probability on the canoni-
cal space associated to the trajectories of stable MCEM, started at θ ′

0, given λ, the
initial distribution of the Markov chains, and {Kn}, the sequence of compact sets
(see Section 5.2 for a precise definition of P̄). Denote by Cl(A) the closure of the
set A.
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THEOREM 3. Assume M1–M5. Let {Kn} be a sequence of compact sets
satisfying (2), let θ ′

0 ∈ K0 and let λ be given as in M4. Consider the stable MCEM
random sequence {θ ′

n} defined by (8). Then:

(i) (a) limn pn < ∞ w.p.1 and lim supn |θ ′
n| < ∞ w.p.1;

(b) {g(θ ′
n)} converges w.p.1 to a connected component of g(L), where L

is given by (4).

(ii) If, in addition, g(L ∩ Cl({θ ′
n})) has an empty interior, then {g(θ ′

n)}
converges w.p.1 to g∗ and {θ ′

n} converges to the set Lg∗ := {θ ∈ L, g(θ) = g∗}.
The proof is given in Section 5.

REMARK 4. Using Sard’s theorem [Bröcker (1975)], it is known that
g({∇g = 0}) has an empty interior as soon as the function g is l-times differen-
tiable (where l is the dimension of the parameter space). Hence, Theorem 3(ii)
applies under very weak regularity assumptions.

In many instances, the set L is made up of isolated points and, under suitable
conditions, the previous convergence results imply pointwise convergence to some
stationary point of g. Depending on the values of the Hessian of g, these limiting
points are either local maxima, local minima or saddle points. A question of
interest is to state conditions upon which the stationary points coincide only with
local maxima. To that goal, we formulate some additional regularity assumptions:

M6. (a) � is open;
(b) for any s ∈ S, θ �→ L(s; θ) is twice continuously differentiable on �;
(c) θ �→ S̄(θ) is twice continuously differentiable on �;
(d) θ �→ g(θ) is continuously differentiable on �;
(e) S is open and the convex hull of S(Rd) is included in S;
(f) s �→ θ̂ (s) is twice continuously differentiable on S.

M7. The stationary points of g are isolated. For every stationary point θ∗ of g, the
matrices −∇2

θ L(S̄(θ∗); θ∗) and∫
X

∇θL
(
S(z); θ∗)t ∇θL

(
S(z); θ∗)

p(z; θ∗)µ(dz)

are positive definite.

It was shown by Delyon, Lavielle and Moulines (1999) that under M6 and M7,
the matrix

∇T (θ∗) = [∇2
θ L(s∗; θ∗)]−1(∇2

θ L(s∗; θ∗) − ∇2 logg(θ∗)
)
, s∗ := S̄(θ∗),

is diagonalizable with positive real eigenvalues. If θ∗ is a stable fixed point of T ,
then the modulus of all the eigenvalues of ∇T (θ∗) is strictly less than 1 and
θ∗ is a proper maximizer of g. If θ∗ is hyperbolic (resp. unstable), then it is a
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saddle point of g (resp. a local minimum of g). Recall finally that if the stationary
points of g are isolated (i.e., under M7), convergence to hyperbolic and unstable
points (i.e., convergence to saddle points and local minima of g) never occurs w.p.1
for the MCEM sequence, as shown in Brandière (1998).

EXAMPLE [Poisson count with random effects (continued)]. Assumption M6
is readily verified. Note that

∇ log g(θ) =
d∑

k=1

Yk − eθ
∫

Rd+1
S(z)p(z; θ)µ(dz)

and a stationary point θ∗ solves the equation

d∑
k=1

Yk = eθ∗
∫

S(z)p(z; θ∗)µ(dz),

that is,

d∑
k=1

Yk = eθ∗
S̄(θ∗).

Since g is analytic (see Section 2.1), any compact subset of � contains only
a finite number of stationary points of g. For a stationary point θ∗, note that
−∇2

θ L(S̄(θ∗); θ∗) = eθ∗
S̄(θ∗) and∫

∇θL
(
S(z); θ∗)t ∇θL

(
S(z); θ∗)

p(z; θ∗)µ(dz)

= eθ∗
∫ (

S(z) − S̄(θ∗)
)2

p(z; θ∗)µ(dz),

so that M7 holds.

3. Rate of convergence and averaging. We now study the rate of conver-
gence of {θ ′

n} (given {Kn}, θ ′
0 ∈ K0 and λ) to a local maximum θ∗ of g. Rate of

convergence is useful to understand how we should ideally tune the number of
simulations mn as a function of the iteration index. It also allows us to derive an
accelerated version of the algorithm based on averaging.

Define G(s) := S̄ ◦ θ̂ (s). The mapping G gives another way to consider an
iteration of the EM algorithm, not directly in the parameter space �, but in the
space of the complete data sufficient statistics S. If θ∗ is a fixed point of T ,
that is, θ∗ = T (θ∗) = θ̂ ◦ S̄(θ∗), then s∗ := S̄(θ∗) is a fixed point of G, that is,
s∗ = G(s∗) = S̄ ◦ θ̂ (s∗). In addition, ∇T (θ∗) = ∇θ̂ (s∗)∇S̄(θ∗) and ∇G(s∗) =
∇S̄(θ∗)∇θ̂ (s∗). Hence ∇G(s∗) has the same eigenvalues as ∇T (θ∗), counting
multiplicities together with (q − l) additional eigenvalues equal to zero. The
stability properties can thus be directly translated in terms of the stability of s∗:
when θ∗ is stable, then s∗ is stable and vice versa.
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3.1. Rate of convergence. We begin by informally discussing the results. Let
θ∗ be a fixed point of T and let s∗ := S̄(θ∗). There are a priori multiple possible
limiting points, so we need to restrict our attention to the set of trajectories that
converges to a given limiting point s∗. For large enough n, we may decompose the
recursion as

S̃n − s∗ = (
G(S̃n−1) − G(s∗)

) + S̃n − G(S̃n−1) = �(S̃n−1 − s∗) + εn + ηn,

where � := ∇G(s∗) and {εn} is a martingale difference sequence w.r.t. the
filtration Fn := σ(S̃0, . . . , S̃n),

εn := (
S̃n − E[S̃n|Fn−1])1{|S̃n−1−s∗|≤δ}, n ≥ 1, δ > 0, ε0 := 0.

The remainder term ηn can be expressed as ηn := η
(1)
n + η

(2)
n , where for n ≥ 1,

η(1)
n := (

S̃n − G(S̃n−1)
)
1{|S̃n−1−s∗|≥δ}

(11)
+ (

E[S̃n|Fn−1] − G(S̃n−1)
)
1{|S̃n−1−s∗|≤δ},

η(2)
n := (

G(S̃n−1) − G(s∗) − �(S̃n−1 − s∗)
)

(12)
= ∑

i,j

Rn−1(i, j)(S̃n−1,i − s∗
i )(S̃n−1,j − s∗

j ),

and Rn is defined componentwise as

Rn(i, j) :=
∫ 1

0
(1 − t)

∂2G(s∗ + t (S̃n − s∗))
∂si ∂sj

dt.

It is convenient to decompose the error S̃n − s∗ as a sum of a linear term µn that
obeys a linear difference equation driven by the martingale difference εn,

µn = �µn−1 + εn, n ≥ 1 and µ0 := 0,(13)

and a remainder term

ρn := S̃n − s∗ − µn, n ≥ 0,(14)

which will be shown to be negligible along the trajectories converging to s∗. We
stress that, because there are possibly several convergence points, the remainder
term ρn as defined above will be small only along trajectories that converge to s∗.

As shown in the previous section, under the stated assumptions, S̃n may
converge only to stable points of G (hyperbolic points and unstable points are
avoided w.p.1), which are associated with a local maximum of the incomplete
likelihood g. Hence, we may assume that s∗ is stable, which implies that all the
eigenvalues of � have modulus less than 1 and, thus, that there exist γ < 1 and
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a constant C < ∞ such that for all k, |�k| ≤ Cγ k , where | · | is any matrix norm.
This implies that the linear control model (13) is stable and that

µn =
n∑

k=0

�kεn−k.

In many situations, γ is very close to 1, which explains why the EM algorithm is
sometimes slow to converge [see Jamshidian and Jennrich (1997)]. Most often, γ is
unknown. It can, however, be estimated using, for example, the Louis information
principle [see Delyon, Lavielle and Moulines (1999)], but this generally involves
a significant computational overhead. By construction, the driving error {εn} is a
martingale increment. Observe that if we assume that, for all n, |S̃n−1 − s∗| ≤ δ

for some deterministic s∗ and δ, then there exists a deterministic compact K ⊆ �

such that for all n, θ ′
n ∈ K . From this remark and M4, it may be asserted that the

Lp-norm of the martingale εn is inversely proportional to
√

mn, the square root of
the number of simulations at step n. Hence,

µn = OLp

(
n∑

k=0

γ n−km
−1/2
k

)
.

We say that Xn = OLp(αn), where αn �= 0 if α−1
n Xn is bounded in Lp . A more

explicit expression for the rate of µn can be obtained by using the following
lemma, from Pólya and Szegö [(1976), Result 178, page 39]:

LEMMA 5. Let {an} and {bn}, bn �= 0, be two sequences such that
(i) the power series f (x) := ∑∞

n=1 anx
n has a radius of convergence r and

(ii) limn→∞ bn/bn+1 =: q with |q| < r . Define cn := ∑n
k=0 akbn−k . Then

limn→∞ cnb
−1
n = f (q).

Hence, provided that limn mn+1/mn < γ −2, the linear term µn = OLp(m
−1/2
n ).

The constraint limn mn+1/mn < γ −2 is always satisfied when {mn} is subexpo-
nential. When lim sup γ 2nmn = ∞, the constraint is no longer satisfied and the
rate is strictly lower than m

−1/2
n . Of course, this analysis makes sense only if we

can prove that µn is the leading term of the error S̃n − s∗, that is, ρn is negligible
w.r.t. µn along the trajectories of S̃n that converge to s∗. More specifically, we have
to show that (see Lemma 14, Section 7)

ρn1{limn S̃n=s∗} = ow.p.1(m
−1/2
n ).(15)

We say that Xn = ow.p.1(αn) [resp. Xn = Ow.p.1(αn)], where αn �= 0 if
limn α−1

n |Xn| = 0 w.p.1 (resp. α−1
n |Xn| is bounded w.p.1).

The discussion above is summarized in the following theorem.
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THEOREM 6. Assume M1–M7. Let s∗ be a stable fixed point of the map G.
Let γ < 1 be the modulus of the largest eigenvalue of ∇G(s∗). Assume
that 1 ≤ limn mn+1/mn < γ −2. Then µn = OLp(m

−1/2
n ) and ρn1limn S̃n=s∗ =

ow.p.1(m
−1/2
n ), where µn and ρn are given by (13) and (14).

Theorem 6 shows that, under weak conditions on the sequence {mn}, along any
trajectory converging to a stable fixed point s∗, the error θ ′

n − θ∗ (or equivalently
S̃n − s∗) is asymptotically given by µn. In addition, the Lp-norm of µn decreases
as the square root of the number of simulations at step n.

To compare the rate of convergence of the MCEM algorithm with other
stochastic versions of the EM algorithm, such as the stochastic approximation
EM (SAEM), it is worthwhile to compute the rate as a function of the number
of simulations rather than as a function of the number of iterations. For a generic
sequence {Xn}, define the interpolated sequence X

(i)
n = Xφ(n), where φ is defined

as the largest integer such that

φ(n)∑
k=0

mk < n ≤
φ(n)+1∑

k=0

mk.

The subscript n for the interpolated sequence θ
′ (i)
n refers to the total number of

simulations, while for the original sequence {θ ′
n}, it coincides with the number

of iterations. Assume first that the number of simulations is increasing at a
polynomial rate, that is, mn := nα so that φ(n) ∼ [(1 + α)n]1/(1+α). On the
simulation time scale, µ

(i)
n = OLp(n−α/(2(1+α))) and ρ

(i)
n = ow.p.1(n

−α/(2(1+α))).
Hence the rate of convergence is always smaller than n−1/2, which is the rate of
the SAEM algorithm [Delyon, Lavielle and Moulines (1999), Theorem 7]. It is
interesting to note that the rate is improved by choosing large values of α, whereas
small values of α can lead to rather inefficient estimates. In practice, this means
that it is better to increase the number of simulations rapidly when the algorithm is
approaching convergence, giving thus a theoretical background to well established
practice. Assume now that mn := mn, m > 1. This choice is advocated in Chan
and Ledolter (1995) and in several earlier works on the subject. We get similarly
that µ

(i)
n = OLp(n−1/2) and ρ

(i)
n = ow.p.1(n

−1/2) whenever 1 < m < γ −2: in this
case, the rate of convergence is n−1/2, provided that m is small enough.

3.2. The averaging procedure. The preceding discussion evidences that the
performance depends critically on the choice of the schedule, which is of course
a serious practical drawback. Recently, a data-driven procedure was proposed
by Booth and Hobert (1999). This procedure requires evaluation of the variance
of S̃n − G(S̃n−1) which is a challenging problem when MCMC is used to sample
the missing data.
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We consider here an alternative procedure adapted from a technique developed
by Polyak (1990) to improve the rate of convergence for stochastic approximation
procedures. To motivate the construction, recall that

S̃n = s∗ + �n, �n :=
n∑

k=0

�n−kεk + ρn.

Each value of S̃n may be seen as an estimator of s∗ affected by a noise term.
The stable MCEM algorithm estimates s∗ by S̃n which is an inefficient estimation
strategy. By analogy with the regression problem, an estimator of s∗ with reduced
variance can be obtained by averaging and weighting the successive estimates S̃n

of s∗. Because the regression noise �n is both correlated and heteroscedastic, the
best unbiased linear estimator of s∗ would require us to know (or estimate) both
the correlation and the variance of �n, which is a difficult task. For simplicity, we
consider the weighted average

�n := M−1
n

n∑
j=0

mj S̃j and Mn :=
n∑

j=0

mj ,(16)

where S̃n is weighted by mn, which is a rough estimate of the inverse of the
variance of �n. �n may thus be seen as a weighted least-squares estimate of s∗,
where the weights are (roughly) proportional to the inverse of the noise variance.

Using the decomposition above, �n − s∗ may be written as �n − s∗ = µ̄n + ρ̄n,
where

µ̄n := M−1
n

n∑
k=0

(
n−k∑
j=0

mj+k�
j

)
εk,

(17)

ρ̄n := M−1
n

n∑
k=0

mkρk.

Under M4, E[|εn|p|Fn] ≤ 2pCm
−p/2
n , where C, given by M4, does not depend

on the simulation schedule. Then the martingale form of Rosenthal’s inequality
implies that

‖µ̄n‖Lp ≤ C(p)

((
n∑

k=0

m−1
k

(
n−k∑
j=0

mj+kγ
j

)2)1/2

+
(

n∑
k=0

m
−p/2
k

(
n−k∑
j=0

mj+kγ
j

)p)1/p)
M−1

n ,

where C(p) is a constant depending only on p. A more explicit expression for
the rate of µ̄n can be obtained from the following lemma (the proof of which is
postponed to Section 7).
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LEMMA 7. Let 0 < γ < 1 and {mn} be a positive sequence such that
1 ≤ limn mn+1/mn =: m < γ −2. Define for some positive integer r ,

ξ (r)
n :=

(
n∑

k=0

m
r/2
k

)−1/r( n∑
k=0

m
−r/2
k

(
n−k∑
j=0

mj+kγ
j

)r)1/r

.

Then limn ξ
(r)
n =: Br(m;γ ), where

Br (m;γ ) :=
(
(1 − mγ )−r

×
[

1 + (mr/2 − 1)

r−1∑
l=0

(
r

l

)
(−1)r−l(ml−r/2γ l−r − 1)−1

])1/r

if mγ �= 1,

Br (γ
−1;γ ) :=

(
(1 − γ r/2)

∑
n

(n + 1)rγ nr/2

)1/r

.

Hence, provided that limn mn+1/mn =: m < γ −2, this shows that

lim
n

M1/2
n ‖µ̄n‖Lp

(18)

≤ C(p)B2(m,γ ) + C(p)Bp(m,γ ) lim
n

(
n∑

k=0

m
p/2
k

)1/p

M−1/2
n .

If m = 1 [this happens, e.g., for polynomial schedules mn ∝ nα or subgeo-
metrical schedules mn ∝ exp(nα), α < 1], then

∑n
k=0 m

p/2
k ∼ nm

p/2
n and

limn(
∑n

k=0 m
p/2
k )1/pM

−1/2
n = 0. Hence,

lim
n

M1/2
n ‖µ̄n‖Lp ≤ C(p)B2(1, γ ).

If 1 < m, then Lemma 5 implies that limn(
∑n

k=0 m
p/2
k )1/pM

−1/2
n = (m − 1)1/2 ×

(mp/2 − 1)−1/p. Hence,

lim
n

M1/2
n ‖µ̄n‖Lp ≤ C(p)B2(m,γ ) + C(p)Bp(m,γ )(m − 1)1/2(mp/2 − 1)−1/p.

This discussion shows that the Lp-norm of the term µ̄n decreases as M
−1/2
n , the

inverse of the square root of the total number of simulations up to iteration n.
In addition, m �→ B2(m,γ ) increases on [1, γ −2) \ {γ −1} and the minimum is
B2(1, γ ) = (1 − γ )−1; when m = γ −1, B2(γ

−1, γ ) = (1 + γ )1/2(1 − γ )−3/2 >

B2(1, γ ). This implies that the upper bound in (18) is minimal for m = 1 and that
the upper bound for the error term is minimum when limn mn+1/mn = 1.
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The term µ̄n is the leading term in �n − s∗ provided that, along any
trajectories that converge to s∗, ρ̄n is negligible w.r.t. µ̄n, that is, ρ̄n1limn S̃n=s∗ =
ow.p.1(M

−1/2
n ). By (37) and (38), ρ̄n1limn S̃n=s∗ = Ow.p.1(1)OLp(nM−1

n ). Hence,
ρ̄n is negligible compared to µ̄n whenever the simulation schedule checks the
condition nM

−1/2
n = o(1). For example, for geometrical schedules, this condition

is always checked, whereas for polynomial schedules mn ∝ nα , one has to choose
α > 1.

The discussion above is summarized in the following theorem.

THEOREM 8. Assume M1–M7. Let s∗ be a stable fixed point of the map G

and denote � := ∇G(s∗). Let γ < 1 be the modulus of the largest eigenvalue
of ∇G(s∗). Let Mn, µ̄n and ρ̄n be given by (16) and (17). Assume that
(i) 1 ≤ limn mn+1/mn < γ −2 and (ii) nM

−1/2
n = o(1). Then µ̄n = OLp(M

−1/2
n )

and ρ̄n1limn S̃n=s∗ = ow.p.1(M
−1/2
n ).

Theorem 8 shows that under weak conditions on the sequence {mn}, along
any trajectory converging to a stable fixed point s∗, the error �n − s∗ behaves
asymptotically as µ̄n; thus, the estimator θ̄n := θ̂ (�n) (or equivalently �n) has a
rate proportional to M

−1/2
n , that is, a rate inversely proportional to the square root

of the total number of simulations up to iteration n. Expressed on the simulation
time scale, the previous result shows that the Lp-norm of the leading term µ̄

(i)
n is

proportional to n−1/2.
Hence, the averaging procedure improves the rate of convergence. In addition,

the discussion above evidences that when averaging is used, use of geometrical
schedules is not recommended. It is better to choose mn in such a way that
limn mn+1/mn = 1 and nM

−1/2
n = o(1), which is verified, for example, if

mn grows polynomially.

EXAMPLE [Poisson count with random effects (continued)]. A plot of N =
100 observations Y1, . . . , Y100, obtained with θtrue = 2, a = 0.4 and σ 2 = 1 is
given in Figure 1. To implement stable MCEM, the compact sets {Kn} are chosen
as a ball of radius (n + 1) centered at θ ′

0. The Monte Carlo approximations are
computed by use of the hybrid sampler described in Section 2.2. The proposal
distribution for each component is a standard Gaussian variable on R (the mean
acceptance rate is ≈40%). The chains are initialized in a compact ball of radius
r = 11 according to a concatenation rule: if the last sample Zn

mn
at iteration n

is in this ball, then it is the starting point of the following chain, that is,
Zn+1

0 := Zn
mn

; otherwise, we set Zn+1
0 := rZn

mn
/|Zn

mn
|. The simulation schedule

increases polynomially, mn := 1000 + n2. In Figure 2, we plot three paths of
stable MCEM started, respectively, at θ ′

0 = log(N−1 ∑
Yk) ≈ 2.41, θ ′

0 = −2 and
θ ′

0 = 4. After 0, 3 and 2 reinitializations, respectively, convergence to the point
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FIG. 1. 100 observations from the Poisson count data model.

θ∗ ≈ 1.88 may be observed. In Figure 3, we plot a stable MCEM path started
from θ ′

0 = log(N−1 ∑
Yk) and its averaged counterpart [i.e., the sequence θ̄n given

by θ̄n := θ̂ (�n)]. Observe that the variation of the averaged path decreases more
rapidly than the variation of the stable MCEM path, which illustrates the discussion
in Section 3.2.

FIG. 2. Stable MCEM sequences for different initial values and mn = [n2]. The paths all converge
to θ∗ = 1.88 after a finite number of reinitializations.
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FIG. 3. Stable MCEM sequence with and without averaging both started from θ ′
0 = 2.41;

polynomial schedule mn = [n2].

4. An application to product diffusion modeling. We illustrate the previous
results by considering the Bass product diffusion model which consists in
predicting market penetration of new products and services. Sherman, Ho and
Dalal (1999) proved convergence in the case where the missing data were obtained
(at each step) from m independent runs of a Gibbs sampler. These authors
assumed uniform geometric ergodicity in the total variation distance and uniform
convergence in L2 [Assumptions (C5) and (C6)] which seemed difficult to directly
verify in practice.

The observations y := {(t1, n1), . . . , (td , nd)} are the cumulative numbers nj

of adopters at a set of increasing instants tj . We set t0 = n0 := 0. It is assumed
that the nj ’s are realizations of a process N(t) at time tj and the tj ’s are selected
independently of the adoption process. N(t) is a pure birth Markov process with
stationary transition probabilities and population adoption rate

�(t) := (
Mπ − N(t)

)(
� + ςN(t)

)
,

where M is the population size (M is known and constant over time), π is the
proportion of potential adopters, � ≥ 0 is the innovator coefficient and ς ≥ 0 is the
imitator coefficient. For all 0 ≤ i ≤ nd −1, �(ti) has to be positive. In addition, for
the expected number of adopters not to exceed the number of eventual adopters,
we require � + ςnd ≤ 1. Hence (�, ς,π) ∈ ϒ , where

ϒ := {(�, ς,π) ∈ (0,1] × [0,1] × [nd/M,1], 0 < � + ςnd ≤ 1}.
Our purpose is to compute the maximum likelihood estimator for ϑ := (�, ς,π) or,
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equivalently, the maximum likelihood estimator for θ = (α,β, γ ) := ζ(ϑ) defined
as

ζ(�, ς,π) :=



−ς

ςMπ − �

�Mπ


 ,

ζ−1(α,β, γ ) :=




1/2(−β +
√

β2 − 4αγ )

−α

2γM−1(−β +
√

β2 − 4αγ )−1




so that ζ :ϒ → � := ζ(ϒ) is continuous. Hence, we want to maximize on � the
incomplete data likelihood g given by

g(θ) :=
d∏

j=1

( nj−1∏
k=nj−1

λk(θ)

)

×
nj∑

i=nj−1

(
exp

(−λi(θ)(tj − tj−1)
) nj∏

k=nj−1
k �=i

{λk(θ) − λi(θ)}−1

)
,

where λi(θ) := αi2 + βi + γ . Computation and maximization of g are not
tractable [see Dalal and Weerahandi (1995)]. We thus implement the stable MCEM
algorithm and solve a missing data problem, where missing data are individual
adoption times. We write g(θ) := ∫

X h(z; θ)µ(dz), where [see Sherman, Ho and
Dalal (1999), Equation (11)]

z := (z1, . . . , znd
), z0 := 0, X := [0, td ]nd ,

h(z; θ) :=
nd−1∏
i=0

λi(θ) exp
(−λi(θ)(zi+1 − zi)

)
exp

(−λnd
(θ)(td − znd

)
)

and µ is absolutely continuous w.r.t. the Lebesgue measure on Rnd :

µ(dz) := 10<z1<···<znd

d−1∏
j=1

1znj
≤tj <znj +11znd

≤td dz.

Define ψ(θ) := θ and

φ(θ) := −λnd
(θ)td +

nd−1∑
k=0

ln λk(θ), S(z) :=
[

nd∑
k=1

(2k − 1)zk;
nd∑

k=1

zk; 0

]
,

so that logh(z; θ) = φ(θ) + 〈S(z); θ〉. M2(a) is readily verified and, as g is
continuous on �, M2(b) follows from an application of the Lebesgue theorem. It
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is trivial to verify that for all θ ∈ �, s ∈ S, −∇2
θ L(s; θ) is positive definite. Then,

for all s ∈ S, the function θ �→ L(s; θ) is strictly concave on � and s �→ θ̂ (s) is
well defined on S. By applying the implicit function theorem, θ̂ is also continuous.
M2(c) is thus verified. ϑ �→ g◦ζ(ϑ) is a positive and continuous function on ϒ and
lim�→0 g ◦ ζ(�, ς,π) = 0 for any (ς,π), showing that the level sets {g ◦ ζ ≥ M},
M > 0, are compact subsets of ϒ . As ζ is continuous, the level sets {g ≥ M}
are compact subsets of � and M2(d) holds. Finally, L is a closed subset of the
bounded set � which proves M3(a).

To impute the missing values z, we use a Metropolis Hastings independent
sampler (IS) with proposal distribution q dµ which is chosen as the product of
d distributions of the order statistics of (nk − nk−1) independent random variables
uniformly distributed on [tk−1, tk], 1 ≤ k ≤ d , that is,

q(z)µ(dz) :=
[

d∏
k=1

(tk − tk−1)
nk−nk−1

(nk − nk−1)!
]−1

10<z1<···<znd

×
d−1∏
j=1

1znj
≤tj <znj +11znd

≤td dz.

Recall that for a homogeneous Poisson process of rate λ, the conditional
distributions of the arrivals in a given interval given the number of arrivals is i.i.d.
uniform over that interval so that the choice of the proposal is well matched to the
target density. With these definitions, the IS kernel, Pθ , is Lebesgue-irreducible and
aperiodic. It is easily seen that the target density p(z; θ) is uniformly bounded for θ

in a compact set K ⊆ �. Thus, there exists some minorizing constant 0 < ε < 1
such that εp(z; θ) ≤ q(z) for all θ ∈ K , z ∈ X. Hence, for z ∈ X, any measurable
set A,

Pθ(z,A) ≥
∫
A

αθ (z, z′)q(z′)µ(dz′) ≥ ε

∫
A

p(z′; θ)µ(dz′) = επθ (A),

where αθ (z, z′) is the acceptance ratio. The condition M4 follows from Proposi-
tion 1, with any p ≥ 2 and any probability measure λ on X.

Simulations 1. We generate d := 30 observations at time tj := 0.25j by
choosing M := 2000, (�t , ςt , πt ) := (0.03,0.0004,0.5), that is, (αt , βt , γt ) =
(−0.0004,0.37,30). The corresponding cumulative numbers nj appear as stars in
Figure 4 (we have nd = 651). The parameter space � is covered by the increasing
sequence of compact sets

Kn := ζ
({

(�, ς), 0.0003/2n ≤ � ≤ 1, 0 ≤ ς ≤ 1,

0 ≤ � + ςnd ≤ 1
} × [nd/M,1]), n ≥ 0.

The initial distribution λ of the Markov chains coincides with the proposal
distribution of the independent sampler q dµ described above.
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FIG. 4. Cumulative numbers observed at time tj = 0.25j , j = 1, . . . ,30, and estimated means of
the count process.

Two paths of stable MCEM started, respectively, at θ ′
0 = (−5 × 10−5,0.0321,

0.3260) (path 1) and θ ′
0 = (−4 × 10−5,−0.24,450) (path 2) are run for 300

iterations. The number of simulations at each iteration increases polynomially,
mn = 20+n1.2. After four and zero reinitializations, respectively, and a small num-
ber of iterations, the convergence of both paths to θ∗ ∼ (−0.00027,0.2965,37.41)

can be observed. In Figure 5, we plot the stable MCEM sequences {γn} that both

FIG. 5. Stable MCEM sequences for different initial values and mn = [n1.2]. The paths converge
to γ ∗ = 37.41 after a finite number of reinitializations.
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FIG. 6. MCEM sequence and averaged MCEM sequence for different polynomial schedules. The
10 initial values are omitted.

converge to γ ∗ = 37.41. In the lower left-hand corner, the first 10 values are drawn,
showing (a) the four reinitializations on path 1 and (b) for both paths, the rapid
move toward a neighborhood of the limiting value γ ∗. The two paths are drawn in
the right subplots (from iteration 9 to 300), showing the convergence to the same
limiting point γ ∗ and a similar variation of the paths.

We then observed the performance of stable MCEM and the averaged coun-
terpart for two polynomial schedules, mn ∼ n1.2 and mn ∼ n2. The procedures,
run for 300 iterations, start from θ ′

0 = (−5 × 10−5,0.0321,0.3260). In Figure 6,
we plot the sequences {γn} and {γ̄n} obtained by the stable MCEM algorithm



1242 G. FORT AND E. MOULINES

and the averaging procedure, respectively (the first 10 values are discarded). In
all cases, convergence to γ ∗ = 37.41 can be observed. Contrary to the varia-
tion of the averaged stable MCEM path, the variation of stable MCEM paths
depends on the simulation schedule. Observe that averaging smooths out the
trajectory and improves the rate of convergence. The same conclusions can be
drawn from the sequences {αn}, {βn}, {ᾱn} and {β̄n}, the plots of which are omit-
ted.

Dalal and Weerahandi (1992) derived approximations of mean and variance of
the Poisson process N(t). The estimates of the mean functions E[N(tj )] computed
from the true value of the parameter θt (resp. the stable MCEM estimate θ∗)
appear as × marks (resp. squares) on Figure 4. The dotted curves interpolate points
that correspond to ±2 estimated standard errors from the estimates of the mean
E[N(tj )].

Simulations 2. Consider now prediction of the number of wireless telecommu-
nication services in the United States. The Cellular Telecommunications Industry
Association performed semiannual surveys, collected in June and December, from
January 1985 to June 2001 (the data are available on the web site www.wow-
com.com/industry/stats/surveys/). In Figure 7, the 34 observations collected at
times 1,2, . . . ,34 appear as stars. We assume that this count follows a pure birth
Markov model (our results suggest it is a good approximation). Since the same
person may subscribe to different wireless services, the (true) population size M is
unknown. As discussed in Sherman, Ho and Dalal (1999) M and π enter the model
through the product Mπ , so any value M > nd is convenient. As nd ∼ 9 × 107, we
set M = 109.

FIG. 7. Cumulative numbers and estimated means of the count process.
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FIG. 8. Stable MCEM sequence with averaging: {ᾱn} (upper left), {β̄n} (upper right), {γ̄n} (lower
left).

Our estimate is computed from the 29 values collected from January 1985
to December 1998 and the last values are used to cross-validate the result. The
estimate is computed as the limiting value of a path {θ̄n} of the averaged procedure
run for 260 iterations with mn ∼ n2 and started at θ ′

0 = (−5 × 10−5, 0.0341,
0.3465). The paths of {ᾱn}, {β̄n} and {γ̄n} are plotted in Figure 8. The limiting
value is θ∗ = (−6.27 × 10−10,1.60 × 10−1,1.77 × 105), that is, (�∗, ς∗, π∗) =
(6.9 × 10−4,6.27 × 10−10,0.26). The fitted values (resp. the predicted values) of
the mean function E[N(tj )] for j ∈ [1,29] (resp. j ∈ [30,37]) appear as down
triangles in Figure 7 (resp. up triangles). Sherman, Ho and Dalal (1999) provided
an estimate θ∗ of θt based on the first 23 values collected from January 1985 to
December 1995. They obtained (�∗, ς∗, π∗) = (4.3 × 10−4,1.06 × 10−10,0.19),
that is, θ∗ = (−1.06 × 10−9,0.20,8.17 × 105). Their fitted values (resp. their
predicted values) of the mean function E[N(tj )] for j ∈ [1,23] (resp. j ∈ [24,37])
are represented as diamonds in Figure 7 (resp. squares). In both cases, the
extrapolated values track the observed data well.

5. Proof of Theorem 3. Let T :� → � be a point-to-point map. Let L be
a nonempty subset of �. A positive function W defined on � is said to be a
Lyapunov function relative to (T ,L) when (i) for all u ∈ �, W ◦T (u)−W(u) ≥ 0
and (ii) for any compact set K ⊆ � \ L, infu∈K{W ◦ T (u) − W(u)} > 0. In
the literature, convergence of random iterative maps {Fn} that approximate a
deterministic iterative map T having a Lyapunov function W is addressed under
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the assumption that, for all compact set K ,

lim
n

sup
u∈K

|W ◦ Fn(u) − W ◦ T (u)| = 0.

Applied to the present problem, this condition is often not checked when MCMC
algorithms are used to perform Monte Carlo integration. In this section, we show
how this condition can be replaced by the weaker condition

lim
n

|W ◦ Fn(un) − W ◦ T (un)|1un∈K = 0.

5.1. Deterministic results.

PROPOSITION 9. Let � ⊆ Rl , let K be a compact subset of � and let L ⊆ �

be such that L ∩ K is compact. Let W be a continuous Lyapunov function
relative to (T ,L). Assume that there exists a K-valued sequence {un} such
that limn |W(un+1) − W ◦ T (un)| = 0. Then {W(un)} converges to a connected
component of W(L∩K). If W(L∩K) has an empty interior, {W(un)} converges
to w� and {un} converges to the set Lw� ∩K , where Lw� := {θ ∈ L,W(θ) = w�}.

PROOF. Define the compact set D := W(L ∩ K). Let Dα be the α neigh-
borhood of the closed set D in R, Dα := {x ∈ R, d(x,D) < α}. Where, as D is
compact, D = ⋂

α>0 Dα . Let α > 0. Since Dα is a finite union of disjoint bounded
open intervals, there exist nα ≥ 0 and two increasing real-valued sequences {aα(k)}
and {bα(k)}, 1 ≤ k ≤ nα , such that

Dα = ⋃
k∈{1,...,nα}

(
aα(k), bα(k)

)
.(19)

W−1(Dα/2) is an open neighborhood of L ∩ K , and we define

εα := inf
{u∈K\W−1(Dα/2)}

{W ◦ T (u) − W(u)} and ρα := εα ∧ α.(20)

Since K \W−1(Dα/2) is a compact subset of Rd , εα and ρα are both positive. We
define ηn+1 := W(un+1) − W ◦ T (un). Then

W(un+1) − W(un) = W ◦ T (un) − W(un) + ηn+1(21)

and there exists Nα ≥ 0, such that for any n ≥ Nα ,

|ηn+1| ≤ ρα/2.(22)

By (20) and (21),(
n ≥ Nα and un ∈ K \ W−1(Dα/2)

) �⇒ W(un+1) − W(un) ≥ ρα/2.(23)

Define k�
α := min{1 ≤ k ≤ nα, lim supn W(un) < bα(k)} and I (α) := (aα(k�

α);
bα(k�

α)). Equation (23) shows that {W(un)} is infinitely often (i.o.) in Dα/2 ⊂ Dα ,
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and since Dα is a finite union of intervals, {W(un)} is i.o. in an interval of (19);
thus, lim supn W(un) ∈ I (α). Let p ≥ Nα such that W(up) ∈ I (α). We prove by
induction that for all n ≥ p, W(un) ∈ I (α). By definition, W(up) ∈ I (α). Assume
now that for p ≤ k ≤ n, W(uk) ∈ I (α).

• If W(un) ∈ Dα/2, we have W(un) ≥ aα(k∗
α) + α/2. Thus,

W(un+1) ≥ W(un) + ηn+1 ≥ aα(k∗
α) + α/2 − ρα/2 ≥ aα(k∗

α).

• If W(un) ∈ Dα \ Dα/2, then under (20), W ◦ T (un) − W(un) ≥ ρα , and (21)
and (22) imply that W(un+1) ≥ aα(k∗

α) + ρα/2 ≥ aα(k∗
α).

Hence, the set of the limit points I of {W(un)} is nonempty and included in the
interval I (α). Let 0 < α1 < α2. By definition, Dα1 ⊂ Dα2; thus I (α1) ⊂ I (α2)

and I ⊂ I (α1) ∩ I (α2). Let {αn} be a decreasing sequence such that limn αn = 0.
Then I ⊂ ⋂

n I (αn). {I (αn)} is a decreasing sequence of intervals,
⋂

n I (αn)

is an interval and
⋂

n I (αn) ⊂ W(L ∩ K). Hence, {W(un)} converges to this
interval which concludes the first part of the proof. The last part is a consequence
of (21). �

It is proved in Proposition 10 that the compactness assumption of the sequence
{un} can be replaced by a recurrence condition, provided that there exists a
Lyapunov function that controls excursion outside the compact sets of �. In
Proposition 11, we propose a stabilization procedure that ensures this recurrence
property for sequences {un} defined by inhomogeneous maps, un+1 = Fn(un).

PROPOSITION 10. Let � ⊆ Rl , T :� → � and L ⊂ �. Assume the
following:

A1. There exists a continuous Lyapunov function W for (T ,L) such that (a) for
all M > 0, the level set {θ ∈ �,W(θ) ≥ M} is compact and (b) � = ⋃

n≥1{θ ∈ �,

W(θ) ≥ n}.
A2. W(L) is compact or A2′ W(L ∩ K) is finite for all compact sets K ⊆ �.
A3. There exists a �-valued sequence {un} such that (a) {un} is infinitely often

in a compact subset G ⊆ � and (b) for any compact set K ⊆ �, limn |W(un+1) −
W ◦ T (un)|1un∈K = 0.

Then {un} is in a compact subset of �.

PROOF (under assumption A2). Let α > 0. Under A1(b) and A2, there exists
M > 0 such that

G ∪ Lα ⊂ {θ ∈ �, W(θ) ≥ M},
where Lα is the α neighborhood of L. Define

ε := inf{θ∈�,W(θ)≥M−1}\Lα

{W ◦ T (θ) − W(θ)} and ρ := ε ∧ 1.(24)
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By assumption, ε > 0 and ρ > 0. Define ηn+1 := W(un+1) − W ◦ T (un).
Under A3, there exists N such that(

n ≥ N and un ∈ {θ ∈ �,W(θ) ≥ M − 1}) �⇒ |ηn+1| ≤ ρ/2.(25)

Note that

W(un+1) − W(un) = W ◦ T (un) − W(un) + ηn+1.(26)

Since {un} is infinitely often in the compact set G, there exists p ≥ N such that
W(up) ≥ M − 1. We show by induction that for all n ≥ p, W(un) ≥ M − 1. The
property holds for n = p. Assume it holds for p ≤ k ≤ n.

• If un ∈ {θ ∈ �, W(θ) ≥ M}, then (24)–(26) imply that W(un+1) ≥ W(un) −
ρ/2 ≥ M − 1/2 ≥ M − 1.

• If un ∈ {θ ∈ �, W(θ) ≥ M − 1} \ Lα , then (24)–(26) imply that W(un+1) ≥
W(un) + ε − ρ/2 ≥ W(un) ≥ M − 1.

Hence for any q ≥ n, uq is in the compact set {θ ∈ �, W(θ) ≥ M − 1}. �

PROOF (under assumption A2′). By assumption, there exists M such that
G ⊂ {θ ∈ �, W(θ) ≥ M}. As W(L ∩ {θ,W(θ) ≥ M − 1}) is finite, there exist
α > 0 and M − 1 ≤ M ′′ < M ′ < M , such that

Lα ∩ {θ ∈ �, W(θ) ≥ M ′′} ⊂ {θ ∈ �, W(θ) ≥ M ′}.
Define

ε := inf{θ∈�,W(θ)≥M ′′}\Lα

{W ◦ T (θ) − W(θ)} and ρ := ε ∧ (M ′ − M ′′).

It may be proved that for all large q , uq is in the compact set {θ ∈ �,W(θ) ≥ M ′′}.
The proof is along the same lines as the previous one and is omitted for brevity.

�

Let {Fn} :� → � be a family of point-to-point maps. Choose a sequence of
compact subsets {Kn} of � such that for any n ≥ 0,

Kn � Kn+1, � = ⋃
n≥0

Kn.

Let u0 ∈ K0. Set p0 := 0 and for n ≥ 0,

if Fn(un) ∈ Kpn, un+1 := Fn(un) and pn+1 := pn;
if Fn(un) /∈ Kpn, un+1 := u0 and pn+1 := pn + 1.

(27)

PROPOSITION 11. Let � ⊆ Rl , and let T and {Fn} be point-to-point maps
onto �. Let {un} be the sequence given by (27). Assume (a) A1 and A2 hold,
(b) for all u ∈ K0, limn |W ◦ Fn − W ◦ T |(u) = 0 and (c) for any compact subset
K ⊆ �, limn |W ◦ Fn(un) − W ◦ T (un)|1un∈K = 0. Then lim supn pn < ∞ and
{un} is a compact sequence.

The proof is along the same lines as Proposition 10 and is omitted for brevity.
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5.2. Proof of Theorem 3. Given λ, θ ′
0 and the sequence of compact sets {Kn},

the process {θ ′
n} is defined on the canonical space of the inhomogeneous Markov

chain {(S̃n,pn)}. We denote by P̄ (resp. E) the probability (resp. the expectation)
of this canonical Markov chain (the dependence upon λ, θ ′

0 and {Kn} is omitted).
We apply Propositions 9 and 11 with the EM map T := θ̂ ◦ S̄ and the random
sequence of maps {Fn}, Fn(θ) := arg maxφ∈� Qn(φ, θ).

PROOF OF (i)(a). We check the conditions of Proposition 11. It is well known
that the incomplete data likelihood g is a natural Lyapunov function relative to
the EM map T and to the set L of the fixed points of T . Under M1–M3, the
conditions A1 and A2 are verified with W = g. Let ε > 0 and let K ⊆ � be
compact. We prove that

∑
n 1{|g◦Fn(θ ′

n)−g◦T (θ ′
n)|1θ ′

n∈K≥ε} is finite w.p.1. By the
second Borel–Cantelli lemma, the convergence of the series is implied by the
convergence of

∑
n P̄(|g ◦ Fn(θ

′
n) − g ◦ T (θ ′

n)|1θ ′
n∈K ≥ ε|Fn−1) w.p.1, where

Fn := σ(S̃k, k ≤ n). By assumption, S̄(K) is a compact subset of S. For δ > 0,
define the compact S̄(K, δ) := {s ∈ Rq , inft∈K |t − s| ≤ δ}. Then there exists
η(ε, δ) such that for any x, y ∈ S̄(K, δ),

|x − y| ≤ η(ε, δ) �⇒ |g ◦ θ̂ (x) − g ◦ θ̂ (y)| ≤ ε.

Hence,

P̄
(|g ◦ Fn(θ

′
n) − g ◦ T (θ ′

n)|1θ ′
n∈K ≥ ε

∣∣Fn−1
)

= P̄
(|g ◦ θ̂ (S̃n) − g ◦ θ̂ (S̄(θ ′

n))|1θ ′
n∈K ≥ ε

∣∣Fn−1
)

= P̄
(|g ◦ θ̂ (S̃n) − g ◦ θ̂ (S̄(θ ′

n))|1θ ′
n∈K ≥ ε, |S̃n − S̄(θ ′

n)|1θ ′
n∈K ≤ δ

∣∣Fn−1
)

+ P̄
(|g ◦ θ̂ (S̃n) − g ◦ θ̂ (S̄(θ ′

n))|1θ ′
n∈K ≥ ε, |S̃n − S̄(θ ′

n)|1θ ′
n∈K > δ

∣∣Fn−1
)

≤ 2P̄
(|S̃n − S̄(θ ′

n)|1θ ′
n∈K ≥ α

∣∣Fn−1
)

with α := δ ∧ η(ε, δ). Thus,

P̄
(|g ◦ Fn(θ

′
n) − g ◦ T (θ ′

n)|1θ ′
n∈K ≥ ε

∣∣Fn−1
)

≤ 2α−pE
[|S̃n − S̄(θ ′

n)|p
∣∣Fn−1

]
1θ ′

n∈K

≤ 2α−pm−p
n Eλ,θ ′

n

[∣∣∣∣∣
mn∑
j=1

{S(	j ) − πθ ′
n
(S)}

∣∣∣∣∣
p]

1θ ′
n∈K ,

where p is given by M4. Then M4 implies that there exists a finite constant
C := C(K) such that

Eλ,θ ′
n

[∣∣∣∣∣
mn∑
j=1

{S(	j) − πθ ′
n
(S)}

∣∣∣∣∣
p]

1θ ′
n∈K ≤ Cmp/2

n

and, under M5, the proof is concluded. �
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PROOF OF (i)(b) AND (ii). We check the conditions of Proposition 9. It
remains to prove that for any compact set K ⊆ �,

lim
n

∣∣g(θ ′
n+1) − g ◦ T (θ ′

n)
∣∣1θ ′

n∈K = 0, P̄-a.s.

We proceed as above and consider the a.s. convergence of the random series∑
n

P̄
(|g(θ ′

n+1) − g ◦ T (θ ′
n)|1θ ′

n∈K ≥ ε
∣∣Fn−1

)
.(28)

By definition, either θ ′
n+1 = Fn(θ

′
n) or θ ′

n+1 = θ ′
0 and pn+1 = pn + 1. We have just

proved that the number of reinitializations is finite w.p.1, so that the series
∑
n

P̄
(|g(θ ′

n+1) − g ◦ T (θ ′
n)|1θ ′

n∈K ≥ ε, θ ′
n+1 = θ ′

0,pn+1 = pn + 1
∣∣Fn−1

)

is finite P̄-a.s. Then (28) is finite iff
∑

n P̄(|g(θ ′
n+1) − g ◦ T (θ ′

n)|1θ ′
n∈K ≥ ε,

θ ′
n+1 = Fn(θ

′
n)|Fn−1) is finite P̄-a.s., which was established above. �

6. Uniform Rosenthal’s inequality. Let f :X → [1,∞) be a measurable
function. For some function g :X → Rq (resp. for some signed measure ν on X),
define

‖g‖f := sup
X

|g|
f

, Lf := {g :X → Rq, ‖g‖f < ∞},
‖ν‖f := sup

{g,|g|≤f }
|ν(g)|.

PROPOSITION 12. Let (�,A,Fn, {φn},Px) be a canonical Markov chain
with invariant probability measure π on X. Assume that there exist p ≥ 2, some
measurable functions 1 ≤ f0 ≤ V0 ≤ V

p
0 ≤ V1 < ∞ and some constants Ci < ∞,

i = 0,1, such that for any x ∈ X,∑
n

‖P n(x, ·) − π(·)‖f0 ≤ C0V0(x),

∑
n

‖P n(x, ·) − π(·)‖V
p

0
≤ C1V1(x).

(29)

Then for any Borel function g :X → Rq , g ∈ Lf0 ,

Ex

∣∣∣∣∣
n∑

k=1

{g(	k) − π(g)}
∣∣∣∣∣
p

≤ ‖g‖p
f0

6pCpC
p
0

(
C1V1(x) + π(V

p
0 )

)
np/2, x ∈ X,

where Cp is Rosenthal’s constant.
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PROOF. Denote by ĝ(x) := ∑∞
k=0{P kg(x) − π(g)} the unique solution (up

to a constant) of the Poisson equation ĝ − P ĝ = g − π(g). Then ĝ ∈ LV0 and
‖ĝ‖V0 ≤ C0‖g‖f0 . Write

n∑
k=1

{g(	k) − π(g)} =
n∑

k=1

{ĝ(	k) − P ĝ(	k−1)} − P ĝ(	n) + P ĝ(	0),

where {ĝ(	k) − P ĝ(	k−1)} is an Lp-martingale increment (w.r.t. the initial
distribution δx ). By applying Minkowsky’s inequality and Rosenthal’s inequality
[Hall and Heyde (1980), Theorem 2.12], we get

Ex

[∣∣∣∣∣
n∑

k=1

{g(	k) − π(g)}
∣∣∣∣∣
p]

≤ 3p−1

{
CpEx

[(
n∑

k=1

Ex

[∣∣ĝ(	k) − P ĝ(	k−1)|2
∣∣Fk−1

])p/2]

+ CpEx

[
n∑

k=1

|ĝ(	k) − P ĝ(	k−1)|p
]

+ Ex

[|P ĝ(	n)|p] + |P ĝ(x)|p
}
,

where Cp is Rosenthal’s constant and {Fn} is the natural filtration of the Markov
chain {	n}. In addition,(

n∑
k=1

Ex

[|ĝ(	k) − P ĝ(	k−1)|2
∣∣Fk−1

])p/2

≤
(

n∑
k=1

P |ĝ|2(	k−1)

)p/2

≤ np/2−1
n∑

k=1

P |ĝ|p(	k−1).

Hence,

Ex

[∣∣∣∣∣
n∑

k=1

{g(	k) − π(g)}
∣∣∣∣∣
p]

≤ 3p−1

(
Cp(np/2−1 + 2p)

n∑
k=1

P k|ĝ|p(x) + P |ĝ|p(x) + P n+1|ĝ|p(x)

)

≤ 3p−1(
Cp(np/2−1 + 2p) + 1

)
×

( ∑
k≥1

∣∣P k|ĝ|p(x) − π(|ĝ|p)
∣∣ + nπ(|ĝ|p)

)

≤ 6pCpnp/2

( ∑
k≥1

∣∣P k|ĝ|p(x) − π(|ĝ|p)
∣∣ + π(|ĝ|p)

)
.
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Since ĝ ∈ LV0 , π(|ĝ|p) ≤ ‖ĝ‖p
V0

π(V
p
0 ) < ∞ and by assumption,

∞∑
k=0

∣∣P k|ĝ|p(x) − π(|ĝ|p)
∣∣ ≤ ‖ĝ‖p

V0
C1V1(x).

This yields the desired result. �

PROOF OF PROPOSITION 1. When the state space is νm-small, it is easily seen
that ∑

n

‖P n(x, ·) − π(·)‖T V ≤ 2
(
1 − (1 − ε)1/m

)−1
,

and the proof of (9) is a trivial application of Proposition 12. �

The following proposition gives sufficient conditions, based on nested drift
conditions, leading to the explicit bounds (29).

PROPOSITION 13. Let P be a ψ-irreducible and aperiodic transition kernel
on a general state space X. Let C ⊆ D be some accessible νm-small sets. Assume
there exist some Borel functions f,V :X → [1,∞), f ≤ V , some constants b < ∞
and 0 < a < 1 such that supD V < ∞ and

PV (x) ≤ V (x) − f (x) + b1C(x),

f (x) ≥ b/(1 − a), x ∈ Dc.

Then P possesses an invariant probability measure π , π(f ) < ∞ and for any
probability measure (λ,µ) on X × X,

∞∑
n=0

|λP ng − µP ng| ≤ ‖g‖f

(
ε−1MV + a−1(

λ(V ) + µ(V )
))

,(30)

where

MV := sup
(x,x′)∈C×D

m−1∑
k=1

{P kf (x) + P kf (x′)}

+ sup
(x,x′)∈C×D

(
m−1∑
k=1

{P kf (x) + P kf (x′)} + a−1{P mV (x) + P mV (x′)}
)

≤ 4a−1
(
bm + sup

D

V

)
,

with the convention that
∑0

k=1 P kf (x) = 0.
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PROOF. By Theorem 14.0.1 of Meyn and Tweedie (1993), there exists an
invariant probability measure π such that π(f ) < ∞. For simplicity, the proof
of (30) is restricted to the case m = 1. The proof of (30) is based on a coupling
technique which may be summarized as follows. Let � := (C ×D)∪ (D×C) and
let R be the residual kernel defined as

R(x, ·) := (
1 − 1D(x)ε

)−1(
P (x, ·) − ε1D(x)ν1(·)).

We define a X × X × {0,1}-valued process Z := {�,A,Zn = (Xn,X
′
n, dn),

Px,x′,d} such that (a) Px,x′,0(Xn ∈ ·) = P n(x, ·) and Px,x′,0(X′
n ∈ ·) = P n(x′, ·) for

all (x, x′) ∈ X × X and (b) there exists a random time T and Xn1T ≤n = X′
n1T ≤n.

Set Z0 := (x, x′,0). Each time (Xk,X
′
k, dk) hits the set � × {0}, an ε-biased coin

is tossed. If the coin comes up heads, then the coupling is successful: the next
value of Xk+1 = X′

k+1 is simulated from ν1, dk+1 = 1, and the two components
remain forever coupled. Otherwise, the next values Xk+1 and X′

k+1 are drawn
independently from the residual kernel R and dk+1 = 0. If (Xk,X

′
k, dk) ∈ �c ×{0},

then the processes are updated independently from P .
Define the coupling time T := inf{n ≥ 1, dn = 1} (with the convention that

inf ∅ = ∞), T0 := inf{k ≥ 0, (Xk,X
′
k) ∈ �} and, for i ≥ 1, Ti := inf{k >

Ti−1, (Xk,X
′
k) ∈ �} as the successive hitting times on �. By definition of T , we

have Xn1T ≤n = X′
n1T ≤n and for any Borel function g ∈ Lf ,∑
n≥0

∫
λ(dx)µ(dy)|P ng(x) − P ng(y)|

(31)

≤ ‖g‖f Eλ,µ,0

[
T −1∑
n=0

{f (Xn) + f (X′
n)}

]
.

Define

A(f ) := (1 − ε)

(32)
× sup

(x,x′)∈�

∫
R(x, dy)R(x′, dy′)Ey,y′,0

[
T0∑

n=0

{f (Xn) + f (X′
n)}

]
.

The first step in the proof consists of showing that

Ex,x′,0

[
T0∑

n=0

{f (Xn) + f (X′
n)}

]

(33)
≤ 1�(x, x′){f (x) + f (x′)} + a−11�c(x, x′){V (x) + V (x′)}.

The case (x, x′) ∈ � is trivial. For (x, x′) ∈ �c, under the stated assumptions,

Ex,x′,0[V (X1) + V (X′
1)]

≤ V (x) + V (x′) − (
f (x) + f (x′)

) + b
(
1C(x) + 1C(x′)

)
.
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Since (x, x′) ∈ �c , x ∈ C (resp. x′ ∈ C) implies that x′ ∈ Dc (resp. x ∈ Dc), so
that

f (x′) − b1C(x) ≥ af (x′), f (x) − b1C(x′) ≥ af (x).

Hence,

Ex,x′,0[V (X1) + V (X′
1)] ≤ V (x) + V (x′) − a(f (x) + f (x′)), (x, x′) ∈ �c,

and the proof of (33) follows from the so-called Dynkin formula [Meyn and
Tweedie (1993), Proposition 11.3.2]. Note that by (33), Ex,x′,0[T0] < ∞, which
implies that Px,x′,0(T < ∞) = 1 for all (x, x′) ∈ X × X. We now prove that

Ex,x′,0

[
T −1∑
n=0

{f (Xn) + f (X′
n)}

]

(34)

≤ Ex,x′,0

[
T0∑

n=0

{f (Xn) + f (X′
n)}

]
+ ε−1A(f ).

By the strong Markov property and by noting that Px,x′,0(dTj
= 0) = (1 − ε)j , for

j ≥ 0,

Ex,x′,0

[ Tj+1∑
n=0

{f (Xn) + f (X′
n)}1{0}(dTj +1)

]

= (1 − ε)Ex,x′,0

[ Tj∑
n=0

{f (Xn) + f (X′
n)}1{0}(dTj−1+1)

]

+ Ex,x′,0

[
1{0}(dTj +1)EXTj +1,X

′
Tj +1,0

[
T0∑

n=0

{f (Xn) + f (X′
n)}

]]
,

≤ (1 − ε)Ex,x′,0

[ Tj∑
n=0

{f (Xn) + f (X′
n)}1{0}(dTj−1+1)

]
+ A(f )(1 − ε)j ,

with the convention T−1 + 1 = 0. By straightforward recursion,

Ex,x′,0

[ Tj+1∑
n=0

{f (Xn) + f (X′
n)}1{0}(dTj +1)

]

(35)

≤ (1 − ε)j

(
(1 − ε)Ex,x′,0

[
T0∑

n=0

{f (Xn) + f (X′
n)}

]
+ (j + 1)A(f )

)
.
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Hence,

Ex,x′,0

[
T −1∑
n=0

{f (Xn) + f (X′
n)}

]

= Ex,x′,0

[
T0∑

n=0

{f (Xn) + f (X′
n)}1dT0+1=1

]

+
∞∑

j=0

Ex,x′,0

[ Tj+1∑
n=0

(
f (Xn) + f (X′

n)
)
1{0}(dTj +1)1{1}(dTj+1+1)

]

and (34) follows by noting that PXTj
,X′

Tj
,0(dTj +1 = 1) = ε. The proposition

follows from (31)–(35).
The drift condition implies

sup
(x,x′)∈C×D

(
m−1∑
k=1

{P kf (x) + P kf (x′)} + {P mV (x) + P mV (x′)}
)

≤ 2bm + sup
(x,x′)∈C×D

{V (x) + V (x′)}

from which it is easily seen that MV ≤ 4a−1(bm + supD V ). �

PROOF OF PROPOSITION 2. The first step is to prove that the level set
D := {V ≤ M} is small. By assumption, supx∈D Ex[τC] < ∞. Then for any
η > 0, there exists n0 such that Px(σC ≥ n) ≤ η, x ∈ D and n ≥ n0. Then we
can define a distribution α = {α(n)} on Z+ such that for x ∈ D and 0 < l < 1,∑

n α(n)P n(x,C) ≥ ∑
n≤n0

α(n)P n(x,C) ≥ l(1 − η). Whereas C is petite, there
exist some measure ν on X and some distribution β = {β(n)} on Z+ such that∑

n α∗β(n)P n(x,A) ≥ l(1−η)ν(A), which proves that D is petite. The smallness
property of D deduces from Theorem 5.5.7. of Meyn and Tweedie (1993). Note in
addition that, by definition, D ⊇ C. Define

f0 := V 1/p, V0 := V 1/p/(1 − ρ1/p),

f1 := V
p
0 , V1 := V/{(1 − ρ)(1 − ρ1/p)p},

b0 := b1/p/(1 − ρ1/p), a0 := 1 − b1/p/{(1 − ρ1/p)M1/p},
b1 := b/{(1 − ρ)(1 − ρ1/p)p}, a1 := 1 − b/{(1 − ρ)M}.

It is easily seen that PVi ≤ Vi −fi +bi1C , i = 0,1, 1 ≤ f0 ≤ V0 ≤ V
p
0 = f1 ≤ V1,

0 < ai < 1 and fi ≥ bi/(1 − ai) on Dc, i = 0,1. By applying Proposition 13, the
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inequalities (29) are verified and the constants Ci , i = 0,1, are upper bounded by
(this upper bound is not optimal)

C0 ≤ 5ε−1(m + 1)M1/p(1 − ρ1/p)
(
(1 − ρ1/p) − (b/M)1/p)−1

,

C1V1(x) + π(V
p
0 ) ≤ 5ε−1(m + 1)M(1 − ρ1/p)−p(1 − ρ − b/M)−1V (x).

This yields the desired result. �

7. Proofs of Lemmas 7 and 14.

7.1. Proof of Lemma 14.

LEMMA 14. Under the assumptions of Theorem 6, we have

ρn1{limn S̃n=s∗} = ow.p.1(m
−1/2
n ).(36)

PROOF. The remainder term ρn also follows a difference equation of the form

ρn = �ρn−1 + ηn = (Hn−1 + �)ρn−1 + rn−1 + η(1)
n

since η
(2)
n may be decomposed as η

(2)
n = Hn−1ρn−1 + rn−1 with Hn :=∑

1≤i≤q Rn(i, ·)(2µn,i + ρn,i), and rn := ∑
1≤i,j≤q Rn(i, j)µn,iµn,j for n ≥ 0.

Hence we have ρn := ρ
(1)
n + ρ

(2)
n , where

ρ(1)
n :=

n−1∏
k=0

(Hk + �)ρ0 +
n∑

k=1

(
n−1∏
j=k

(Hj + �)

)
η

(1)
k ,

ρ(2)
n :=

n−1∑
k=0

(
n−1∏

j=k+1

(Hj + �)

)
rk.

As µn = OLp(m
−1/2
n ) and, by assumption,

∑
n m

−p/2
n < ∞, then µn = ow.p.1(1)

and thus, ρn1limn S̃n=s∗ = ow.p.1(1). Hence, |Hn|1limn S̃n=s∗ = ow.p.1(1) and for any
γ < γ̃ < 1, j ≤ n, |∏n

k=j (Hj + �)|1limn S̃n=s∗ = Ow.p.1(γ̃
n). Along trajectories

converging to s∗, the first term in ρ
(1)
n is Ow.p.1(1)OLp(γ̃ n) since, by M4, ρ0 ∈ Lp .

The first term in η
(1)
n is only finitely often nonzero, and by M4, the second term in

η
(1)
n is bounded and the bound is inversely proportional to mn. Thus, by choosing

γ̃ −1 > limn mn+1/mn and by applying Lemma 5,

ρ(1)
n 1limn S̃n=s∗ = Ow.p.1(1)OLp(m−1

n ).(37)
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Similarly, as rn = OLp(m−1
n ),

ρ(2)
n 1limn S̃n=s∗ = Ow.p.1(1)OLp(m−1

n )(38)

and the proof of (36) is complete. �

7.2. Proof of Lemma 7.

LEMMA 15. Let {an} and {bn}, bn �= 0, be two sequences such that:

(i) the power series f (x) := ∑∞
n=1 anx

n has a radius of convergence r and
(ii) limn→∞ bn+1/bn =: q with |q| < r . Define cn := ∑

k≥n bkak−n. Then
limn→∞ cnb

−1
n = f (q).

PROOF. By assumption, for any K and ε > 0, there exists N such that for all
n ≥ N , |bn+K/bn − qK | ≤ ε. In addition, there exist some positive constants A,ε

such that for all n, j ≥ 0, bn+j /bn ≤ A(q + ε)j ,∣∣∣∣∣b−1
n

∑
k≥n

bkak−n − ∑
k≥0

qkak

∣∣∣∣∣
≤

n+K∑
k=n

|bk/bn − qk−n|ak−n + ∑
k≥n+K

bk/bnak−n + ∑
k≥K

qkak.

Let ε > 0. Then there exists K such that the last two sums are upper bounded by ε.
Now for those constants K,ε there exists N such that for n ≥ N , the first sum is
less than ε and the proof is completed. �

We now prove Lemma 7. We shall establish that for mγ �= 1,

(1 − mγ )r
(

lim
n

ξ (r)
n

)r

(39)

= 1 + mr/2
r−1∑
l=0

(
r

l

)
(−1)r−l(ml−r/2γ l−r − 1)−1 lim

n
mr/2

n

(
n∑

k=0

m
r/2
k

)−1

.

If m > 1, then Lemma 5 implies that limn m
r/2
n (

∑n
k=0 m

r/2
k )−1 = 1 − m−r/2. If

m = 1, then limn m
r/2
n (

∑n
k=0 m

r/2
k )−1 = 0. In both cases, limn m

r/2
n ×

(
∑n

k=0 m
r/2
k )−1 = 1 − m−r/2. Thus Lemma 7 holds provided that (39) is estab-

lished.

First case. mγ < 1. Define Sn := ∑
j≥n mjγ

j . Hence Sn = γ n
∑

j≥n mjγ
j−n

and by applying Lemma 15, since m < γ −1, it holds that

lim
n

m−1
n γ −nSn = (1 − mγ )−1.(40)
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We write
n∑

k=0

m
−r/2
k

(
n−k∑
j=0

mj+kγ
j

)r

=
n∑

k=0

m
−r/2
k γ −kr (Sk − Sn+1)

r

=
n∑

k=0

m
−r/2
k γ −krSr

k +
r−1∑
l=0

(
r

l

)
(−1)r−lSr−l

n+1

n∑
k=0

m
−r/2
k γ −krSl

k

=
n∑

k=0

m
r/2
k (m−1

k γ −kSk)
r

+ mr/2
n

r−1∑
l=0

(
r

l

)
(−1)r−lγ r−l(mn+1/mn)

r−l(m−1
n+1γ

−(n+1)Sn+1)
r−l · · ·

×
(
mr/2−l

n

n∑
k=0

m
l−r/2
k γ (n−k)(r−l)

)(
n∑

k=0

m
l−r/2
k γ k(l−r)

)−1

×
n∑

k=0

m
l−r/2
k γ k(l−r)(m−1

k γ −kSk)
l.

By use of the Cesaro lemma and (40),

lim
n

(
n∑

k=0

m
r/2
k

)−1 n∑
k=0

m
r/2
k (m−1

k γ −kSk)
r = (1 − mγ )−r .

In addition, for all l ∈{0, . . . , r −1}, (mγ )l−rmr/2 >1, showing that
∑n

k=0 m
l−r/2
k ×

γ k(l−r) diverges to infinity. Then applying again the Cesaro lemma and (40),

lim
n

(
n∑

k=0

m
l−r/2
k γ k(l−r)

)−1 n∑
k=0

m
l−r/2
k γ k(l−r)(m−1

k γ −kSk)
l = (1 − mγ )−l .

Finally, whereas l < r , (mγ )r−lm−r/2 < 1 and Lemma 5 implies that

lim
n

mr/2−l
n

n∑
k=0

m
l−r/2
k γ (n−k)(r−l) = (γm)l−rmr/2(γ l−rml−r/2 − 1)−1.

Combining these limits gives (39).

Second case. mγ > 1. Define Sn := ∑n
j=0 mjγ

j . Hence Sn = γ n
∑n

j=0 mj ×
γ −(n−j) and by applying Lemma 5, since m−1 < γ , it holds that

lim
n

m−1
n γ −nSn = mγ (mγ − 1)−1.(41)



CONVERGENCE OF THE MCEM ALGORITHM 1257

We write, with the convention S−1 := 0,

n∑
k=0

m
−r/2
k

(
n−k∑
j=0

mj+kγ
j

)r

=
n∑

k=0

m
−r/2
k γ −kr(Sn − Sk−1)

r

= (−1)r
n∑

k=0

m
−r/2
k γ −krSr

k−1 +
r−1∑
l=0

(
r

l

)
(−1)lSr−l

n

n∑
k=0

m
−r/2
k γ −krSl

k−1

= (−1)rγ −r
n∑

k=0

m
r/2
k (mk−1/mk)

r(m−1
k−1γ

−(k−1)Sk−1)
r

+ mr/2
n

r−1∑
l=0

(
r

l

)
(−1)lγ −l(m−1

n γ −nSn)
r−lmr/2−l

n

×
(

n∑
k=0

m
l−r/2
k γ (r−l)(n−k)

)(
n∑

k=0

m
l−r/2
k γ k(l−r)

)−1

×
n∑

k=0

m
l−r/2
k γ k(l−r)(mk/mk−1)

−l (m−1
k−1γ

−(k−1)Sk−1)
l.

By use of the Cesaro Lemma and (41),

(−1)rγ −r lim
n

(
n∑

k=0

m
r/2
k

)−1 n∑
k=0

m
r/2
k (mk−1/mk)

r(m−1
k−1γ

−(k−1)Sk−1)
r

= (1 − mγ )−r .

In addition, for all l ∈ {0, . . . , r − 1}, (mγ )l(mγ 2)−r/2 > 1, showing that∑n
k=0 m

l−r/2
k γ k(l−r) diverges to infinity. Then, applying again the Cesaro lemma

and (41),

lim
n

(
n∑

k=0

m
l−r/2
k γ k(l−r)

)−1 n∑
k=0

m
l−r/2
k γ k(l−r)(mk/mk−1)

−l(m−1
k−1γ

−(k−1)Sk−1)
l

= γ l(mγ − 1)−l .

Finally, whereas (mγ )l(mγ 2)−r/2 > 1, Lemma 5 implies that

lim
n

mr/2−l
n

n∑
k=0

m
l−r/2
k γ (n−k)(r−l) = (γm)l−rmr/2(γ l−rml−r/2 − 1)−1.

Combining these limits gives (39).
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