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STATISTICAL INFERENCE USING EXTREME
ORDER STATISTICS!

By JamEs PickANDs III
University of Pennsylvania

A method is presented for making statistical inferences about the upper
tail of a distribution function. It is useful for estimating the probabilities
of future extremely large observations. The method is applicable if the
underlying distribution function satisfies a condition which holds for all
common continuous distribution functions.

1. Introduction. Let X, X,, --+, X,, --- be a sequence of mutually inde-
pendent random variables with common continuous distribution function F(x).
In many applications we want to estimate the probability that a future obser-
vation will exceed a given high level during some specified epoch. A machine
may break down if a certain noise level is reached for example or a glass store
window might break under the impact of an unusually intense wind. In the
book by Gumbel [5] many applications of this sort are discussed.

There are two general methods of treating problems of this kind. The first is
parametric and it is given in Gumbel’s book. We give an outline of it here.

In n random variables are mutually independent with common distribution
function F(x) and Y, is the largest among these random variables, then the dis-
tribution function for Y, is F*(x). Suppose there exists a pair of sequences a,
and b, with a, > 0 for all n and a distribution function A(x) such that

(1.1)  lim,_. P(Y, — b,)a, < x} = lim, ., F*a,x + b,) = A(x)

for all x at which A(x) is continuous. We say that A(x) is an “extremal distri-
bution function” and that F(x) lies in its “domain of attraction.” The distri-
bution function A(x) must belong to one of three parametric families. This is
the extreme value trinity theorem. See Gnedenko [3], or Gumbel [5] Chapter 4.
The domains of attraction have been characterized by a number of authors.
The most recent and most extensive work is the book by de Haan [2]. Most
“textbook” continuous families of distribution functions are discussed in [5].
They all lie in the domain of attraction of some extremal distribution function.

Suppose we have data for a period of, say, 50 years. The data might be the
amount of water discharged through a river for example, or wind speeds meas-
ured every hour, or temperature readings or daily rainfall. Suppose the data are
daily. Gumbel’s method is to take the largest value for each year, so that we
have a sample of annual maxima. The observations are assumed to be mutually
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independent with common distribution function A(x) where A(x) belongs to one
of the three families of extreme value distribution functions. The choice is
normally made intuitively. The parameters are then estimated to yield what is
employed as the distribution of future maxima. These random variables are not
actually mutually independent in most cases but they are nearly so and the
method has been shown to be very robust against dependence.

The second method is the method of exceedances. See Gumbel and von
Schelling [4] or [5] Section 2.2. This involves the probability distribution for
the number of times the mth largest observation will be exceeded during a future
epoch. The method is nonparametric and combinatoric. No assumption is made
about the distribution function for the X, except that it is continuous.

A third method is proposed here. Since the groupihg of data into epochs is
somewhat arbitrary we consider the m largest observations from the original
data. For example, if we have daily data, some years may contain several among
the m largest whereas others may contain none.

The proposed method is explained in Section 2. The theoretical details are
contained in Sections 3 and 4, which can be omitted by the reader uninterested
in the theory. A brief discussion follows in Section 5.

2. The method. In this section the proposed procedure is explained. The
theory which sustains it is contained in the following two sections. Suppose that
we have a sample of n mutually independent and identically distributed random
variables with common but unknown continuous distribution function F(x). It

is assumed that for some ¢, — o0 < ¢ < oo,
(2.1)  lim,,  infi, e SUPgacw [([1 — F(u + X)]/[1 — F(u)])
— exp(—§§[(1 + cn),]71dn)| =0,

where x, = g.l.b. {x: F(x) = 1} = Lu.b. {x: F(x) < 1} and for any y, y, =
max (0, y). For any 4, x, [1 — F(u + x)]/[1 — F(u)] is the conditional proba-
bility that an observation is greater than x + u, given that it is greater than u.
Our condition means that if u is large, the conditional distribution of X given
that X > u is very nearly of the form

(2.2) 1 — G(x) = exp —§&* [(1 + e), ] dt

for some a, ¢, 0 < a < o0, —oo < ¢ L 0.
We distinguish three cases: ¢ > 0,c=0,and ¢ < 0. If ¢ > 0, then

1 — G(x) = (1 4 cx[a)™V*

for all x, 0 < x < oo. This class of distribution functions is the well known
Pareto family. If ¢ =0, then

1 — G(x) = exp(—x/a)

for all x, 0 < x < co. This is the exponential family of distributions. If ¢ < 0,
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then
1 — G(x) = (1 — |c|x/a)¥

for all x, 0 < x < a/|c| and
1 —-G(x)=0
for all x, a/|c| £ x < oo.

If F(x) is continuous, as we assume, our condition (2.1) is equivalent to the
assumption that F(x) lies in the domain of attraction of an extreme value distri-
bution function. The equivalence is proved in Section 3. See Theorem 7. It
is shown throughout [5] that most “textbook” continuous distribution functions
lie in the domain of attraction of some extreme value distribution and so con-
dition (2.1) is satisfied by them. :

Let n be the sample size and let M be an integer much smaller than n. Intui-
tively the 4M largest observations contain information about the upper tail of
the distribution function. This is useful for predictive purposes. We defer the
question of choosing M.

Let {Z,, m = 1,2, ..., n} be the descending order statistics. That is, for each
m, Z, is the mth largest observation in the sample. We treat the values {Z,, —
Zysm=1,2,...,4M — 1} as though they were the descending order statistics

from a sample of size 4M — 1 from a population with a distribution function of
the form (2.2) for some a, ¢, 0 < a < vo, —o0o < ¢ < co. We estimate the
parameters a and ¢ by a simple percentile method as follows.

It is shown in Section 3 that forany y, 0 < y < 1, G~(1 — y) = a {757 e** du.
Therefore G~(3) = a {;°* e du and G=Y(§) = a §i°e* e du. Clearly, [G(3) —
G(H))/G(E) = §le e du/§is* e du = 2° and s0 ¢ = (log 2)~* log ([(G(3) —
G(P]/G(3)) and a = GX(3)/§:°%* e du. For every pair of numbers G-1(}),
G(3), 0 < G7(3) < G™3) < oo, there corresponds one and only one pair of
parameters a, ¢, 0 < a < o0, —o0 < ¢ < oo. To estimate ¢ and a we replace
the population quantiles G-%(}) and G-*3) by the sample quantiles G-(}) =
Zyy — Z, and G-l(g) =Z,— Z,;. Then

(2.3) ¢ = (log 2)*log (Zy — Zuw)/(Zase — Zun))
and
(2.4) 4 = (Zyy — Zpy)|Si05? € du .

Now, we consider the problem of choosing M. It is intuitively clear that as
n becomes large, so should M, or we fail to reap the benefit of an increasing
sample size. That is we expect that

limn_,w M = oo
in probability. On the other hand, unless a portion of the upper tail is exactly
of the form (2.2) we expect that

lim M/n=0,

n—00
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or the approximation of the population upper tail by means of a distribution of
the form (2.2) will not improve indefinitely.

Specifically, we compute M in the following way. Foreach/,/=1,2, ...,
[n/4), let d, = sup,, ... |Fi(x) — G,(x)| where F,(x) is the “empirical upper tail”
distribution function and G,(x) is of the form (2.2) with ¢ and a replaced by ¢
and 4 given by (2.3) and (2.4) with M = [. The function F,(x) is the usual
empirical distribution function using the order statistics {Z,, — Z,,,m = 1,2,. .-,
41 — 1}. That is, for each x, 4/(1 — F(x)) is the number of terms Z, — Z,
which are greater than or equal to x. We choose M to be the smallest integer
solution of

dy = min, g, d; .

It is shown in Section 4 that the estimator G, (x) is consistent in the sense that
foralle > 0,

lim,, e, P{SUPos,<n (11 — F(Zire + 0))/[1 — F(Ziy)]) — [1 = Gu(x)] > ¢} = 0.

3. The upper tail. The generalized Pareto upper tail is defined as an attribute
of a univariate distribution function F(x). It is shown that a continuous distri-
bution function F(x) has a generalized Pareto upper tail if and only if it lies in
the domain of attraction of an extremal distribution function. Some definitions
and properties are given.

DEerINITION 1. A function P(x) is a “tail function” if 1 — P(x) is a distribution

function with
PO)=1.

DEFINITION 2. A tail function Q(x) is a GPF (generalized Pareto function) if

and only if
Q(x) = exp —§5*[(1 + ct), ] dt
for some a, ¢, 0 < a << o0, —co <c < owandall x, 0 < x < 0.

The functions Q(x) have well-defined inverse functions. Foranyy, 0 < y < 1,
let Q~'(y) be the value of x which is such that Q(x) = y. Foralla, ¢, 0 < a < oo,
—oo < ¢ < oo.

3.1) QY(y)=af;'sverds.

Let x, and x, be respectively the 50 and 75 percentiles.
We solve for @ and ¢ in terms of x, and x,.
Evidently (x, — x,)/x, = 2° and so

3.2) ¢ = (log 2)~*log ((x, — x1)/x,)
and
(3.3) a=x/{seds.

Let Q(x, x;, X;) = Q(x) where ¢ and a are computed from x, and x, using the
preceding equations. This is a reparametrization. There is one and only one
function Q(x) for each x;, x,, 0 < x; < x, < oo. Let Py(x) and Py(x) be any pair
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of tail functions. We define the metric
d(Py, Py) = SUP g, <o |Pi(X) — Py(x)| .

THEOREM 1. Let Q(x) and Q*(x) be two GPFs with parameters a and ¢ and a*
and c* respectively. We can write

d(Q, 0*) = ¢(c, ¢*, afa*) .
Furthermore for any c*, —oo < ¢* < oo.
lim,_ .« .1 ¢(c, c*, a) = 0.

ProoF. Suppose that Q(x) and Q*(x) are replaced by Q(x/b) and Q*(x/b) re-
spectively, where b is a real positive constant. Thén d(Q, Q%) is unchanged.
Let b6 = a*. Then d(Q, Q*) has the same value if ¢ and ¢* are unchanged but
a and a* are replaced by a/a* and 1 respectively. So d(Q, Q*) is a function of
¢, ¢* and afa*.

Now the second part of the theorem is proved. Let x be an arbitrary real
positive number. If ¢ = 0, it is clear that Q(x) is a continuous function of a and
c. If ¢ < 0, we can write Q(x) = max (0, 1 — |c|x/a)""’. When a and ¢ are such
that 1 — |c[x/a = 0, Q(x) is not differentiable but it is still continuous. It is
clearly continuous for all other values of a and c¢. Since x was arbitrarily cho-
sen, continuity with respect to the metric d follows by the usual compactness
argument. []

THEOREM 2. Let x, and x, and x,* and x,* be the 50 and 75 percentiles for Q(x)
and Q*(x) respectively. We can write
d(Q, Q%) = P(xo/x,*, Xofx1*, X% [x,%) .
Furthermore, for any a, B, 1, 0 < a, B, 1 < o0,

lima—»l,ﬁ—»r ¢(a’ IB’ T) =0.
Proor. This is a consequence of Theorem 1 and the fact that x, and x, are
continuous functions of @ and ¢. [

THEOREM 3. Let P(x) be a tail function. If for some x,, x,, 6,0 < x; < x, < oo,
0oy,
dP, 0% <0,
where
0*(x) = Q(x, x,*, x,*) ,
and x, and x, are such that
P(x;) = 1)2¢, i=12,
then
Ixi —x* = 9i(x1*5 X%, 5) ’ i=1,2,
and the functions g, and g, are such that for all x;*, x,*, 0 < x,* < x,* < oo,

lim6~0 gi(x1*’ xz*, 5) =0 ) i= 1, 2.
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Proof. By assumption

S — IS 0Mx) S 5+ 3, i=1,2.

Recall the inverse function (3.1) for Q*(x). The theorem is true by continuity. []

DEerFINITION 3. A GPF Q(x) is said to “be associated with” a tail function
P(x) if for some x,;, x,, 0 < x, < x, < o0,

Q(x) = Q(x; X, xy) 5

and
P(x;) = 1/2i, i=1,2.

THEOREM 4. Let Q(x) and Q*(x) be GPFs and let P(x) be an arbitrary tail func-
tion. Suppose that Q(x) is associated with P(x) in the sense of Definition 3. Assume
further that for some 6, 0 < 0 < %,

d(P, Q%) < 3.
Then
d(Q, Q%) = d(xa/x*, xo[x,*, x,*[x,*)

where
|x; — x*| < 9%, %%, 9), i=12.

It follows that
lim,_,d(Q, Q*) = 0.

Proor. Let Q(x) = Q(x, x,, x,), and Q*(x) = Q(x, x,*, x,*). By Definition 3,
P(x,) = 1/2%,i = 1,2. By Theorem 2, d(Q, O*) = ¢(x,/x,*, xo/x,*, x,*[x,*). But
by Theorem 3, |x; — x,*| < g(x*, x,*, 0), i = 1, 2. The limit result is a conse-
quence of the conclusions of Theorems 2 and 3. [

THEOREM 5. Under the conditions of Theorem 4,

d(P, Q) = 0 + P(x[x,*, X X%, X% [x,%)
and so
dP,Q)—0

as 0 — 0.

Proor. By the triangle inequality d(P, Q) < d(P, Q*) + d(Q*, Q) < d +
d(Q*, Q). The result follows by Theorem 4. []

Let u be any real number such that F(xz) < 1, or equivalently such that
—oo < u < x,, and let

(3:4)  Pux) = PX>u+ x}/P{X > u} =[1 — Fu + x)]/[1 — Fu)]

and let Q,(x) be a GPF associated with P,(x) in the sense of Definition 3.

In general Q,(x) may not exist for all u. A sufficient condition for it to exist is
that F(x) be continuous, because then the equations P,(x;) = 1/2¢, i =1, 2,
necessarily have a solution, although it need not be unique. Let

(3-5) D(2) = infy._pa=2d(Py> Qu) -
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For each 2, 0 < 2 < 1, let C, be the set of all possible values of ¢ for Q,(x)
where u is such that 1 — F(u) = 2. Let

(3.6) cc(A) =glb.{c: ceCy}
and
3.7) ct(A) =lub.{c: ceC}}.

If the function D(2) is well defined, then for each 2, 0 < 2 < 1, the set C; is
nonempty and so the functions ¢=(1) and c*(2) are well defined. The function
D(2) is necessarily well defined if F(x) is continuous.

THEOREM 6. If D(2) = 0 for some 2, 0 < 2 < 1,-then D(a) = 0 for all a,

0 < a £ 4. Furthermore,
¢ () = c*(R) = ¢ (a) = ct(a) .

Proor. There exists a value of u which is such that 1 — F(u) = 2 and
d(P,, Q,) = 0. So we can take P,(x) to be equal to Q,(x) and we can write
P,(x) = exp —§¢/* dt/(1 + ct) for some a, ¢, 0 < a < o0, —o0 < ¢ < oo, for
all x at which P,(x) > 0. Let v be chosenso that 0 < 1 — F(u 4 v) < 4. Then

Puo(x) = [1 = Flu 4 v 4 x))/[1 — Fu + v)]
= P, (v + x)/P,(v) = exp — i+ dt/(1 4 ct) .
But

Y@/ def(1 4 ct)
— z/a v — z/a | v |
o SO dt/l:l te (t + a ):I SO dt/':l ¢ a Ct:l
— (z/a v v _I:I — (z/(a+cw)
= {2 dt/(1+c—a>l:1+ct<l+c—a) = \: dtf(1 + ct).

So P

utv

not. [J

(x) is also a GPF. The value of ¢ is unchanged but the value of a is

DEFINITION 4. A distribution function F(x) is said to have a generalized
Pareto upper tail if and only if lim, , D(2) = 0, and there exists a constant c,
— oo < ¢ < oo which is such that

lim, ¢~ (2) = lim,_4c* () = c.

In [7], von Mises showed that the extremal distribution functions are of the
form A(x) = exp —§¥ ((1 + ct),)~* dt] where y = (x — b)/a and a, b and c are
respectively the scale, location and shape parameter, with 0 < a < oo, and
—o0 < b, ¢ < 0.

THEOREM 7. A continuous distribution function F(x) has a generalized Pareto
upper tail in the sense of Definition 4 if and only if it lies in the domain of attraction
of some extremal distribution function.
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ReEMARK. For a thorough study of the upper tail of a distribution and its re-
lationship to the limiting extremal distribution see Resnick [6].

Proor. By (1.1) a distribution function F(x) lies in the domain of attraction
of A(x) if and only if for each x,

(3.8) lim,_,, nlog F(a,x + b,) = log A(x) .

But (1.1) cannot hold unless lim, _, F(a,x + b,) = 1 for each x which is such
that A(x) > 0. For any distribution function F(x), —log F(x) ~ (1 — F(x)) as
F(x) — 1. Therefore, recalling (3.8), a distribution function F(x) lies in the
domain of attraction of A(x) if and only if

(3.9) lim,__ n(l — F(a,x + b,)) = —log A(x)
for all x which are such that A(x) > 0. It follows from (3.9) that

lim, .. (n — 1)(1 — F(a,x + b,)) = lim, (1 — F(@yX + by1))

= -—10g A(X) .
The converse is also true. Let # be any real number, # < X, and let n be so
chosen that b, < u < b,,,. This is possible since the sequence b, can be chosen
to be non-decreasing. Let g(#) = a,. Then, when, and only when lim, _, [1 —
F(a,x + b,)]/[1 — F(b,)] = —log A(x)/[—log A(0)], it follows that lim,_,_ P, X
(xg(#)) = lim,_,_[1 — F(u + xg(u))]/[1 — F(»)] = —log A(x)/(—log A(0)). The
last term is a GPF in the sense of Definition 2. In other words, for each x,
0 < x< oo,

lim, .. |([1 — F(u + xg()}/[1 — F@)]) — exp —§i [(1 + en), ] df| = 0.

By the usual compactness argument, this is true if and only if

lim, ., Supyc,c. [([1 — F(u + xg(@)]/[1 — F(w)]) — exp —§5 [(1 + c1),]7" 1]
= lim, _,_ SUPys, <. [([1 — F(# + x)]/[1 — F(®)])
— exp — §z/ ™ [(1 + cr), ] dt| = 0,

which holds when and only when (2.1) does. [I

4. Estimation. We consider the problem of estimating the parameter ¢ and
empirically fitting the upper tail of a distribution function. Let X, X,,. -+, X, -
be mutually independent random variables with common continuous distribu-
tion function F(x). Let Z,, Z;, - -+, Z, be the descending order statistics. T hat
is, for each integer m, m = 1, 2, -..,n, Z, is the mth largest among X,, X,, - - -
X,. The subscript n denoting the sample size is suppressed.

Let M be a positive integer-valued random variable with 1 < 4M < n. Let

4.1) Py(x) = P,(x)

where P,(x) is given by (3.4) and u = Z,, and let Q,(x) be a GPF associated
with it in the sense of Definition 3.
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DEFINITION 5. We call 2,(x) the “empirical tail function” if for each x,
0<x< oo, 4M13M(x) is the number among the random variables Zm — Zyus
m=1,2,...,4M which are greater than or equal to x. That is, £,(x) =
(AM)= i, xn(x) where y,(x)=1,if Z, — Z,, = x, =0, if Z,, — Z,,, < x.

DEFINITION 6. We call 0,(x) the “empirical GPF” if § u(x) is associated with

B,(x) in the sense of Definition 3. In particular, we let the 50 and 75 percentiles
be given by x, = Z,, — Z,, and Xy = Zy — Zyy-

It follows by definition that B,(x,) = 1/2¢, i = 1,2. Therefore QM(x)
exp — S”/" [(1 + ér), )" dt where

(42) ¢ = (log 2)log ([Zy — Zu)/[Zow — Zin))
and
(4.3) b= (Zy — Zy)|fis2 e~ ds .

Now we introduce a Poisson process to support the proofs of some of the
lemmas and theorems which follow. Let 7}, T,, ---, T,, - - - be the successive
points of increase of a homogeneous one-dimensional process with unit intensity.
Equivalently, the random variables 7}, T, — Ty, - -+, T, — T, _,, - - - are mutually
independent and have the standard exponential distribution.

LEMMA 8. If F(x) is continuous, the joint distribution of the random variables
(1 — K(Z)), (1 — F(Zy)), ---, (1 — F(Z,)) is the same as the joint distribution of
the random variables T[T, ,, T,/T,,1s +++ Tp/Tpsr-

Proor. The joint distribution of the random variables (1 — F(Z))), (1 —
K(Z)), -+, (1 — F(Z,)) is the same as the joint distribution of the ascending
order statistics from a population uniformly distributed on the unit interval.
This is so since F(x) is continuous. The joint density of T,/T,,,, Ty/T, ;s -

n/ wir and T, ., is g(uy, uy, ««+, u,, u,,,) = ut, e *=+1. But the random vanable
T,,, has the Gamma distribution and its density

1 "
I(yyr) = P} Upp€ "ttt 0 <y < oo
Therefore the conditional density of T\/T, ,, Ty/T, s, -+ -, T,/T,,, given T,,, is
gty - -~ u, T, )=nl 0<u, <u, < - <, < l, = 0 otherwise. Since
this does not depend upon T, ,, it is also the uncondltlonal density function. But
this is just the joint density of the uniform order statistics. []

LEMMA 9. If F(x) is continuous, and m is any integer m = 1,2, ..., n, the joint
distribution of the random variables [1 — F(Z))/[1 — F(Z,)], [l — F(Z)]/[1 —
KFZz,), -+ [1 — KZ,_))/[l — F(Z,)] is the same as that of the random variables
T,/T,, Tz/ ms s Ty T

Proor. This is an immediate consequence of Lemma 8. []
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Forany M, 1 < 4M < n,

d(P,, P,) = max (PM(Z1 — Zo) [Pz, — 2 — 4LM
’P,,,(Z2 — Zy) — 7111\2 , lPM(Z2 = Zu) — .
- maxlémém_l< P(Z, — Zp) — "= L] |z, — z,) — n )

since F(x) is assumed to be continuous. But for each m, 1 < m < 4M — 1, by
Definition (3.4), P(Z,, — Z,;,) = (1 — F(Zm))/(l — F(Z,,)) and so
1 — FZ, m—ll II—F( ml)

1— F(Z,M) 1— F(Z,) 4M

d(PM’ PM) = MaAX; cpmcirr—1 (

LemMmA 10. If F(x) is continuous, then for all ¢ > 0,
lim, ., sup,.,, P{max, <, d(P,, P,)(2m/loglog4m)t > 2 4 ¢} = 0.
Proor. Rewriting the conclusion it is sufficient to prove that for all ¢ > 0,

1 -FZ,) k-1
1 - FZ,) 4m

b

hml—roo Supngll P {maxugmgn maxlsks_hn—l <‘

1 — K(Z,) _
ToRGS ‘) (2m[log log 4m) > 2 + el» -

By Lemma 9, it is sufficient to prove that for all ¢ > 0,

T, k-1
T,m 4dm

3

1iml—wo Supngll P ‘Imax4l§4m§n ma’xlgkglm—l (

T, _
T,

4m

k s _
_m—i)(Zm/log log 4m)t > 2 + e} =0

But this is true if for all ¢ > 0

T, k-1
T, 4dm

4m

b

lim,_,, P {sup,mg,, maxléké,m_l(

i_il } ~0
T am >(2m/log log 4m)t > 2 + s} =

4m

Replacing 4m by m,

4.4) lim,_, P {supmzl maxléks,n_l( %’L — k_i_ll ,

m

T, _ k ) _
_7.1; ;>(m/210glogm) >2+e}_0.

By convergence with probability 1 implies convergence in probability. So (4.4)
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above is true if

T m

m

3

P {lim SUP oo MAX) oy (

I %D(m/Zloglogm)* <2}=1.

m

It is sufficient to prove that

4.5 P {lim SUP,_... MAX,cpe _;L — (ill_)| (m/2 log log m)! < 2} —1
" m
and
(4.6) P {lim SUP o MAXy gy %’L — _I.(_‘ (m/2 log log m)t < 2} =1.
m :

m

First we prove (4.6). Clearly

T, k‘< ‘ 1 1‘ |T, — k|
A Pl | 2 2 e — 2
T, ml= " T, m + m
T, m m - m m
So
maxlgkgm—l %‘ - %‘ (m/2 10g lOg m)%

m

< (|T, — m|/(2m log log m)t) + max,,,_, |T, — k|/(2m log log m)} .

But P{lim sup,, .., |T,, — m|(2m log log m) = 1} = 1 by the Law of the Iterated
Logarithm. See Breiman [1], page 64. To prove (4.6) then it remains to prove
that

4.7) P{lim sup,, .., Max,;,._; |T, — k|/(2mloglogm)! < 1} = 1.

But
max,c,<m_y | T — k|/(2m log log m)}

< MaX;gom |T, — k|/(2m log log m)?
+ max, cism_1 [T — k|/(2k log log k)t
where m, is an arbitrary positive integer. So
P{lim sup,, .., Max, ;< | T, — k|/(2m log log m)}
= SUPypm, [T — k|/(2k loglog k)}} = 1.
But m, was arbitrarily chosen and
P{lim,, ., sUp,sm, T — k|/(2k loglog k)t =1} =1,
again by the Law of the Iterated Logarithm. So (4.7) is true and therefore (4.6)
is true. All that remains is to prove (4.5). But
L =g k|1
T, m T, m m-
So (4.5) follows from (4.6) and the fact that lim sup,,_., (1/2mloglogm)t = 0. []
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THEOREM 11. If F(x) is continuous and M — co in probability as n — co, then
(d(Py, By)(2M/log log 4M)} — 2), — 0 in probability.

Proor. Let ¢, and ¢, be arbitrarily chosen. By Lemma 10, we can chosen m,
so that for all n = 4m , P{MaX,, <unszs d(Pn» P,)(2m[loglog 4m)t > 2 + ¢} < ¢,
But

P{d(P,, B,)(2M][log log 4M)} > 2 + &}
< P{M < m} + P{d(Py, P,)(2M[log log 4M)} > 2 + ¢;, M > m}
< P(M < my} + P{MaX,p cunsn d(Pas P,)(2mflog log 4m)t > 2 + &}
< PIM < m} + ¢,
But by assumption lim, _, P{M < m,} = 0 and ¢, and ¢, were arbitrarily chosen. []

THEOREM 12. For each n, let M be a solution of
(4-8) d(pM’ QM) = minlSmS[n/d] d(pm’ Qm) :

If F(x) is continuous and has a generalized Pareto upper tail in the sense of Defi-
nition 4, then .
P{lim,_, M = oo, lim,_, d(Py, 0,) = 0} = 1.

ReMARK. The solution of (4.8) need not be unique. A good choice for M

would be the largest one.

Proor. Letm be an integer-valued function which is such that lim,_, m/n = 2
where 0 < 2 < 1. Then P{lim,_, (1 — F(Z,)) = 4} =1, and by definition
P{lim sup, _,,, d(P,,, Q,) < D(A+)} = 1 where D(Z) is given by (3.5). But
d(By, 0,) < d(B,, 0,) < d(P,, P,) + d(P,, Q,) + d(Q,, 0,). Furthermore,
P{lim,_,, d(‘f’m, P,)=0}=1 by the Glivenko-Cantelli Theorem and P{lim, _,, d(Qm,
Q,) = 0} = 1, since ¢ and a are continuous functions of the quantiles. Recall
(3.2) and (3.3). Therefore P{lim sup,_., d(Py, 0,) < D(2)} = 1. By 2 was arbi-
trarily chosen and by assumption

lim, , D(A) = 0,
and so
4.9) P{lim,_, d(Py, 0,) =0} = 1.

Let m, be any positive integer. Suppose that the probability is ¢ > 0 that
M is no larger than m, for infinitely many n. In other words, suppose that
P{liminf, .M < m)}=q>0. It follows that P{lim sup,_,, d(f’M, 0,)=1/8m)} =
g > 0, since by definition 2,(x) is necessarily discrete with jumps of magnitude
least 1/4m, and Q,(x) is continuous. This contradicts (4.9) and so

P{limn_,mM = oo} =1. D
In conclusion, under the conditions of Theorems 11 and 12,

d(Py, Ox) < d(Py, Py) + d(Py, Oy) — 0
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in probability as n — co where

d(Py, QM) = SUPpc,co ([1 - F(Zy + 0)]/[1 — F(Zy)))
— exp — G5 (1 + 60,17t

é= (10g 2)7t log (Zu — Za)/(Zon — Zin))

where

and
G = (Zyy — Zuy)| S5 €™ ds .
It is conjectured that under fairly general conditions on F(x) for any real ¢,
0< 1< oo,
lim sup,_.. n(1 — F(U,(t)) = ¢
where :
U (t) = Zyy + 4 §io84H0 e ds

where ¢ and 4 are given by (4.2) and (4.3). The function U,(f) — Z,,, is the t/4M
percentile for the random tail function Q,(x).

5. Conclusions. In Gumbel’s Classical Method, the assumption is made that
the distribution function for the annual maximum is the extreme value distri-
bution. Thisassumption is not precisely accurate although experience has shown
that it works very well. The error, however slight, does not disappear as the
sample size increases. On the other hand, the proposed method is consistent
as the sample size approaches co. In the classical method an intuitive decision
is made as to which of the three families of extreme value distribution is assumed
to be the correct one. In the proposed method no such subjective decision is
necessary.

The author thanks the referee for his very careful review, which begot an
improvement of the exposition.
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