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Several invariant tests for uniformity of a distribution on the circle,
the sphere and the hemisphere have been proposed by Rayleigh, Watson,
Bingham, Ajne, Beran and others. In this paper a class of invariant tests
for uniformity on compact Riemannian manifolds containing many of the
known ones is presented and studied (the asymptotic theory as well as some
local optimality properties for this class of tests are given). The examples
include two new tests, one for the sphere and the other for the hemisphere.
Let X be a compact Riemannian manifold, # the normalized volume
element (the uniform distribution of X) and v, the empirical distribution
corresponding to a sequence of i.i.d. X-valued random variables. The
statistics in which these tests are based are just convergent weighted sums
of the squares of the Fourier coefficients of vn(w) — ¢ With respect to any
orthonormal basis of Lz(X, y) consisting of eigenfunctions of the Laplacian.
An additional condition is imposed on the weights, namely that weights
corresponding to coefficients of eigenfunctions in the same eigenspace of
the Laplacian be equal (this condition is essential for the invariance of the
tests). These statistics are related to Sobolev norms and so, the tests are
called Sobolev tests. In connection with Sobolev statistics, it is interesting
to note that the Sobolev norms of index —s, s > (dim X)/2, metrize the
weak-star topology of Z#(X), the space of Borel probability measures on
X. A theorem about weak convergence of empirical distributions on
compact manifolds, useful in proving some of the asymptotic results for
Sobolev statistics, is also included. One of the sections (Section 2) is almost
entirely devoted to give a short review of the facts needed in the paper
about Riemannian manifolds, the Laplacian and Sobolev spaces.

1. Introduction. The uniform distribution on a compact Riemannian manifold
is defined as the Borel measure which extends the normalized volume element
of the space (for the definition of the volume element see e.g. Helgason (1962)
page 291). Since the volume element is invariant under isometries, so is the
uniform distribution. Then, it is natural to impose the same kind of invariance
on any procedure for deciding whether a given distribution is the uniform one
or is not. In this paper we study a class of invariant tests for uniformity on
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1244 EVARIST GINE M.

compact Riemannian manifolds based on invariant norms that metrize the weak-
star topology on their spaces of Borel probability measures.

Let X be a compact Riemannian manifold and g the uniform distribution on
X. The tests considered here consist in rejecting the hypothesis of uniformity
of a given distribution on X for large values of statistics of the fomr

(1.1) T, ({a)(0) = n|l(Z a0 me)(va(@) — p)I1L,

where v,(w) is the nth empirical distribution, r, is the orthogonal projection of
Ly(X, p) onto the kth eigenspace of the Laplace-Beltrami operator (Laplacian)
of X acting on the space of Schwartz distributions by duality, o, is the sequence
of eigenvalues of the Laplacian A in increasing order, {a,} is a sequence of real
numbers such that sup |a, 6,*?| < oo (this condition can be weakened) and ||-||_,
is a Sobolev norm of negative index —s < —(dim X)/2 defined through A ((2.5)).
The statistics of type (1.1) will be called Sobolev statistics as they are based on
Sobolev norms, and the tests they induce, Sobolev tests. Let {f;} be an ortho-
normal basis of L,(X, u) consisting of eigenfunctions of A and let E, be the
eigenspace of A of eigenvalue o,, k = 0, 1, ... (¢, = 0). Then, (1.1) is in fact

(1.2) T, (e @) = n T’ Zgien, [V x fida(@) — )

i.e., a weighted sum of squares of Fourier coefficients of v,(w) — x with respect
to the orthonormal system {f;} with weights depending only on the eigenspaces
(see Section 2). The condition sup |a,0,"*| < oo for some s > (dim X)/2 ensures
the convergence of the series (1.2) regardless of the underlying distribution of
the observations defining v,.
. Section 2 contains some reviewing on Riemannian manifolds, the Laplacian
and Sobolev norms. Nothing is proved except for a lemma on Sobolev spaces
which we believe known but know of no reference for it. This lemma (Lemma
2.1) is used in showing that the norm ||.||_,, for 5 > (dim X)/2, metrizes the
weak-star topology of the space .Z%(X) of Borel probability measures on X.
Clearly, this fact provides some ground for studying statistics of type (1.1).

Let v be any probability measure on X and {v,}7_, the empirical distributions
associated with v. Define processes on L,(X, v) by Z,“(w, f) = nt { fd(v,(®) —v),
n=1,...,and let Z* be the centered Gaussian process with the same covari-
ance as Z,*. Let B, be the unit ball of the Sobolev space H,(X), s > (dim X)/2;
then B, is a compact subset of C(X). In Section 3 we prove that the probability
measures ~°(Z,* | B,) induced by Z,* on C(B,) converge weakly to the one
induced by Z®, S(Z* | B,).

Using the result of Section 3 we obtain the limiting dlstrlbutlon of T, under
the null hypothesis (Theorem 4.1). The consistency properties of Sobolev tests
are given in Theorem 4.4. The asymptotic theory of these tests is completed
with the limiting distribution of Sobolev statistics under any alternative (Theo-
rem 4.7), obtained by a method adapted from Beran (1969). These results, which
form Section 4, indicate that the behavior of a Sobolev statistic for large samples
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distinguishes very clearly between the null hypothesis case (Theorem 4.1, Lem-
ma 4.3) and the case of any alternative against which the test is consistent.

If the manifold is homogeneous, Sobolev statistics can be expanded in terms
of only zonal functions (Proposition 5.2) and so they become effectively com-
putable in many cases. Another consequence of this fact is that these statistics
can be related to those of Beran (1968); such a relation implies that Sobolev
tests satisfy some local optimality properties (Theorems 5.3 and 5.4).

Finally, Section 6 is devoted to the important cases of the circle, the sphere
and the projective plane (hemisphere). There is no new result here for the cir-
cle; it is just seen that several important invariant tests are Sobolev. For the
sphere and the projective plane we give two new invariant tests for uniformity
computable with O(n?) operations, n being the sample size (Propositions 6.3 and
6.4). Moreover, a procedure is outlined for constructing invariant tests for
uniformity on the sphere and the projective plane computable with only O(n)
operations, consistent against prescribed alternatives and with asymptotic ap-
proximations to their power available. This procedure is illustrated with two
examples: Rayleigh’s and Bingham’s tests. Some properties for this last test are
also deduced.

About notation, perhaps the following should be remarked. If {v,} is a se-
quence of probability measures on a metric space X converging weakly to a
probability v (i.e., converging to v in the weak-star topology of C’'(X)), we will
write w* — limy, = v. If v is a measure on X then ( , ), and , will denote
respectively the inner product and the norm of L,(X, v).

2. Riemannian manifolds. The Laplacian. Sobolev norms. A Riemannian
. manifold is a differentiable manifold X such that the tangent space M, at each
point x € X has a strictly positive definite inner product g, defined on it which
is smooth in the sense that the mapping x — g,(v(x), w(x)) is C= for every pair
of C= vector fields v and w (Helgason (1962) page 44 ff.). Given a smooth curve
7(t) C X, te[a, b}, if 7(r) denotes the tangent to y(z), the length of y is defined
to be
L(r) = 12 0,(7(1), 7(1))* dt .

If moreover X is connected, the function
d(x, y) = inf {L(y): 7 joints x and y}

is a distance on X, i.e. (X, d) is a metric space, and d is called the Riemannian
metric of X (Helgason (1962) pages 50-51). If a diffecomorphism of X onto X
preserves the inner product of X, it is called an isometry of X. A mapping of X
onto X is an isometry in this sense if and only if it is an isometry of the metric
space (X, d) onto itself (Helgason (1962) pages 60-61).

The volume of any set A C X with piecewise smooth boundary can be defined
in the following way: if the set 4 is contained in a coordinate patch with coordi-
nates, say, x, - - -, X,, n = dim X, and if we define ¢(x) = (x,(x), - - -, x,(x)) e R*
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and g,;(x) = 9,(0/dx,, d/dx;), then the volume of A is {,,, |det (9,,(¢(p)))|* dp
(usual Riemann integration on R"); if A intersects several coordinate patches
(we may assume them to be only a finite number because X is compact), de-
compose A4 into a disjoint union of sets with piecewise smooth boundaries, each
contained in a coordinate patch, and define the volume of 4 additively. This
definition is independent of the set of coordinate systems used (a change of co-
ordinates has the effect of a change of variables in a multiple integral). Now,
the volume can be uniquely extended to a Borel measure on X. This Borel
measure, normalized, is the probability measure that we call the uniform distri-
bution on X or the normalized volume element of X, . From its definition it is
clear that the uniform distribution x is invariant under isometries. Moreover,
if there are enough isometries on X—for instance, if X is homogeneous— it is
the only invariant Borel probability.

Three compact Riemannian manifolds are already in use in statistics: the circle,
the sphere and the projective plane or hemisphere. These spaces are the setting
for the statistics of directional data (Mardia (1972) and the references there).
Beran (1968) gave tests for uniformity on compact homogeneous spaces and
many of such spaces are Riemannian manifolds too; this work is connected with
his (see Section 5). Compact Lie groups which might have some interest in
statistics are the tori T", T being the circle, and some groups of matrices like
the unitary and the orthogonal groups. Among the potentially interesting—
from the statistical point of view—homogeneous compact Riemannian mani-
folds other than the sphere and the hemisphere, perhaps we should mention the
Grassmann manifolds M,(IR*) (= the set of linear subspaces of dimension k of
R*). Smooth compact surfaces (without boundary) of R* are also compact

- Riemannian manifolds. For these and other examples see Warner (1971).

The Laplacian (Laplace-Beltrami operator) of a Riemannian manifold X is

the differential operator defined, in coordinates, by the formula

A= —gt },;0/0x; 3. 9"G* 9/ox,

where g = |det (g,,)| and (¢9%/) = (g,;)~" (Helgason (1962) page 387). We want
to remark the following properties of the Laplacian on a compact Riemannian
manifold X: a) A is an elliptic second order operator and so its eigenfunctions
are in C=(X); b) A is self adjoint; c) A is invariant under isometries (given an
isometry @ of X, ®(A) is defined as @(A)(f)(x) = A(f o @) (P'(x))); d) the
eigenspaces of A (acting on C*(X)) are finite dimensional; e) if # is the normalised
volume element of X, eigenspaces corresponding to different eigenvalues are
orthogonal in L,(X, ) and their orthogonal sum is dense in L,(X, p); and f) the
eigenvalues of A are all greater than or equal to zero and have no limit point.
(References: Helgason (1962) pages 387-388 and Warner (1971) pages 254-256.)
These properties show that the eigenfunctions and the eigenspaces of A are very
natural objects to consider when treating invariance questions.

We now give a brief description of Sobolev spaces. For any real s, the
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completion of C;*(R") with respect to the norm given by the bilinear form
(u5 0), = Jrn BEWENL + [E]) €,

where # denotes the Fourier transform of u, is called the Sobolev space of order
s of R*, H(R"). These spaces are in fact spaces of tempered distributions,
H(R") = L(R*) and H, C H, for s > s’ (Yoshida (1965) pages 55, 57-59 and
155). One of the main properties of Sobolev spaces is Sobolev’s lemma: given
keZ, v {0}, if s > k + n/2 then every distribution in H,(R") is defined by a
function in C*(IR*) and the injection of H, into C* is continuous (Yosida (1965)
pages 174-175). We will see below a complement to this lemma. Let now X
be a compact manifold of dimension #; if {U} is a finite covering of X by co-
ordinate patches and {p,} is a partition of unity subordinated to this covering
(Helgason (1962) page 8), then the Sobolev spaces of X are the Hilbert spaces
of distributions given by

2.1 H(X) ={ue 2'(X): p,uec H(R") for each i}
(u’ ’U), = Z (piu’ piv)a .
This definition is independent of the covering and the partition of unity (Nirenberg
(1970) pages 150 and 157-158).
For R" Sobolev spaces are defined by summability conditions on the Fourier
transform of functions (and distributions). The same is true for compact mani-

folds if the Fourier coefficients are suitably defined. This is consequence of the
following fact: if A4 is an invertible elliptic operator of order m, then the formula

(2.2) (U, V) = (A%, A),

- where ( , ), is the inner product of L,(X, ) and the real power of the operator
A is defined as in Seeley (1968), defines another Hilbert space structure on H,,,(X)
and there exist constants ¢, and ¢, such that ¢ ||u||,n < ||#||im < |||, (Seeley
(1968) page 301 and Nirenberg (1970) pages 157-158). Let {0,}7_, be the set of
different eigenvalues of A in increasing order, {E,};_, the set of eigenspaces (E,
corresponds to g, for each k) and {f;}, an orthonormal basis of L,(X, ) con-
sisting of real eigenfunctions of A. If we take 4 = A + E in (2.2), E being the

expectation operator with respect to p, we have
(2.3) (u, v), = ((A + E)*u, (A + E)'/“'v),,
=u()v(l) + X, 04 2isier, ¥(f)V(f2)

where u(f) is understood in the distributional sense, in particular, if u is a func-
tion, u(f;) = (yuf,dp. Then, for s > 0, fe Ly(X, p) is in H(X) if and only if

24) (AN = (Ef) + L 04" Digyen, (f fi)i* < o0
and a distribution T € &2'(X) is in H_,(X) if and only if
2-3) (TN = (T1)* 4+ X 007" Lgpen, (Tf) < 0.
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The norm (2.5) is, for every fixed s, dual to the norm (2.4), i.e. ||T||", =
sup {Tf: fe H(X), ||f|ly < 1}. As a consequence of the invariance property of
A, the norms (2.4) and (2.5) are invariant under isometries. The Sobolev norms
that we are going to use are precisely the norms (2.5). Let us note that the local
character of the Sobolev lemma ensures its validity for manifolds. Therefore,
if s > (dim X)/2 then FA(X) C H_,(X) (<(X) denotes the set of Borel probability
measures on X). On the other hand no discrete probability belongs to H_,(X)
for s < (dim X)/2 because the same is true for R"*: 6,(£) = exp(i€x) and this
function is square integrable with respect to the measure (1 + |§|*)*d¢ if and
only if s < —n/2. So, Z%(X) is in H_,(X) if and only if s > (dim X)/2.

In order to prove that Sobolev norms of order —s, s > (dim X)/2, metrize
the weak-star topology of .7(X), we need the following lemma.

LEMMA 2.1. Let X be a compact Riemannian manifold and d its Riemannian
metric. Then, for every s € ((dim X)/2, (dim X)/2 4+ 1] and a € (0, s — (dim X)/2),
there exists a constant c, , > 0 such that
(2.9) 1f(x) = f)I = coallfllldlx, y)]*
for every f e H(X), where H,(X) is taken as a subset of C(X).

Proor. If dim X = n, by definition (2.1) we only need to prove (2.6) for R"
(the constant, of course, will not be necessarily the same). In this case, if
fe H(R") and 5 > n/2,

A= f(x + B) — f()
= (22) | g [H[=*(exp(— i<, 1) — 1) exp(—i<x, D)f() d|
= (27)7"|§ e [B] 71|~ *(exp(— i<k, 1)) — D)e|" exp(—i<x, )1 (1) di|
< 2(27)72 (g |2|°] f(2)] a2
= 2Q2m) 7 (g [f*(1 + J1)~*(1 + [1)*?| ()] a1
< 2Q2m) 7 S (1 A [(F)7 | £, »
the last integral being convergent for « < s — n/2. (The first inequality follows
from these two:
jexp(—ich, ) — 1] <2 and  [exp(—i<h, 1)) — 1| < [<h, 1] < |Alje]) . O

The last lemma is clearly true for any norm equivalent to the norm (2.1), in
particular for the norm defined by (2.4). We will call Sobolev norm of order s
any norm on H,(X) equivalent to the norm (2.1).

THEOREM 2.2. If X is a compact Riemannian manifold, any Sobolev norm of
order —s with s > (dim X)/2 metrizes the weak-star topology of F(X).

Proor. Since the weak-star topology of (X)) is metrizable (for a proof see
Dudley (1966)) we only need to prove that for any sequence {v,} C F(X),
w* — limy, = v if and only if lim |y, — v||_, = 0. The unit ball B, of H,(X)
for any Sobolev norm is equicontinuous and equibounded by Lemma 2.1;
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therefore, Theorem 7 in Dudley (1966) proves that if w* — limy, = v, then
lim ||y, — ||, = 0. Since H,(X) contains a dense subset of C(X) (for example,
C=(X)), a standard approximation argument proves that if lim {, Adv, = {, hdv
for every function # € H,(X), then the same is true for every continuous function
fe C(X), and this gives the converse. []

At this point we drop the primes in the notation for the norms defined by
(2.4) and (2.5), and hereafter only these Sobolev norms will be used. Then,
the statistic T, ({a,}) defined by (1.1) becomes

T,({a,}) = n 23, & 2isieny [§x fid(v, — )T,

and if {X;};, is the sequence of independent identically distributed random vari-
ables defining v, n = 1,2, ... (i.e. v, = n7* 37, 0y,), then

2.7) T,(e}) = n7' T a® Lyen, [fil(X) + -+ + fX)]).

By the Sobolev lemma T,*({a,}) exists whenever sup|a,0,*’| < co and s >
(dim X)/2. If v is the distribution of X, a sufficient condition for the existence
of the statistic (1.1), in view of (2.7), is X7, a;* X yex, Sx fi'dv < oo} as we
will see in the next section (Lemma 3.1), this last condition is weaker than the
former one.

3. A limit theorem for empirical distributions. Let v be a Borel probability
measure on the compact Riemannian manifold X and let v, (w), n = 1,2, ... be,
as in the previous section, the empirical distributions obtained from a sequence
of independent v-distributed random variables {X,};, defined on some probability
space (Q, &, P) and with values in X. Following Strassen and Dudley (1969)
define processes Z,*, n = 1,2, ... and Z® on L,(X, v) as follows:

@3.1) Z,(@)(f) = 1 §x f (@) — v)

and Z* as the centered Gaussian process on L,(X,v) with covariance
EZ(f)Z2(9) = Sx (f — (x fav) (g — {y gdv)dv. Then, by the central limit
theorem, the finite dimensional distributions of Z,* converge in law to the
corresponding ones of Z™. But this is not enough for finding the limiting dis-
tribution of 7,({a,}) under the null hypothesis v = p unless the sequence {«,}
has all but a finite number of terms equal to zero.

Let B, be the closed unit ball of H,(X) for any s > (dim X)/2 and let d(f, g) =
SUP,ex |f(x) — 9(x)| = ||f — 9||-- Then, (B,, d) is a compact metric space by
Lemma 2.1 and the Arzeld-Ascoli theorem.

Again following Strassen and Dudley we will say that the central limit theo-
rem for empirical distributions holds on C(B,, d) (for short, C(B,)) whenever the
following two conditions are satisfied:

a) Z"|B, is sample continuous for every probability measure » on X, thus
defining a probability measure .2”(Z| B,) on the space C(B,);
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b) for every probability measure v on X,
L(Z,|B,) >, L(Z™ | B,) in C'(C(B,)

as n — oo (Z,"(w)| B, clearly has continuous trajectories; also, Z,*(w) is linear
for every w € Q). The object of this section is to prove that the central limit
theorem for empirical distributions holds on C(B,) for every s > (dim X)/2
‘(note that the question has no sense for smaller values of s).

~ The following is the main lemma.

LemmA 3.1. For every s > (dim X)/2 and every Borel probability measure v on
X, the inclusion map I: H(X) — Ly(X, v) is Hilbert—Schmidt.

Proor. For every s > (dim X)/2 the function x — ||4,||_, (where §, denotes,
as usual, point mass at x) is continuous: applying Lemma 2.1,
[l18:l1-0 — llowll-] = 110, — 8url|-s = SUPys, 5 |f(x) — fX)] < e uldlx, X))

for any of the numbers a allowed by Lemma 2.1. In particular, since X is com-
pact, there exists a finite positive constant K such that

(3-2) 192, = K
for every x € X.

If we set f; = 1and f; = ,7*f; forevery f,e E;, k = 1,2, - .., then { i), is
an orthonormal basis of H,(X). Therefore, the identity I is Hilbert-Schmidt if
and only if
(3.3) 1L+ ¥e,0° 2156 By (xfldv < >,

But by (3.2),
L+ 25007 Dper, Sx fifdv = {1+ X007 2 rie g Ji(X)) du(x)
= {x [10.[|2 dv(x) < K
for every v € Z%(X). Hence (3.3) holds. []

We now prove continuity of Z*'| B, by applying the above lemma.

LEMMA 3.2. Fore every Borel probability measure v on X and every s > (dim X)/2
the process Z)| B, is sample continuous.

. Proor. If T is a compact metric space, x,, t €T, is a centered L,-continuous
Gaussian process and {A,};_, is an orthonormal basis of the linear span of {x,: t ¢
T}in Ly(Q, P), then x, is sample continuous if and only if the series ¥ (x,, 4,)L(A,)
converges uniformly in r with probability one, L being the isoniormal process of
L,(Q, P) (Dudley (1973) page 69). The if part of this statement, which is what
we need, is trivial. If {g,}2, is an orthonormal basis of L,(X, v) and {G,}7, is a
sequences of independent N(0, 1) random variables, the above condition reduces
to the convergence of the series Y2, (f, g,), G, uniformly in fe B, with prob-
ability one. A sufficient condition for this to hold, in view of Kolmogorov’s
inequality, is that there exist a sequence {r,?} of positive real numbers such that
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Lt < oo and (f, g,),* < 7 for every i and every fe B,. Let {f,}r, be as in
Lemma 3.1. Then we can take r,;> = 3, (fi, 9,),” because on one hand

2T = 2 (fk’ 9. = 2 2 (ﬁv 9.). = 2 (fk’fk)u2 < oo
by Lemma 3.1, and on the other, if f = 3, q, f, with 3] a2 < 1, i.e., if fe B,,
then

(f> 9. = (X akﬁc’ 9. = [Zea(fir 9.7 < (D a)(Zs (flv 9)) =7’ [

Next we prove uniform tightness of the sequence of laws {<7(Z,*| B,)}=_,.
We will apply Theorem 2.3 of De Acosta (1970) which asserts that a set of
(Borel) probability measures {z,},., on a Banach space Y is uniformly tight if
and only if

a) it is flatly concentrated, and

b) there exists a w*-total subset 4 of Y’ such that for every Z ¢ A the set of
probability measures on R, {¢, o Z7'},., is uniformly tight. (A set of probability
measures {z,} on Y is flatly concentrated if for every ¢ > 0 and 6 > 0 there
exists a finite dimensional subspace E of Y such that g, (E¢) =1 — 5, where
E={yeY:inf |y —yll = ¢})

LemMMA 3.3. The sequence {£(Z,™ | B,)}s_, of probability measures on C(B,) is
uniformly tight for every probability measure v on X and for every s > (dim X)/2.

Proor. Let us define, for every natural n,

F,={Ae(C(B,): 4 islinear (on H,), Af,=0 and Af, =0, k=n+41, ...}
(therefore, dim F, = n) and, for every ¢ > 0 and natural n,

M, ={AeC(B,): A islinear (on H,) and (Afy)’ + Yii_.i (Afi)? < €.
Then M, . is contained in F,¢: for every A € M, .define A by Af = 17, (f, f).Afs
then 4 ¢ F, and so, if d denotes distance in C(B,), we obtain

d(4, F,) < d(A, A) = sup;5, |(f, ), Afy + Zizwns (f, £, A4S
= SUPsep, (S f0) Afo + Zi 0 it By iznt (fs f)u Afi|
=< SUpyesp, [(fs fo)* + Zeo 2L fie By izntl (fs £,

. X I:(“‘,fo)2 + Z?=n+l (Aﬁ)”]i é €,
ie. M, CF,.
Using this inclusion and Lemma 3.1 we prove that for every ¢ >0,

lim,_., P{Z,* ¢ F,*} = 1 uniformly in r (which clearly implies that the sequence
{£(Z,.»| B,)}z., is flatly concentrated). We have

P{Z»eF}zPlZ,"eM,}=1— P L. (Z.2(f) = ¢}

=1—¢? o 2iient (Zrm(fk))2 dp
=1—¢e?3,0,™ 2if e By iznt Sx(fi — Sy fidv)' av
g 1 —¢2 Zk g, ZfieEk,i2n+l Sxfizd” .
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But the last quantity, independent of r, converges to 1 for every s > (dim X)/2
by (3.3).

Hence, by Theorem 2.3 in De Acosta (1970), the lemma will be proved if we
find a w*-total subset W of (C(B,))’ such that the sequence {-£(Z,* | B,) o w™'}3_,
is uniformly tight for every w in W. Since B, is compact metric we can take W
to be {d,: fe H(X)} and, Z,"*(w) being linear, we only need to show that
{(L(Z,|B,) o 0, Yooy = {L(Z,(f))3-: is uniformly tight for every f in H,.
But this is true by the central limit theorem. []

Finally,

THEOREM 3.4, Let X be a compact Riemannian manifold. Then the central limit
theorem for empirical distributions holds on C(B,) for every s > (dim X)/2.

Proor. Clear from Lemmas 3.2 and 3.3 by Prokhorov’s theorem. []

4. Asymptotic theory of Sobolev tests. In this section, X will still be a general
compact Riemannian manifold. We begin with the limiting distribution of 7',
under the null hypothesis.

THEOREM 4.1. Let {X )72, be a sequence of independent random variables with
values in X and with distribution p, the uniform distribution on X. Then for every
s > (dim X)/2, we have

@.1) wr — lim, AT, “({au))} = ZH{ L a’Hi}
where {H,}7_, is a sequence of independent random variables such that, for each k,
H, is Chi-square with dim E, degrees of freedom.

ProoF. No generality is lost in assuming sup, |a, ¢,*?| < 1. Define the follow-
ing seminorm on C(B,):
h(A) = sup;cp |4 o 35 a, 0, m(f)] .
Since (3, a,0,’n,)(B,) < B, as sup,|a,0,”* < 1, we have 0 < A4(4) < ||4]|.

and, & being subadditive, this proves the continuity of #. Hence, by Theorem

3.4,

w* — lim, ., F(Z, ")} = L(Z®)} .

n— 00

.And this proves the theorem because

W(Z, () = [|Z,*(@) o (L a0 7|2 = Tu({@e})(@)

and
H(ZW(w)) = [|Z(@) o (Zr @0 mi)||,
= D¥=a 4’ Yyer, (Z9(fi)(@))
= >’ H, . 0
Theorem 4.1 is still valid under the weaker condition
4.2) e, (dimE)a? < oo,

but the above proof does not apply to this case. However one can use the central
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limit theorem for Hilbert space. And there are even simple direct proofs (Watson
(1961) and Giné (1973)).

It is easy to see that the distribution function of the right term of (4.1) is
absolutely continuous; in particular the convergence of the distribution functions
in (4.1) is uniform.

The asymptotic behavior of the tail of the limiting distribution in (4.1) has
been studied by Zolotarev (1961) although not with complete generality (just
for dim E;, = 3).

As for the speed of convergence, if the number of nonvanishing a,’s is infinite,
there are not many results; for the circle and for tori the method of Sazonov
(1969) can be applied and yields bounds of the order of n~¢ and worse. If the
number of a,’s different from zero is finite, Theorem 4.1 is just a consequence
of the multidimensional central limit theorem and in this case one may even
find asymptotic expansions for the distribution of 7,* (e.g. by applying
Bhachattarya’s work (1971)).

Next we examine the consistency properties of the tests based on rejecting
the hypothesis of uniformity of a distribution on X for large values of T,

LEMMA 4.2. Let {X,}, be a sequence of independent, identically distributed ran-
dom variables with values in X and let v be their common distribution. Then, for
every s > (dim X)/2,

(4.3) a.s.-lim,_, n7'T,({a,}) = || Dk @r 0, m(v — )2, -

PRrOOF. Let v,(w) be the empirical distribution corresponding to {X,},. Then,
as it is well known, w* — limy,(w) = v for almost every » in Q and so, by
Theorem 2.2, a.s.-lim ||y, — v||_, = 0. Hence,

lim,_., [n7'T,({a,})(@)]?
= lim, ., || 2, a0, m(va(@) — p)|-,
= lim, . [|[(Zx @0, " m)(v, — v) + (D a0, m)(v — p)||-,
= [[(Zx a0m)(v — |-,
almost surely. []

This lemma says nothing about consistency of the test if (35, a0, %1, )(v— ¢) =0.

In this situation the following holds:

LemMa 4.3. If m(v) = O whenever a;, + 0, k = 1,2, - .-, then
4w —lim, . AT (D)} = ZHAZw a8’ Dyper, (290}
where Z¥) is defined as in Section 3.

Proor. By definition, T,“({a;}) = X, a® s, er, [Za(f)) + 0t S fi @]
But since §, f;dv = 0 for every f, e E, with a, + 0, this expression becomes
T, ({a}) = X’ Xy,e, (£,f;)* and we can apply the result of Section 2 in
exactly the same way as we did in Theorem 4.1 []
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From the last two lemmas we obtain:

THEOREM 4.4. The tests based on rejecting uniformity for large values of
T, ({a,}) are consistent against an alternative v if and only if v is not orthogonal to
every E, such that a;, + 0.

Proor. If the condition holds then, by Lemma 4.2, for every a > 0 we have
lim,_, P{T,*({a;}) > a} = 1 and the test is consistent. On the contrary, if the
condition does not hold then, by Lemma 4.3, this limit is smaller than one for
every a > 0 and so the test is not consistent. []

Like Theorem 4.1, Lemmas 4.2 and 4.3 are valid in more generality: the
condition

(4.5) 2t ZfieEk §x fitdv < o0
is enough. Hence, Theorem 4.4 also holds under this condition.

We end this section giving the asymptotic distribution of T, under alterna-
tives. For this, as well as for other parts of this section, the work of Beran (1969)
on invariant tests for distributions on the circle has been of great help.

The following lemma gives an alternative expression for T, which allows us
to use Beran’s method (1969).

LEMMA 4.5. The series

(4.6) 9(x,y) = i1 0 Lpper, [{LY)
converges in Ly(X, p) for every fixed x in X. Moreover the following identity holds:
(4.7) T, ({a}) = n7" §x [ 250 90x, X5 dpe(x) -

Proor. Since, for s > (dim X)/2, §, is in H_,(X) for every x, we have (note
sup |a, 0,% < o0):
L1 8 Lgyen, (X)) = (D70 @0 ") (0|2, < oo,
so that g(+, y) € Ly(X, ). Now,
T, () = nll(Ze @0 ) (v — I,
=17 Tia & Dyper, (D=1 fulX5))
= Y| i Dyer, (Di= XD
= 17" (x [ 2520 9(x, X)) dp(x) - 0
In the proof of Theorem 1 of Beran (1969) the problem of finding the asymp-
totic distribution of a sequence of random variables of the type (4.7), X being
the circle, is reduced to the central limit theorem by an argument which is a
direct generalisation of the following simple observation: let {x,};2, be a sequence
of i.i.d. random variables with Ex, = 0 and Ex;’> = ¢ < oo; then,
n (3, x,)? — (nEx))*] = n"¥(Xr, x;, — nEx))(n™* Y1, x; + Ex)),
and this implies ‘
wh — lim L (T, x)* — (nEx)]) = N0, 20|Ex])
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Similarly,
& w* — lim Z{n~* (332, x,)* — (nEx,)*]} = N(O, ok|Ex,|*"") .
And even for nonintegral powers the analogous expression holds provided the

random variables are positive and have a continuous distribution.
The following generalisation applies to statistics of the form (4.7).

ProrosITION 4.6. Let (U, &, p) and (V, &, v) be probability spaces, {V ]}z, a
sequence of i.i.d. random variables with values in V and common distribution v, and
9: UX V—R a measurable function. Suppose ge L(U X V, u X v) for some
integer k > 1. Define

r(u) = §, g(u, v) dv(v) and o® = Var [k \, r*~Y(u)g(u, V) dp(u)] .
Then, re L(U, p), ¢* is finite and

wh — lim L(n ]Sy (S, 9, V) dp(u) — 1§, () dp(u)]} = N, ) .

The proof of this proposition is easy but somewhat cumbersome. The details
may be found in Giné (1973).

Again, there is no difficulty in proving that, if g is positive and bounded, an
analogue to Proposition 4.6 holds for real powers of g.

The following theorem gives the asymptotic distribution of T, under alter-
natives.

THEOREM 4.7. Let v be a probability measure on X such that z,(v) # O for some
k = 1 with &, = 0, let g be as in (4.6), and define

_ r(x) = §x9(x, y) dv(y) -
Then,
(4.8) w* — lim,_, ZnT, " (@) — ET,({a)]} = N, o),
where
0" = A{x (V2 r(0)9(x, ) dp(x))* dv(y) — (§¢ " dp)’] -
~ Proor. By Lemma 4.5 and Proposition 4.6 we only need to prove:
(a) geL(X x X, ¢ x v), and
(b) limn=}(ET,“({ee}) — n §x r*(y) dp(y)) = 0.
We have, for (a):
Sxg'dpdv = §x (N’ Dyper, [E(X) (X)) = T o’ Dyien, S5 fi dv
Ssuplao’| 3,0, Dper, Sx fiTdy < o0
by Lemma 3.1, i.e. g € Ly(X x X, ¢ x v); as for (b),
ET,ow} = Vi §x 9%(x, y) dp(x) dv(y) + (0 — 1) §x [§x 9(x, y) dv(y)] dp(x)
= constant + (n — 1) {, r’(x) du(x),
and from this, (b) follows. O
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Again, this theorem is valid for {a,} satisfying only condition (4.5).

Theorem 4.7 may be used for giving asymptotic approximations to the power
of the test for uniformity based on T, against any alternative (simple). Some
numerical results for Ajne’s test on the circle can be found in Beran (1969).

5. Sobolev tests on homogeneous compact manifolds. A Riemannian mani-
fold is called homogeneous if its group of isometeries, G, acts transitively on it.
For every xe X, let K, denote the isotropy group of x, i.e. the subgroup of
isometries leaving x fixed. With this notation we have:

DErFINITION 5.1. A differentiable function f on X is a zonal function with
respect to a point x, € X if it is invariant under K, i.e. if it is constant on the
orbits of K, .

For instance, on the sphere, the zonal functions with respect to a pole are the
functions constant on the parallels.

X is called two-point homogeneous if, for every x, K, acts transitively on the
spheres centered at x or what is the same, if for any set of four points x;, x;, yy, y,
with d(x,, y,) = d(x,, y,), there exists ® € G such that ®(x,) = y,,i = 1, 2. Zonal
functions on two-point homogeneous spaces have the following characterization:
a function is zonal with respect to x if and only if it depends only on the distance
to x (Berger et al. (1971), III-C.1.7.).

Let X be a homogeneous compact Riemannian manifold with only a finite
number of connected components—in what follows X is assumed to be con-
nected; then, its group of isometies G is a compact Lie group, the isotropy group
K, of every x € X is a closed subgroup of G (Kobayashi and Nomizu (1963) page
239) and the homogeneous manifold of left cosets G/K, is mapped diffeomor-
phically onto X by the mapping [®] — @(x), where [®] = @K, (Warner (1971)
page 123). The normalised Haar measure of G gives a measure on G/K, = X in
a natural way; this induced measure is precisely the uniform distribution p on
X. These facts on compact homogeneous manifolds will be used in proving
some of the results below.

One of the tools we use in this section is a direct generalisation for the eigen-
functions of A of the equation of the cosine of a difference and also of the addi-
tion formula for spherical harmonics. Let us describe it (for a proof, see Giné
(1975) or (1973)). If X is compact homogeneous, x, € X and E, is an eigenspace
of A, then there exists a uniquely determined real function f* € E, zonal with
respect to x,, orthogonal to every function in E, vanishing at x,, normalised
(w.r.t. the L,(X, ¢) norm) and positive at x,. And if { f;}3i% Fe isvany orthonormal
(Ly(X, p) sense) basis for E,, then

(CRY) S E f(0)f(y) = (dim Ef0(D, . () »
where @, , is any isometry of X mapping x into x,. Moreover, 3 |fy(x)]* =

dim E, and f,"*(x) = (dim E,)}. If X is two-point homogeneous, then the right
hand side of (5.1) can be replaced by (dim E,)*h,(d(x, y)), h, being the real
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function defined as
(5.2) h(d(x, y)) = f2¥(y) = f,*(x) .

As a direct consequence of (5.1) and (5.2) we have the following proposition
(which needs no proof).

PROPOSITION 5.2. Let X be compact homogeneous and, for every x and y, set

(5.3) h(x, y) = 2o a,’(dim E (D, . (1))
and
(5.4) 9(x, ) = Xz a(dim E (D, () -

Then, (4.7) is valid with the function g given by (5.4). The following identity is also
true:

(5.5) T, () = 17 T2y A(X,, X -
If X is two-point homogeneous, then

3.3y h(x, y) = L ai’(dim Ey)th(d(x, )
and

(5.4) 9(x, y) = i an(dim E)thy(d(x, y)) -

The simplification of T, is significant at least for two-point homogeneous
spaces because it proves that in these spaces Sobolev statistics only depend on
the distance between observations and also because the function 4, seems to be
easier to obtain than the functions f;: zonal harmonics in two-point homogene-
ous compact manifolds are solutions of just ordinary second order differential
equations. If the function 4 can be effectively determined, one may be able to
compute 7, from (5.4) with at most O(n*) operations. If only a finite number
of the a’s are nonzero and the relevant f;’s are known, then one can compute
T, with only O(n) operations just using (2.7); however, (5.4) could be useful
even in this case (e.g. see Section 6).

We now turn to another consequence of Proposition 5.2. Beran (1968) con-
siders statistics of the form

(3-6) Tu(f) = 17" o [ 2 AP(XY) — n]* (@),

where g is the Haar normalized measure of G and f is a bounded probability
density with respect to ¢. He proves (Theorem 5) that the test consisting in re-
jecting uniformity for large values of T,(f) is most powerful invariant except for
terms of order O(a’) against the family of alternatives {f, o @: f, = a(f —
1) + 1, ae[—1, 1], P € G} i.e., against the collection of probability measures
f(@(x)) dp(x), ae[—1, 1], ®eG. More precisely, there exist constants c,, ¢,
and ¢, such that the following restricted expansion is valid near & = 0:

So It fo(@(XY)) dp(@) = ¢, + (e, + & T ()X, -+, X)) + O(a) .
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Inourcase ¢, = 1,¢, = —n §, (f(x) — 1)*du(x) and ¢, = n. Let us remark that
considerations on invariance and the Neyman-Pearson lemma imply that the
most powerful invariant test for uniformity against fdu is to reject the null
hypothesis for large values of

§o ITi- AR(XY)) dp(®D) -
Thus the test based on T,(f) may be considered as most powerful invariant
against alternatives of the form f, o ® du for @ small. The next two theorems
assert that Sobolev tests on homogeneous manifolds have this property (at least
if s > dim X or if the coefficients a, satisfy )}, a, dim E;, < oo) and that on two-
point homogeneous manifolds they are all the tests satisfying this property for
alternatives which are zonal with respect to some point.

THEOREM 5.3. Let X be a homogeneous compact (connected) Riemannian mani-
fold and let {a,} be a sequence of real numbers such that the function g defined by
(5.4) is bounded. Then the test for uniformity based on T, ({a,}) is most powerful
invariant except for terms of order O(a®) against the family of densities

5.7 Afart farl) = @g9(x P)/19(x Y|l + 1, @ €[—1, 1], xe X} .

Proof. Let us set f, = f; , for simplicity. Since f, is zonal w.r.t. x, for every
®eGwehavef, o ® = f,_,  and so the set of densities (5.7) is invariant under
isometries. By Theorem 5 of Beran (1968) we only need to prove that
T, ({ay}) = cT,(f,) for some constant ¢ and xe X. According to (5.6) and
(5.7), we have

T.(f2) = (nl1911) 7" §e [ Zim1 9(x, QX)) dp(P) -
Now,
9(x, ©(y)) = L ay(dim E)f,"(D(y)) = T an(dim Ey)fe?,,(y) = 9(P7(x), y).
Therefore, using this fact, the properties of the Haar measure and that g(®(x), y),
as a function of @, is constant on left K, cosets, we obtain:

T.(f2) = (nllglla’) ! §o [ 231 9O H(x), XTI dp( @)
= (n]|9]]=")" §6 [ 271 9(D(x), X)) d(P)
= (n]l9]=") " $x [ 271 90y XO)T dp(y) = 1191122 T ({an}) - 0
Under an additional hypothesis satisfied by compact two-point homogeneous
manifolds, a converse to Theorem 5.3 is true.
THEOREM 5.4. Let X be a homogeneous compact (connected) Riemannian manifold
with the property that the subspace of E, consisting of zonal functions with respect to a

point x € X has dimension one for every k = 1,2, ... Then,if f, is a bounded density
zonal with respect to x, the statistic T, (f,) is of the Sobolev type. In fact the function g

defining T,( f,) throughout (4.7) is g(y, z) = f(z) — 1, with f, given by f, = f, o @, ,.

Proor. By the same computation carried out in the proof of Theorem 5.3,
Tu(fa) = 07" x [ D190y, X)T dp(y) -
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Now, f, being zonal with respect to x, the hypothesis ensures that g has an ex-
pansion of the form (5.4). In fact,

g(x’ y) = Zl?:l (fz’ fz(k))pfz(k)(y) *

Then, T,(f,) = T.”({a)}) with a, = (f,, f,*),/(dim E,)} (therefore, the sequence
{a,} satisfies condition (4.2)). []

Berger et al. (1971), III, C.1.8, show that the hypothesis of Theorem 5.4 is
satisfied by compact two-point homogeneous Riemannian manifolds.

Although T,(f,) is not a strict Soboleyv statistic (not necessarily sup |a, 0,*?| <
o), the results of Section 4 apply to it. In particular, several results of Beran
(1969) have been extended to spaces other than the circle.

6. Examples: the cases of the circle, the sphere and the projective plane.
Let X be the circle x* + y* = 1 of R*. Then dp = df/2x (§ denotes arc length
starting at (1,0)), A = —d’/d¢*, o, = k*, E, is the linear span of cos kf and
sin k@ (E, is C or R: since A is self adjoint we may just consider the real L,(X, y))
and, for k > 1, an orthonormal basis for E, is 2% cos k6 and 2! sin k6. The func-
tion A, defined by (5.2) is ,(6) = 2% cos k. Hence, by Proposition 5.2,

(6.1) T, ({a,}) = 2n' 25, ) 2075, cos k(X,; — X;) .
Perhaps the most interesting statistic of this type is Watson’s one (Watson
(1961)):
U =n§[v(0, x) — x — §3 (va(0, x) — x)dx]*dx.
(Here the circle is taken of unit length). This is an invariant modification of
the Cramér-von Mises statistic. Some trivial computation involving Parseval’s
. formula shows

(6.2) 4’0, = T,({k7}) .

The limiting distribution of T7T,%({k='}) under the null hypothesis is
A(X w1 k*H,) where {H,}7_, is a sequence of independent identically distributed
random variables with a chi-square distribution of two degrees of freedom (Theo-
rem4.1). Using a modification of the method of Zolotarév (1961) consisting in
inverting the characteristic function by means of an integration by residues one
can show (Watson (1961)) that the distribution function of } 7, k—*H,, say F(x),
has the expression

(6.3) F(x) = [1 4+ 2 Zuer (— 1) exp(—K*%/2) 1 0,01(*) -

This series is alternating and perfectly suitable for computation.

Watson’s statistic has been very well studied. Besides the information one
can deduce as a consequence of the previous theory in this paper, we must men-
tion the work of M. Stephens (1963) and (1964) about rapidity of convergence
of the law of U,’ to its asymptotic distribution and, mainly, about the exact
distribution of this statistic for small samples as well as about its lower tail for
any sample size.
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The oldest invariant test for uniformity on the circle is Rayleigh’s test which
consists in rejecting uniformity for large values of the statistic R,?/n, where n is
sample size and R, is the resultant of the sample, the circle being considered as
the set of unit vectors of R*. Clearly we have

R2jn = n=[(S1, 008 X)) + (D, sin X = n~ 32, cos (X, — X;)
= T,%((1,0, ---})/2.

Besides its properties as a Sobolev test, this test is most powerful invariant for
uniformity against the von Mises distribution ¢ - exp(k cos (6 — 6,)) (Ajne
(1968)). Even intuition favors this statistic as the natural candidate for testing
uniformity against unimodal alternatives.

Another interesting Sobolev test on the circle is Ajne’s test (Ajne (1968)),
based on the statistic

(6.4) A, = = §[N@B) — n21* db

where N(6) is the number of points of the sample located on the half circle cen-
tered at §. Some easy computation shows that

(6.5) A, =477T,({e,}) with a,, =0 and ay,, = (—1)*2k + 1)-1.

Ajne (1968) proved that this test is locally most powerful invariant against dis-
tributions with density constant on a hemisphere and on its complement. The
asymptotic distribution of this statistic under the null hypothesis was first found
by Watson (1967a) who also gave it in the form (5.5). For a study of the power
of Ajne’s test against the natural alternatives, see Beran (1969). J.S.Rao (1972)
and E. Rothman (1972) have interesting generalisations of this test still falling
into the category of Sobolev tests.

We now examine some examples for the sphere and for the projective plane
(obtained from the sphere by identifying antipodal points). If X = S?is the unit
sphere x* + y* 4+ 72 = 1 of IR, then dy = (4r)~'sin 6 df dp (where (0, ¢) are
the usual spherical coordinates) is the uniform distribution on X; the Laplacian
is given by —A = 6°/30 + cot 0 /36 + (sin*#)~* 3*/0¢?, its eigenvalues are o, =
k(k + 1), k=1,2, ... and ¢, = 1, and their multiplicities, dim E, = 2k + 1,
k=0,1,.... An orthonormal basis for the eigenspace E, of eigenvalue g, =
k(k + 1) is {f,"™}__, with

[ 90, ¢) = (2k + 1)tP,(cos 6),
[i™(0, ¢) = [(2k + 1)(k — m)!/(k + m)!]*P,™(cos 0).cos m¢ ,
and
[e=™(0, ¢) = [(2k + 1)(k — m)!/(k + m)!]*P,™(cos 6) sin m¢ ,
m=1,2, ...k,
where P, and P,™ are the Legendre and associated Legendre functions:

Py(x) = (k! 2"~ (d*[dx¥)(x* — 1)*,
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and
P™(x) = (= 1)™(1 — x*)™Xd"[dx™)(Py(x)) -
(Gradschtein and Ryzhik (1965).)

PO
Since f,”(x) = (2k + 1)}P,(cos x,x) (ab is the unoriented angle between a and
b as vectors in R®) and §” is two-point homogeneous, we have, in the notation
of Section 5,

[.9(9) = 2k + 1)Py(cos )

and

(6.6) h(r) = 2k 4+ 1)}P(cosr), 0<Zr<mr,

fork = 1,2,.... Formula (5.1), for the particular basis defined above, becomes
PN

(6.7) bk (XS () = (2k + 1)Py(cos xp) .

Equation (6.7) is known as the addition formula for spherical harmonics.

Proposition 5.2 together with (6.6) gives concrete expressions for T, on the
sphere.

If in $* we identify diametrically opposite points, we obtain the projective
plane P*. In P* we can use the same coordinates (6, ¢) as in S? (or the Cartesian
coordinates (x, y, z)) and the functions on P* are the ones on S* with the appro-
priate symmetry property, i.e. such that f(6, ¢) = f(r — 6, = + ¢) (or f(x, y, z) =
f(—x, —y, —z)). Using the definitions of P, and P,™ we easily obtain

LemMA 6.1. If fe E,, E, being the eigenspace of A (on S*) of eigenvalue k(k + 1),
then

f0,9) = (=1fx — 0,z + ¢).

COROLLARY 6.2. The eigenspaces of A on P* are {E,}>_,, where E,, is the eigen-
space of A on S? of eigenvalue 2k(2k + 1). The eigenvalue of E,, is also 2k(2k + 1),
k=1,2,....

Corollary 6.2 makes it unnecessary to treat P* very specifically: if 7, ({a,})
is a Sobolev statistic for the sphere satisfying a,,,, =0, k =0, 1, ..., then it
belongs to the projective plane too, i.e. it can be used for testing uniformity
on P, .

Formula (5.5) is very suitable for computation. Using it we now give a sta-
tistic such that the corresponding test is consistent against any alternative and
such that for sample size n it can be effectively computed with O(n*) operations.

PROPOSITION 6.3. Let X, ---, X, be n independent observations from some dis-
tribution on S? then the statistic F, defined by

~ L~
(6.8) Fo(Xy, - X,) = 3n/2 — (A7) Dicicn Xi X + Dicisa SIDX; XG]

is a Sobolev statistic of type T, V({a,}) with a;, # O for every k € N and sup, |a, 0,}| <
oo. The invariant test for uniformity consisting in rejecting it for large values of F,
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is consistent against any alternative. The asymptotic distribution of F, under uni-
formity is
A Nea [27%(2k — 1)7%((2k — D! /K!)?Hy,_,
+ 2772k — )7k — 1)7(2k — DK HD
where {H,};_, is a sequence of independent random variables with << (H,) = %3, ..,
and 2k — D! =2k — 1)(2k — 3) ... 1.

PROOF. An alternative form for (6.8) is
S Lo

(6.8) Fo=n7 31a[(1 = 2X,X5/7) + (3 — 2(sin X, X;)/x)]
and so, if

h(r) = (1 — 2r[z) 4+ (4 — 2(sin r)/x)
then

S
F,=n"3,; X X;).

Now, by (5.5) we only need to see that # admits an expansion of type (5.3)" with
sup, |a, of| < oo, a, + 0 for every k > 1 and s = 3. But
(6.9) 1 —2rjzx = X, 272k — 1)x(4k — 1)[(2k — 1)!1/k!]?P,,_y(cos r)
and )

(6.10) }—26inr)/r = 3, 272k — 1)k + 1)"(4k + 1)
X [(2k — D!JK!PP,, (cos r)

for r € [0, 7] (Gradschtein and Ryzhik (1965)) and (2k — 1)!!/k! = (zk)-#2* as
k — co. Comparison of (6.9) and (6.10) with (5.3)" and trivial computation
~ show that F, = T,%({a,}) with a;, + 0 for all k > 1 and sup |a,0,}| < co. The
remaining statements are now a consequence of Theorems 4.1 and 4.4. []

The first term of (6.8), n=' 33, ; (1 — Zﬁj/z), is Beran’s form of Ajne’s sta-
tistic for the sphere (defined similarly to (6.4); see Beran (1968) page 193). It
appeared originally with a misprint and it has been cited at least twice in the
literature (Watson (1967b) page 378 and Mardia (1972) page 282) still with
misprints.

The second term of (6.8)’ is interesting because it gives a test for uniformity
on the projective plane consistent against any alternative (and a test on the
sphere consistent against any alternative with density symmetric with respect to
the center). More concretely:

PROPOSITION 6.4. Let X,, - - -, X, be n independent observations of a distribution
on P%; then the statistic defined by

(6.11) G, = 27'n — 4(nz)"* 3., sin X, X,

is a Sobolev statistic on P* of type T, ¥ ({a,}) with sup, |a,0,}| < co and a, + O for
all k = 1. The invariant test for uniformity based on G, is consistent against any
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alternative and the asymptotic distribution of G, under the null hypothesis is
L X w1 27712k — 1)k — 1)X((2k — D/K!)YH,},
where {H,} is as in Proposition 6.3.
PRrROOF. As Proposition 6.3‘but taking Corollary 6.2 into account. []

On the sphere, G, does not give a test consistent against any alternative, of
course, but the set of alternatives against which it is consistent contains, by
Theorem 4.4, the densities which are symmetric with respect to the origin (and
not a.s. constant).

F, and G, have the inconvenience of requiring O(n*) computations for samples
of size n, and so does Ajne’s statistic on the sphere. However, if the number of
coefficients a, different from zero is finite, then T,*({a,}) can be computed with
O(n) operations using (2.7), as remarked before. Still, we can use (5.5) to obtain
efficient expressions for 7, even in this case. Call x, the unit vector corre-

sponding to the observation X; and set P,(x) = Y% ,7,*x", k = 1,2, -... Then
by (6.6),
S
Zii B(X; X;) = (2k + 1) 30, ; Pu(x, - X;)
(6.12) =2k + Dt Zx o, a5 (X Xg)

= 2k + Do
+ X7 HINPRRY O A AL R Ik

where X, - x; is the Euclidean inner product in R® and x,'#’ is the jth coordinate
of the vector x; with respect to an orthogonal system. Let us take k = 1. Then
P(x) = x and so (6.12) gives

T
Lo (X Xy) = 3 B (D x9) = 3R},
R, denoting the length of the resultant of the sample, R, = | X7, x;|. Therefore,
(6.13) Tr,»({1,0, ---}) =3R?n.

For a modern reference to this statistic, see Mardia (1972). Let us take now
k = 2. Then, Py(x) = (3x* — 1)/2, and so, by (6.12), we have

6.14) k(X X)) = S{—rf2 + 3 3%,y (D 6P O)2]
= 5 —n?2 4 3(trace T?)/2],
with T = 37 T(x,) and

x* yx zx
(6.15) T(x)=|(xy y* zy
xz yz Z*

for any vector x = (x, y, z). Therefore,
(6.16) T,“{0, 1,0, --.}) = 5[—n/2 + 3(trace T?)/2n] .
The statistic (6.16) was first introduced by C. Bingham (1964) in his Ph. D.
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thesis, but it has remained unpublished, to our knowledge, until 1972 (Mardia).
We obtained this statistic independently, just in the way described above, with
the intention of constructing easily computable tests for uniformity on P2
Bingham obtained (6.16) as an asymptotic form of the invariant likelihood ratio
statistic for testing uniformity against c¢ - exp(};3_, k cos? ;i}) du(x), Xy, Xy X,
orthogonal. Denote by B, this statistic, i.e.
(6.16) B, =T,2({0, 1,0, .-.}).
Then, the theory of the previous two sections, applied to B, gives the following
proposition.

PROPOSITION 6.5. The statistic B, satisfies:

a) its asymptotic distribution under the hypothesis of uniformity is y3/5 (Bingham
(1964));

b) the test based on B, is consistent against any alternative v such that
{52 f2™(x) dy(x) #= O for some m = —2, ..., 2;

C) the test based on B, is most powerful invariant except for terms of order O(a®)
against the family

\
{faie' faz(y) =1+ aPy(cosxy), a e[—1, 1], x € §%};

d) the limiting distribution of n~*[B, — na*/5] under the alternative f, , is

N(O, 2a[1 + 2a/7 — a*/5]}/5%).

Proor. a) is consequence of Theorem 4.1, b) comes from Theorem 4.4, c)
from Theorem 5.3 and d) from Theorem 4.7. The computations involved in

proving c¢) (mainly based in the orthogonality properties of spherical harmonics
~and in the addition formula) are very straightforward and we omit them. For
other alternatives, they may become rather complicated. []

The consistency property b) can be written in a more convenient form:

COROLLARY 6.6. The test based on B, is consistent against a probability measure
v if and only if

(6.17) (52 (T(X) — 1/3)dy(x) = 0,
where T(X) is as defined in (6.15) and I is the identity 3 X 3 matrix.

Proor. Consequence of the identity

_3_*f2(°) +fzm fz(_z) —fzm
T(x) — I/3 =15} i —3-if,0 _ fo —fh |,
_fzd) —fz(_l) 2. 3—4f2(o>

which can be easily verified. []

Among the distributions satisfying (6.15) there are the ones with density
h(6, ¢) such that: a) h(., #) is symmetric about #/2 and monotonic between 0
and z/2 for every ¢, and b) A(+, ¢) is not a constant for any ¢ in a subset of
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[0, 27] of positive Lebesgue measure. In fact these densities are not orthogonal
to Py(cos 6).

The last two tests in this section are the best examples of Sobolev tests on the
sphere. Using (6.12), one can construct other tests with the limiting distribu-
tions under the null hypothesis and under alternatives as described in Section 4,
with prescribed consistency properties and computable with relatively few
operations.
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