
The Annals of Statistics
2002, Vol. 30, No. 4, 1178–1193

BLACKWELL OPTIMALITY IN MARKOV DECISION PROCESSES
WITH PARTIAL OBSERVATION

BY DINAH ROSENBERG, EILON SOLAN AND NICOLAS VIEILLE

Université Paris Nord, Northwestern University and Tel Aviv University
and HEC

A Blackwell ε-optimal strategy in a Markov Decision Process is
a strategy that is ε-optimal for every discount factor sufficiently close to 1.

We prove the existence of Blackwell ε-optimal strategies in finite Markov
Decision Processes with partial observation.

1. Introduction. A well-known result by Blackwell [3] states that, in any
Markov Decision Process (MDP hereafter) with finitely many states and finitely
many actions, there is a pure stationary strategy that is optimal, for every discount
factor close enough to one. This strong optimality property is now referred to as
Blackwell optimality.

In this paper we study finite MDPs with partial observations (p.o. hereafter);
that is, finite MDPs in which at the end of every stage, the decision maker receives
a signal that depends randomly on the current state and on the action that has
been chosen, but he observes neither the state nor his daily payoff (see, e.g.,
[2] and the references in [7]). MDPs with p.o. arise naturally in many contexts,
such as models of machine replacement and quality control problems (see [12]
and the references therein for this and additional applications), telecommunication
networks (see [1] and the references therein), and intra-seasonal decisions of
fishing vessel operators [9].

Here we address the problem of existence of Blackwell optimal strategies for
a finite MDP with p.o. We prove that, in any such MDP and for every ε, there
is a strategy that is Blackwell ε-optimal; that is, ε-optimal for every discount
factor close enough to one. The strategy we construct is moreover ε-optimal in
the n-stage MDP, for every n large enough. We also provide an example where
there is no Blackwell zero-optimal strategy.

The standard approach to an MDP with p.o. is to convert it into an auxiliary
MDP with full observation and Borel state space. The conditional distribution over
the state space � given the available information (sequence of past signals and past
actions) plays the role of the state variable in the auxiliary MDP. This approach has
been developed for instance in [14], [15] and [17]. An alternative state variable is
defined in [5]. One then looks for optimal stationary strategies (strategies such
that the action chosen in any given stage is only a function of the belief held on
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the underlying state in �). A commonly used criterion is the long-run average cost
criterion; see, for example, [4] and [6].

If the sets of actions and signals are finite, then the conditional distribution at
every stage can take only finitely many values. In particular, the auxiliary MDP
with full observation is defined over a countable state space. If, in addition, there
are no signals, then the transitions in the auxiliary MDP are deterministic. Lehrer
and Sorin [10] provided an example of an MDP with countable state space, finitely
many actions and deterministic transitions where the limit of the discounted values
(as the discount factor goes to 1) and the limit of the n-stage process (as n goes
to ∞) exist, differ, and differ from the value under the long-run average cost
criterion. It follows that in their example there is no Blackwell ε-optimal strategy
for any ε > 0 sufficiently small. It is well known that if the state space is countable
and the limit of the discounted values as well as the limit of the n-stage process
exist and are equal, there need not be a Blackwell optimal strategy (Example 7.1.3
in [16]). Moreover, even if a Blackwell ε-optimal strategy exists, it need not be
stationary (Example 7.1.5 in [16]).

To guarantee the existence of optimal strategies in MDPs with Borel state
space one has to impose further assumptions on the transitions. These assumptions
usually have the flavor of an irreducibility condition. For MDPs that arise from
an MDP with p.o., these conditions may be difficult to interpret in terms of the
underlying data; see, for instance, [2], page 329, [13], page 415 or [16], page 158.

In the present paper we do not follow this approach but rather use the structure
on the auxiliary MDP that is derived from the underlying MDP. Specifically, using
a sequence of optimal strategies in the n-stage MDP, and using the compactness of
the state space of the auxiliary MDP and the continuity of the payoff on this space,
we construct a Blackwell ε-optimal strategy.

In Section 2, we present the model and the main results. In Section 3, we show
on an example that the result is in some respect tight. In Section 6, we construct
a Blackwell ε-optimal strategy. This strategy is neither pure nor stationary. In
the case of degenerate observation (the decision maker receives no information
whatsoever), we construct a pure, stationary Blackwell ε-optimal strategy. Part of
this proof serves as an introduction for the general case. It is therefore presented in
Section 5. Section 4 contains a number of preliminary results that are used in both
proofs.

2. The model and the main results. Given a set M , we denote by �(M) the
set of probability distributions over M , and we identify M with the set of extreme
points of �(M).

A Markov decision process with partial observation is given by: (i) a state
space �, (ii) an action set A, (iii) a signal set S, (iv) a transition rule q :� ×A →
�(S × �), (v) a payoff function r :� ×A → R and (vi) a probability distribution
x1 ∈ �(�).
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We assume that �,A and S are finite sets. Extensions to more general cases are
discussed below. Without loss of generality, we assume that 0 ≤ r(ω, a) ≤ 1 for
every (ω, a) ∈ � ×A.

The description of the model [i.e., (i)–(vi)] is known to the decision maker.
An initial state ω1 is drawn according to x1. At every stage n the decision maker

chooses an action an ∈ A, and a pair (sn,ωn+1) ∈ S ×� of a signal and a new state
is drawn according to q(ωn, an). The decision maker is informed of the signal sn,
but not of the new state ωn+1 or the payoff r(ωn, an).

Thus, the information available to the decision maker at stage n is the finite
sequence a1, s1, a2, s2, . . . , an−1, sn−1 and a (behavioral ) strategy for the decision
maker is a function that assigns for every such sequence a probability distribution
over �(A). We set Hn = (A×S)n−1, and we denote respectively by H = ⋃

n≥1 Hn

and H∞ = (A × � × S)N the set of finite histories and infinite plays. We denote
by Hn the algebra of cylinder sets over H∞ induced by Hn.

Each strategy σ , together with the initial distribution x1, induces a probability
distribution Px1,σ over (H∞,H∞), where H∞ = σ(Hn, n ≥ 1). Expectations
under Px1,σ are denoted by Ex1,σ . All norms in the paper are supremum norms,
unless otherwise specified.

We let
γn(x1, σ ) = Ex1,σ

[(
r(ω1, a1) + · · · + r(ωn, an)

)
/n

]
denote the expected average payoff in the first n stages.

We denote by vn(x1) = supσ γn(x1, σ ) the value of the n-stage problem.
For every λ ∈ (0,1) and every strategy σ we define the λ-discounted payoff as

γλ(x1, σ ) = Ex1,σ

[
(1 − λ)

∞∑
m=1

λm−1r(ωm,am)

]

and the discounted value by
vλ(x1) = sup

σ
γλ(x1, σ ).

DEFINITION 1. An MDP with p.o. is said to have a value (w.r.t. a given initial
distribution x1) if both limits limn→∞ vn(x1) and limλ→1 vλ(x1) exist and are
equal.

If the MDP has a value, we denote it by v(x1) = limn→∞ vn(x1) =
limλ→1 vλ(x1).

DEFINITION 2. For a given initial distribution x1 and ε ≥ 0, a strategy σ

is (Blackwell ) ε-optimal (w.r.t. x1) if there exist a positive integer N0 ∈ N, and
λ0 ∈ (0,1) such that:

γn(x1, σ ) ≥ vn(x1) − ε, ∀ n ≥ N0(1)

and
γλ(x1, σ ) ≥ vλ(x1) − ε, ∀ λ ∈ (λ0,1).(2)
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Our first main result is that the value always exists, as well as ε-optimal
strategies.

THEOREM 1. If �, A and S are finite, then the MDP with p.o. has a value
v(x1) w.r.t. every initial distribution x1 ∈ �(�). Moreover, for every ε > 0 and
every x1 ∈ �(�), there is a (Blackwell ) ε-optimal strategy w.r.t. x1.

In the case where |S| = 1, that is, the decision maker receives no informative
signal, we get a stronger result.

To state this result we need additional notions. For n ≥ 1, we denote by yn the
conditional distribution of ωn given Hn: for each ω ∈ �, yn[ω] is the posterior
probability in stage n that the process is at state ω given the information available
to the decision maker (we do not assume here that |S| = 1). Thus, y1 = x1. Observe
that the value yn(hn) ∈ �(�) of yn after a given history hn may be computed
without knowledge of the strategy. yn is therefore a function Hn → �(�) or,
equivalently, a random variable (H∞,Hn) → �(�). Clearly, the distribution of yn
is influenced by the strategy that is followed.

A pure strategy is a strategy σ :H → �(A), such that σ(h) ∈ A for each h ∈ H .
A strategy is stationary if σ(hn) depends only on yn(hn), the posterior probability
at stage n.

Our second result is that if |S| = 1, the ε-optimal strategies can be chosen to be
pure and stationary.

THEOREM 2. If � and A are finite, and |S| = 1, then for every ε > 0 and every
x1 ∈ �(�) there exists a pure stationary (Blackwell ) ε-optimal strategy w.r.t. x1.

COMMENT 1. We claim here that to prove Theorems 1 and 2, it is enough to
prove for all x1 ∈ �(�) that v(x1) = limn→∞ vn(x1) exists and (1) holds. Since �

is finite [so that �(�) is compact], Proposition 1 below implies that (vn(x1))

converges to v(x1) uniformly in x1 ∈ �(�). It follows by [10] that limλ→1 vλ(x1)

exists and is equal to limn→∞ vn(x1). Moreover, by Eq. (1) of [10], it follows that
lim infλ→1 γλ(x1, σ ) ≥ lim infn→∞ γn(x1, σ ). Hence (2) holds as well.

COMMENT 2. A probability distribution over pure strategies is called a mixed
strategy. An MDP with p.o. can be described as a single player game in extensive
form with perfect recall, so that Kuhn’s theorem [8] applies. In particular, for every
behavioral strategy σ there exists a mixed strategy π such that σ and π induce
the same probability distribution over H∞; that is, the probability distribution
over H∞ obtained by first choosing a pure strategy f according to π , and then
following f , coincides with Px1,σ .

By Theorem 1 an ε-optimal strategy exists for every ε > 0. Nevertheless, it is
not clear that a pure ε-optimal strategy exists as well. Indeed, by Kuhn’s theorem,
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for every fixed n ≥ 1 there exists a strategy fn in the support of π , such that
γn(x1, fn) ≥ γn(x1, σ ). However, it is not clear at all that fn can be chosen
independently of n.

An implication of Kuhn’s theorem is that if there is no pure zero-optimal
strategy then there is no behavioral zero-optimal strategy. Indeed, fix a behavioral
strategy σ , and let π be the equivalent mixed strategy. Since no pure strategy f

is zero-optimal, for every fixed pure strategy f there are infinitely many n’s such
that γn(x1, f ) < vn(x1). It follows that γn(x1, σ ) < vn(x1) for infinitely many n’s
as well.

OPEN PROBLEMS. There are several natural questions that arise. First, does
there exist a single strategy that is Blackwell ε-optimal for every ε > 0? Second,
do pure stationary Blackwell ε-optimal strategies exist in general?

It is also desirable to understand the evolution of the posterior distribution under
ε-optimal strategies. Simple examples show that even in the case of no signals the
sequence of posterior distributions need not be stationary, eventually stationary,
or converge to some limit. We do not know whether there exists an ε-optimal
strategy such that this sequence is asymptotically periodic. This point is related to
the turnpike property that is studied in various economic models (see [11] and the
references therein).

3. An example. Define an MDP with no signals as follows. Set � = {∗,ω},
and A = {a1, a2}. The transition rule q is given by

q(∗|∗, a) = 1 for each a ∈ A,

q(ω|ω,a1) = 1, q(ω|ω,a2) = 1
2 .

The payoff function r is given by

r(∗, a1) = 1, r(∗, a2) = 0 and r(ω, a) = 0 for a ∈ A.

We identify a probability distribution over � with the probability assigned to ω.
The MDP starts from state ω, so that x1 = 1. Since there are no signals, the
probability yn that the process is in state ω at stage n is determined by past actions,
and a pure strategy may be identified with a sequence (an)n∈N of actions.

State ∗ is absorbing. Therefore, an = a1 implies that ωn+1 = ωn, hence
yn+1 = yn, while an = a2 implies that yn+1 = yn/2.

The value of this MDP is equal to one. Indeed, given ε > 0, let σ be the
(stationary) strategy that plays a2 in the first N = ⌊− log2 ε

⌋ + 2 stages, and
plays a1 afterwards. Given σ , one has yN+1 < ε. Therefore, Ex1,σ [r(ωn, an)] =
1 − yN+1 > 1 − ε for each n > N . In particular, lim infn→∞ γn(x1, σ ) =
lim infλ→1 γλ(x1, σ ) > 1−ε. Since vn(x1) ≤ 1, and vλ(x1) ≤ 1, the value is indeed
equal to 1. In particular, limλ→1 vλ(x1) = limn→∞ vn(x1) = 1.
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We now claim that in this example there is no zero-optimal strategy. It suffices
to prove that there is no pure zero-optimal strategy. Let σ = (an)n∈N be a pure
strategy. We distinguish three (nonexclusive) cases.

Case 1. There exists N ∈ N, such that an = a1 for every n ≥ N .
In that case, the sequence (yn) is constant from stage N on. Therefore,

limn→∞ γn(x1, σ ) = limλ→1 γλ(x1, σ ) = 1 − yN < 1. In particular, γλ(x1, σ ) <

vλ(x1) for λ close to one, and therefore σ is not zero-optimal.
Case 2. There exists N ∈ N, such that an = a2 for every n ≥ N .
In that case, Eσ [r(ωn, an)] = 0 for each n ≥ N . Therefore, limn→∞ γn(x1, σ ) =

limλ→1 γλ(x1, σ ) = 0, and therefore σ is not zero-optimal.
Case 3. There exists n0 ∈ N, such that an0 = a1 and an0+1 = a2. Denote by τ

the strategy obtained from σ by permutation of an0 and an0+1. Observe that

Eτ [r(ωn, an)] = Eσ [r(ωn, an)] for each n ∈ N\{n0, n0 + 1},
Eτ [r(ωn0, an0)] = Eσ [r(ωn0+1, an0+1)] = 0,

Eτ [r(ωn0+1, an0+1)] > Eσ [r(ωn0, an0)].
Therefore, γλ(x1, τ ) > γλ(x1, σ ) for λ close to one. In particular, σ is not zero-
optimal for λ close to one.

A natural question arises. Does there exist a strategy that is ε-optimal for each
ε > 0? We claim that in this example there is such a (nonstationary) pure strategy.
Indeed, let σ = (an)n∈N be a pure stationary strategy. Since yn+1 = yn whenever
an = a1, the stationarity of σ implies that an+1 = a1 as soon as an = a1. This
implies that the sequence (an) is eventually constant, that is, it must be that either
case 1 or case 2 above holds. In both cases, σ fails to be ε-optimal, provided ε is
small enough.

Let now σ = (an) be any sequence such that the subset N2 = {n ∈ N,an = a2}
of N is infinite and has density zero. Since N2 is infinite, the sequence (yn)

converges to zero under σ . Therefore,

lim
n→∞,n/∈N2

Eσ [r(ωn, an)] = 1.(3)

Since N2 has density zero, (3) yields limn→∞ γn(x1, σ ) = limλ→1 γλ(x1, σ ) = 1.
As an anonymous referee mentioned, there is also a stationary nonpure strategy

that is ε-optimal for every ε > 0: if 1/(n + 1) < yn ≤ 1/n play a2 with probabi-
lity 1/n.

4. Preliminaries. The purpose of this section is to introduce several general
results. The first result is standard. It asserts that, given N ∈ N, there exists a pure
optimal strategy in the N -stage MDP such that the action played at stage n depends
only on n and yn.

LEMMA 1. For each N ≥ 1, there exists a pure strategy σN such that
γN(x1, σN) = vN(x1) and σN(hn) is only a function of n and yn(hn).
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The lemma follows from standard dynamic programming arguments, hence its
proof is omitted.

Whenever in the sequel we refer to optimal strategies in the n-stage problem,
we mean a pure strategy that satisfies the condition in Lemma 1.

Given m< n, we denote by

γm,n(x1, σ ) = Ex1,σ

[
1

n− m + 1

(
r(ωm,am) + · · · + r(ωn, an)

)]
the expected average payoff from stage m up to stage n. Thus, γn(x1, σ ) =
γ1,n(x1, σ ).

PROPOSITION 1. Let x, x′ ∈ �(�). For every strategy σ and every m< n,

|γm,n(x, σ )− γm,n(x
′, σ )| ≤ ‖x − x′‖1,

where ‖ · ‖1 is the L1-norm.

PROOF. Let n ≥ 1 and hn ∈ Hn be given. Observe that, for every x ∈ �(�)

and for every strategy σ , one has

Px,σ (hn = h̄n) = ∑
ω∈�

x(ω)Pω,σ (hn = hn).

In particular, Ex,σ [r(sn,an)] = ∑
ω∈� x(ω)Eω,σ [r(sn,an)]. Since 0 ≤ r ≤ 1, the

result follows. �

PROPOSITION 2. Let a strategy σ , ε ∈ (0,1) and n ∈ N be given, and set

N = inf
{
k ∈ N, s.t. γm(x1, σ ) ≥ γn(x1, σ )− ε for every k ≤ m ≤ n

}
.(4)

Then N ≤ 1 + (1 − ε)n. Moreover,

γN,m(x1, σ ) ≥ γn(x1, σ ) − ε for every N ≤ m ≤ n.(5)

Given ε > 0 and σ , let Nn = Nn(ε, σ ) denote the integer associated with n

in (4). Note that lim infn→∞(n−Nn) = +∞. Proposition 2 has the same flavor as
Proposition 2 in [10].

PROOF OF PROPOSITION 2. Clearly, N ≤ n. Note that if N > 1 then
γN−1(x1, σ ) < γn(x1, σ )− ε.

We first show that N ≤ 1 + (1 − ε)n. Indeed, otherwise, N > 1, hence
γN−1(x1, σ ) < γn(x1, σ )− ε. Since 0 ≤ r ≤ 1,

γn(x1, σ ) ≤ N − 1

n
γN−1(x1, σ )+ n − N + 1

n
< γn(x1, σ ) − ε + ε = γn(x1, σ ),

a contradiction.
Next we show that (5) holds. Fix an integer m such that N ≤ m ≤ n. If N = 1,

by the definition of N we get γN,m(x1, σ ) = γm(x1, σ ) ≥ γn(x1, σ )− ε. If N > 1,
γN−1(x1, σ ) < γn(x1, σ ) − ε, while γm(x1, σ ) ≥ γn(x1, σ ) − ε. It follows that
γN,m(x1, σ ) > γn(x1, σ ) − ε. �
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5. The case of “no signals.” This section is devoted to the proof of
Theorem 2. Thus, we assume that no signal is available. The initial distribution x1
is fixed throughout the section.

In this case, a pure strategy is reduced to a sequence of actions: the action that
is played at each stage. Moreover, if σ is pure, the posterior distribution at stage n

depends deterministically on σ . We write yn(σ ) for the posterior distribution at
stage n:

yn(σ )[ω] = Px1,σ (ωn = ω).

If σ = (a1, a2, . . .) ∈ AN is a strategy, we define for every positive integer m ∈ N
the truncated strategy σm = (am, am+1, . . .) and the prefix mσ = (a1, . . . , am).

Define w = lim supn→∞vn(x1), and fix ε ∈ (0,1). Let (ni)i∈N be an increasing
subsequence such that limi→∞ vni

(x1) = w and |vni
(x1) − w| < ε for every

i ∈ N. Let σi be a pure optimal strategy in the ni -stage problem (that satisfies
the condition of Lemma 1). Thus, γni

(x1, σi) = vni
(x1).

Given i ∈ N, we let Ni ≤ 1 + (1 − ε)ni be the integer obtained by applying
Proposition 2 to σi , ε and ni .

For notational simplicity, we set yi = yNi
(σi). Since � is finite, �(�) is

compact, hence there exists y ∈ �(�) and a subsequence of {yi}, still denoted
by {yi}, such that ‖yi − y‖ < ε/2, for each i ∈ N. In particular, ‖yi − y1‖ < ε for
every i ∈ N.

For each i ∈ N define πi as: follow σ1 up to N1, switch to σ
Ni

i at stage N1.

Formally,

πi(n) =
{
σ1(n), for 1 ≤ n ≤ N1 − 1,
σi(Ni + n− N1), for N1 ≤ n.

Set mi = N1 + ni − N
i
. Note that lim infi→∞ mi = +∞.

PROPOSITION 3. Let i ∈ N be sufficiently large so that (N1 − 1)/ε <mi . If m
satisfies (N1 − 1)/ε <m ≤ mi then

γm(x1, πi) ≥ w − 4ε.

Proposition 3 asserts that each πi gives high payoff in all m-stage problems,
provided m is sufficiently large (but smaller than mi ). Moreover, the lower bound
on m is independent of i.

PROOF OF PROPOSITION 3. Fix an integer m such that (N1 −1)/ε <m ≤ mi .
By construction, yN1(πi) = y1, hence

γm(x1, πi) = N1 − 1

m
γN1−1(x1, πi) + m − N1 + 1

m
γN1,m(x1, πi)

= N1 − 1

m
γN1−1(x1, πi) + m − N1 + 1

m
γm−N1+1(y1, π

N1
i ).
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By the assumption on m, (m − N1 + 1)/m > 1 − ε. Since ‖y1 − yi‖ < ε, we get
by Proposition 1, and since payoffs are nonnegative,

γm(x1, πi) ≥ (1 − ε)
(
γm−N1+1(yi,π

N1
i )− ε

) = (1 − ε)
(
γNi,m−N1+Ni

(x1, σi)− ε
)
.

Since m − N1 + Ni > Ni, Proposition 2 implies that γNi,m−N1+Ni
(x1, σi) ≥

vni
− ε > w − 2ε. One then has

γm(x1, πi) > (1 − ε)(w − 3ε) > w − 4ε,

as desired. �

PROPOSITION 4. In the case |S| = 1, the MDP with p.o. has a value v(x1)

w.r.t. every initial distribution x1 ∈ �(�).

PROOF. Since A is finite, by a diagonal extraction argument there exists a pure
strategy π such that every prefix of π is a prefix of infinitely many πi ’s: for
each m, mπ = mπi for infinitely many i. In particular, for every m > N1/ε,
γm(x1, π) > w − 4ε. It follows that vm(x1) > w − 4ε. Since ε > 0 is arbitrary,
one has w = limn→∞ vn(x1) and π is a 4ε-optimal strategy. �

PROOF OF THEOREM 2. Let π = (a1, a2, . . .) be a pure ε-optimal strategy;
that is, there exists n0 ∈ N such that γn(x1, π) ≥ w − ε for every n ≥ n0. Let
yn = yn(π) be the posterior distribution at stage n.

Case 1. There exist n1 ∈ N and d ∈ N such that an = an+d and yn = yn+d for
every n ≥ n1.

Since π is ε-optimal, it follows that the expected average payoff along the
period is at least w − ε:

γn1,n1+d−1(x1, π) ≥ w − ε.

We call a pure strategy π ′ eventually stationary if there exists n2 ∈ N such that
for every n,m ≥ n2,

yn(π) = ym(π) ⇒ an = am.

We now show by induction over the length d of the period of (an) that there exists
a pure eventually stationary ε-optimal strategy π ′.

If d = 1 then π is eventually stationary. If d > 1 and for every i, j that
satisfy n1 ≤ i < j < n1 + d we have yi �= yj then π is eventually station-
ary as well. So assume that d > 1 and that yi = yj for some i, j that satisfy
n1 ≤ i < j < n1 + d . If γi,j−1(x1, π) > w − ε, the strategy π ′ = (a1, a2, . . . , an1,

an1+1, . . . , ai, ai+1, . . . , aj−1, ai, ai+1, . . . , aj−1, . . .) is 2ε-optimal and eventu-
ally periodic, with period j − i < d . If, on the other hand, γi,j−1(x1, π) ≤
w − ε, the strategy π ′ = (a1, a2, . . . , an1, an1+1, . . . , ai−1, aj , aj+1, . . . , an1+d−1,
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an1, an1+1, . . . , ai−1, aj , aj+1, . . . , an1+d−1, . . .) is ε-optimal and eventually peri-
odic, with period d − (j − i) < d . In both cases, the induction hypothesis shows
that the claim holds.

Thus, we assume w.l.o.g. that π is eventually stationary. In particular, there are
n2 ≥ n1 and d ∈ N such that yn+d = yn for every n ≥ n2, and yn = ym implies that
an = am for every n,m ≥ n2. Let Y = {yn,n = 1, . . . , n2 + d − 1} be the set of all
posterior distributions in the first n2 + d − 1 stages. Consider the directed graph
whose vertices are the elements in Y , and which contains the edge (y, y′) ∈ Y × Y

if and only if (y, y′) = (yn, yn+1) for some n ∈ {1, . . . , n2 + d − 1}. Thus we
connect with an edge any two consecutive elements in the finite sequence (yn)

n2+d
n=1 .

Clearly there is a path from y1 to any y ∈ Y . Let y1 = yi1, yi2, . . . , yik be
a shortest path that connects y1 to the set {yn2, yn2+1, . . . , yn2+d−1}. In particular,
yij �= yij ′ for every 1 ≤ j < j ′ ≤ k. Assume w.l.o.g. that yik = yn2 . Define

π ′′ = (ai1, ai2, . . . , aik−1, an2, an2+1, . . . , an2+d−1, an2, an2+1, . . . , an2+d−1, . . .).

By construction, yn(π
′′) = yin(π) for each n < k, yk(π

′′) = yn2(π), and the
sequence (yn(π

′′))n≥k coincides with the periodic sequence (yn2(π), . . . ,

yn2+d−1(π), yn2(π), . . . , yn2+d−1(π), . . .). Each of the posteriors yn(π
′′), n <

k + d appears only once, hence π ′′ is stationary. Since γn2,n2+d−1(x1, π) ≥ w − ε,
we have γn(x1, π

′′) ≥ w − 2ε for every n ≥ k(n2 + d)/ε.
Case 2. There are two integers 0 < n1 < n2 such that yn1 = yn2 , and

γn1,n2−1(x1, π) ≥ w − ε.
Define the strategy π ′ = (a1, a2, . . . , an1, an1+1, . . . , an2−1, an1, . . . , an2−1, . . .).

Then π ′ is 2ε-optimal, and (yn(π
′)) is eventually periodic. We can then apply

Case 1 to π ′.
Case 3. There is some y ∈ �(�) that appears infinitely often in the sequence

(yn)n∈N.
Since for every n sufficiently large, γn(x1, π) ≥ w−ε, it follows that there exist

n1 < n2 such that yn1 = yn2 = y and γn1,n2−1(x1, π) ≥ w − ε. Apply now Case 2.
Case 4. None of the above holds.
Since Case 3 does not hold, every y ∈ �(�) that appears in the sequence

(yn)n∈N, does so only finitely many times. Since Case 2 does not hold, the expected
average payoff between two appearances of any y ∈ �(�) in (yn) is below w − ε.

Define a sequence (ik)k∈N as follows:

i1 = max{n ≥ 1, yn = y1}
and

ik+1 = max{n ≥ 1, yn = yik+1}.(6)

In words, i1 is the last occurrence of the initial distribution, i2 is the last occurrence
of the distribution at stage i1 + 1, and so on. Since yik appears only finitely many
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times in the sequence (yn), the maximum in (6) is finite. Clearly ik+1 > ik . Note
that yik+1 = yik+1, for each k.

Define now a strategy π ′ = (ai1, ai2, ai3, . . .). Since yik+1 = yik+1, it follows by
induction that

yik+1 = y(ai1, ai2, . . . , aik ),

where y(ai1, ai2, . . . , aik ) is the posterior probability held after playing actions
ai1, ai2, . . . , aik . It also follows that no element in the sequence (yik ) appears twice.
In particular, the strategy π ′ is stationary.

Recall that γn(x1, π) ≥ w − ε for every n ≥ n0. We now argue that for every
k0 ≥ n0, γk0(x1, π

′) ≥ w − ε. Set n = ik0 and i0 = 0. Note that

n =
k0∑
k=1

(ik − ik−1) = k0 + ∑
k≤k0|ik>ik−1+1

(ik − ik−1 − 1).

Clearly,

nγn(x1, π) = k0γk0(x1, π
′) + ∑

0≤k<k0|ik+1>ik+1

(ik+1 − ik − 1)γik+1,ik+1−1(x1, π).

Since Case 2 does not hold, γik+1,ik+1−1(x1, π) < w − ε whenever ik+1 > ik + 1.
Since n ≥ k0 ≥ n0, γn(x1, π) ≥ w − ε. It follows that γk0(x1, π

′) ≥ w − ε, as
desired. �

COMMENT 3. The fact that the action set A is finite was used in the diagonal
extraction argument in the proof of Proposition 4. However, the proof can be
extended to compact metric action spaces provided the functions a �→ r(ω, a) and
a �→ q(ω,a) are continuous in a, for each ω ∈ �.

To see why the diagonal extraction argument works in that case, take for every
n ∈ N a finite subset An ⊂ A such that for each a ∈ A there is some ān(a) ∈ An

with

sup
ω

|r(ω, a)− r(ω, ān(a))| < ε and sup
ω

‖q(ω,a)− q(ω, ān(a))‖ < ε/2n.(7)

Define for every i ∈ N the strategy π ′
i by π ′

i (n) = ān(πi(n)). By (7), |γn(x1, πi) −
γn(x1, π

′
i )| < 2ε. Since for each fixed n, {π ′

i (n)}i∈N is finite, one can apply the
diagonal extraction argument to {π ′

i }i∈N, and get a strategy π ′ such that every
prefix of π ′ is a prefix of infinitely many π

′
i ’s. Then π ′

i is 3ε-optimal.

6. The general case. This section is devoted to the proof of Theorem 1. At
first we follow the same path as in the proof of Theorem 2. However, since now the
signal set is not degenerate, the posterior distribution at stage Ni depends on the
signals the decision maker received. Hence, before the process starts, the decision
maker who follows some strategy has a probability distribution over the possible
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posteriors he may have at stage Ni . We are thus forced to work with the space
�(�(�)), which is no longer finite dimensional. The proof will be amended to
deal with this difficulty.

Fix ε > 0 once and for all. Denote w = lim supn→∞ vn(x1), and let (ni) be an
increasing subsequence such that limi→∞ vni

(x1) = w and |w − vni
(x1)| < ε for

every i ∈ N.
For each i ∈ N, let σi be a pure optimal strategy in the ni-stage problem (that

satisfies the condition of Lemma 1), and let Ni ≤ 1 + (1 − ε)ni be the integer
obtained by applying Proposition 2 to σi , ε and ni .

Recall that yNi
is the posterior distribution over � at stage Ni, given the history

up to that stage. Since A and S are finite, yNi
may take only finitely many values.

We denote by pi the distribution of yNi
when the strategy σi is followed: pi has

finite support supp(pi) and

pi[y] = Px1,σi (yNi
= y) for each y ∈ �(�).

COMMENT 4. A natural idea is to repeat the proof of the previous section, by
using pi instead of yi , that is, by dealing with the auxiliary state space �(�(�)).
Observe that �(�(�)) is no longer finite-dimensional but is compact in the
w∗-topology, which is a metric topology. Let d be a corresponding metric. The
proof of the previous section would go through if one was able to prove the
following Lipschitz property:

for every p,p′ ∈ �(�(�)), σ and n ∈ N, |γn(p,σ )− γn(p
′, σ )| ≤ d(p,p′),

where γn(p,σ ) denotes the expectation of γn(x, σ ) under p. However, it is not
clear that this condition holds. We therefore choose a different route, which
involves a discretization of �(�), and uses the Lipschitz condition expressed in
Lemma 1.

Let T be a fixed finite partition of �(�) into sets of diameter smaller than ε.

By Lemma 1, given T ∈ T , x, x′ ∈ T , a strategy σ and n ∈ N, one has

|γn(x, σ )− γn(x
′, σ )| < ε.(8)

Given p ∈ �(�(�)) with finite support, we denote by p̂ the probability induced
by p on T :

p̂[T ] = ∑
x∈supp(p)∩T

p[x] ∀ T ∈ T .

Since T is a finite partition, there is a subsequence of (p̂i)i∈N that converges to
a limit p̂. We still denote this subsequence by (p̂i)i∈N. We assume, moreover, that
the support of p̂i is independent of i, and that, for every i ∈ N, ‖ p̂i − p̂ ‖1< ε/2,
where ‖x‖1 = ∑n

k=1 |xk| for x ∈ Rn. In particular, ‖p̂i − p̂1‖1 < ε for every i ∈ N.
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In the case of no signals, we defined a strategy πi as: follow σ1 up to stage N1,

then switch to the sequence of actions prescribed by σi after stage Ni . There is
a small difficulty to proceed in a similar way here. The action that σi plays in
stage Ni depends on yNi

. However, the possible distributions at stage N1 need not
be the same as the possible distributions at stage Ni . Thus, one needs to define
a map that associates to the true distribution yN1 held at stage N1 a fictitious value
for yNi

. The solution is simply to select a fictitious distribution x according to the
conditional distribution pi[·|T (yN1)], where, given y ∈ �(�), T (y) is the element
of T that contains y.

In other words, πi follows σ1 up to stage N1. Denote by T the element of T that
contains yN1 . Choose now y′ ∈ T by pi[·|T ], the conditional distribution under σi

at stage Ni . In particular, y′ is a feasible posterior under σi at stage Ni , and so there
is some history h of length Ni such that y′ = yNi

(h). From stage N1 and on, πi

follows σi(h)—it replaces the actual history up to stage N1 by a fictitious history
of length Ni .

To formalize this idea we need additional notation. For each x ∈ �(�), we
define the strategy σ

Ni

i [x] induced by σi after stage Ni , given the distribution x, as
follows. For each history (a′

1, s
′
1, . . . , a

′
m, s′

m), we set

σ
Ni

i [x] (a′
1, s

′
1, . . . , a

′
m, s′

m) = σi(a1, s1, . . . , aNi−1, sNi−1, a
′
1, s

′
1, . . . , a

′
m, s′

m),

where (a1, s1, . . . , aNi−1, sNi−1) is any sequence in HNi
such that

yNi
(a1, s1, . . . , aNi−1, sNi−1) = x.

Since σi(hn) is a function of n and yn(hn), this is independent of the particular
sequence (a1, s1, . . . , aNi−1, sNi−1). (If no such sequence exists, the definition of
σ

Ni

i [x] is irrelevant.)
We now define, for every i ∈ N, a strategy πi as follows:

• Follow σ1 up to stage N1 − 1.
• If pi[T (yN1)] = 0, continue in an arbitrary way.
• Otherwise, choose y′ according to pi[·|T (yN1)], and continue with σ

Ni

i [y′].
Observe that the definition of πi involves choosing at stage N1 a pure strategy

at random, so that πi is a mixed strategy. By Kuhn’s theorem [8] we may view it
as a behavioral strategy.

PROPOSITION 5. For any m such that (N1 − 1)/ε < m ≤ N1 + ni − Ni, one
has

γm(x1, πi) > w − 5ε.
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PROOF. By the definition of πi (by convention, pi[x | T ] = 0 as soon as
pi[T ] = 0),

γm(x1, πi) ≥ N1 − 1

m
γN1−1(x1, σ1)

+ m − N1 + 1

m

∑
y∈�(�)

∑
x∈T (y)

p1[y]pi [x|T (y)]γm−N1+1
(
y,σ

Ni

i [x]),
with equality if pi[T (y)] > 0 for every y ∈ �(�) such that p1[y] > 0. Since
payoffs are nonnegative, and by the assumption on m,

γm(x1, πi) ≥ (1 − ε)
∑

y∈�(�)

∑
x∈T (y)

p1[y]pi [x|T (y)]γm−N1+1
(
y,σ

Ni

i [x]).
If x, y ∈ �(�) belong to the same element of T , one has by (8)∣∣γm−N1+1

(
y,σ

Ni

i [x]) − γm−N1+1
(
x,σ

Ni

i [x])∣∣ ≤ ε.

Therefore,

γm(x1, πi) ≥ (1 − ε)
∑
T ∈T

p̂1[T ] ∑
x∈T

pi[x|T ]γm−N1+1
(
x,σ

Ni

i [x]) − ε.(9)

Since ‖p̂i − p̂1‖1 < ε,∑
T ∈T

p̂1[T ] ∑
x∈T

pi[x|T ]γm−N1+1
(
x,σ

Ni

i [x])

≥ ∑
x∈�(�)

pi[x]γm−N1+1
(
x,σ

Ni

i [x]) − ε(10)

= γNi,m−N1+Ni
(x1, σi) − ε.

By (9), (10) and (5) we get

γm(x1, πi) ≥ (1 − ε)γNi,m−N1+Ni
(x1, σi) − 2ε

≥ (1 − ε)
(
vni

(x1)− ε
) − 2ε

> (1 − ε)(w − 2ε)− 2ε > w − 5ε. �

The last step is to construct from the sequence (πi)i∈N, using a diagonal
extraction argument, a strategy π that is 5ε-optimal. In this step we use the
representation of πi as a behavioral strategy. Let n ≥ 1 be given. Since Hn is
finite, there exists a sequence (in(j))j∈N such that limj→∞ πin(j)(h) exists for
every h ∈ Hn. We denote by π(h) the limit. Without loss of generality, we may
assume that (in+1(j))j is a subsequence of (in(j))j for each n. Clearly, for each
n ∈ N,

γn(x1, π) = lim
j→∞γn(x1, πin(j)).
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By Proposition 5, γn(x1, π) > w−5ε, for every n > (N1 −1)/ε. Hence Theorem 1
is proved. �

We conclude by discussing several extensions.

COMMENT 5. The extension to a compact set of actions also holds in the
general case, under the same conditions as in the case of no signals, as discussed
above.

COMMENT 6. The extension to MDP with finite �, A and a countable set of
signals S is straightforward. Indeed, given ε > 0, there exist finite subsets S∗

n of S
such that, given any strategy σ and any initial distribution x1 ∈ �(�),

Px1,σ (sn /∈ S∗
n for some n) ≤ ε/2n.

The proof then essentially reduces to the case of a finite set of signals.

COMMENT 7. The extension to MDP with finite A and countable � does not
hold, even when S is a singleton. Indeed, there are examples, see [10] for instance,
of an MDP with finite A, countable � and deterministic transitions, that have no
value. For such MDP, the sequence of past actions enables the decision maker to
recover the current state of the MDP. Hence the assumption of partial observation
is irrelevant.

COMMENT 8. Our proof works in the case of MDPs with a compact metric
space �, and finite action set A and signal set S, as long as (8) holds.
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