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ON DEPTH AND DEEP POINTS: A CALCULUS1

BY IVAN MIZERA

Comenius University and University of Alberta

For a general definition of depth in data analysis a differential-like cal-
culus is constructed in which the location case (the framework of Tukey’s
median) plays a fundamental role similar to that of linear functions in the
mathematical analysis. As an application, a lower bound for maximal regres-
sion depth is proved in the general multidimensional case—as conjectured by
Rousseeuw and Hubert and others. This lower bound is demonstrated to have
an impact on the breakdown point of the maximum depth estimator.

1. Introduction and outline. The notion of depth provides a route to possible
analogs of the sample median and quantiles—beyond the univariate location
model. Unlike other approaches, depth substantially elaborates on the order
structure of the sample space.

In the univariate location case, the first relevant observations can be traced in
Hotelling (1929) and Chamberlin (1933). For multivariate location, the proposal
of Tukey (1975) was developed by Donoho and Gasko (1992); the germ of the idea
appeared already in Hodges (1955). A breakthrough broadening the understanding
of depth was the invention of regression depth by Rousseeuw and Hubert (1999a);
see also Rousseeuw and Hubert (1999b) and Hubert, Rousseeuw and Van Aelst
(1999); the precursors here were Edgeworth (1888) and Daniels (1954). The
interrelations between location and regression were indicated by Hill (1960) and
Carrizosa (1996).

In pursuit of the regression version, Rousseeuw and Hubert (1999a) isolated
the crucial general essence of halfspace depth: its connection to admissibility in
a certain data-analytic sense. In the present paper, we further develop their idea:
a general definition of depth is formalized in the framework of vector optimiza-
tion. Several examples aim at convincing the reader that this way of thinking
about depth opens a transparent route to depth-based analysis in various statistical
models. Furthermore, the vector-optimization approach leads to a sort of differen-
tial calculus, where the simplest, multivariate location depth plays the role of the
prototype—similarly as linear structures do in the analysis of nonlinear ones. To
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illustrate the power of these techniques, we show how they can be successfully
used for dealing with the so-called centerpoint problem; in particular, we settle
certain standing conjectures from the literature. Finally, we give some statistical
implications of centerpoint considerations: results about the bias and breakdown
properties of maximum depth estimators in a general setting.

The range of questions opened is broad and difficult to cover in one paper.
At the moment, our objective is to lay necessary theoretical and mathematical
foundations; the detailed study of depth and depth-based procedures in concrete
statistical models is left for the forthcoming work. For applications and aspects
of depth, the reader may also consult Liu, Parelius and Singh (1999), Caplin and
Nalebuff (1988, 1991a, b) and other references given or not given in this paper.
The relevant (largely asymptotic) theory can be found in He and Wang (1997),
Nolan (1992, 1999), He and Portnoy (1998) and Bai and He (1999). Our approach
to depth is limited to what is called halfspace or Tukey’s depth; for other brands
of depth in multivariate location see Liu, Parelius and Singh (1999) and Liu and
Singh (1993), and in linear regression Rousseeuw and Hubert (1999a).

In Section 2, the definitions of global, local and tangent depth are introduced,
based on vector optimization formalism—with weak optimality as the basic
notion. General inequalities between, as well as convexity-based criteria for the
equality of sorts of depth are given. A few statistical models (covering nonetheless
all instances studied in the literature so far) are introduced as examples.

Section 3 extends tangent depth to the general measure-theoretic setting—
covering both finite-sample and population distributions. The equality to intuitive
definitions, given in the literature for several models, is demonstrated with
examples. The centerpoint questions are expounded in Section 3.3; the most
important result is Theorem 3.3. Its less general version Theorem 3.4 admits a
shorter and more intuitive proof and extends also to multivariate regression.

Statistical implications of centerpoint considerations are treated in Section 4.
Particularly, in Section 4.1 we show that the bias sets of maximum depth estimators
are contained in upper level sets of depth—this fact giving another statistical
interpretation for depth contours. In Section 4.2, we give lower bounds for the
total variation and contamination breakdown points and apply them to regression
depth, with the help of Theorem 5.25—the latter also implies the existence of a fit
with maximal regression depth in the general situation, stated in Theorem 3.5.

Mathematical details are collected in Section 5, which, besides the proofs
of the results, contains also a wealth of the supporting material and adds a lot
of illuminating details to the—albeit in principle self-contained—presentation in
Sections 2, 3 and 4. The proofs of all theorems and propositions from Section 2
can be found in Section 5.1, in their order of appearance. Theorem 3.2 is proved
at the beginning of Section 5.4, followed later by the proof of Proposition 3.1;
Theorem 3.4 in Section 5.7; Section 5.8 contains proofs of both theorems from
Section 4; and finally, Theorem 5.25, whose direct consequence is Theorem 3.5,
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is formulated and proved in Section 5.9. The notation and techniques developed in
Section 5 are also used in the Appendix, devoted to the full proof of Theorem 3.3.

Some of the results have been announced in Mizera (1998) and Portnoy and
Mizera (1999).

2. Depth in data analysis.

2.1. Preliminaries. We denote by Rp the p-dimensional Euclidean space, by
‖ · ‖ its Euclidean norm, and by 0 the point with zero norm. If ϑ,u ∈ Rp, u �= 0,
we write Hϑ,u for the set {x ∈ Rp :uT(x − ϑ) ≥ 0}, the closed halfspace whose
boundary contains ϑ and is orthogonal to the vector u pointing into the halfspace.
Obviously, Hϑ,u = Hϑ,cu for any c > 0; hence we often pick u from the sphere
Sp−1 = {x ∈ Rp :‖x‖ = 1}. If ϑ = 0, we abbreviate H0,u to Hu.

We denote by Ac the complement of A—with respect to a basic set which
should be clear from the context. For instance, if A is a subset of the indexing
set {1,2, . . . , n}, Ac denotes the set {1,2, . . . , n} � A.

2.2. Generalities. A typical data-analytic model consists of a collection Z of
observations z1, z2, . . . , zn, whose values lie in a sample space Z. For these data, a
fit is sought: an element ϑ of a parameter space Θ.

To give each observation its impact on the result, a criterial function Fi is
attached to every observation zi ; the lower the value of Fi at ϑ , the better
ϑ fits zi . Fits that yield optimal values for all Fi—that is, uniformly best
solutions—occur only for rare data configurations. Classical strategies thus
consider trade-offs, giving each point its share via a compound criterial function—
the sum of all Fi , say.

The approach involving depth could be characterized as elaborating on a
“degree of data-analytic admissibility.” The general definition of depth, given by
Rousseeuw and Hubert (1999a), says that “the depth of ϑ is the smallest number of
observations that would need to be removed to make ϑ a nonfit.” The word “nonfit”
means a parameter value inadmissible from a data-analytic view, a parameter value
with zero depth. In what follows, we develop this idea in the framework of vector,
multi-objective optimization, in the setting which employs criterial functions. Such
an approach provides a guide how to define depth in various statistical models—
via a natural transition from classical techniques. It also lays a firm technical
foundation for the study of depth and related notions by methods of differential
calculus.

2.3. Global depth. Let n stand for cardZ and N for the index set {1,2, . . . , n};
if A ⊆ N , we write #A for cardA divided by n.

Suppose that a criterial function Fi = Fzi
acting from Θ to [0,∞) is attached to

every observation zi from Z; note that the notation implies that criterial functions
for two equal observations coincide. A parameter value ϑ ∈ Θ̃ ⊆ Θ will be called



1684 I. MIZERA

weakly optimal in Θ̃ with respect to A ⊆ N , if A �= ∅ and there is no ϑ̃ ∈ Θ̃ such
that Fzi

(ϑ̃) < Fzi
(ϑ) for all i ∈ A. We define the global depth of ϑ ∈ Θ to be

dG(ϑ,Z) = min #{A ⊆ N :ϑ is not weakly optimal in Θ with respect to Ac}.(1)

If ϑ is not weakly optimal with respect to the full collection of Fi’s, then the
minimal set A in (1) is empty and dG(ϑ,Z) = 0. On the other hand, if ϑ is weakly
optimal with respect to any subset of N , then dG(ϑ,Z) = 1; by definition, ϑ is not
weakly optimal with respect to the empty set of criterial functions.

If we choose certain other criterial functions F̃zi
to be attached to any data

point zi , then such a choice may lead to the same depth—as long as Fzi
(ϑ) <

Fzi
(ϑ̃) if and only if F̃zi

(ϑ) < F̃zi
(ϑ̃). Obviously, depth depends essentially only

on the order induced by the criterial functions; nevertheless, the specific form of
criterial functions often allows for better technical handling than abstract order
notions.

To achieve immediate compatibility with the population case, we define depth
as minimal proportion—and not number of observations (as common in the
literature). Our depth thus has values 0,1/n,2/n, . . . ,1 instead of 0,1,2, . . . , n—
a minor detail ignored in the sequel, where we may speak about the equality of
depths even if it may actually hold up to a multiplication by n.

The word “admissibility” we used in the introduction suggests the relationship
to those notions from statistical theory related to loss and risk functions under
a probabilistic model for the data. While from the decision-theoretic aspect the
relationship is really close, we have to raise several cautions. First, “admissibility”
considered here is a different, data-analytic one: “residual admissibility.” An
example: any multivariate location estimator contained in the convex hull of
the observations—the sample mean, for instance—is weakly optimal (and thus
“residual admissible”). Compare this with the well-known fact from statistical
theory: the sample mean in dimensions beyond three is inadmissible with respect
to quadratic loss function under a normal sampling distribution.

Second, “admissibility” in decision theory means what the vector optimization
literature calls Pareto optimality: there is no solution which performs strictly
better in one criterion and better or equally well in others. But, for the definition
of depth, we do not use Pareto, but weak optimality (also known as “weak
Pareto optimality,” “Slater optimality,” “weak efficiency”): there is no solution
performing strictly better in all criteria. The reason is that in order to have a
consistent definition of depth, an omission of a criterial function should not create
optimality, only possibly destroy it. This is a property of weak, but not Pareto
optimality.

To prevent misunderstandings in the sequel, we therefore avoid the word
“admissibility”; we also speak about “criterial” rather than “loss” functions. On
the other hand, we do not adopt the word “nonfit” either; as given in Rousseeuw
and Hubert (1999a), we consider it semantically on a more general and, to an
extent, intuitive level than our rigorous “not weakly optimal fit.”
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2.4. Examples. We now introduce several statistical models to be analyzed in
the sequel.

EXAMPLE 1 (Multivariate location). In the location model, Z = Θ = Rp .
Natural criterial functions are those based on the distance ‖ϑ − z‖ of ϑ

from z; in fact, any increasing function of this distance results in the same depth.
For technical convenience, we choose Fz(ϑ) = 1

2‖ϑ − z‖2.
It is not hard to see that ϑ is weakly optimal if and only if it lies in the convex

hull of the data points. Applying the definition of the global depth to this model,
we obtain the definition of location depth used by Rousseeuw and Hubert (1999a):
dG(ϑ,Z) is the minimal proportion of points whose removal makes ϑ lie outside
the convex hull of the remaining ones. This definition is equivalent [see (2.6)] to
the halfspace definition of Tukey (1975) and Donoho and Gasko (1992).

EXAMPLE 2 (Linear regression). In the regression model, an observation
zi = (xT

i , yi)
T consists of a response yi and a vector of covariates xi . The sample

space is Z = X × R, where X is a subset of Rp; the parameter space is Θ = Rp .
Most models have xi = (1,wT

i )
T and X = {1} × Rp−1 accordingly—regression

with intercept. When wi runs over R we speak about the simple linear regression;
when it runs over Rp−1, about multiple linear regression. The general model covers
also cases when xi = g(wi) and wi is a lesser-dimensional covariate; for instance,
quadratic regression, when xi = (1,wi,w

2
i )

T.
Natural criterial functions in regression depend on the residuals. Any increasing

function of the absolute residuals leads to the same result [see (2.6)], regression
depth of Rousseeuw and Hubert (1999a). We choose Fz(ϑ) = 1

2(y − ϑTx)2;
another possibility is Fz(ϑ) = |y − ϑTx|.

EXAMPLE 3 (General, nonlinear regression). Nonlinear regression is a gen-
eralization of the linear one; however, the usual notation is slightly different. The
observations are zi = (wT

i , yi)
T, drawn from Z = W × R; the functional depen-

dence is given by a regression function f (ϑ,w), the regression being linear if
f (ϑ,w) = ϑTg(w).

Similarly to linear regression, we choose Fz(ϑ) = 1
2 (y − f (ϑ,w))2. Simple

nonlinear (linearizable) models were considered in Rousseeuw and Hubert (1999a)
and Van Aelst, Rousseeuw, Hubert and Struyf (2001).

EXAMPLE 4 (Multivariate linear regression). Multivariate regression is a
generalization of Example 2 in another direction. The functional dependence
remains linear, but the response yi is allowed to be multi-dimensional. An
observation zi = (xT

i , y
T
i )

T belongs to Z = X × Rm, where X is a subset of Rk .
For notational convenience, we consider the parameter � to be a k × m matrix
lying in Θ = Rp = Rkm (interpreting it also as a vector, if necessary). The criterial
functions are Fz(�) = 1

2‖y − �Tx‖2.
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Our attention to this model was turned by the work of Bern and Eppstein (2000),
who gave a geometric definition of multivariate regression depth.

EXAMPLE 5 (Orthogonal regression). In orthogonal regression, the observa-
tions zi are points from Rp and fits are k-dimensional affine subspaces in Rp . We
consider only the simple (traditional) case when k = p−1 and fits are hyperplanes,
affine subspaces of codimension 1; this case parallels classical regression, where
one of the variables is interpreted as the response and other as covariates. A hyper-
plane is parametrized by ϑ = (s, βT)T, where β ∈ Sp−1 is a unit vector orthogonal
to the hyperplane and sβ is the intersection of the hyperplane with the linear space
generated by β . The resulting parameter space is R × Sp−1. We found this para-
metrization convenient, despite the lack of identification: (s, βT) and (−s,−β)

represent the same hyperplane.
The fact that the regression is orthogonal is expressed by the choice of the

criterial functions. They are based on the orthogonal distances of observations to
the fitted hyperplane: Fz(ϑ) = 1

2 (βTz − s)2.

2.5. Local depth. Weak optimality can be effectively studied in a way akin to
the classical approach of the differential calculus to extrema. The first step is a
transition to local notions. We define the local depth of ϑ ∈ Θ to be

dloc(ϑ,Z) = min #{A ⊆ N : ϑ is weakly optimal in

no neighborhood of ϑ w.r.t. Ac},(2)

where “in no neighborhood of ϑ” means “in no open Θ̃ ⊆ Θ containing ϑ .” Since
Θ is itself a neighborhood of ϑ , the global depth never exceeds the local one; the
following theorem gives a sufficient condition for their equality. For the definition
of quasiconvexity, see Section 5.1.

THEOREM 2.1. For any ϑ ∈ Θ, dG(ϑ,Z) ≤ dloc(ϑ,Z). If Θ is an open convex
subset of R

p and all Fi = Fzi
, attached to the data points zi ∈ Z, are strictly quasi-

convex (in particular, convex), then dG(ϑ,Z) = dloc(ϑ,Z).

2.6. Tangent depth. In the calculus methodology of handling extremes, the
crucial second step is the use of derivatives. Suppose that Θ is a p-dimensional
manifold. Given a function F from Θ to R, we denote by ∇F(ϑ) the derivative
(gradient) of F at ϑ : a linear functional from the tangent space of Θ at ϑ to R,
representing the local linear approximation of F at ϑ . Since all tangent spaces are
isomorphic to Rp , we identify in the usual fashion ∇F(ϑ) with a vector in Rp , the
vector of partial derivatives of F at ϑ .

(The reader not comfortable with this language may think about derivatives in
a less sophisticated way: in most models, the parameter space is actually R

p and
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gradients are the vectors of the partial derivatives taken in the elementary way.
Example 5, however, shows the need for the advanced formalism.)

The differential approach to vector optimization dates back to Frisch (1966). As
in the classical calculus, we deal here with first-order necessary and second-order
sufficient conditions; for Pareto optima those were developed by Smale (1973,
1975a, b) and Wan (1975, 1978). Their first-order, necessary condition for a Pareto
optimum turns out to be actually the same as the one required for a weak optimum;
see Section 5.1 for more details. It provides also a sufficient condition when the
criterial functions possess a certain degree of convexity; and since this is all we
need for the development of depth theory, we do not introduce any second-order
sufficient conditions for weak optima in this paper.

If S is a subset S of Rp , we say that S surrounds ϑ ∈ Rp (ϑ is surrounded by S)
whenever ϑ lies in the convex hull of S.

PROPOSITION 2.2. If S ⊆ Rp surrounds ϑ ∈ Rp , then it contains a finite
subset with at most p + 1 elements that also surrounds ϑ . The following are
equivalent:

(i) ϑ ∈ Rp is surrounded by S;
(ii) there is no open halfspace in Rp which contains S and has ϑ on its

boundary;
(iii) if S is finite and S = {η1, η2, . . . , ηk}, there are nonnegative λ1, λ2, . . . , λk ,

not all equal to zero and such that
∑

λiηi = ϑ .

It is not hard to see that if ϑ is locally weakly optimal, then the origin 0 must be
surrounded by ∇Fi(ϑ); in other words, once all ∇Fi(ϑ) are contained in an open
halfspace with 0 on its boundary, then ϑ is not locally weakly optimal. Hence,
we have a necessary condition for weak optimality which leads to the following
definition. Suppose that � is a function from Θ × Z → Rp . Writing its values for
ϑ ∈ Θ and z ∈ Z as �ϑ(z), we define the tangent depth of ϑ ∈ Θ to be

d �
T (ϑ,Z) = min

u�=0 #{i :uT�ϑ(zi) ≥ 0} = min‖u‖=1
#{i :�ϑ(zi) ∈ Hu}.(3)

The minimum is taken over all closed halfspaces with 0 on the boundary—we
may therefore take it over u �= 0 or over ‖u‖ = 1, whichever is more convenient.
The connection between local and tangent depth is established by setting �ϑ(z) =
∇Fz(ϑ); nevertheless, the general definition opens room for general �, not
necessarily coming from the vector-optimization problem (an analogy could be
general estimating equations not necessarily arising from the maximization of a
likelihood). In our examples, we omit the superscript � whenever its form is clear
from the context.

A parameter ϑ surrounded by gradients may not yet be a weak local optimum.
Nevertheless, it often is, for instance, when all Fi are convex. For the definition of
pseudoconvexity, see Section 5.1.
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THEOREM 2.3. Suppose that all Fi = Fzi
, attached to the data points

zi ∈ Z, are differentiable and let �ϑ(zi) = ∇Fzi
(ϑ). For any ϑ ∈ Θ, dloc(ϑ,Z) ≤

d �
T (ϑ,Z). If Θ is an open convex subset of Rp and all Fi are pseudoconvex (in

particular, convex), then d �
T (ϑ,Z) = dloc(ϑ,Z) = dG(ϑ,Z).

The proofs of Theorems 2.1 and 2.3 given in Section 5.1 reveal that neither strict
quasiconvexity nor pseudoconvexity is a minimal sufficient condition required for
the equality of depths.

2.7. Examples of tangent depth. Now we are ready to reconsider our examples
and show that they cover all instances of halfspace depth studied in the literature
so far.

EXAMPLE 1. The criterial functions Fz are convex and

�ϑ(z) = ∇Fz(ϑ) = ϑ − z.(4)

Therefore,

dG(ϑ,Z) = dT(ϑ,Z) = min
u�=0 #{i :uT(ϑ − zi) ≥ 0}

= min
u�=0 #{i :uT(zi − ϑ) ≥ 0} = min‖u‖=1

#{i : zi ∈ Hϑ,u}.

This shows the equality to the original halfspace definition of Tukey (1975) and
Donoho and Gasko (1992).

EXAMPLE 4. Preserving the matrix dimension of �, we obtain that

�ϑ(z) = ∇Fz(�) = −x(y − �Tx)T = xxT� − xyT.(5)

We denote by U · V the inner product of two matrices considered as vectors:
U · V = tr(U TV ) = tr(UV T) = tr(V TU) = tr(V U T). Since Fz is convex for any z,
we have

dG(�,Z) = dloc(�,Z) = d �
T (�,Z)

= min
U �=O

#{i :U · (xix
T
i � − xiy

T
i ) ≥ 0}

= min
U �=O

#
{
i : tr

(
(xix

T
i � − xiy

T
i )

TU
) ≥ 0

}
= min

U �=O
#
{
i :− tr

(
(yi − �Txi)x

T
i U

) ≥ 0
}

= min
U �=O

#{i :−(xT
i U)(yi − �Txi) ≥ 0},

(6)

with U running over all k × m matrices not identically equal to zero.
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A question arises about the relationship of not weakly optimal � and nonfits
as defined by Bern and Eppstein (2000). If the two notions are equivalent, that
is, pick up identical sets of �, then the definition of multivariate regression depth
given above is equivalent to that of Bern and Eppstein (2000). Despite certain
positive evidence (D. Eppstein, personal communication), we now believe that the
implication holds only in one direction: our definition minimizes over the larger
set, thus the multivariate regression depth defined here does not exceed that of
Bern and Eppstein (2000); if � is weakly optimal, it cannot be a nonfit of Bern
and Eppstein (2000), but there are nonfits which are not weakly optimal. Note that
the inequality has the right direction to ensure that our centerpoint-lower bounds on
the multivariate regression depth are applicable also to that of Bern and Eppstein
(2000).

EXAMPLE 2. This model is a special case of Example 4; using (6) yields

dG(ϑ,Z) = dloc(ϑ,Z) = dT(ϑ,Z) = min
u�=0 #{i :uT(xix

T
i ϑ − xiyi) ≥ 0}.(7)

Obviously, the criterial functions remain convex. We may reexpress (7) in many
ways:

dT(ϑ,Z) = min
u�=0 #{i :−(uTxi) sgn(yi − ϑTxi) ≥ 0}(8)

= min
u�=0 #{i : sgn(uTxi) sgn(yi − ϑTxi) ≥ 0};(9)

in all these formulas, we are free to include or drop the minus sign and also to
restrict the domain of minimization from u �= 0 to ‖u‖ = 1. Incidentally, (8) can
be interpreted as arising from the criterial functions of |y − ϑTx|; but not all
reexpressions should arise in a similar way.

To see that equations (7)–(9) yield the regression depth whose geometric
definition was given by Rousseeuw and Hubert (1999a), note first that the
minimized function is piecewise constant; hence the equivalent result is obtained
by a minimization over a dense set of directions u. Fix this set to be the set S of
all u ∈ Sp−1 such that uTxi �= 0 for all xi . When xi = (1,wi)

T, the complement
of S contains only finitely many hyperplanes of lower dimension; the general case
is treated similarly below. The expression (9) then equals the minimal proportion
over S of observations such that

either
(
uTxi > 0 and sgn(yi − ϑTxi) ≥ 0

)
or

(
uTxi < 0 and sgn(yi − ϑTxi) ≤ 0

)
.

(10)

It is perhaps interesting to mention an equivalent possibility that recently
appeared in Adrover, Maronna and Yohai (2000): take the minimal proportion of
observations such that

sgn
(

yi − ϑTxi

uTxi

)
≥ 0.
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FIG. 1. Regression depth as location depth.

The set of observations satisfying (10) corresponds to the shaded area in Figure 1.
All observations lying on the solid line are included, and no observation is expected
to lie on the vertical line. The set given by (10) contains all observations that are
met by a line during its rotation to the vertical position, in the sense indicated in
Figure 1.

Regression without the intercept (when xi = wi ) behaves similarly; we only
have to pay separate attention to points with x = 0. They have no influence on
the resulting fit, but increase simultaneously the depth of all fits; in fact, we may
remove them all without destroying the weak optimality of any fit.

Figure 1 illustrates how tangent depth may be evaluated in simple regression
(and it is not hard to see how the same method works in general). We evaluate the
depth of the (solid) regression line ϑ = (α,β)T, with respect to the (small empty
circles) observations (wi, yi); recall that xi = (1,wi)

T. We start by projecting the
observations onto the covariate space {1}×R

p−1 (indicated by dotted lines). Then
we project them further (along dashed lines) to the unit sphere—that is, we plot
their normalized directions (solid circles), in the positive or negative halfspace
according to the sign of the residual; if the residual is zero, as happens for one point
at Figure 1, the corresponding projection goes to the origin (slightly obscured).
The desired result is obtained as the location depth of the origin with respect to
these projections (a minimizing halfspace is indicated by the shaded area). Points
represented by crosses show how the same method would equivalently work for
Fz(ϑ) = |y − ϑTx|, when (8) replaces (7).

EXAMPLE 3. All previous examples involved convex criterial functions.
General nonlinear regression models provide exceptions—yet in many cases local
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and tangent, or global and local depth are equal. The more thorough analysis of
various nonlinear regression models is beyond the scope of this paper.

EXAMPLE 5. Also in this example, we limit our analysis to the sim-
ple two-dimensional case, where the observations are zi = (xi, yi)

T. For ϑ ∈
R × S1, consider local coordinates (s, t)T = ϕ(ϑ) with the inverse ϕ−1(s, t) =
(s, β(t)T)T = (s, (− sin t, cos t)T)T. Representing ∇Fz(ϑ) by the partial derivatives
in these local coordinates, we obtain

∇Fz(ϑ) = −(βTz − s)(1, zT	β)T,

where 	 denotes the matrix of the clockwise rotation by 90 degrees (in R2); note
that

−	β = (− cos t,− sin t)T = ∂

∂t
β(t).

Let ϑ0 be the line represented by local coordinates (0,0), the line y = 0 in R2.
Since ϕ−1(0,0) = (0, β(0)T)T = (0, (0,1)T)T, we have, for z = (x, y)T,

∇Fz(ϑ0) = −y(1, x)T = (−y,−yx)T.(11)

The evaluation of the tangent depth of any ϑ can be reduced to this canonical case
by the appropriate rotation and translation (which leave all orthogonal distances
unchanged). In the simple linear regression model, the same line is represented as
y = 0x + 0; equation (5) gives that ∇Fz(ϑ) = −y(1,w)T. Recall that w in simple
linear regression corresponds in this example to x; in other words, we obtained
the same expression in both cases. Therefore, the orthogonal regression tangent
depth of ϑ is the regression depth of the line y = 0 after a Euclidean change of
coordinates that carries the line represented by ϑ to the line y = 0. We obtained
a geometric definition of the orthogonal regression tangent depth (Figure 2, left):
(i) given a line orthogonal to the line represented by ϑ , take the minimum of the
proportion of observations in the shaded area, and of those in its complement
(counting those lying on the line represented by ϑ in both cases); (ii) minimize
over all orthogonal lines that do not contain any of observations.

FIG. 2. Depth in orthogonal regression.
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Figure 2 (right) shows that the orthogonal regression model is interesting also
from another aspect: each of the depth notions introduced above may result in
a different value. Consider the fit represented by the the solid line. It is easily
seen that its tangent depth is 2. After removing the circled point, the orthogonal
residuals of the dashed line uniformly supersede those of the solid one—therefore
the local depth of the solid line is at most 1; on the other hand, the fit represented
by the solid line is locally weakly optimal—hence its local depth is at least 1.
Finally, the orthogonal residuals of the dotted line uniformly supersede those of
the solid one; hence the fit is not globally weakly optimal and its global depth is 0.

3. Tangent depth in a measure-theoretic setting.

3.1. Preliminaries. By “a measure on X” we always understand a measure
defined on the appropriate Borel σ -algebra of a separable metrizable space X;
examples of X are R

p, S
p−1, the p-dimensional unit ball D

p = {x ∈ R
p :‖x‖ ≤ 1}

or the projective plane RP
p−1 (arising from Sp−1 by identifying the antipodal

points). Halfspaces and similar geometric constructions are thus measurable; we
implicitly assume the measurability of any set or function under consideration.
With only the exception of Lebesgue measure, all measures we work with are
“subprobability” measures—bounded measures with total mass not exceeding 1.

We denote by f ◦ g the composition mapping assigning the value f (g(x)) to x.
Particularly, if P is a measure and g a function on X, then P ◦ g−1 is another
measure with the same total mass, assigning P {x :g(x) ∈ E} to any E.

3.2. Tangent depth in probability fields. For statistical considerations, we need
an analog of depth defined for population distributions—we need a model for
sampling, or target for asymptotics, or both. The following general definition of the
tangent depth extends that given in Section 2. It stems from the fact that formula (3)
can be easily rewritten to depend on the empirical probability supported by the
gradient points. The analogy (“plug-in”) principle suggests then to replace the
empirical probability by a general one.

Let X be any space where halfspaces can be reasonably defined: Rp , but also
Sp−1 and Dp whose halfspaces are formed by the intersection of those from Rp

with Sp−1 or Dp , respectively. We will later add also the cosmic space R̄p

[see (5.3)]. For any measure Q on X, we define

d(Q) = inf
u�=0Q(Hu) = inf‖u‖=1

Q(Hu).

Note that a minimizing halfspace may not exist, and therefore the use of inf instead
of min is essential. The infimum, on the other hand, should not be necessarily taken
over the full set of directions.

PROPOSITION 3.1. Let X be Rp , Sp−1, Dp or R̄p . For any measure Q on X,
d(Q) = infu∈S Q(Hu) whenever S is a dense subset of S

p−1.
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An important instance of a set S appearing in Proposition 3.1 is given by the
following theorem.

THEOREM 3.2. Let X be Rp, Sp−1, Dp or R̄p . For any probability measure Q

on X, µ(S(Q)) = 1, where µ is the uniform distribution on Sp−1 and S(Q) is:
for X = Rp, Dp or R̄p , the set of all u ∈ Sp−1 such that Q(∂Hu � {0}) = 0;
for X = Sp−1, the set of all u ∈ Sp−1 such that Q(∂Hu) = 0.

Let Θ be a metrizable topological space. We define a probability field on X

indexed by Θ to be a function {Pϑ :ϑ ∈ Θ} assigning a probability measure Pϑ

on X to each ϑ ∈ Θ. An important instance is when Θ is a p-dimensional manifold,
X = Rp is isomorphic to the tangent space of Θ at each of its points ϑ , and
�ϑ(Z) = ∇FZ(ϑ); in this case we speak of a gradient probability field. The
motivation for the name is: if F is a differentiable function on Θ, then its gradient
∇F(ϑ) defines a vector field, a mapping that assigns a vector from the tangent
space of Θ at ϑ to each ϑ ∈ Θ. A collection of n differentiable functions produces
n gradients; these n points support an empirical probability.

Given a probability field, then d(Pϑ) naturally yields a depth function on Θ. To
proceed more in analogy with the definition of tangent depth in 2.6, let us consider
again a function � from Θ × Z → X, where X is now any space like Rp or Sp−1,
where the notion of halfspace makes sense. Let �−1

ϑ stand for the preimage set-
valued mapping corresponding to the function �ϑ(·): �−1

ϑ (E) = {z :�ϑ(z) ∈ E}.
If P is a probability on Z, � gives birth to a probability field Pϑ = P ◦ �−1

ϑ . We
define the tangent depth of ϑ to be

d �
T (ϑ,P ) = d(Pϑ) = d(P ◦ �−1

ϑ ) = inf
u�=0P

(
�−1

ϑ (Hu)
)
.

Again, the definition depends on � and P . When P is a distribution of a random
variable Z, we abuse the notation and write d �

T (ϑ,Z) instead of the precise
d �

T (ϑ,L(Z)), having Pϑ(E) = P[�(Z,ϑ) ∈ E] for any E and

d �
T (ϑ,Z) = inf

u�=0P
[
Z ∈ �−1

ϑ (Hu)
] = inf

u�=0P[�ϑ(Z) ∈ Hu].

The symbol dT is now used in several formally different ways, which nonetheless
all express the same concept: d �

T (ϑ,Z) is equal to d �
T (ϑ,Z) = d �

T (ϑ,L(Z)),
whenever L(Z) is the empirical distribution of Z.

All general definitions of depth that occurred in the literature so far are
special instances of our general definition of tangent depth. We do not introduce
analogous extensions for global and local depth in this paper. Such a development
might be relatively straightforward, but formal subtleties needed for analogs of
Theorems 2.1 and 2.3 would divert us from the main theme.
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EXAMPLE 1 (General version). Recall (4): in the multivariate location setting,
�ϑ(z) = ∇Fz(ϑ) = ϑ − z. If Z is a Z-valued random variable with distribution P ,
then

d �
T (ϑ,Z) = inf

u�=0P[uT(ϑ − Z) ≥ 0] = inf
u�=0P[Z ∈ Hϑ,u]

= inf
u�=0Pϑ(Hu)

= inf
u�=0P (Hϑ,u),

where Pϑ = L(ϑ −Z). The analogy with the finite-sample case is straightforward.

EXAMPLE 2 (General version). In the linear regression setting, �ϑ(z) =
�ϑ(x, y) = ∇Fz(ϑ) = xxTϑ − xy. Thus, Pϑ = L(XXTϑ − XY). For a random
element Z = (X,Y ), we obtain straightforward analogs of (7), (8) and (9):

d �
T (ϑ,Z) = inf

u�=0Pϑ(Hu) = inf
u�=0P[uT(XXTϑ − XY) ≥ 0]

= inf‖u‖=1
P[−uTX sgn(Y − XTϑ) ≥ 0]

= inf
u∈Sp−1

P[sgn(uTX) sgn(Y − XTϑ) ≥ 0].
To establish the equivalence to the geometric definition of Rousseeuw and Hubert
(1999a), we have to invoke Proposition 3.1. Consider the set S of directions u

such that P[XTu = 0]. Theorem 3.2 says that such a set S is dense in Sp−1, if
P[X = 0] = 0. Once this holds, dT(ϑ,Z) is equal to the infimum of

P[uTX > 0 and sgn(Y − ϑTX) ≥ 0 or uTX < 0 and sgn(Y − ϑTX) ≤ 0],
over u satisfying P[uTX] = 0, as in the finite-sample case. When the regression
is with intercept, the first coordinate of X is equal to 1, hence P[X �= 0] = 1.
The regression without intercept can be treated similarly: we just decompose the
distribution of Z to the part with X = 0 and the rest (see Section 5 for a more
formal treatment).

EXAMPLE 4 (General version). Also for this example, the general version
is a straightforward extension of the finite-sample case: �ϑ(z) = ∇Fz(�) =
xxT� − xyT, Pϑ = L(XXT� − XY T) and

d �
T (�,Z) = inf

U �=O
P[U · (XXT� − XY T) ≥ 0]

= inf
U �=O

P
[
tr

(
(XXT� − XY T)TU

) ≥ 0
]

= inf
U �=O

P[−(XTU)(Y − �TX) ≥ 0],
a direct analog of (6).
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3.3. Existence of centerpoints. If the parametric space is a manifold, then we
may speak about its dimension (equal to the dimension of its tangent space); from
the statistical point of view, it is the number of independent parameters in the
model. For instance, when Θ = Rp, then its dimension is simply p. A centerpoint
is a parameter whose (tangent) depth is not less than 1/(1 + dimΘ).

EXAMPLE 1. In the multivariate location model, the existence of a centerpoint
for any probability P on Rp is a well-known mathematical result, proved by
Neumann (1945) for p = 2 and by Rado (1946) in general. Birch (1959) gave an
alternative proof, similar to that by Donoho and Gasko (1992), who rediscovered
the result for statistics. A very short and elementary proof for finite-sample point
configurations can be found on page 66 of Edelsbrunner (1987).

EXAMPLE 2. The centerpoint problem in the linear regression setting was
raised by Rousseeuw and Hubert (1999a), who also established the important spe-
cial case: they proved the existence of a centerpoint for p = 2, for simple regres-
sion. Their ingenious geometric construction based on the ham-and-sandwich the-
orem seems to be, however, not extendable to a higher-dimensional case, where
they conjectured the same general lower bound 1/(p + 1) for the maximal depth:
separately for all finite-sample data—Conjecture 1(a) in Rousseeuw and Hubert
(1999a), Conjecture 1 in Rousseeuw and Hubert (1999b)—and for any absolutely
continuous population distribution—Conjecture 1(b) in Rousseeuw and Hubert
(1999a). The following theorem establishes the lower bound for maximal depth
for any random variable Z = (X,Y ), settling thus both conjectures of Rousseeuw
and Hubert (1999b).

THEOREM 3.3. Let �ϑ(z) = �ϑ(x, y) = −x(y − xTϑ) for any ϑ ∈ Θ = Rp

and any (x, y) from X × R, where X ⊆ Rp . For every probability P on X × R,

sup
ϑ∈Θ

d �
T (ϑ,P ) ≥ 1

1 + dimΘ
.(12)

The proof of Theorem 3.3 in its full generality is long and employs technical
constructions specific for the univariate regression setting. An easier, restricted,
but also more general version of Theorem 3.3 is obtained under an additional
assumption involving the identification index

�(X) = sup
ϑ �=0

P[XTϑ = 0],

the quantity well known from breakdown and consistency considerations in linear
regression. Note that the definition of �(X) does not depend on whether ϑ runs
over R

k or R̄
k .
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EXAMPLE 4 (Centerpoints). Amenta, Bern, Eppstein and Teng (2000) gave
another proof of Conjecture 1(a), a more geometric one. Later, Bern and Eppstein
(2000) introduced (in the finite-sample setting) a multivariate generalization of
regression depth, and conjectured a lower bound on the maximal depth for their
definition. Motivated by this development, we formulated Theorem 3.4 in the
revised version to cover the multivariate case as well. Theorem 3.4 relies on the
general Theorem 5.19 and Proposition 5.21.

THEOREM 3.4. Let �ϑ(z) = �ϑ(x, y) = −x(yT − xTϑ) for any ϑ ∈ Θ =
Rp = Rmk and any (x, y) from X × Rm, where X ⊆ Rp . For every probability P

on X × R the following holds: if �(X) < 1/(1 + p) for any random variable
Z = (X,Y ) whose distribution is P , then there is �̇ ∈ Rp such that

d �
T (�̇,P ) = sup

�∈Θ
d �

T (�,P ) ≥ 1

1 + dimΘ
.

The additional assumption introduced by Theorem 3.4 is probably more
restrictive from the mathematical than the statistical aspect: it says that the
regressors are in (fairly) general position, a condition satisfied in many real
situations. In simple linear regression, for instance, more than one third of the
observations should lie in a covariate point to make the assumption invalid. Note
also that if the distribution of X is absolutely continuous, then �(X) = 0; thus
Theorem 3.4 immediately proves the original Conjecture 1(b) of Rousseeuw and
Hubert (1999a).

The only missing link between Theorem 3.4 and Theorem 3.3 is our inability to
handle the smoothing approximation successfully. For the details, see Section 5
and the Appendix; here we only mention that the whole question can be
reduced to a problem whether a regression probability field generated by P can
be approximated by smooth enough (absolute continuity is enough but is not
necessary) regression probability fields generated by Pν , in a way that

lim sup
ν→∞

sup
ϑ∈Rp

dT(ϑ,Pν) ≤ sup
ϑ∈Rp

dT(ϑ,P ).(13)

If yes, then the conclusion of Theorem 3.4 holds for P even if the assumption
on �(X) is not satisfied. Thus, if the existence of such an approximation for
general P would yield a theorem more general than Theorem 3.3. We do not know
an answer to this question, though a positive one seems plausible; we would like
to remark only that we are aware of counterexamples showing that mere weak
convergence of Pν to P does not imply (13).

On the other hand, however, it seems that the proper treatment of the smoothing
trick would not illuminate any new feature of the problem and is only a technical
necessity. To bypass it, we had to undertake a painstaking way expounded in the
Appendix, where the proof of Theorem 3.3 follows basically the same scheme
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as that of Theorem 3.4, but on a considerably higher technical level. Realizing
the importance of linear regression in statistics, we believe that it is essential
to have Theorem 3.3 rigorously proved in the maximal possible generality—in
fact, Theorem 3.4 does not cover even all possible finite-sample cases. Also, our
Theorem 3.3 may be of independent mathematical interest. Unfortunately, the
technique does not extend to multivariate regression depth, where the complete
solution of the centerpoint problem remains open.

Note that Theorem 3.3 guarantees only a bound on the maximal depth. The
existence of a centerpoint then follows from the existence of a point with maximal
depth (in Rp). This fact is not obvious, though in many cases comes trivially:
for instance, if P is the empirical distribution of a finite sample. It also follows
from Theorem 3.4 under the assumption �(X) < 1/(p+1). For (univariate) linear
regression, the general existence of the deepest parameter is established in the
following theorem.

THEOREM 3.5. Let �ϑ(z) = �ϑ(x, y) = −x(y − xTϑ) for any ϑ ∈ Θ = R
p

and any (x, y) from X × R, where X ⊆ Rp . For any probability P on R × X, there
is ϑ̇ ∈ Rp such that

d �
T (ϑ̇,P ) = sup

ϑ∈Rp

d �
T (ϑ,P ).

The proof is a direct consequence of Theorem 5.25, formulated and proved
in Section 5. Again, we do not know whether the same general result—although
plausible—holds for the multivariate regression depth.

4. Bias, breakdown point and maximum depth estimators.

4.1. Bias sets of maximum depth estimators and depth contours. One of
the reasons for the study of centerpoints is their implications on the bias and
breakdown of maximum depth estimators. For location and regression, these
aspects were illustrated by Donoho and Gasko (1992), Rousseeuw and Hubert
(1999a) and Van Aelst and Rousseeuw (2000). Here we give a view from a more
general perspective.

We formalize an estimator as a mapping T assigning one or more parameters
from Θ to any probability P with values in Z (many robust estimators yield non-
unique results for certain datasets, thus we have to work on this level of generality).
The setting in which data are represented by probabilities encompasses a variety
of situations and is also perfectly relevant for finite-sample data (see below). If
E is a set of probabilities, then T (E) denotes the set of all possible values of T
under P ∈ E . We are interested in the behavior of T (E) when E is a neighborhood
of P .

Neighborhoods are constructed with the help of a distance π defined on
the space of probabilities on Z. As a rule, this distance depends only on the



1698 I. MIZERA

laws of random variables under consideration. It may be a metric, but not
necessarily; all we need is that for any random variable Z, the balls Bπ(P, ε) =
{P̃ :π(P, P̃ ) < ε} decrease with ε and shrink to {P } for ε = 0. A frequent choice
for π is the total variation metric: π(P, P̃ ) = inf |P (A) − P̃ (A)|, inf taken over
all (measurable) A. Another popular (and nonmetric) choice is the contamination
distance γ : γ (P, P̃ ) ≤ ε if P̃ = (1 − ε)P + εQ for some probability Q on Z. The
inequality γ (P, P̃ ) ≤ υ(P, P̃ ) implies that Bγ (P, ε) ⊆ Bυ(P, ε) for all P and any
ε > 0. There may be good reasons for adopting other distances, as well as to reject
certain ones—for a thorough discussion, see Davies (1993).

Maximum depth estimators, defined in particular statistical models, can be
viewed as generalizations of the sample median. Given a function � from Θ × Z
to R

p , we call T a maximum depth estimator if

T (P ) = {
ϑ̇ ∈ Θ :d �

T (ϑ̇,P ) ≥ d �
T (ϑ,P ) for all ϑ ∈ Θ

}
.

The following theorem shows that bias sets of any maximum depth estimator are
closely related to the upper level sets of depth. This gives another interpretation
for depth contours in data analysis—in addition to those found in Liu, Parelius and
Singh (1999).

THEOREM 4.1. Let �ϑ be, for any ϑ ∈ Θ, a (measurable) function from Z
to Rp and let T be a maximum depth estimator. For any ε ≥ 0 and any P , the
inclusion

T
(
Bπ (P, ε)

) ⊆ {
ϑ :d �

T (ϑ,P ) ≥ δ
}

(14)

holds with:
(i) δ = η − ε, if dT(ϑ̇, P̃ ) ≥ η for all ϑ̇ ∈ T (P̃ ) and all P̃ ;

(ii) δ = η − 2ε, if dT(ϑ̇ ,P ) ≥ η for all ϑ̇ ∈ T (P ) and π = υ;
(iii) δ = η(1 − ε) − ε, if dT(ϑ̇,P ) ≥ η for all ϑ̇ ∈ T (P ) and π = γ .

We believe that in many concrete cases the inclusion (14) is actually equality.
The attainable uniform bound required by (i) may be lower than the depth of the
maximum depth estimator—it means that (ii) or (iii) often gives sharper bounds.

4.2. Breakdown points of maximum depth estimators. An important indicator
of the bias behavior is the breakdown point, which says at which ε the estimator
“breaks down”: the bias sets start to be unacceptably rich, that is, unbounded (or
containing all parameter points or at least some unacceptable ones). In this paper,
we limit our analysis to parameter spaces equal to Rp or similar—in other words,
endowed with a structure of “boundedness.” Knowing once what “bounded” means
(in Rp: a bounded set is contained in a ball with finite perimeter), we define the
breakdown point of T at P to be

ε∗
π(T ,P ) = inf

{
ε > 0 :T

(
Bπ (P, ε)

)
is not bounded in Θ

}
.
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Note that when we restrict our attention to those P whose laws are empirical
distributions of the n-tuples—provided that the same restriction is applied to all
probabilities appearing in the definition of Bυ(P, ε)—then for π = υ we obtain
nothing but the popular finite-sample Donoho–Huber replacement breakdown
point. [Thus, it is not “another” breakdown theory which we study here, but
the one perfectly relevant also for the finite-sample case. Rigorously, it is not
hard to see that the finite-sample Donoho–Huber replacement breakdown point is
always bounded from below by ε∗

υ(P ) evaluated at P whose law is the empirical
distribution of a dataset Z; equality actually holds in all but some artificial cases.]

Let T be a maximum depth estimator. A quantity influencing the breakdown
point of T is “the depth of infinity”

dT(∞,P ) = inf
A bounded

sup
{
d �

T (ϑ,P ) :ϑ ∈ Ac},
where inf is taken over all bounded subsets A of Θ. It is not hard to see that when
Θ = Rp , d �

T (∞,P ) is equal to the supremum of lim supν→∞ d �
T (ϑν,P ) taken

over all sequences such that ‖ϑν‖ → ∞.

THEOREM 4.2. Let �ϑ be, for any ϑ ∈ Θ, a (measurable) function from Z
to Rp and let T be a maximum depth estimator.

(i) If dT(ϑ̇) ≥ η for all ϑ̇ ∈ T (P̃ ) and all P̃ , then ε∗
π(T ,P ) ≥ η − d �

T (∞,P )

( for π equal either to υ or γ ).
(ii) If dT(ϑ̇) ≥ η for all ϑ̇ ∈ T (P ), then

ε∗
υ(T ,P ) ≥ 1

2

(
η − d �

T (∞,P )
)

and

ε∗
γ (T ,P ) ≥ η − d �

T (∞,P )

1 + η
.

EXAMPLE 1 (Breakdown point). In the location setting, dT(∞,P ) = 0 for
any P . Thus, Theorem 4.2(i) gives that both ε∗

υ(T ,P ) and ε∗
γ (T ,P ) are bounded

by 1/(p + 1) from below, p = dimΘ. If the depth of the Tukey median T
is 1/2, as often happens for symmetric distributions, then by Theorem 4.2(ii),
ε∗
υ(T ,P ) ≥ 1/4 and ε∗

γ (T ,P ) ≥ 1/3, regardless of the dimension.

EXAMPLE 2 (Breakdown point). Let Z = (X,Y ) be a random variable whose
distribution is P . The theory developed in Section 5 yields upper bounds for
dT(∞,P ). The cruder bound dT(∞,P ) ≤ �(X) follows from Proposition 5.21(ii)
and Proposition 5.12(i); Theorem 4.2(i) then yields the general lower bound
1/(1 + p) − �(X) for the breakdown point of the maximum depth estimator. For
instance, if Z corresponds to the finite-sample data n-tuple in general position,
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then �(X) = (p − 1)/n and the finite sample breakdown point is not less than
n/(p + 1) − p + 1.

Theorem 4.2(ii) yields the dimension-free bound for the maximum depth
estimator: if its depth is 1/2 then its breakdown point is (1−2�(X))/4 for the total
variation and (1 − 2�(X))/3 for the contamination breakdown point. Van Aelst
and Rousseeuw (2000) and Van Aelst, Rousseeuw, Hubert and Struyf (2001)
considered the situation when “the model holds”: there is a parameter ϑ0 such
that the conditional distribution of Z given X is symmetric about �(ϑ0). In such
a case, the depth of ϑ0 is δ0 + (1 − δ0)/2 with δ0 = P[XTϑ0 = Y ]. Theorem 5.25
then yields the bound

dT(∞,P ) ≤ �0 + 1
2

(
�(X) − �0

)
,

where �0 = supϑ �=0P[XTϑ0 = Y and XTϑ = 0] ≤ δ0; by Theorem 4.2(ii), we
obtain

ε∗
υ(T ,P ) ≥ 1

4

(
1 + δ0 − �(X) − �0

) ≥ 1
4

(
1 − �(X)

)
.

For the contamination breakdown, Theorem 4.2(iii) gives that

ε∗
γ (T ,P ) ≥ 1 + δ0 − �(X) − �0

3 + δ0
.

We believe that these bounds are in general sharp; note that if Z has an absolutely
continuous distribution, they reduce to 1/4 and 1/3, respectively.

5. Mathematical details.

5.1. Weak optimality, convexity. In this subsection we prove all the results
from Section 2. Let F be a real function F defined on a convex domain Θ.
Following the terminology of Ponstein (1967), we call F quasiconvex if all
upper-level sets are convex [F(x) ≤ min{F(a),F (b)} for any x lying on the line
connecting a and b]. We call F strictly quasiconvex if the following holds: given
any a, b with F(a) < F(b), F(ta + (1 − t)b) < F(b) for every t ∈ (0,1). We
call F pseudoconvex if given any a, b with F(a) < F(b), there exists c > 0 and
τ ∈ (0,1] such that F(ta + (1 − t)b) ≤ F(b) − ct for every t ∈ [0, τ ].

PROPOSITION 5.1. (i) If F is convex, then it is pseudoconvex.
(ii) If F is pseudoconvex and continuous, then it is strictly quasiconvex.

(iii) If F is pseudoconvex, differentiable and ∇F(ϑ) = 0, then ϑ is its point of
global minimum.

(iv) If F is strictly quasiconvex or pseudoconvex, then it is quasiconvex.

PROOF. See Ortega and Rheinboldt [(1970), pages 102–105] (in a slightly
different terminology there). �
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PROOF OF THEOREM 2.1. Suppose that we removed enough observations to
destroy local weak optimality. Then ϑ cannot be globally weakly optimal; hence
we would need not more observations to destroy the global optimality. This proves
the general inequality.

To prove the equality under the additional hypothesis, note that if ϑ is not a weak
optimum in Θ with respect to Ac, then there is ϑ̃ ∈ Θ such that Fi(ϑ̃) < Fi(ϑ) for
all i ∈ Ac. The strict quasiconvexity of all Fi implies then that ϑ cannot be weakly
optimal in any open neighborhood of ϑ , with respect to the same Ac; this proves
the converse inequality and hence equality. �

PROOF OF PROPOSITION 2.2. The first part of the proposition is just
a slightly different statement of the Carathéodory theorem. The equivalent
conditions follow from direct combinations of known convexity properties: note
that (ii) is the consequence of the Minkowski separation theorem. �

The next theorem gives a sufficient condition for weak optimality when criterial
functions are quasiconvex; compare with the necessary and sufficient conditions
for Pareto optimality given on page 71 of Smale (1975a).

THEOREM 5.2. Suppose that F1,F2, . . . ,Fk are differentiable at ϑ . If ϑ is
locally weakly optimal with respect to F1,F2, . . . ,Fk, then 0 is surrounded by
{∇F1(ϑ),∇F2(ϑ), . . . ,∇Fk(ϑ)}; that is,

(S):
∑

λi∇Fi(ϑ) = 0 for some nonnegative and
not all equal to zero constants λ1, λ2, . . . , λk.

Conversely, ϑ is a weak local optimum, if (S) holds, all Fi are quasiconvex and

(M): any Fi with nonzero λi in (S) is locally nondecreasing
in any direction u such that uT∇Fi(ϑ) = 0.

PROOF. If (S) does not hold, then all ∇Fi(ϑ) are contained in an open
halfspace with 0 on its boundary, by Proposition 2.2. Hence, there is a direction u

such that uT∇Fi(ϑ) < 0 for all i; therefore, all Fi are locally decreasing in the
direction of u and hence ϑ cannot be weakly optimal.

To prove the converse, we will show that under (S) and (M) weak optimality
cannot be violated in any direction—this is sufficient in view of quasiconvexity of
criterial functions. Fix a direction u. If there is Fi such that uT∇Fi(ϑ) < 0, then
this Fi is locally increasing in the direction of u and the desired conclusion holds.
If there is no such Fi , then all ∇Fi(ϑ) lie in a subspace {x :xTu = 0}. By (S), there
is at least one nonzero λi ; by (M), the corresponding Fi is locally nondecreasing
in the direction u and we obtain the same conclusion again. �

PROPOSITION 5.3. Suppose that F is differentiable at ϑ . If F is pseudocon-
vex, then F is nondecreasing in any direction u such that uT∇F(ϑ) = 0.
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PROOF. If uT∇F(ϑ) = 0, then the directional derivative of F in the direc-
tion u is 0. The proposition follows from Proposition 5.1(iii) and the fact that the
restriction of a pseudoconvex F on the line in the direction of u passing through ϑ

is again pseudoconvex. �

PROOF OF THEOREM 2.3. If there is a halfspace Hu containing a proportion
dT(ϑ,Z) of the gradients, then after removing the observations corresponding
to the gradients from Hu the remaining ones do not surround 0, due to
Proposition 2.2(ii). Theorem 5.2 then implies that ϑ cannot be locally weakly
optimal. This proves the inequality in the general situation.

To prove the converse inequality under the additional hypothesis, suppose
that we have removed a proportion dloc(ϑ,Z) of the observations so that ϑ

is not anymore a local weak optimum with respect to the remaining ones. By
Theorem 5.2, this means that then either (S) or (M) must be violated. It must be (S),
since (M) is implied for pseudoconvex Fi by Proposition 5.3. The remaining
observations therefore do not surround 0; but then they lie in an open halfspace,
due to Proposition 2.2(ii). Hence dT(ϑ,Z) ≤ dloc(ϑ,Z). �

5.2. Atomic decomposition of measures. For the proof of Theorem 3.2, we
need a combinatorial technique generalizing the principle that a bounded measure
may possess only a countable number of atoms. The same technique is used for
the proof of Lemma A.2.1 in the Appendix; unfortunately, we do not know about
any reference in the literature which would allow us to skip the following technical
development.

We introduce the following notation: X is the basic set (a measurable space, e.g.,
Sp−1, Rp or any other; we do not require any topological assumptions) and A is
an atomic system: a set of (measurable) subsets of X that can be written as a union

A = A0 ∪ A1 ∪ A2 ∪ · · · ∪ Ar(15)

such that A0 consists of a single element (often ∅, but not always) and the
following property holds: if A ∈ Ai , E ∈ Aj and A ⊆ E, then i ≤ j ; and if
A ⊂ E, then i < j (that is, equality of i and j implies the equality of A and E).
It is not hard to see that any atomic system has the property of the intersection
system introduced by Balek and Mizera (1997): the intersection of any two distinct
elements from Ai belongs to Aj with j < i.

A canonical example is A = A1 consisting of all singletons; here A0 = {∅}.
For this example, our theory reduces to the well-known considerations concerning
atoms. This example could be iterated to higher cardinalities, but we use two other
instances instead: the system of linear subspaces and the system of affine subspaces
of Rp (or R̄p). In both of them, Ai consist of subspaces with dimension equal to i;
for linear subspaces A0 = {0}, while for affine ones A0 = {∅}.

If Q is a measure and E is a (measurable) set, we denote by Q E the restriction
(“trace”) of Q to E: the measure satisfying (Q E)(A) = Q(E ∩ A). We say that
Q is supported by A if Q A = Q; that is, Q(E) = Q(E ∩ A) for every E.
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PROPOSITION 5.4. Suppose that A is an atomic system on X. Any finite
measure Q can be written as the sum

Q =
r∑

i=0

∑
A∈Ai

Q

QA + Qω,(16)

where sets Ai
Q are at most countable (they may be empty), every measure QA is

supported by A and the measure Qj given by

Qj =
j∑

i=0

∑
A∈Ai

Q

QA(17)

satisfies Q(A) − Qj(A) = 0 for any A ∈ Aj .

PROOF. In the proof, we use the following corollary of the Hahn–Saks–Vitali
theorem—see Doob [(1994), Theorems III.10 and IX.10, pages 30 and 155]: if Qν

is a countable system of measures such that the sum
∑

ν Qν(E) converges for all
(measurable) E, then this sum defines a measure Q(E). We write Q1 ≤ Q2, if
Q1(E) ≤ Q2(E) for all E.

We define the decomposition (16) inductively. In the initial step, take the only
element A of A0; if Q(A) > 0, then set A0

Q = {A} and QA = Q A. Otherwise

(e.g., if A = ∅), set A0
Q = ∅. In each case, we have that Q0(E) ≤ Q(E) for any E.

Suppose now that for all i < j , we have already defined the sets Ai
Q, as

well as measures QA for every A ∈ Ai
Q; the sets Ai

Q are at most countable,

the measure Qj−1, given by (17), satisfies the inequality Qj−1 ≤ Q, and finally
Q(E)−Qj−1(E) = 0 for any A ∈ Ai and any i < j . Since Qj−1 ≤ Q, Q−Qj−1

is a measure; denote it by Q̃. Let A
j
Q be the (possibly empty) collection of

all A ∈ Aj such that Q̃(A) > 0. For every A ∈ A
j
Q, let QA = (Q̃ A). The

intersection of any two distinct elements Aj belongs to Ai with i < j ; therefore
this intersection has measure Q̃ equal to 0. It follows that A

j
Q is at most countable

and for any E,

∑
A∈A

j
Q

QA(E) = ∑
A∈Ai

Q

Q̃(E ∩ A) = Q̃

(
E ∩ ⋃

A∈Ai
Q

A

)

≤ Q̃(E) = Q(E) − Qj−1(E);
(18)

hence Qj , defined by (17), satisfies the inequality Qj ≤ Q. The way we
constructed all measures QA so far implies that

Q̃ − ∑
A∈A

j
Q

QA = Q − Qj−1 − ∑
A∈A

j
Q

QA = Q − Qj .
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If i < j and E belongs to Ai , then Q̃(E) is equal to 0 as well as all QA(E), due
to the inequality QA ≤ Q holding for any A ∈ A

j
Q. The same holds if E is from

A
j
Q � Aj . Finally, if E is from A

j
Q, then

Q̃(E) = QE(E) ≤ ∑
A∈A

j
Q

QA(E).(19)

This yields, together with (18), that Q(E)− Qj(E) = 0, concluding the induction
step.

After repeating the construction for j = 1,2, . . . , r , we finally set Qω =
Q − Qr . �

We call the system of measures appearing in (16) an atomic decomposition of
a (finite) measure Q with respect to an atomic system A. We denote by AQ the
union of sets Ai

Q for i = 0,1,2, . . . , r—the set of atoms. Finally, the measure Qω

is a nonatomic part of Q with respect to A, since Qω(A) = 0 for any A ∈ A.

PROPOSITION 5.5. Suppose that A is an atomic system on X and Q is a finite
measure. If E ∈ A and Q(E) > 0, then E contains a member from AQ.

PROOF. Since Qω(E) = 0, Proposition 5.4 implies that there is Ã ∈ AQ such

that QÃ(E) > 0; we may pick it from A
j
Q with smallest possible j , so that for all

A ∈ Ai
Q with i < j , QA(E) = 0. Now, 0 < QÃ(E) = QÃ(Ã ∩ E); thus Ã ∩ E

must belong to Ai
Q with i ≥ j . Since Ã ∩ E ⊆ Ã, it follows that Ã ∩ E = Ã; that

is, Ã ⊆ E. �

5.3. Cosmic spaces. Hereafter, the letter ν is reserved for passages to infinity
along positive integers: all limits involving ν are with respect to ν → ∞.

A cosmic space R̄p is a compactification of Rp (a compact topological space
containing Rp as an open dense subset), which is formed by adding a point with
infinite distance from the origin in each direction. The name is due to Rockafellar
and Wets (1998); we refer there for more details and background. Rigorously
spoken, R̄p is the union of Rp and a homeomorphic copy ∂Rp of Sp−1: it is
convenient to write elements of ∂R

p as ω(u), where u ∈ S
p−1 and ω is a one-to-

one mapping of Sp−1 to ∂Sp−1.
The space R̄p can be conveniently described in polar coordinates. The norm

‖x‖ extends the Euclidean norm on Rp; it is equal to ∞ for x ∈ ∂Rp . We define
the direction of x to be

((x)) =

0, if x = 0,

x/‖x‖, if x �= 0 and x ∈ Rp,

u, if x ∈ ∂Rp, x = ω(u) for u ∈ Sp−1.
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The direction defined in this way satisfies the following equalities for all x, y ∈ Rp:

sgn(xTy) = sgn
(
((x))Ty

) = sgn
(
xT((y))

) = sgn
(
((x))T((y))

)
.(20)

In the vein of (20), we define for any x, y ∈ R̄p ,

sgn(x �y) = sgn
(
((x))T((y))

)
.(21)

In what follows, we actually never need the full definition of the inner product,
just its sign; nevertheless, for better readability we often write x �y ≥ 0 instead of
sgn(x �y) ≥ 0.

Norm and direction characterize the convergence in R̄p :xν → x if and only if
‖xν‖ → ‖x‖, and either x = 0 or ((xν)) → ((x)); note that the latter may not hold
if x = 0. It is not hard to see that the convergence defined in this way extends
the standard one in Rp and is consistent with the topological properties of R̄p .
Particularly, ∂Rp is homeomorphic to Sp−1; Rp is open and dense in R̄p; and R̄p

is compact and homeomorphic to the ball Dp .
For later convenience, we extend the mapping ω from Sp−1 to R̄p. We set

ω(0) = 0; for x �= 0, let ω(x) = ω(((x))), where the right-hand side refers to the
original definition of ω. Albeit the extended ω is no longer one–one, it satisfies the
following identity for all x ∈ R̄p:

((ω(x))) = ((x)).(22)

We write x = −y if and only if ((x)) = −((y)). For all x, y ∈ R̄p ,

sgn
(
(−x) �y

) = sgn
(
x �(−y)

) = − sgn(x �y).(23)

PROPOSITION 5.6. Let xν, yν ∈ Rp. If xν → x ∈ ∂Rp and ‖yν‖ < ∞, then
xν + yν → x.

PROOF. A straightforward verification: just note that ‖xν + yν‖ ≥ ‖xν‖ −
‖yν‖ → ∞ and then that

((xν + yν)) = xν + yν

‖xν + yν‖ =
xν‖xν‖ + yν

‖xν‖∥∥∥ xν‖xν‖ + yν

‖xν‖
∥∥∥ → ((x))

‖((x))‖ = ((x));

these two facts together give the desired convergence. �

Obviously, any measure on Rp may be extended to R̄p and, since Rp ⊂ R̄p , any
theorem about measures on R̄

p holds for measures on R
p .
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5.4. General properties of depth. In this subsection, X may be Rp, Dp, Sp−1,
or R̄p; we do all the proofs for X = R̄p , the other cases being entirely similar.
If Q is a measure on X, we write S(Q) for the set of all u ∈ Sp−1 such that
Q(∂Hu � {0}) = 0, and hQ for the function from Sp−1 to R such that hQ(u) =
Q(Hu).

PROOF OF THEOREM 3.2. Let, for j = 0,1,2, . . . , p − 1, the sets Aj consist
of all subsets of X of the form

{x ∈ R̄
p :xTu1 = 0, xTu2 = 0, . . . , xTup−i = 0} � {0},

where u1, u2, . . . , up−i are linearly independent vectors from Sp−1, for i ≤ j . The
union A of all Aj is an atomic system consisting of all linear subspaces of R̄p with
codimension at least 1 with the origin {0} removed. We apply Proposition 5.5 to
the measure Q (R̄p � {0}): any E ∈ A contains A from a countable system AQ.

For any A ∈ A, let A⊥ denote the set of all u ∈ Sp−1 such that u �x = 0 for
all x in A. Any such A⊥ has codimension at least 1, hence its dimension is less
than the full dimension of Sp−1—and therefore its measure µ is 0, as well as the
measure µ of any countable union of such sets, in particular of the union A⊥

Q of

all A⊥ such that A ∈ AQ. If A ⊆ E, then A⊥ ⊇ E⊥; thus by Proposition 5.5,
A⊥

Q contains all u such that Q({x ∈ R̄p :x �u = 0} � {0}) > 0. Since µ(A⊥
Q) = 0,

we obtain that µ(S(Q)) = 1; therefore S(Q) is dense in Sp−1. �

Weak convergence for subprobability measures is understood in the sense of
Billingsley (1968, 1971): we write Qν ⇀ Q, if the integrals of all bounded
continuous functions with respect to Qν converge to those with respect to Q. Weak
convergence implies that the total mass of Qν converges to Q; our sequences are
always formed by measures with the same total mass, hence it is not hard to see
that all relevant theorems hold (trivially if the total mass is zero, and by division
of the total mass otherwise—switching to “conditional probabilities”).

PROPOSITION 5.7. Suppose that Qν , Q are measures on R̄
p and Qν ⇀ Q.

If uν,u ∈ Sp−1 and uν → u, then

lim sup
ν→∞

Qν(Huν ) ≤ Q(Hu).(24)

If Q(∂Hu) = 0, then Qν(Huν ) → Q(Hu).

PROOF. Note first the following. Let uν,u ∈ Sp−1, uν → u and xν, x ∈ R̄p ,
xν → x. If uT

ν((xν)) ≥ 0 for infinitely many ν, then uT((x)) ≥ 0; this holds trivially
if x = 0 and follows from the fact that ((xν)) → ((x)) otherwise. Conversely, if
uT((x)) > 0, then uT

ν((xν)) > 0 for all but a finite number of ν, since in this case
x �= 0 and thus ((xν)) → ((x)).
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We start the proof by invoking the Skorokhod representation: it yields the
existence of random vectors ξν , ξ , defined on the common probability space
(�,S,P), such that L(ξν) = Qν , L(ξ) = Q and ξν → ξ almost surely. With the
help of (21), we obtain

lim sup
ν→∞

Qν(Huν ) = lim sup
ν→∞

P[uν
� ξν ≥ 0] = lim sup

ν→∞
P[uT

ν((ξν)) ≥ 0]

≤ P[uT((ξ)) ≥ 0] = P[u � ξ ≥ 0] = Q(Hu);
(25)

this proves (24). If Q(∂Hu) = 0, then

Q(Hu) = P[u � ξ > 0] = P[uT((ξ)) > 0] ≤ lim inf
ν→∞ P[uT

ν((ξν)) > 0]
≤ lim inf

ν→∞ P[uT
ν((ξν)) ≥ 0] = lim inf

ν→∞ Qν(Huν ).
(26)

The convergence follows from the combination of (25) and (26). �

PROPOSITION 5.8. Let �ϑ(z) be a function from Θ × Z to Rp; let Qν , Q be
measures on Z.

(i) If, for ϑν → ϑ ,

((�ϑν (zν))) → ((�ϑ(z))) whenever zν → z(27)

for almost all z with respect to Q (in particular, when � is jointly continuous in ϑ

and z), then Qν ⇀ Q and ϑν → ϑ imply that

lim sup
ν→∞

Qν ◦ �−1
ϑν

(Hu) ≤ Q ◦ �−1
ϑ (Hu).(28)

If (28) holds only with zν = z for all ν and Q-almost all z (that holds, e.g., if � is
continuous only in ϑ), then (28) still holds with Qν = Q for all ν.

(ii) If �ϑ(z), as a function of ϑ , is continuous at ϑ for Q-almost all z, then
Q ◦ �−1

ϑν
⇀ Q ◦ �−1

ϑ .

PROOF. The proof is completely analogous to that of Proposition 5.7; the
second part is an application of the continuous mapping theorem from the theory
of weak convergence. �

PROPOSITION 5.9. For any measure Q on R̄p , a function hQ(u) = Q(Hu) is
upper semicontinuous on Sp−1, and continuous at every u ∈ S(Q), the set of all
u ∈ S

p−1 such that Q(∂Hu � {0}) = 0.

PROOF. Upper semicontinuity follows from Proposition 5.7, setting Qν = Q

for all ν. To prove continuity, we apply the same proposition to measures defined
by Qν(E) = Q(E) = Q(E � {0}) for all E and ν. �
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PROOF OF PROPOSITION 3.1. The proposition directly follows from Propo-
sition 5.9. In a more detailed way, if hQ(u) < d(Q) + ε, then there is a sequence
uν ∈ S such that uν → u; upper semicontinuity yields that

inf
u∈S

hQ(u) ≤ lim sup
ν→∞

hQ(uν) ≤ hQ(u) ≤ d(Q) + ε,

and since ε was arbitrary, (ii) follows (the converse inequality is obvious). �

PROPOSITION 5.10. For any measure Q on R̄p , Q({0}) ≤ d(Q) ≤ (Q({0})+
Q(R̄p))/2.

PROOF. The first inequality is obvious. The second one follows from
Proposition 3.1 via Theorem 3.2, which implies that the set of those u for which
Q(Hu) + Q(H−u) = 1 + Q({0}) is dense in Sp−1. �

PROPOSITION 5.11. Let Qν,Q be measures on R̄p such that Qν ⇀ Q. If
Q(∂Hu) = 0 for all u ∈ Sp−1, then Qν(Hu) → Q(Hu) uniformly in u ∈ Sp−1.

PROOF. We topologize the space of all closed proper halfspaces in a natural
way: Huν → Hu if and only if uν → u. Clearly, this topology makes the space of all
halfspaces homeomorphic to Sp−1, hence compact and metrizable. If Huν → Hu

and Qν → Q, then Qν(Huν ) → Q(Hu), by Proposition 5.7. Finally, we have also
that Q(Huν ) → Q(Hu), again by Proposition 5.7. We verified all assumptions
of Proposition 2.2 from page 6 of Bickel and Millar (1992); the proposition
follows. �

PROPOSITION 5.12. For any measures Qν , Q on R̄
p, the following implica-

tions hold:
(i) if lim supν→∞ Qν(Hu) ≤ Q(Hu) for any u ∈ Sp−1, then lim supν→∞ d(Qν)

≤ d(Q);
(ii) if Qν ⇀ Q and Qν(Hu) → Q(Hu) uniformly in u ∈ Sp−1, then d(Qν) →

d(Q).

PROOF. In (i), the assumption asserts that for fixed u, Q(Hu) as a function
of Q is upper semicontinuous (with respect to the weak topology). Depth function
is thus the infimum of upper semicontinuous functions and therefore also upper
semicontinuous. The assumption in (ii) says that the functions hQν (u) = Qν(Hu)

converge uniformly to the function hQ(u) = Q(Hu); the convergence of infima
follows. �
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5.5. Measures concentrated in closed halfspaces. Hereafter, we denote by Gu

the open halfspace that is the interior of Hu. Taking complements with respect
to X (the correct choice of X being hopefully clear from the context), we have that
Gu = Hc−u.

We say that w lies on the arc connecting u and v from Sp−1 if one of the
following three possibilities holds: either w = u = v; or u = −v (and w is
arbitrary); or w lies between u and v on the shorter part of the circumference
created by the intersection of Sp−1 and the linear subspace generated by u and v.

PROPOSITION 5.13. Suppose that Q is a measure on R̄p such that Q(Gu) = 0
for some u ∈ Sp−1. For every v1, v2 ∈ Sp−1, if v1 �= u lies on the arc connecting
u and v2, then Q(Hv1) ≤ Q(Hv2).

PROOF. Note first that the assumptions imply that v2 �= u; if v2 = −u, then
Q(Hv2) = Q(R̄p) and the proposition holds trivially—hence we will assume that
v2 �= −u as well. In such a case, u and v2 are not collinear and

ũ = v2 − u(uTv2)

‖v2 − u(uTv2)‖
is well defined. It is straightforward to verify that (see Figure 3): uTũ = 0, hence
u is orthogonal to ũ and lies in Hũ; ũ lies in the linear space spanned by u and v2
and therefore on the same circumference as u, v2 and thus also v1; finally, vT

2ũ ≥ 0,
hence v2 lies in the halfspace Hũ. Since u1 lies on the arc connecting u and v2, it
also lies in Hũ. We express v1 and v2 in polar coordinates: for i = 1,2,

vi = u(uTvi) + ũ(ũTvi) = u cosϕi + ũ sinϕi,

where the angles ϕi are from (0, π). The condition that v1 lies on the arc
connecting u and v2 means that ϕ1 < ϕ2 and hence cotϕ1 > cotϕ2.

FIG. 3. An illustration for the proof of Proposition 5.13.
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Now it is sufficient to show that Hv1 � Hv2 ⊆ Hc−u, since then Q(Hv1 � Hv2) ≤
Q(Hc−u) = 0 and by subadditivity,

Q(Hv1) ≤ Q(Hv1 � Hv2) + Q(Hv2).

Suppose that x ∈ Hv1 � Hv2 . Then

((x))Tv1 = ((x))Tu cosϕ1 + ((x))Tũ sinϕ1 ≥ 0,(29)

((x))Tv2 = ((x))Tu cosϕ2 + ((x))Tũ sin ϕ2 < 0.(30)

Dividing (29) and (30) by sinϕ1 and sin ϕ2, respectively (we excluded the
possibility that either one of them is zero at the beginning), and combining both
inequalities, we obtain

((x))Tu (cotϕ1 − cotϕ2) > 0.

Hence ((x))Tu > 0, that is, x ∈ Hc−u. �

PROPOSITION 5.14. If Q is a measure on R̄p such that Q(Gu) = 0 for some
u ∈ Sp−1, then d(Q) = d(Q ∂Hu).

PROOF. We have to prove that d(Q) ≤ d(Q ∂Hu); the reverse inequality is
trivial. Fix ε > 0. Consider v ∈ ∂Hu ∩ Sp−1. For any w ∈ Sp−1,

Q(Hw) = Q(Hw ∩ Gu) + Q(Hw ∩ ∂Hu) + Q(Hw ∩ G−u)

= Q(Hw ∩ ∂Hu) + Q(Hw ∩ G−u),

since Q(Gu) = 0. If w approaches u along the arc connecting u and v, then
Q(Hw ∩ G−u) → 0. Therefore, there is w ∈ Sp−1 such that

Q(Hw) ≤ Q(Hw ∩ ∂Hu) + ε = Q(Hv ∩ ∂Hu) + ε = (Q ∂Hu)(Hv) + ε.

It follows that d(Q) ≤ d(Q ∂Hu) + ε. Since ε was arbitrary, the desired
inequality follows. �

5.6. Skeletons, centrality, topology. Throughout this subsection, Q is a
measure on R̄p or Sp−1, hQ(u) = Q(Hu) is a function on Sp−1, λ a nonnegative
constant and µ denotes the uniform distribution on Sp−1. For any λ, we define a
λ-skeleton of Q to be

sλ(Q) =
∫

Sp−1
u
(
hQ(u) ∧ λ

)
dµ(u).

Clearly, any skeleton assigns to Q a vector in a unit ball Dp . Skeletons give vector-
field approximations to probability fields; the inspiration for the notion came from
Birch (1959).
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PROPOSITION 5.15. If λ = λ(Q) ≥ 0 depends continuously on Q, with
respect to the weak topology, and Q({0}) = 0, then sλ(·)(·) is continuous at Q.

PROOF. Suppose that Qν ⇀ Q and Q({0}) = 0. By Proposition 5.7 and
Theorem 3.2, hQν(u) → hQ(u) for µ-almost all u. If λ(Qν) → λ(Q), then

u
(
hQν (u) ∧ λ(Qν)

) → u
(
hQ(u) ∧ λ(Q)

)
for µ-almost all u. The proof is concluded by the application of the Lebesgue
dominated convergence theorem. �

We call Q λ-central, if the level set {u ∈ Sp−1 :hQ(u) ≤ λ} surrounds 0. Note
that λ-centrality of Q means also its λ̃-centrality whenever λ ≤ λ̃. The following
proposition expresses the basic Helly–Carathéodory principle.

PROPOSITION 5.16. If λ > d(Q) and sλ(Q) = 0, then Q is λ-central and
λ ≥ 1/(p + 1).

PROOF. Since λ > d(Q), Proposition 3.1 and Theorem 3.2 imply the
existence of u ∈ S(Q) such that hQ(u) < λ. By Proposition 5.9, the level set
Eλ = {u ∈ Sp−1 :hQ(u) ≤ λ} contains some neighborhood of u; hence µ(Eλ) > 0.
Since sλ(Q) = 0, the set Eλ cannot be contained in any open halfspace Hc

u; hence
Eλ surrounds 0, by Proposition 2.2(ii), and Q is λ-central.

Proposition 2.2(iii) then yields the existence of a set V ⊆ Eλ surrounding 0
with cardinality at most m + 1. If a set V surrounds 0, then the system {Hv}v∈V

covers R̄
p and

1 ≤ ∑
v∈V

Pϑ(Hv) ≤ (p+1)λ. �

The following proposition specifies how skeletons behave on the compactifying
boundary.

PROPOSITION 5.17. Let Q be a probability measure on R̄p such that
Q(H−u) = 1 for some u ∈ S

p−1 . For any λ ≥ 0, sλ(Q) ∈ H−u.

PROOF. Given u ∈ Sp−1, we write v∗ for the reflection of v ∈ Sp−1 about
∂Hu: v∗ = v − 2u(uTv). This reflection places points from the open hemispheres
Gu ∩ Sp−1 and G−u ∩ Sp−1 into one–one correspondence.

Suppose that v ∈ Gu∩S
p−1, v �= u. Let ṽ = v−u(uTv); note that ṽ is orthogonal

to u and thus lies in ∂Hu. We will decompose both v and v∗ to a sum of vectors
collinear with u and ṽ. First, uTv∗ = −uTv, hence the corresponding components
in the direction of u are of the same magnitude. Second, since

ṽTv∗ = ṽTv = 1 − (uTv)2 ≥ 0,
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v and v∗ lie in Hṽ , and v lies on the arc connecting u and v∗: all three are collinear
and if v ∈ Gu, that is, uTv > 0, then uTv∗ < 0. Proposition 5.13 implies that
Q(Hv) ≤ Q(Hv∗); therefore,

hQ(v) ∧ λ ≤ hQ(v∗) ∧ λ(31)

for all λ ≥ 0. Computing the λ-skeleton, we obtain

sλ(Q) =
∫

Sp−1
v
(
hQ(v) ∧ λ

)
dµ(v)

=
∫

Gu∪G−u

v
(
hQ(v) ∧ λ

)
dµ(v) +

∫
∂Hu

v
(
hQ(v) ∧ λ

)
dµ(v).

(32)

The second integral results in a vector lying in ∂Hu. The first integral in (32) can
be further orthogonally decomposed to

u

∫
Gu

(uTv)
((

hQ(v) ∧ λ
) − (

hQ(v∗) ∧ λ
))

dµ(v)

+
∫

Gu

ṽ
ṽTv

‖ṽ‖2

((
hQ(v) ∧ λ

) + (
hQ(v∗) ∧ λ

))
dµ(v).

(33)

The second integral in (33) results again in ∂Hu. The first one results in H−u, due
to (31); since ∂Hu ⊆ H−u, we obtain by (32) and (33) that sλ(Q) ∈ H−u. �

A point where the vector field is equal to 0 is its critical point. Critical points
of continuous vector fields are effectively hunted by the Kronecker index theory.
Let S, T be topological spaces. Continuous mappings f , g from S to T are
called homotopic, if one can be continuously transformed to another: there is
a continuous mapping π from S × [0,1] to T such that π(x,0) = f (x) and
π(x,1) = g(x). A continuous mapping from Sp−1 to Sp−1 is homotopic to a
constant mapping if and only if it can be extended to a continuous mapping of
Dp to Sp−1. Homotopy is an equivalence relation: if f is homotopic to a constant
and f and g are homotopic, then g is homotopic to a constant. A topological
space T is called contractible if the identity mapping from T to T is homotopic
to a constant. A more thorough picture of homotopic equivalence of continuous
mappings of spheres gives the theory of degree: a mapping is homotopic to a
constant if and only if its topological degree is 0. On the sphere, neither the identity
mapping f (x) = x (degree 1) nor the antipodal mapping f (x) = −x (degree −1)
is homotopic to a constant. If a restriction to the boundary ∂U of a region U of a
vector field is nonsingular, its degree is called an index of a vector field over U .
The following proposition is a reformulation of the well-known principle from the
theory of vector fields, saying that a continuous vector field on ∂U with a nonzero
index possesses a critical point inside U .
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PROPOSITION 5.18. Let ξ be a continuous vector field on Rp. If Rp contains
a subset S homeomorphic to Sp−1 and such that the restriction of ξ to S is not
homotopic to a constant, then ξ has a critical point in the region bounded by S

(possibly lying on its boundary).

PROOF [see Dodson and Parker (1997), page 25]. Instead of Rp , we might
take any contractible topological space �, due to the pathwise connectedness of
Sp−1; see, for instance, Exercise 19(ii), page 26 of Rotman (1988). �

The following theorem is the core of our general approach to centerpoint
hunting, in the vein of Birch (1959) and Donoho and Gasko (1992). The general
theorem given below covers the simplest case when the parameter space is
Θ = Rp (Examples 1, 2, and 4 showed the practical importance of this case).
More sophisticated parameter spaces can be analyzed similarly, only the adequate
topological engine would be different.

THEOREM 5.19. If a probability field {Pϑ :ϑ ∈ R̄p} on R̄p is:
(i) continuous in the weak topology at all ϑ ∈ R̄p :Pϑν ⇀ Pϑ whenever

ϑν → ϑ ,
(ii) Pϑ(H−ϑ) = 0 for all ϑ ∈ ∂R

p ,
(iii) Pϑ({0}) = 0 for all ϑ ∈ R

p ,

then there exists a point ϑ̇ ∈ Rp such that d(Pϑ̇) ≥ 1/(p + 1).

PROOF. For fixed λ > 0, the continuity of the probability field and the fact
that Pϑ({0}) = 0 for all ϑ imply, via Proposition 5.15, the continuity of the
λ-skeleton sλ(Pϑ) as a vector field dependent on ϑ . Assumption (ii) implies, via
Proposition 5.17, that sλ(Pϑ) ∈ Hϑ for any ϑ ∈ ∂Rp . The Poincaré–Bohl theorem
[see Dodson and Parker (1997), page 19] says that if f and g are two continuous
functions from Sp−1 to Sp−1 not pointing to opposite directions at any point,
then f and g are homotopic. This holds in our case; the skeleton sλ(Pϑ) never
points in the direction opposite to ϑ , hence its degree on ∂R

p is equal to the
degree of the identity mapping on S

p−1. The latter is equal to 1; therefore the
λ-skeleton cannot be homotopic to a constant. By Proposition 5.18, such a λ-skel-
eton has a critical point in Rp . By Proposition 5.16, if λ > sup{d(Pϑ) :ϑ ∈ R̄p},
then λ cannot be less than 1/(p + 1). Thus, sup{d(Pϑ) :ϑ ∈ R̄p} ≥ 1/(p + 1).
Proposition 5.12 and compactness of R̄p yield a deepest parameter, a point ϑ̇ ∈ R̄p

such that d(Pϑ̇) = sup{d(Pϑ) :ϑ ∈ R̄p}. Apparently, d(Pϑ̇) ≥ 1/(p + 1); finally,
ϑ̇ cannot lie in ∂Rp , since from (ii) follows that d(Pϑ) = 0 for any ϑ ∈ ∂Rp . �
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5.7. Applications: regression probability fields. Two principal techniques to
overcome technical difficulties in the application of Theorem 5.19 are compactifi-
cation and smoothing. Recall that X̄ is a compactification of X if it is compact and
X is dense in X̄; we denote X̄ � X by ∂X. We say that a probability field
{P̄ϑ :ϑ ∈ Θ̄} on X̄ is a compactification of a probability field {Pϑ :ϑ ∈ Θ} on X,
if X̄ is a compactification of X, the indexing set Θ̄ is a compactification of Θ, and
P̄ϑ = Pϑ for all ϑ ∈ Θ, in the sense that P̄ϑ X = Pϑ and P̄ϑ(∂X) = 0.

For models with Θ = Rp, the useful compactifications are those with Θ̄ = R̄p—
for these, Theorem 5.19 yields the existence of a centerpoint, in the original
Θ = Rp (so that we may eventually forget about the compactification trick). The
appropriate compactified probability field can be found by a natural process of
continuous extension. As far as the assumptions of Theorem 5.19 are concerned,
note first that (ii) implies (iii) also for all x ∈ ∂Rp; for verifying (i), the following
scheme may be helpful.

PROPOSITION 5.20. Suppose that Θ is an open, dense subset in Θ̄. The
probability field {P̄ϑ :ϑ ∈ Θ̄} is continuous with respect to weak topology, if
ϑν → ϑ implies weak convergence of P̄ϑν to P̄ϑ in the following three cases:

(a) ϑν ∈ Θ, ϑ ∈ Θ;
(b) ϑν ∈ Θ, ϑ ∈ Θ̄ � Θ;
(c) ϑν ∈ Θ̄ � Θ, ϑ ∈ Θ̄ � Θ.

PROOF. The proof is a straightforward manipulation with subsequences. �

To check (a) in Proposition 5.20, we verify the continuity of the original
probability field—setting P̄ϑ = Pϑ for ϑ ∈ Θ and extending the measures P̄ϑ ,
if needed. If we define P̄ϑ for ϑ ∈ ∂Rp by continuous extension, then (b) comes
automatically. Finally, checking (c) is often easy.

Another problem in Theorem 5.19 is its assumption (iii), usually not holding
when the underlying distribution has atoms. A technique to overcome this
difficulty is smoothing: we add a small perturbation with absolutely continuous
distribution. However, it may be not that easy to backtrack the smoothing
approximation successfully; unless we are able to control the depth on the
compactifying boundary (for instance).

Let us illustrate all this technology on the simplest example.

EXAMPLE 1 (Centerpoints). Let P be a probability on R
p; let Z be a random

variable whose distribution is P . The function �ϑ(z) = ϑ −z is continuous, jointly
in ϑ and z, hence the gradient probability field Pϑ = L(ϑ − Z) is continuous at
any ϑ ∈ R

p , by Proposition 5.8—we checked assumption (a) of Proposition 5.20.
If ϑ ∈ ∂R

p , then Proposition 5.6 yields that ϑν − z converges to ϑ ; we extend the
definition of � setting �ϑ(z) = ϑ for ϑ ∈ ∂R

p . By Proposition 5.6, this extension
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preserves the continuity of �, jointly in ϑ and z; therefore, assumptions (b) and (c)
are checked as well and Proposition 5.20 yields assumption (i) of Theorem 5.19.

Note that for ϑ ∈ ∂Rp , the probability Pϑ is concentrated in ϑ , therefore
Pϑ(H−ϑ) = 0; this checks assumption (ii) of Theorem 5.19. At this point, (ii) holds
without any continuity assumption on Z; this implies, in particular, that d(Pϑ) = 0
for any ϑ ∈ ∂R

p .
The only remaining assumption of Theorem 5.19 is (iii). If it holds—for

instance, when the distribution of Z is absolutely continuous—then we are able
to prove the existence of a centerpoint in Rp. However, assumption (iii) does not
hold when the distribution of Z has atoms with nonzero probability. To overcome
this difficulty, we consider a sequence of compactified probability fields arising
from random variables Z + Zν , with the following properties: Zν → 0 and hence
the distributions Pν of Z + Zν converge weakly to P ; the distributions of all Zν ,
and hence of Z+Zν , are absolutely continuous. All the perturbed probability fields
satisfy (i), (ii) and (iii); Theorem 5.19 yields a sequence of centerpoints ϑ̇ν ∈ Rp

such that dT(ϑ̇ν,Z + Zν) ≥ 1/(p + 1).
Such a sequence has a subsequence converging to ϑ̇ ∈ R̄p . The continuity of �

implies, via Proposition 5.8, that lim supν→∞ Pν ◦ �−1
ϑ̇ν

(Hu) ≤ P ◦ �−1
ϑ̇

(Hu) (we
abuse the subsequence notation in the usual way). Proposition 5.12 then yields
that dT(ϑ̇,P ) ≥ 1/(p + 1). Finally, ϑ̇ cannot lie in ∂Rp since all ϑ ∈ ∂Rp have
dT(ϑ,Z) = 0; recall that this was shown without the help of the absolute continuity
assumption.

In regression models, we follow essentially the same scheme. The required
technical facts are summarized in the following proposition.

PROPOSITION 5.21. Let Z = (X,Y ) be a random variable with values in
X × Rm where X ⊆ Rk . If {P� :� ∈ Rp} is a probability field such that P� =
L(XXT� − XY T) for any � ∈ R

p = R
km, then it has a compactification, a

probability field {P� :� ∈ R̄p} on R̄p, with the following properties:
(i) the probability field {P� :� ∈ R̄p} is continuous (in weak topology) at

every � ∈ Rp and at every � ∈ ∂Rp such that P[X �� = 0];
(ii) lim supν→∞ P�ν ≤ P�, whenever �ν ∈ Rp and �ν → � ∈ R̄p;

(iii) for � ∈ ∂Rp , P (H�) = 1 and d(P�) = P�({0}) = P�(H−�) =
P[X �� = 0].

If, moreover, �(X) = 0, then:
(iv) {P� :� ∈ R̄p} is continuous (in weak topology) at all � ∈ R̄p;
(v) for every � ∈ ∂Rp , d(P�) = P (H−�) = 0.

The values of the compactification at ϑ ∈ ∂Rp are given by P� =
L(ω(XXT((�)))).
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Before proving Proposition 5.21, we show how it can be applied in the
proof of Theorem 3.4. Note that Proposition 5.21 and Theorem 5.19 imply
Conjecture 1(b) of Rousseeuw and Hubert (1999a) immediately. If the distribution
of Z is absolutely continuous (with respect to the appropriate Lebesgue measure),
then �(X) = 0, assumption (iii) of Theorem 5.19 holds, and Proposition 5.21(iv)
and (v) implies assumptions (i) and (ii), respectively.

PROOF OF THEOREM 3.4. If �(X) > 0, then the compactified probability
field may not be continuous with respect to weak topology at points from ∂Rp .
We consider a sequence of compactified probability fields generated by random
variables Z + Zν = (X + Xν,Y + Yν) where Zν → 0. All Zν , and thus all
Z + Zν , have absolutely continuous distributions. Hence, �(X + Xν) = 0 and all
probability fields generated by perturbed random variables satisfy all assumptions
of Theorem 5.19. We obtain a sequence of centerpoints ϑ̇ν ∈ Rp , dT(ϑ̇ν,Z+Zν) ≥
1/(p + 1); take its subsequence with a limit ϑ̇ ∈ R̄

p . From Proposition 5.21(ii)
follows, via Proposition 5.12(i), that dT(ϑ̇,Z) ≥ 1/(p + 1). The final step is to
show that ϑ̇ cannot lie in ∂R

p . By Proposition 5.21(iii), dT(ϑ,Z) = P[X �ϑ = 0] ≤
�(X) for ϑ ∈ ∂Rp . Therefore, the desired result follows—if �(X) < 1/(p + 1).

By Proposition 5.21(ii), 5.21(i) and 5.12, tangent depth is upper semicontinuous
on R̄p , which is compact; this proves the existence of the deepest parameter ϑ̇

in R̄
p . Proposition 5.21(iii) then implies that ϑ̇ cannot lie in ∂R

p . �

PROOF OF PROPOSITION 5.21. The continuity of the probability field at
all � ∈ Rp follows, via Proposition 5.8(ii), from the joint continuity (in x, y

and �) of the function ��(x, y) = xxT� − xyT. In the same way, (ii) follows
from Proposition 5.8(ii) for � ∈ Rp .

Suppose now that �ν → �, �ν ∈ Rp, � ∈ ∂Rp . Since ‖�ν‖ → ∞, we may
assume that �ν �= 0; in view of the fact that also ((�ν)) → ((�)), we obtain that

((xνx
T
ν�ν − xνy

T
ν )) = ((

xνx
T
ν((�ν)) − xνy

T
ν‖�ν‖−1)) → ((

xxT((�))
))
.(34)

This suggests the form of the compactified probability field: P� =
L(ω(XXT((�)))). Under this definition, Proposition 5.8(i), in view of (34), com-
pletes the proof of (ii). To complete the proof of part (i), we first need to show
that

xxT�ν − xyT → ω
(
xxT((�))

)
(35)

for almost all (x, y) with respect to P = L(X,Y ). Suppose that P[XT((�)) =
0] = 0; then X �= 0 almost surely, and therefore XXT((�)) �= 0 almost surely.
Hence, for P -almost all x (and y), ‖xxT((�ν))‖ → ‖xxT((�))‖ > 0 and therefore

‖xxT�ν‖ = ‖�ν‖‖xxT((�ν))‖ → ∞(36)
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and

((xxT�ν)) = xxT((�ν))

‖xxT((�ν))‖
−→ xxT((�))

‖xxT((�))‖ = ((
xxT((�))

)) = ((
ω

(
xxT((�))

)))
.

(37)

By Proposition 5.6, (36) and (37) imply (35). Finally, if �ν,� ∈ ∂Rp and
�ν → �, then((

ω
(
xxT((�ν))

))) = ((
xxT((�ν))

)) −→ ((
xxT((�))

)) = ((
ω

(
xxT((�))

)))
,(38)

completing the proof of (iii) completely.
Let � ∈ ∂Rp . By (22), (21) and (20),

P�(H�) = P
[
� �ω

(
XXT((�))

) ≥ 0
] = P

[
((�)) � ((XXT((�))

)) ≥ 0
]

= P
[
((�)) �(XXT((�))

) ≥ 0
] = P

[
tr

(
((�))TXXT((�))

) ≥ 0
]

= P[XT((�))((�))TX ≥ 0] = P[‖((�))TX‖2 ≥ 0] = 1.

(39)

Similarly, for all U ∈ Sp−1,

P�(HU) = P
[
U �ω

(
XXT((�))

) ≥ 0
] = P

[
tr

(
U TXXT((�))

) ≥ 0
]

= P[XT((�))U TX ≥ 0] ≥ P[XT((�)) = 0] = P[X �� = 0];(40)

X �� = 0 means that XTϑj = 0 for j = 1,2, . . . ,m, where ϑj is the j th column
of �. By (23),

P�(H−�) = P
[−((�)) � (XXT((�))

) ≥ 0
]

= P
[− tr

(
((�))TXXT((�))

) ≥ 0
] = P[−XT((�))((�))TX ≥ 0]

= P
[‖((�))TX‖2 ≤ 0

] = P[((�))TX = 0] = P[X �� = 0].
(41)

Since (40) and (41) hold for any � ∈ ∂Rp , we obtain the proof of (iii):

d(P�) = P�(H−�) = P[((�))TX = 0] = P[((�))TXXT = 0]
= P[((�))TXXT = 0] = P[XXT((�)) = 0] = P�({0}).(42)

The rest of the proposition is easy: just note that if �(X) = 0, then P[X �� =
0] = 0 for all � ∈ R̄p . �

5.8. Bias and breakdown. In this subsection, the function � involved in the
definition of tangent depth is supposed to be an arbitrary function from Θ × Z
to Rp , measurable as a function from Z to Rp for any ϑ ∈ Θ, and we suppress the
dependence on it in the notation. As in Section 4, υ stands for the variation metric
and γ for the contamination distance.
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PROPOSITION 5.22. Suppose that π(P, P̃ ) ≤ ε. Then:
(i) |dT(ϑ,P ) − dT(ϑ, P̃ )| ≤ ε if π = υ;

(ii) (1 − ε)dT(ϑ,P ) ≤ dT(ϑ, P̃ ) ≤ dT(ϑ,P ) + ε if π = γ .

PROOF. The assumption υ(P, P̃ ) ≤ ε implies that∣∣P (
�−1

ϑ (Hu)
) − P̃

(
�−1

ϑ (Hu)
)∣∣ ≤ ε

for any u �= 0 and any ϑ ∈ Θ. This implies (i). The second inequality in (ii) follows
from (i) and the inequality υ(P, P̃ ) ≤ γ (P, P̃ ) ≤ ε. To see the first inequality in
(ii), just note that

(1 − ε)P
(
�−1

ϑ (Hu)
) ≤ P̃

(
�−1

ϑ (Hu)
)

for any any u �= 0 and any ϑ ∈ Θ. �

PROOF OF THEOREM 4.1. To see (i), note first that ϑ̃ can be from T (P̃ ) only
if dT(ϑ̃, P̃ ) ≥ η; but then, by Proposition 5.22, dT(ϑ̃,P ) ≥ η−ε, proving (i). Let ϑ̇

be from T (P ). Any ϑ̃ can be from T (P̃ ) only if dT(ϑ̇, P̃ ) ≤ dT(ϑ̃ , P̃ ). We obtain
that

η ≤ dT(ϑ̇,P ) ≤ dT(ϑ̇, P̃ ) + ε ≤ dT(ϑ̃ , P̃ ) + ε ≤ dT(ϑ̃,P ) + 2ε,(43)

by the repeated application of Proposition 5.22(i). This proves (ii). Finally, the
proof of (iii) is analogous, only now Proposition 5.22(ii) gives

η(1 − ε) ≤ (1 − ε)dT(ϑ̇,P ) ≤ dT(ϑ̇, P̃ ) ≤ dT(ϑ̃, P̃ ) ≤ dT(ϑ̃,P ) + ε(44)

instead of (43). �

Suppose now that Θ = Rp (all reasoning is valid for any locally compact space).

PROPOSITION 5.23. If ϑn ∈ Θ, ϑn → ∞, then lim supn→∞ dT(ϑn,P ) ≤
dT(∞,P ).

PROOF. A straightforward consequence of the definition of dT(∞,P ). �

PROOF OF THEOREM 4.2. Fix ε > ε∗
π(T ,P ). Then T (Bπ (P, ε)) is not

bounded and hence there is a sequence ϑ̃n ∈ T (P̃n) such that dT(ϑ̃n, P̃n) ≥ η. By
Propositions 5.22 and 5.23, ε ≥ η − dT(∞,P ). Since ε was arbitrary, (i) follows.

The proof of (ii) starts in the same way and we arrive at an observation similar
to (43), with ϑ̃ replaced by ϑ̃n. Proposition 5.23 then yields

η ≤ lim sup
n→∞

dT(ϑ̃n,P ) + 2ε ≤ dT(∞,P ) + 2ε
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which proves (ii). Finally, (iii) comes also in an analogous way, only (44) is used
instead of (43), giving

(1 − ε)η ≤ lim sup
n→∞

dT(ϑ̃n,P ) + ε ≤ dT(∞,P ) + ε,

implying (iii). �

5.9. A refined analysis of the regression model. In this subsection, Z = (X,Y )

is a random variable with values in X × R and {Pϑ :ϑ ∈ R̄p} is a (linear, not
multivariate) regression probability field: Pϑ = L(XXTϑ − XY T) for ϑ ∈ R

p .
The geometric definition of the regression depth shows that it is independent

of the parametrization (this principle holds in greater generality, but we will not
develop this theme here). The following notion comes from the theory of nonlinear
regression. Given a regression function f (x,ϑ), the solution locus of ϑ ∈ Θ is
defined to be

�(ϑ) = {(y, x) :y = f (x,ϑ), x ∈ X}.
In linear regression, �(ϑ) = {(y, x) :y = xTϑ,x ∈ X}. A closer investigation of
graphs of fitted surfaces reveals how this definition can be extended to ϑ from
∂Rp: exploring the limits of sets �(ϑ) in terms of set convergence, we arrive at the
definition

�(ϑ) = {(y, x) :x �ϑ = 0, x ∈ X}.
This indicates a statistical interpretation for the parameter points from the cosmic
extension: they correspond to “vertical” regression fits. Since x �ϑ = 0 if and
only if x �(−ϑ) = 0, we have that �(ϑ) = �(−ϑ); that is, each vertical fit may
be interpreted as occurring once in upwards and once in downwards orientation.
Therefore, a projective plane might be more appropriate compactification than
the cosmic one from the statistical point of view; however, the latter has more
convenient topological properties. Note that by Proposition 5.21(iii), d(P−ϑ) =
P[X �(−ϑ) = 0] = P[X �ϑ = 0] = d(P−ϑ) for any ϑ ∈ ∂Rp , hence the cosmic
compactification is consistent from the depth point of view.

For the proof of Theorem 5.25, the following technical result is required.

PROPOSITION 5.24. If ϑν → ϑ ∈ ∂Rp , then Pϑν (G−ϑ) → 0.

PROOF. Just note that, for any ϑ ∈ Rp and any u ∈ R̄p ,

P[u �(XXTϑ − XY) = 0] = P[−((u))T(XXTϑ − XY) = 0]
≥ P[((u))TX = 0] = P[X �u = 0](45)
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and therefore

lim sup
ν→∞

P[(−ϑ) �(XXTϑν − XY) > 0]

= lim sup
ν→∞

(
P[(−ϑ) �(XXTϑν − XY) ≥ 0] − P[(−ϑ) �(XXTϑν − XY) = 0])

≤ lim sup
ν→∞

P[(−ϑ) �(XXTϑν − XY) ≥ 0] − P[X �(−ϑ) = 0]
≤ P[X �ϑ = 0] − P[X �ϑ = 0] = 0. �

Assume the same setting as in the definition of tangent depth. For any E ⊆ Z,
we define

d �
T (ϑ,P E) = d

(
(P E) ◦ �−1

ϑ

) = inf
u�=0P

(
�−1

ϑ (Hu) ∩ E
) = d

(
Pϑ �(E,ϑ)

)
,

where �(E,ϑ) = {�(z,ϑ) : z ∈ E} and Pϑ = P ◦ �−1
ϑ . If P is the distribution of

a random variable Z, then we write d �
T (ϑ,Z E) for d �

T (ϑ,L(Z) E); in such a
case,

d �
T (ϑ,Z E) = inf

u�=0P
[
Z ∈ �−1

ϑ (Hu) ∩ E
] = inf

u�=0P[�ϑ(Z) ∈ Hu and Z ∈ E].

THEOREM 5.25. Suppose that Z = (X,Y ) is a random variable with values
in X×R ⊆ Rp+1, and �ϑ(z) = �ϑ(y, x) = xxTϑ − xy for any ϑ ∈ Θ = Rp . If ϑν

is a sequence from R
p such that ϑν → ϑ ∈ ∂R

p for ν → ∞, then

lim sup
ν→∞

d �
T (ϑν,Z) ≤ sup

η∈Rp

d �
T

(
η,Z �(ϑ)

)
.(46)

PROOF. We prove first that

lim sup
ν→∞

d(Pϑν) ≤ lim sup
ν→∞

d(Pϑν ∂Hϑ)(47)

(which actually means equality since the reverse is obvious) and then the equality

lim sup
ν→∞

d(Pϑν ∂Hϑ) = lim sup
ν→∞

dT

(
ϑν,Z �(ϑ)

)
.(48)

Fix ε > 0. By Proposition 5.24, there is ν0 such that Pϑν (G−ϑ) < ε for ν > ν0;
thus by Proposition 5.14,

d(Pϑν ) ≤ d(Pϑν Hϑ) + ε = d(Pϑν ∂Hϑ) + ε.

Since ε is arbitrary, (47) follows. The verification of (48) is rather straightforward.
Note first that

d(Pϑν ∂Hϑ) = inf
u�=0P[uT(XXTϑν − XY) ≥ 0 and ((ϑ))T(XXTϑν − XY) = 0]
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and

dT

(
ϑν,Z �(ϑ)

) = inf
u�=0P[uT(XXTϑν − XY) ≥ 0 and ((ϑ))TX = 0].

While in the general case only the obvious inequality given by (45) holds, the
equality (48) holds when ϑν → ϑ ∈ ∂R

p . Let ζν = XXTϑν − XY . We obtain that

lim sup
ν→∞

d(Pϑν ∂Hϑ)

= lim sup
ν→∞

inf
u�=0P[uTζν ≥ 0 and ((ϑ))T(XXTϑν − XY) = 0]

= lim sup
ν→∞

inf
u�=0

(
P[uTζν ≥ 0 and ((ϑ))TX = 0]
+ P[uTζν ≥ 0 and ((ϑ))TX �= 0 and XTϑν − Y = 0])

≤ lim sup
ν→∞

(
inf
u�=0P[uTζν ≥ 0 and ((ϑ))TX = 0]

+ P[((ϑ))TX �= 0 and XTϑν = Y ]
)

≤ lim sup
ν→∞

dT

(
ϑν,Z �(ϑ)

)
+ lim sup

ν→∞
P

[
((ϑ))TX �= 0 and XT((ϑν)) = Y‖ϑν‖−1]

≤ lim sup
ν→∞

dT

(
ϑν,Z �(ϑ)

) + P[((ϑ))TX �= 0 and XT((ϑ)) = 0],
yielding the desired result, since the last probability is equal to zero. �

In the linear regression with Θ = Rp, Theorem 5.25 gives that

dT(∞,Z) ≤ sup
ϑ∈Rp

sup
η∈Rp

d �
T

(
η,Z �(ϑ)

)
.(49)

As already mentioned, the bound dT(∞,Z) ≤ �(X) follows from Proposi-
tions 5.21(ii) and 5.12(i). If “the model holds,” that is, there is a parameter ϑ0
such that the conditional distribution of Z given X is symmetric about �(ϑ0), then
the depth of ϑ0 is δ0 + (1 − δ0)/2 with δ0 = P[XTϑ0 = Y ]; by Theorem 5.25,

dT(∞,Z) ≤ �0 + 1
2

(
�(X) − �0

)
,

where �0 = supϑ �=0 P[XTϑ0 = Y and XTϑ = 0] ≤ δ0.

APPENDIX: PROOF OF THEOREM 3.3 IN FULL GENERALITY

A.1. Additional facts from measure theory. We write clE for the topological
closure of a set E; all other notation introduced throughout the paper is kept. In
what follows, Qν , Qi

ν , Qi and Q are all (bounded) measures on a separable metric
space X.
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LEMMA A.1.1. Suppose that Qν ⇀ Q. If E1, E2 are closed sets such that
Qν(E1 ∪ E2) = Q(E1 ∪ E2) and Qν(E1 ∩ E2) = Q(E1 ∩ E2) = 0 for all ν, then
Qν(Ei) → Q(Ei) for i = 1,2.

PROOF. Since Ei are closed, we have for i = 1,2,

lim sup
ν→∞

Qν(Ei) ≤ Q(Ei).(50)

Using the fact that Qν(E2) = Qν(E1 ∪ E2) − Qν(E1) for all ν and also for Q in
place of Qν , we obtain, in view of (50) for E2, that

Q(E1) ≤ lim inf
ν→∞ Qν(E1);

together with (50) for E1 this yields the convergence for E1. The proof for E2 is
symmetric. �

LEMMA A.1.2. Suppose that Qν = ∑∞
i=1 Qi

ν and Q = ∑∞
i=1 Qi .

(i) If Qi
ν ⇀ Qi for all i, then Qν ⇀ Q.

(ii) If E is a system of sets such that Qi
ν(E) → Qi(E) uniformly for all E ∈ E ,

then Qν(E) → Q(E) uniformly for all E.

PROOF. We prove (ii) first. Fix ε > 0. Choose k such that
∞∑

i=k+1

Qi(X) ≤ ε

4
.(51)

Choose ν0 = ν(ε) such that for ν > ν0,

|Qi
ν(E) − Qi(E)| ≤ ε

4k
(52)

for all i = 1,2, . . . , k, all E ∈ E and also E = X. Note that
k∑

i=1

Qi
ν(X) ≥

k∑
i=1

Qi(X) −
k∑

i=1

∣∣Qi
ν(X) − Qi(X)

∣∣
≥ 1 − ε

4
− kε

4k
= 1 − ε

2
.

(53)

Combining (51), (52) and (53) yields for the given ε > 0: there is ν0 such that for
all ν > ν0 and all E ∈ E ,

|Qν(E) − Q(E)| ≤
∣∣∣∣∣

∞∑
i=k+1

Qi
ν(E)

∣∣∣∣∣ +
∣∣∣∣∣

k∑
i=1

Qi
ν(E) − Qi(E)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=k+1

Qi(E)

∣∣∣∣∣
≤

∞∑
i=k+1

Qi
ν(X) +

k∑
i=1

|Qi
ν(E) − Qi(E)| +

∞∑
i=k+1

Qi(X)

≤ ε

4
+ kε

4k
+ ε

2
= ε.

Since ε was arbitrary, the uniform continuity is proved.
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The proof of (i) goes along the same lines, only in (53) we take E to be just
a single Q-continuity set; it is clear that then it is also a Qi -continuity set for
all i. �

A.2. Additional geometric facts. We need a lemma similar to Theorem 3.2,
but specific for the regression setting.

LEMMA A.2.1. For any probability Q on X × R, the set {ϑ :Q({(x, y) :y =
ϑTx}) > 0} has zero Lebesgue measure in Θ = Rp .

PROOF. Consider an atomic system A in Z = R × X, the union of Aj for
j = 0,1,2, . . . , k, defined in the following way. The single element of A0 is ∅;
A1 contains all points (x, y) ∈ Z, that is, all sets consisting of all (x, xTϑ) ∈ Z
such that ϑ belongs to a codimension 1 affine subspace of Rp; A2 contains all
sets consisting of all (x, xTϑ) ∈ Z such that ϑ belongs to a codimension 2 affine
subspace of Rp (lines in the simple linear regression); generally, Aj contains all
sets composed from all (x, xTϑ) ∈ Z such that ϑ belongs to a codimension j affine
subspace of Rp. It is straightforward to verify that A is an atomic system. By
Propositions 5.4 and 5.5, any E ∈ A such that Q(A) > 0 contains an A from a
countable system AQ; there is a similar dual structure, the set of all ϑ such that
(x, xTϑ) ∈ E is contained in the set of all ϑ with (x, xTϑ) ∈ A; and any such set
has codimension at least 1, thus has zero Lebesgue measure in R

p, as does any
countable union of them. �

The rest of this subsection is oriented toward the proof of Lemma A.2.4, which
gives a special condition for the uniform convergence of Qν to Q on halfspaces,
applicable to regression probability fields. We keep the same halfspace notation
Hu and Gu for the corresponding hemispheres Hu ∩ Sp−1 and Gu ∩ Sp−1. The
collection of all finite intersections of closed hemispheres in Sp−1 is denoted by
Hp−1. Recall that a system of sets is called a convergence-determining class if
Qν(E) → Q(E) for all its elements E implies that Qν ⇀ Q.

LEMMA A.2.2. For any p, Hp−1 is a convergence-determining class
on Sp−1.

PROOF. The lemma follows from Billingsley [(1968), Corollary 1, page 14]:
Hp−1 is closed under the formation of finite intersections and given any x ∈ Sp−1

and any ε > 0, there is a finite intersection E of hemispheres such that x lies in the
interior of E and E is contained in the ball with center x and radius ε. �

Suppose that A is an atomic system composed from all linear (proper)
subspaces of Rp intersected with Sp−1. That is, A0 contains only ∅, A1 only
antipodal pairs of points, A2 circles, and so forth.
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LEMMA A.2.3. Let H be from Hp−1. If A ∈ Aj , then there is a closed set
AH ⊆ A such that (A∩H)∪AH = A, and (A∩H)∩AH = H ∩AH is contained
in a (possibly empty) union of a finite number of elements from Ai , i < j .

PROOF. We define AH to be cl(A ∩ H c). Since A is closed, AH ⊆ AH ; thus
(A ∩ H) ∪ AH ⊆ A. Conversely, the properties of closure give that

(A ∩ H) ∪ AH ⊇ (A ∩ H) ∪ (A ∩ H c) = A ∩ (H ∪ H c) = A;
hence (A ∩ H) ∪ AH = A.

The rest of the proposition is proved by induction with respect to the number of
hemispheres whose intersection gives H . Suppose first that H is itself a closed
hemisphere. If A ⊆ H , then A ∩ H c = ∅ and thus also AH = H ∩ AH = ∅.
Otherwise, again by the properties of closure,

H ∩ AH ⊆ H ∩ A ∩ cl(H c) = A ∩ H ∩ H c = A ∩ ∂H ;
the properties of the atomic system imply that the last intersection belongs to
the Ai with i < j (A ∩ ∂H is a subset of H , but it is not equal to H , since A

is not a subset of H ).
Suppose now that the proposition holds for H1 and H2; let H = H1 ∩ H2. By

the properties of closure,

H ∩ AH = H ∩ cl
(
A ∩ (H1 ∩ H2)

c) = H ∩ (
cl(A ∩ H c

1 ) ∪ cl(A ∩ H c
2 )

)
= (

H ∩ cl(A ∩ H c
1 )

) ∪ (
H ∩ cl(A ∩ H c

2 )
)

= (
H1 ∩ cl(A ∩ H c

1 )
) ∪ (

H2 ∩ cl(A ∩ H c
2 )

)
.

(54)

The induction assumption implies that any of the two last terms in (54) are
contained in the union of a finite number of elements of Ai with i < j . Therefore
the same is true for A ∩ AH . �

We call a set E ⊆ Sp−1 symmetric if E = −E = {−x :x ∈ E}. Let π be the
factorization mapping from Sp−1 to the projective plane RP

p−1, the mapping
identifying antipodal points: π(−x) = π(x) for all x ∈ Sp−1. Any symmetric set
is a preimage of a subset of RP

p−1 under π .

LEMMA A.2.4. Let Qν and Q be probability measures on Sp−1 such that
Qν(E) = Q(E) for all symmetric sets E and all ν. If Qν ⇀ Q, then Qν(Hu) →
Q(Hu) uniformly in u ∈ Sp−1.

PROOF. Consider the atomic decomposition of Qν and Q, with the atomic
system A used in Lemma A.2.3 above. Since all sets in A are symmetric, it follows
that A

j
Qν

= A
j
Q for all ν and all j ; only measures QA

ν may differ.

We show first that QA
ν ⇀ QA for all A. In view of Lemma A.2.3, it is sufficient

to prove that QA
ν (E) → QA(E) for all E which are intersections of finitely many
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closed hemispheres. Suppose that A ∈ A
j
Q and let E ∈ Hp−1. The set A ∩ E is

closed, and by Lemma A.2.3 there is a closed set AE ⊆ A such that (A ∩ E)

∪ AE = A. The intersection (A ∩ E) ∩ AE = E ∩ AE lies in the union of finitely
many sets from Ai , i < j ; hence QA((A ∩ E) ∩ AE) = 0, as well as QA

ν ((A ∩ E)

∩ AE) = 0 for all ν. The application of Lemma A.1.1 then gives the desired
convergence. The weak convergence of Qω

ν to Qω follows from Lemma A.1.2(i).
Fix A ∈ Aj . Let Hu be a closed hemisphere in Sp−1. If A ⊆ Hu, then

QA
ν (Hu) = QA

ν (A) = QA(A) = QA(Hu),(55)

thus the convergence is clearly uniform in this case. If Hu does not contain A,
then A ∩ ∂Hu lies in Ai , i < j , and therefore QA(∂Hu) = 0. The intersections
with A of all hemispheres not containing A form a set of hemispheres which is
isomorphic to the set of all hemispheres in Sj−1. By the properties of the atomic
decomposition given by Proposition 5.4, all these hemispheres are QA-continuity
sets. Thus, we may apply Proposition 5.11 and obtain the uniform convergence
for these hemispheres. Combining this convergence with that implied by (55), we
have that QA

ν (Hu) → QA(Hu) uniformly for all u ∈ Sp−1. Since Qω(∂Hu) = 0 for
all u, Proposition 5.11 gives the same conclusion for the sequence Qω

ν . The proof
of the lemma is then finished by the application of Lemma A.1.2(ii). �

Lemma A.2.4 helps us to prove convergence of depth for sequences of measures
on Sp−1 with a constant marginal on RP

p−1. Given a probability Q on X and a
mapping f whose range is a subset X, let f −1(Q) denote the set of all probabilities
of the form Q ◦ f −1. For any probability Q on Sp−1, the definitions hQ, S(Q),
d(Q) and sλ(Q) are extended in the natural way: hemispheres stand for halfspaces.

LEMMA A.2.5. For any probability Q̄ on RP
p−1, π−1(Q̄) is a compact

convex subset of the space of all probabilities on Sp−1 (with respect to the weak
topology). The function d(·), as well as sd(·)+ε(·) for any ε > 0, is continuous on
π−1(Q̄).

PROOF. From the continuity of π it follows that π−1(Q̄) is closed; since it
is a subset of the compact space of the probabilities on Sp−1, it is itself compact.
Convexity follows by straightforward verification involving symmetric sets.

Suppose that Qν ⇀ Q and all Qν and Q belong to π−1(Q̄). Lemma A.2.4
gives that hQν (u) → hQ(u) uniformly for all u ∈ Sp−1; the convergence of
d(Qν) to d(Q) follows. The continuity of the skeleton function follows then from
Proposition 5.15. �

LEMMA A.2.6. Let Q be a probability on R
p such that Q(H−u) = 1 for

some u ∈ Sp−1. If λ > d(Q) and Q(G−u) > 0, then sλ(Q) ∈ G−u; in particular,
sλ(Q) �= 0.
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PROOF. The proof is a follow-up of that of Proposition 5.17 and uses the same
notation. To prove that sλ(Q) ∈ G−u, we have to show only that the first integral
in (33) is nonzero. This is true if sharp inequality in (31) holds for some set of v’s
with positive measure µ.

Let u satisfy the assumptions of the lemma. We will prove that there is a
neighborhood U(u, ε) of this u such that

hQ(v) < hQ(v∗) for every v ∈ U(u, ε)(56)

[recall that v∗ = v − 2u(uTv) is the reflection of v about ∂Hu]. Given δ > 0, we
write Hδ

u for the δ-fattening of Hu: Hδ
u = {x ∈ Rp : ((x))Tu ≥ −δ}. The proof of

Proposition 5.17 showed, via Proposition 5.13, that

Q(Hv) = Q(Hv � Hv∗) + Q(Hv ∩ Hv∗) = Q(Hv ∩ Hv∗).

Since, on the other hand,

Q(Hv∗) = Q(Hv∗ � Hv) + Q(Hv ∩ Hv∗),

we obtain that

Q(Hv∗) − Q(Hv) = Q(Hv∗ � Hv).(57)

For arbitrary v ∈ S
p−1 the following holds: if x ∈ Hv , then

((x))Tu = ((x))T(u − v) + ((x))Tu ≥ ((x))T(u − v) ≥ −‖u − v‖(58)

and therefore x ∈ H‖u−v‖
u . Hence, Hv ⊆ H‖u−v‖

u and thus

Hc
v ⊇ (H‖u−v‖

u )c.(59)

The reflection about ∂Hu carries v to v∗ and u to −u; it is a Euclidean
transformation, hence ‖u − v‖ = ‖(−u) − v∗‖. Suppose that x ∈ Hc

v∗ . Then
xTv∗ < 0; similarly as in (58), we obtain that

((x))T(−u) = ((x))T(
(−u) − v∗) + ((x))Tv∗ ≤ ((x))T((−u) − v∗)

≤ ‖(−u) − v∗‖ = ‖u − v‖;
hence x ∈ H‖u−v‖

u . Thus,

Hc
v∗ ⊇ (H‖u−v‖

u )c.(60)

Combining (59) and (60), we obtain from (57) that

Q(Hv∗) − Q(Hv) ≥ Q
(
(H‖u−v‖

u )c).
For ‖u − v‖ → 0, the set (H‖u−v‖

u )c monotonically increases to Hc
u = G−u; since

Q(Gu) > 0, we may conclude that there is ε > 0 such that Q(Hv∗) − Q(Hv) > 0
whenever ‖u − v‖ < ε. This proves (56).

Suppose now that λ > d(Q). There is v2 such that hQ(v2) < λ. Take the arc
connecting u and v2; according to Proposition 5.13, hQ is nonincreasing along
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this arc when v approaches u. Therefore, we may choose v1 �= u in U(u, ε) such
that hQ(v1) < λ. By Proposition 5.9, hQ is upper semicontinuous, hence there is a
neighborhood U(v1, η) such that hQ(v) < λ for all v ∈ U(v1, η); we may choose
this neighborhood to be contained in U(u, ε). In view of (56), we have proved
that hQ(v) ∧ λ < hQ(v∗) ∧ λ for all v ∈ U(v1, η). This concludes the proof, since
µ(U(v1, η)) > 0. �

Note that Proposition 3.1 implies that the set {v ∈ S
p−1 :hQ(v) ≤ λ} ∩ S is

nonempty for any S dense in Sp−1 and any λ > d(Q).

A.3. Set-valued topology and spheric closures. The proof of Theorem 3.3
uses the theory of set-valued vector fields; for more background on this mathemat-
ical apparatus, see Rockafellar and Wets (1998) or Klein and Thompson (1984).
A set-valued mapping F from a metric space S to a metric space T is any map-
ping from S to the set 2T of all subsets of T . Any set-valued mapping has the
graph Gr(F ) = {(s, t) ∈ S × T : t ∈ F(s)}. Conversely, any subset of S × T de-
fines a set-valued mapping from S to T . The domain of a set-valued mapping F
is the set DomF = {s :F (s) �= ∅}, and the range is the set RngF = {t : t ∈ F (s)

for some s ∈ S}. The composition of set-valued mappings F1 from S1 to S2 and
F2 from S2 to S3 is the set-valued mapping F from S1 to S3 such that

F (s3) = {s3 : s3 ∈ F2(s2) and s2 ∈ F1(s1)}.
A set-valued mapping F is called strongly outer semicontinuous at s, if for

any open set E ⊇ F (s), any sequence tn ∈ F (sn) with sn → s is eventually in E.
The more widespread terminology is “upper semicontinuous,” but we would like to
avoid confusion with the upper semicontinuity used in the previous sections. A set-
valued mapping F is single-valued at s, if F (s) is a singleton; in such a case, it
is strongly outer semicontinuous if and only if it is continuous as the ordinary
mapping in the usual sense. A closure of F is the set-valued function F̄ such that
Gr(F̄ ) = cl(Gr(F )). A function with closed graph (F̄ = F ) is called closed—
“outer semicontinuous” by Rockafellar and Wets (1998). A set-valued function
F is closed-valued (compact-valued, convex-valued) if F (s) is closed (compact,
convex) for all s, respectively. Note that each closed function is closed-valued, but
the converse is not necessarily true.

LEMMA A.3.1. Let S, T be metrizable spaces. If T is compact, then a
set-valued mapping F from S to T is closed if and only if it is strongly outer
semicontinuous and closed-valued.

PROOF. See Klein and Thompson [(1984), Theorems 7.1.15 and 7.1.16,
page 78], or Nikaido [(1968), Lemma 4.4, page 66]. �

Let S ⊆ S̄ and F , F̄ be set-valued functions from S, S̄, respectively, to T ;
F̄ is called an extension of F , if F̄ (s) = F (s) for all s ∈ S.
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LEMMA A.3.2. Let S, S̄, T be metrizable spaces. Suppose that T is compact
and S is a dense subset of S̄.

(i) If F is closed, with respect to the relative topology on S × T (particularly,
if F is a single-valued mapping continuous on S), then its closure F̄ in S × T is
a closed extension of F to S̄ .

(ii) If F is single-valued on S, with values given by an ordinary (single-valued)

mapping f continuous on S, then the values of the closed extension F̄ at s ∈ S̄ �S

are exactly all limit values of all possible sequences f (sν) with sν → s.

PROOF. For (i), see Nikaido (1968), Theorem 4.7, page 72. To see (ii), note
first that all limit points of sequences f (sν) with sν → s are in Gr(F̄ ), since
the latter is closed. Suppose that s0 ∈ S̄ � S and t0 ∈ F̄ (s0). If there is an
open neighborhood U of (s0, t0) in S̄ × T containing no point of Gr(F̄ ) with
s ∈ S then Gr(F̄ ) � U is a closed set containing Gr(F ); this is a contradiction
with the minimality of the closure. Hence there is a sequence sν → s0 such that
f (sν) → t0. �

Unlike the closure operation, we define the closed convex hull of the set-valued
function F pointwise: (ccF )(s) = cl(conv(F (s))) for all s.

LEMMA A.3.3. Let F be a compact-valued set-valued mapping from S to T ,
a complete metrizable convex subspace of a linear topological space. The strong
outer semicontinuity of F implies that of ccF .

PROOF. See Nikaido [(1968), Theorem 4.8, page 72], or Borisovich, Gel’man,
Myshkis and Obukhovskii [(1982), Theorem 1.3.21, page 138]. �

Recall that the set of all probability measures on Sp−1 with the weak topology
is a compact, convex subset of the complete metrizable space of all positive
continuous linear functionals on the space C(Sp−1) of continuous functions
from Sp−1 to R. The latter is the convex cone in the locally convex topological
linear space of all continuous linear functionals on C(Sp−1) with the weak∗-
topology; see [Tjur (1980), page 19]. Recall also the definition of P ◦ g−1 for
a measure P and a function g on X. This definition works well even when g is
defined on a subset X̃, resulting in (P X̃)◦g−1. We will use the notation P ◦g−1

in this extended meaning; of course, if P is supported by X̃, the result is the same.
Let {Pϑ :ϑ ∈ Θ} be a probability field on Rp . We define a new, set-valued

mapping P (ϑ) from cl Θ̇ to the set of probability measures on Sp−1—a set-valued
probability field on Sp−1, indexed by Θ. We start with the set Θ̇ of all ϑ such
that Pϑ({0}) = 0; we require that the original probability field {Pϑ :ϑ ∈ Θ} be
continuous (in the weak topology) on Θ̇, and also that Θ̇ be dense in Θ; these
conditions give the construction its sense. The closure of Θ̇ could be understood
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in Θ; however, it is more convenient to consider it in a compactification Θ̄
instead—if Θ̇ is dense in Θ, so is it in Θ̄.

We define P in three steps. Let κ be the mapping assigning to x from Rp

its direction ((x)); note that the mapping is continuous on Rp � {0}. In the first
step, we set P (ϑ) = {Pϑ ◦ κ−1} for any ϑ ∈ Θ̇; any such Pϑ is supported by the
complement of {0}, hence P is single-valued on Θ̇.

In the second step, we construct a strongly outer semicontinuous set-valued
extension Ṗ of P to clΘ. By the continuous mapping theorem, Pϑν ◦ κ−1

converges weakly to Pϑ ◦ κ−1, whenever ϑ ∈ Θ̇ and Pϑν ⇀ Pϑ . Therefore,
P is continuous on Θ̇. This is all we need to apply Lemma A.3.2(i): the closure Ṗ
of P is closed on clΘ; then Lemma A.3.1 yields its strong outer semicontinuity.
The closure is also an extension of P , that is, Ṗ (ϑ) is single-valued and equal to
Ṗ (ϑ) for all ϑ ∈ Θ̇.

In the third step, we define P (ϑ) to be the convex closure of Ṗ : for all
ϑ ∈ Θ, P (ϑ) = cc Ṗ (ϑ). The convexification leaves the singleton values for
ϑ ∈ Θ̇ unchanged, hence our notation remains consistent. Lemma A.3.3 implies
that P (ϑ) is strongly outer semicontinuous (on the whole Θ); obviously, it is also
convex-valued.

We call the resulting set-valued probability field on Sp−1 indexed by Θ̄ a spheric
closure of the original field {Pϑ :ϑ ∈ Rp}. Spheric closures replace probability
fields on Rp by those on Sp−1, bypassing thus assumption (iii) of Theorem 5.19.
For ϑ outside Θ̇, the spheric closure may be thought of as replacing the original
probability by the set of probabilities representing all ways how the mass from the
origin can be spread along Sp−1. In the tangent depth setting, such a replacement
can never raise depth. Recall that hQ(u) = Q(Hu), for any measure Q on Sp−1

(where Hu denotes hemispheres) or on Rp or R̄p (where Hu denotes halfspaces).

LEMMA A.3.4. Let � be a function from Θ × Z to Rp continuous in the
variable ϑ for Q-almost all z. Let P be a probability on Z and let P be a
spheric closure of the probability field {Pϑ :ϑ ∈ Θ} such that Pϑ = P ◦ �−1

ϑ . For
any ϑ ∈ Θ and any Q ∈ P (ϑ), hQ(u) ≤ hPϑ

(u) for all u ∈ Sp−1; in particular,
d(Q) ≤ d(ϑ,P ).

PROOF. If Q is the single element of P (ϑ) for ϑ ∈ Θ̇, then the lemma trivially
holds. Fix ϑ ∈ Θ � Θ̇. We will show that any Q ∈ P (ϑ) is of the form

Q = P̂ ◦ �−1
ϑ ◦ κ−1 + Q̃(61)

where P̂ = P (Z � �−1
ϑ ({0})) and

Q̃(Sp−1) = 1 − P̂ (Sp−1) = P
(
�−1

ϑ ({0})) = Pϑ({0}).(62)

Observe that the set of Q satisfying (61) is convex and closed under weak
convergence; hence it is sufficient to prove (61) for all Q ∈ Ṗ (ϑ).
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Fix Q ∈ Ṗ (ϑ). According to Lemma A.3.2(ii), there is a sequence ϑν → ϑ such
that

Pϑν ◦ κ−1 = P ◦ �−1
ϑν

◦ κ−1 ⇀ Q.(63)

The decomposition

P = P̂ + Ṗ = P
(
Z � �−1

ϑ ({0})) + P �−1
ϑ ({0})

(the dependence of ϑ is suppressed in the notation) leads to the decomposition
for Pϑ

P ◦ �−1
ϑ = P̂ ◦ �−1

ϑ + Ṗ ◦ �−1
ϑ(64)

and also for Pϑν ◦ κ−1:

P ◦ �−1
ϑν

◦ κ−1 = P̂ ◦ �−1
ϑν

◦ κ−1 + Ṗ ◦ �−1
ϑν

◦ κ−1.(65)

By the continuous mapping theorem,

P̂ ◦ �−1
ϑν

◦ κ−1 ⇀ P̂ ◦ �−1
ϑ ◦ κ−1.(66)

From (63) and (66) follows that there is Q̃ such that

Ṗ ◦ �−1
ϑν

◦ κ−1 ⇀ Q̃.(67)

The decomposition (61) follows from (63), (65), (66) and (67); the identity (62)
from (67) and the fact that

Ṗ ◦ �−1
ϑν

◦ κ−1(Sp−1) = 1 − P̂ ◦ �−1
ϑν

◦ κ−1(Sp−1)

= 1 − (
1 − P

(
�−1

ϑ ({0}))).
The decomposition (61) yields that

Q(Hu) = P̂ ◦ �−1
ϑ ◦ κ−1(Hu) + Q̃(Hu) ≤ P̂ ◦ �−1

ϑ (Hu) + P
(
�−1

ϑ ({0}))
= P ◦ �−1

ϑ (Hu)

where Hu stands for a hemisphere or halfspace, whichever is appropriate. �

The appropriate topological tool for spheric closures uses an approach similar
to that of Cellina (1969), with a slightly more powerful approximation theorem.

LEMMA A.3.5. Suppose that S is a compact, convex subset of a convex
metrizable subspace of a locally convex topological vector space. Let F be a
set-valued vector field which is a composition of a strongly outer semicontinuous
convex-valued mapping F from Dp to S and a single-valued mapping given by a
continuous function f from S to Dp . Suppose that F (ϑ) ⊆ Gg(ϑ) for all ϑ ∈ Sp−1,
where g is a continuous function from Sp−1 to Sp−1. If g is not homotopic to a
constant, then there is a point ϑ in the interior of D

p such that 0 ∈ F (ϑ).
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PROOF. First, we show that there is η > 0 such that

uTg(ϑ) ≥ η whenever u ∈ F (ϑ) and ϑ ∈ S
p−1.(68)

Assume the contrary. Then there are uν , ϑν such that uν ∈ F (ϑν) and
uT

νg(ϑν) → 0. From the compactness of Sp−1 and Dp follows that we may assume,
passing to a subsequence if necessary, that ϑν → ϑ ∈ Sp−1 and uν → u ∈ Dp .
The composition F of the strongly outer semicontinuous mapping F and single-
valued continuous, hence also strongly outer semicontinuous mapping f (we abuse
slightly the notation) is itself strongly outer semicontinuous; see Klein and Thomp-
son [(1984), Theorem 7.3.11 on page 87], or Nikaido [(1968), Theorem 4.6 on
page 71]. We have that uT

νg(ϑν) → uTg(ϑ) = 0, a contradiction.
Now, we invoke the approximation theorem: Proposition 1.1.10 on page 70 of

Borisovich, Gel’man, Myshkis and Obukhovskii (1980). For any ε > 0, there exists
a single-valued ε-approximation of F : a continuous function fε from Dp to S with
the following property: for every ϑ ∈ Dp there are ϑε ∈ Dp and xε ∈ F(ϑε) such
that ‖ϑ −ϑε‖ < ε and d(fε(ϑ), xε) < ε, where d is the metric on S and the values
of fε lie in the convex closure of S (which is S itself).

Using the uniform continuity of f (S is compact), we can extend this
approximation to the composition of F and f , and construct a sequence fν

of functions from Dp to S such that for every ϑ ∈ Dp there are ϑν ∈ Dp and
uν ∈ f (F (ϑ)) = F (ϑ) satisfying

‖ϑ − ϑν‖ <
1

ν
and ‖f (fν(ϑ)) − uν‖ <

1

ν
(69)

and, moreover,

‖g(ϑ) − g(ϑν)‖ <
1

ν
,(70)

using also the uniform continuity of g.
Suppose that ϑ ∈ Sp−1. We will show that uT

νg(ϑ) > η for all ν sufficiently
large, uniformly for ϑ ∈ S

p−1. Assume the contrary. Then there is a sequence ϑν

such that (abusing the notation again) uT
νg(ϑν

ν ) ≤ η. We may again suppose (by
compactness and passing to a subsequence) that uν → u and ϑν → ϑ , hence
ϑν

ν → ϑ too. Then we obtain that uTg(ϑ) ≤ η, a contradiction with (68): the strong
outer semicontinuity of F yields that u ∈ F (ϑ), since uν ∈ F (ϑν

ν ).
Now, for ν sufficiently large: (g(ϑν))

TuT
ν > η, and therefore also (g(ϑν))

T

×f (fν(ϑ)) > η, uniformly for ϑ ∈ Sp−1, due to (69) and (70). Therefore,
f (fν(ϑ)) and g(ϑ) cannot point in opposite directions for any ϑ (if ν is
sufficiently large); this means that f ◦ fν and g are homotopic. Thus, if g is
not homotopic to a constant, then neither is f ◦ fν ; Proposition 5.18 yields a
critical point ϑν ∈ Dp such that f (fν(ϑ)) = 0. By the compactness of Dp , there
is ϑ ∈ D

p such that (possibly for a subsequence) ϑν → ϑ . Let ϑν
ν and uν be the

points satisfying (69); we have that ϑν
ν → ϑ and uν → 0. Since uν ∈ F (ϑν

ν ), the
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strong outer semicontinuity of F yields that 0 ∈ F (ϑ). Finally, the possibility that
ϑ ∈ Sp−1 is ruled out by our assumptions. �

As can be seen from the proof, the assumption that F (ϑ) ⊆ Gg(ϑ) is not really
necessary. We might formulate Lemma A.3.5 in the vein of Proposition 5.18: either
there is a critical point on the boundary (and then there is nothing to prove), or
0 /∈ F (ϑ) for all ϑ ∈ S

p−1; Lemma A.3.5 holds under this assumption as well,
only the proof is more tedious.

A.4. Spheric closures of regression fields. Recall that π denotes the
factorization mapping from Sp−1 to the projective plane RP

p−1 and π−1(Q̄)

stands for the set of all probabilities of the form Q̄◦π−1 for a given probability Q̄

on RP
p−1.

LEMMA A.4.1. Let Z = (X,Y ) be a random variable with values in X × R

where X ⊆ Rp; let Θ = Rp. If {Pϑ :ϑ ∈ Θ} is the regression probability field
defined by Pϑ = L(XXTϑ − XY) for any ϑ ∈ Θ, then:

(i) {Pϑ :ϑ ∈ Θ} has a spheric closure P (ϑ), well-defined for all ϑ ∈ Θ̄ = R̄p;
(ii) there is a probability Q̄ on RP

p−1 such that Q ∈ π−1(Q̄) for any Q ∈
P (ϑ) and any ϑ ∈ R̄p;

(iii) for any ϑ ∈ ∂Rp , Q(Hϑ ) = 1 and Q(Gϑ) > 1 − �(X) for any Q ∈ P (ϑ).

PROOF. The proof of (i) consists merely in noting that in this particular
setting, the density of Θ̇ in Θ follows from Lemma A.2.1; and the continuity of
{Pϑ :ϑ ∈ Θ} in any ϑ ∈ Θ, and thus in Θ̇, from Proposition 5.21(i).

For any ϑ ∈ Θ̇, the measure Pϑ ◦ κ−1 belongs to π−1(Q̄) where Q̄ is a fixed
probability measure on RP

p−1; just note that for any symmetric set E,

P[((XXTϑ − XY)) ∈ E] = P[((X)) sgn(XTϑ − XY) ∈ E] = P[((X)) ∈ E],
thus (Pϑ ◦ κ−1)(E) is the same for all ϑ ∈ Θ̇. The rest of (ii) follows from the fact
that π−1(Q̄) is convex and closed in the weak topology.

In particular, for any ϑ ∈ R̄p and any Q ∈ P (ϑ),

Q(∂Hu) = P[((X)) ∈ Hu] = P[uTX = 0].(71)

Fix ϑ ∈ ∂Rp . If Q ∈ Ṗ (ϑ), then Lemma A.3.2(ii) yields a sequence ϑν ∈ Θ̇ such
that ϑν → ϑ , and Qν = Pϑν ◦ κ−1 ⇀ Q. By Lemma A.2.4,

Q(H−((ϑ))) = lim
ν→∞Qν(H−((ϑ))) = lim

ν→∞Pϑν (H−((ϑ)))

= lim
ν→∞ P[−((ϑ))T(XXTϑν − XY) ≥ 0]

= lim
ν→∞ P

[
−((ϑ))T

(
XXT((ϑν)) − XY

‖ϑν‖
)

≥ 0
]

≤ P[−((ϑ))TXXT((ϑ)) ≥ 0] = P[XT((ϑ)) = 0]
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(here Hu stands again both for a hemisphere or halfspace). By (71), Q(G−((ϑ))) = 0
and hence Q(H((ϑ))) = 1, for any Q ∈ Ṗ (ϑ). This conclusion is preserved under
convex combinations and also under taking limits in the weak topology; thus,
Q(H((ϑ))) = 1 for all Q ∈ P (ϑ). By (71) again, we obtain that Q(G((ϑ))) =
1 − Q(∂H((ϑ))) = 1 − P[((ϑ))TX = 0] > 1 − �(X). �

PROOF OF THEOREM 3.3. Let Z = (X,Y ) be a random variable with values
in X × R whose distribution is P . We proceed by induction with respect to p. For
p = 1, the model reduces to the univariate location model and the theorem holds:
the sample median has depth not less than 1/2.

Suppose that (12) holds for all dimensions less than p. If �(X) = 1, the problem
is not identifiable; we can reparametrize it to a lesser dimensional one and use the
induction assumption. The lower bound obtained in this way is more stringent than
1/(p + 1) and all our fits are extensions of the lower-dimensional ones; therefore,
the inequality (12) holds.

Thus, suppose that �(X) < 1 and assume the contrary to the inequality (12):
there is ε > 0 such that

sup
ϑ∈Rp

d(ϑ,P ) + ε <
1

p + 1
.(72)

We know that Lemma A.4.1(i) guarantees the existence of the spheric closure of
the corresponding regression probability field, a strongly outer semicontinuous
and convex-valued set-valued mapping P (·) defined on R̄p, whose range is, by
Lemma A.4.1(ii), a subset of π−1(Q̄) for some fixed probability Q̄ on RP

p−1;
note that π−1(Q̄) is a convex, closed (and hence compact, with respect to the weak
topology) subset of the space of all probability measures on Sp−1. Lemma A.2.5
says that sd(·)+ε(·), a (single-valued) function assigning every Q ∈ π−1(Q̄) a
vector in the unit ball Dp , is continuous (in the weak topology). Let F be
the composition of P (·) and sd(·)+ε(·): a set-valued mapping from R̄p to Dp .
Lemmas A.4.1 and A.2.6 guarantee that for ϑ ∈ ∂Rp , F (ϑ) ⊆ G((ϑ)). Since R̄p and
∂Rp are topologically equivalent to Dp and Sp−1, we may apply Lemma A.3.5,
which yields the existence of ϑ̇ ∈ R

p such that 0 ∈ F (ϑ̇); that is, there is
Q ∈ P (ϑ̇) such that sd(Q)+ε(Q) = 0. By Proposition 5.16 and Lemma A.3.4,
1/(p+1) ≤ d(Q)+ε ≤ d(ϑ,P )+ε. We have obtained a contradiction of (72). �

NOTE ADDED IN PROOF (Proof of Theorem 3.5). We use formula (46). There
are two possibilities: either all suprema, for various ϑ , at the right-hand side
of (46) are strictly less than maximal depth (i.e., supremum of depth)—in such
a case the theorem is proved; or, there is ϑ such that the right-hand side of (46)
is equal to the maximal depth—then we consider the whole problem restricted
to �(ϑ) and use induction with respect to the dimension of the parameter space as
in the proof of Theorem 3.3. �
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