Translator Disclaimer
January, 1975 Special Case of the Distribution of the Median
S. R. Paranjape, Herman Rubin
Ann. Statist. 3(1): 251-256 (January, 1975). DOI: 10.1214/aos/1176343016

Abstract

Let $t$ be the translation parameter of a process $X(t), -\infty < t < \infty$. The likelihood ratio of the process $X(t)$ at $t$ against $t = 0$ can be written as $\exp\lbrack W(t) - \frac{1}{2}|t|\rbrack, -\infty < t < \infty$, where $W(t)$ is a standard Wiener process. For the absolute error-loss function the best invariant estimator of the translation parameter is the median of the posterior distribution. The distribution of the median for the posterior distribution is obtained, when the prior distribution for $t$ is the Lebesgue measure on the real line.

Citation

Download Citation

S. R. Paranjape. Herman Rubin. "Special Case of the Distribution of the Median." Ann. Statist. 3 (1) 251 - 256, January, 1975. https://doi.org/10.1214/aos/1176343016

Information

Published: January, 1975
First available in Project Euclid: 12 April 2007

zbMATH: 0322.62040
MathSciNet: MR365827
Digital Object Identifier: 10.1214/aos/1176343016

Subjects:
Primary: 62E15
Secondary: 60G15

Rights: Copyright © 1975 Institute of Mathematical Statistics

JOURNAL ARTICLE
6 PAGES


SHARE
Vol.3 • No. 1 • January, 1975
Back to Top