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An autoregressive moving average model in which all of the roots of the
autoregressive polynomial are reciprocals of roots of the moving average
polynomial and vice versa is called an all-pass time series model. All-pass
models generate uncorrelated (white noise) time series, but these series are
not independent in the non-Gaussian case. An approximation to the like-
lihood of the model in the case of Laplacian (two-sided exponential) noise
yields a modified absolute deviations criterion, which can be used even if
the underlying noise is not Laplacian. Asymptotic normality for least abso-
lute deviation estimators of the model parameters is established under gen-
eral conditions. Behavior of the estimators in finite samples is studied via
simulation. The methodology is applied to exchange rate returns to show
that linear all-pass models can mimic “nonlinear” behavior, and is applied
to stock market volume data to illustrate a two-step procedure for fitting
noncausal autoregressions.

1. Introduction. In the analysis of returns on financial assets such as
stocks, it is common to observe lack of serial correlation, heavy-tailed marginal
distributions, and volatility clustering. Volatility clustering is the name given
to the phenomenon noticed by Mandelbrot (1963), in which small observations
tend to be followed by small observations, and large observations by large
observations. This kind of dependence is not reflected in the second-order
properties of the series, which is serially uncorrelated, but can be detected
through the analysis of higher-order moments, such as in the autocorrelations
of the squared returns.

Typically, nonlinear models with time-dependent conditional variances,
such as the autoregressive conditionally heteroskedastic (ARCH) models
[Engle (1982), Bollerslev, Chou and Kroner (1992)] or the stochastic volatil-
ity models [Clark (1973), Jacquier, Polson and Rossi (1994)] are suggested for
such time series. In this article we consider a class of linear models which
can also mimic this behavior. Data from these models are serially uncorre-
lated and can have heavy-tailed marginals. The data are dependent and can
display volatility clustering. This class is a particularly striking illustration
of a known result that linear, non-Gaussian models can display “nonlinear”
behavior [Bickel and Bühlmann (1996)].

The linear models which we will consider are all-pass models: autoregres-
sive moving average models in which all of the roots of the autoregressive
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polynomial are reciprocals of roots of the moving average polynomial and vice
versa. All-pass models generate uncorrelated (white noise) time series, but
these series are not independent in the non-Gaussian case.

While all-pass models can generate examples of linear time series with
“nonlinear” behavior, their dependence structure is highly constrained, lim-
iting their ability to compete with ARCH. A far more important application
of all-pass models is in the fitting of noncausal autoregressions. Noncausal
models are important tools in a number of applications, including deconvolu-
tion of absorption spectra [Blass and Halsey (1981)], design of communication
systems [Benveniste, Goursat and Roget (1980)], processing of blurry images
[Donoho (1981), Chien, Yang and Chi (1997)], deconvolution of seismic signals
[Wiggins (1978), Ooe and Ulrych (1979), Donoho (1981), Godfrey and Rocca
(1981), Hsueh and Mendel (1985)], modeling of vocal tract filters [Rabiner
and Schafer (1978), Chien, Yang and Chi (1997)] and analysis of astronomical
data [Scargle (1981)].

In many of these applications, the models are essentially one-dimensional
random fields, in which the direction of “time” is irrelevant and prediction
is not of interest. The form of the predictive density of a future observation
given a sample of n consecutive observations is fairly difficult to compute, as
it depends on the underlying noise density and on the marginal density of
the series (an infinite convolution). We do not discuss prediction for all-pass
or noncausal models further in this article. Rosenblatt (2000) is a monograph
which covers identification, estimation and prediction aspects of noncausal
models.

All-pass models are widely used in the fitting of noncausal models, where
they arise as the result of whitening a series with a causal filter (all of the
roots of the autoregressive polynomial outside the unit circle) when in fact
the true model is noncausal. The whitened series in this case can then be
represented as an all-pass of order r, where r is the number of roots of the
true autoregressive polynomial which lie inside the unit circle.

Estimation methods based on Gaussian likelihood, least-squares, or related
second-order moment techniques are unable to identify all-pass models.
Instead, cumulant-based estimators using cumulants of order greater than
two are often used to estimate such models [Wiggins (1978), Donoho (1981),
Lii and Rosenblatt (1982), Giannakis and Swami (1990), Chi and Kung (1995),
Chien, Yang and Chi (1997)].

In this article we consider estimation based on a quasi-likelihood approach.
In Section 2, an approximation to the likelihood of an all-pass model in the
case of Laplacian (two-sided exponential) noise is derived, yielding a modified
absolute deviations criterion. This criterion can be used even if the underly-
ing noise is not Laplacian. Asymptotic normality for least absolute deviation
estimators of the model parameters is established under general conditions in
Section 3 and order selection is considered. This asymptotic theory relies on
two preliminary results stated and proved in the Appendix. The first result
extends a theorem of Davis and Dunsmuir (1997) to the case of two-sided
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linear processes, and the second result uses the first in establishing a func-
tional convergence theorem for the modified absolute deviations criterion.

Behavior of the estimators in finite samples is studied via simulation in
Section 4.1. For illustration purposes, the estimation procedure is applied to
exchange rate data in Section 4.2 and to noncausal autoregressive modeling
in Section 4.3. In the latter, the two-step procedure for fitting noncausal mod-
els is applied not to a standard engineering deconvolution problem but to
a nonstandard example: time series of daily log volumes of Microsoft stock.
A noncausal AR(1) model is shown to provide a reasonable fit to these data.
Though the purpose of this example is purely illustrative, it is interesting to
note that causal AR models are found to provide better fits for the log volumes
of Atmel and Microchip, two smaller companies with considerably less public
exposure. A brief discussion follows in Section 5.

2. Preliminaries.

2.1. All-pass models. Let B denote the backshift operator (BkXt = Xt−k,
k = 0�±1�±2� � � �) and let

φ�z� = 1−φ1z− · · · −φsz
s

be an sth-order autoregressive polynomial, where φ�z� �= 0 for �z� = 1. The
polynomial is said to be causal if all its roots are outside the unit circle in the
complex plane. In this case, for a sequence 	Wt
,

φ−1�B�Wt =
( ∞∑

j=0
ψjB

j

)
Wt =

∞∑
j=0

ψjWt−j�

a function of only the past and present of the 	Wt
. Note that the filter φ�B−1�
is purely noncausal in the sense that

φ−1�B−1�Wt =
( ∞∑

j=0
ψjB

−j
)
Wt =

∞∑
j=0

ψjWt+j�

a function of only the present and future of the 	Wt
. See, for example,
Chapter 3 of Brockwell and Davis (1991).

We introduce notation which will be useful in our later discussion of order
selection. Consider the sth-order autoregressive polynomial

φ0�z� = 1−φ01z− · · · −φ0sz
s�

where φ0�z� �= 0 for �z� ≤ 1 and s is known. Define φ00 = 1 and assume

A1. φ0r �= 0 for some r ∈ 	0�1� � � � � s
 and φ0j = 0 for j = r+ 1� � � � � s.

That is, r is the unknown, real model order, while s is a known, sufficiently
large model order. Then a causal all-pass time series is the autoregressive
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moving average (ARMA) 	Xt
 which satisfies the difference equations

φ0�B�Xt =
Bsφ0�B−1�

−φ0r
Zt�(2.1)

where 	Zt
 is an independent and identically distributed (iid) sequence of
random variables. In principle, it is possible to consider all-pass models with
both causal and noncausal factors. We restrict attention to causal all-pass
models because they suffice for our main application: the fitting of noncausal
autoregressive models.

We assume

A2. 	Zt
 is iid with mean 0, finite variance σ2 > 0, and common distribu-
tion function Fσ .

A3. Fσ has median zero and is continuously differentiable in a neighbor-
hood of zero. Let fσ�z� = σ−1f�σ−1z� denote the density function corresponding
to Fσ , where σ is a scale parameter.

A4. fσ�0� > 0.

A2 implies that the mean of 	Xt
 in (2.1) is zero. This suffices for the appli-
cations we consider, in which 	Xt
 is a zero-mean white noise sequence. In
the case of nonzero mean, it is possible to center by subtracting off the sample
mean, which is n1/2-consistent and asymptotically equivalent to the best linear
unbiased estimator [Brockwell and Davis (1991), Section 7.1]. Another possi-
bility is to include the mean when constructing the approximate likelihood.
A comparison of these alternatives is beyond the scope of this article.

Note that the spectral density of 	Xt
 in (2.1) is

�e−isω�2�φ0�eiω��2
φ2
0r�φ0�e−iω��2

σ2

2π
= σ2

φ2
0r2π

�

which is constant for ω ∈ �−π�π�, hence 	Xt
 is an uncorrelated sequence.
In the case of Gaussian 	Zt
, this implies that 	Xt
 is iid N�0� σ2φ−2

0r �, but
independence does not hold in the non-Gaussian case [e.g., Breidt and Davis
(1991)].

Rearranging (2.1), we have the backward recursion

zt−s = φ01zt−s+1 + · · · +φ0szt − �Xt −φ01Xt−1 − · · · −φ0sXt−s��(2.2)

where zt �= Ztφ
−1
0r . In practice, the model order r is unknown. We propose

a model order p ≤ s and a corresponding causal autoregressive polynomial
φ�z� = 1 − φ1z − · · · − φpz

p �= 0 for �z� ≤ 1, where φp �= 0. The analogous
recursion to (2.2) is then

zt−s���=
{
0� t=n+s�����n+1�
φ1zt−s+1���+···+φszt���−φ�B�Xt� t=n�����s+1,(2.3)

where the s×1 vector � is defined as �φ1�����φp�0�����0�′.
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Let �0=�φ01�����φ0s�′ =�φ01�����φ0r�0�����0�′. Note that 	zt��0�
 is a close
approximation to 	zt
, in which the error is due to the initialization with
zeros. Though 	zt
 is iid, 	zt���
, in general, is not iid, even after ignoring
the transient behavior due to initialization.

2.2. Approximating the likelihood. The modified absolute deviations crite-
rion we consider is motivated by a likelihood approximation. In this subsection,
we ignore the effect of recursion initialization in (2.3), and write

−φ�B−1�Bszt���=φ�B�Xt�(2.4)

We then approximate the likelihood of a realization of length n, �X1�����Xn��
from the model (2.1) using techniques similar to those in Breidt, Davis, Lii
and Rosenblatt (1991) and Lii and Rosenblatt (1992, 1996).

Consider the augmented data vector

x �=�X1−s�����X0�X1�����Xn�zn−s+1��������zn����′

and the augmented noise vector

z �=�X1−s�����X0�z1−s��������z0����z1��������zn−s+1��������zn����′�
Note that when �=�0, the first 2s terms of z are independent of the last
n terms by causality.

From (2.4), it is easy to show that

Ax=Bz(2.5)

with �A�=�B�=1. Now the joint distribution of z under � is given by

h�z� = h1�X1−s�����X0�z1−s��������z0����

×
(n−s∏
t=1

fσ�φpzt�����φp�
)
h2�zn−s+1��������zn�����

so the joint distribution of x under � is given by

h�x�=h1

(n−s∏
t=1

fσ�φpzt�����φp�
)
h2�(2.6)

where h1 and h2 do not depend on n. This suggests approximating the log-
likelihood of ���σ� given the data as

� ���σ� =
n−s∑
t=1

lnfσ�φpzt����+�n−s�ln�φp�

= −�n−s�lnσ+
n−s∑
t=1

lnf�σ−1φpzt����+�n−s�ln�φp��
(2.7)

where the 	zt���
 can be computed recursively from (2.3).
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2.3. Least absolute deviations. If the noise distribution is Laplacian, or
two-sided exponential, with mean 0, variance σ2, and density

fσ�z�=
1
σ
f
( z
σ

)
= 1√

2σ
exp

(
−
√
2�z�
σ

)
�

then the log-likelihood is given by

constant−�n−s�lnκ−
n−s∑
t=1

√
2�zt����
κ

�(2.8)

where κ=σ �φp�−1. Setting the partial derivative of (2.8) with respect to κ
equal to zero, we obtain

κ���=
√
2

n−s

n−s∑
t=1

�zt�����(2.9)

where the 	zt���
 are computed from (2.3). Substituting κ��� for κ in (2.8),
we obtain the concentrated Laplacian likelihood

����=constant−�n−s�ln
n−s∑
t=1

�zt�����

Maximizing ���� is equivalent to minimizing the absolute deviations criterion,

mn���=
n−s∑
t=1

�zt�����(2.10)

The minimizer �̂ of (2.10) will be referred to as the least absolute deviations
(LAD) estimator of �0.

3. Asymptotic results.

3.1. Parameter estimation. We now state our main result, which parallels
Davis and Dunsmuir (1997), Corollary 1.

Theorem 1. Assume the all-pass model (2.1) holds with A1–A4. Then there
exists a sequence of local minimizers �̂LAD of (2.10) such that

n1/2��̂LAD−�0�
�→−�φ0r��−1

s

2fσ�0�
N∼N

(
0�

var��Z1��
2σ4f2

σ�0�
σ2�−1

s

)
�(3.1)

where �s=�γ�j−k��sj�k=1 and γ�·� is the autocovariance function of the causal
AR(r) 	Zt/φ0�B�
.

Proof. The proof of this theorem relies on two lemmas which are stated
and proved in the Appendix. For u∈�s, let

Sn�u�=mn��0+n−1/2u�−
n−s∑
t=1

�zt��0���(3.2)
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Then minimizing (2.10) with respect to � is equivalent to minimizing (3.2)
with respect to u=n1/2��−�0�. Lemma 1 of the Appendix is used to establish

a functional convergence theorem in Lemma 2; specifically, Sn

�→S on C��s�
where

S�u�= fσ�0�
�φ0r�

u′�su+u′N

and

N∼N
(
0�

2var��Z1��
φ2
0rσ

2
�s

)
�

Since the minimizer of the limit process S�u� is −�φ0r�/�2fσ�0���−1
s N, the

result (3.1) follows by the continuous mapping theorem. ✷

Remark 1. The sequence of local minimizers in the theorem depends on
the unknown �0, which may not be the unique global minimizer of E�z̃1����,
where z̃1���=−φ�B�X1+s/φ�B−1�. If �0 is the unique global minimizer of
E�z̃1����, then Proposition 1 in the Appendix establishes strong consistency of
the LAD estimators.

Now suppose that �0 is not the unique global minimizer, and �0 and �1
are both local minimizers of E�z̃1����. Then there may exist a sequence of
local minimizers of the LAD criterion which converges to �0 and another
sequence of local minimizers which converges to �1. Unless E�z̃1���� has a
unique global minimizer at �=�0, it is unclear whether the global minimizer
of (2.10) satisfies the condition of the theorem.

In the Gaussian case, for example, any choice of �0 (with φ0r �=0) together
with σ2

0 �=φ2
0rvar�Xt� satisfies model (2.1) with innovations 	Zt
 iid N�0�σ2

0 �
and 	Xt
 iid N�0�σ2

0φ
−2
0r �. Choose any �1 �=�0 with φ1p �=0 and set σ2

1 =
φ2
1pvar�Xt�. Then

E�z̃1��1��=E
∣∣∣∣ Z1σ1

σ0φ1p

∣∣∣∣=E

∣∣∣∣∣Z1var1/2�Xt�
σ0

∣∣∣∣∣=E�z1��0��

so that E�z̃1���� is not uniquely minimized at �0.
On the other hand, if Zt has heavier tails than Gaussian, in the sense that

E

∣∣∣∣∣ ∞∑
j=−∞

cjZt−j

∣∣∣∣∣>E�Z1�(3.3)

for any 	cj
 with at least two non-zero elements,
∑

j �cj�<∞, and
∑

jc
2
j=1,

then

E�z̃1����=E

∣∣∣∣∣ φ0�B−1�φ�B�
φ0rφ�B−1�φ0�B�Zt

∣∣∣∣∣>E�z̃1��0���
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so that �0 is the unique global minimizer. Huang and Pawitan (2000) give
sufficient conditions for (3.3) and show that it is satisfied by the Laplacian,
Student’s t, contaminated normal, and other standard heavy-tailed distribu-
tions. In these cases, �0 is the unique global minimizer of E�z̃1����.

Remark 2. Note that the asymptotic covariance matrix from (3.1) is a
scalar multiple of the asymptotic covariance matrix for the vector of Gaussian
likelihood estimators of the corresponding sth-order autoregressive process.

Remark 3. In practice, computation of �̂LAD requires numerical minimiza-
tion, in which local minima are of concern. In Section 4.1, we describe our
methods for generating initial values and guarding against local minima.

Examples. For the Laplacian density, E�Z1�=σ/
√
2 and fσ�0�=1/�√2σ�,

so that the constant factor appearing in the limiting covariance matrix in (3.1)
is

var��Z1��
2σ4f2

σ�0�
= 1
2
�

For Student’s t-distribution with ν>2 degrees of freedom, σ=�ν/�ν−2��1/2,

E�Z1� = 2
�ν−2�1/2
ν−1

&��ν+1�/2�
&�ν/2�√π

σ

and

fσ�0� =
&��ν+1�/2�

σ&�ν/2�√�ν−2�π �

so that the constant factor in (3.1) is

var��Z1��
2σ4f2

σ�0�
= &2�ν/2��ν−2�π

2&2��ν+1�/2� − 2�ν−2�2
�ν−1�2 �

For ν=3, the value of this expression is 0�7337.

3.2. Order selection. In practice the order r of the all-pass model is usually
unknown. The following corollary to Theorem 1 is useful in order selection.

Corollary 1. Assume the conditions of Theorem 1. If the true all-pass
model order is r and the fitted model order is p>r then

n1/2φ̂p�LAD
�→N

(
0�

var��Z1��
2σ4f2

σ�0�
)
�

where φ̂p�LAD is the pth element of �̂LAD.
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Proof. By Problem 8.15 of Brockwell and Davis (1991), the pth diagonal
element of �−1

p is σ−2 for p>r, so the result follows from (3.1). ✷

Recall that we have assumed there is a known model order s which is
sufficiently large in the sense that s≥r. A practical approach to order deter-
mination in large samples then proceeds as follows:

1. Fit an sth-order all-pass model and obtain residuals 	zt��̂�
.
(a) Estimate var��Z1��φ−2

0r consistently by v̂1, the empirical variance of
	�zt��̂��
.

(b) Estimate var�Z1�φ−2
0r =σ2φ−2

0r consistently by v̂2, the empirical variance
of 	zt��̂�
.

(c) Estimate �φ0r�fσ�0� consistently by d̂, a kernel estimator of the density
at zero based on 	zt��̂�
.

(d) Compute

θ̂2 �= v̂1

2v̂22d̂2
�(3.4)

We conjecture that this estimator converges in probability to

var��Z1��
2σ4f2

σ�0�
�

using extensions of the results in Kreiss (1987) and Robinson (1987).
Those results do not apply directly here because they assume that the
	Zt
 are the one-step prediction errors in the Wold decomposition.

2. Fit all-pass models of order p=1�2�����s via LAD and obtain the pth coef-
ficient, φ̂pp for each.

3. Choose the model order r as the smallest order beyond which the estimated
coefficients are statistically insignificant; that is,

r=min	0≤p≤s� �φ̂jj�<1�96θ̂n−1/2 for j>p
�

A more formal order selection procedure is based on a version of AIC, the
information criterion of Akaike (1973), which is designed to be an approxi-
mately unbiased estimator of the Kullback–Leibler index of the fitted model
relative to the true model. We take the same heuristic approach here, using
the Laplacian likelihood computed on the basis of n−s observations to make
fair comparisons across different model orders. The proposed model order p
is no greater than s. Let X∗

1�����X
∗
n be a realization from the model ��′

0�κ0�′,
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independent of X1�����Xn. Then, from (2.7),

−2�X∗��̂�κ̂� = −2�X��̂�κ̂�−2

√
2
∑n−s

t=1 �zt��̂��
κ̂

+2

√
2
∑n−s

t=1 �z∗t ��̂��
κ̂

= −2�X��̂�κ̂�−2�n−s�+2
√
2
∑n−s

t=1 �z∗t ��̂��−∑n−s
t=1 �z∗t ��0��

κ̂
(3.5)

+2
√
2
∑n−s

t=1 �z∗t ��0��
κ̂

�

Using Lemma 2, (3.1), and the ergodic theorem, we have that∑n−s
t=1 �z∗t ��̂��−∑n−s

t=1 �z∗t ��0��
κ̂

�→ u′N∗
√
2E�Z1��φ0r�−1

+ fσ�0�
�φ0r�

u′�su√
2E�Z1��φ0r�−1

�

where u′ =−�φ0r�/�2fσ�0���−1
s N and N, N∗ are iid N�0�2var�Z1�φ−2

0r σ
−2�s�.

Given the existence of the relevant moments, it follows that

E
[∑n−s

t=1 �z∗t ��̂��−∑n−s
t=1 �z∗t ��0��

κ̂

]
� fσ�0�√

2E�Z1�
trace��sE�uu′��

= var�Z1�
2
√
2E�Z1�σ2fσ�0�

p

and

E
[∑n−s

t=1 �z∗t ��0��
κ̂

]
=E

[n−s∑
t=1

�z∗t ��0��
]
E
[
1
κ̂

]
� �n−s�E�Z1�

�φ0r�
�φ0r�√
2E�Z1�

= n−s√
2
�

Therefore the quantity

AIC�p� �=−2�X��̂�κ̂�+ var�Z1�
E�Z1�σ2fσ�0�

p(3.6)

is approximately unbiased for (3.5). The model order p∈	0�1�����s
 which min-
imizes AIC�p� is selected. Note that in the Laplacian case, the penalty term
in (3.6) is

var�Z1�
E�Z1�σ2fσ�0�

p= σ2/2

�σ/√2�σ2�1/√2σ�p=p�

unlike the 2p penalty associated with a Gaussian likelihood. The penalty term
can be estimated consistently with

v̂1

ê1v̂2d̂
�

where ê1 is the sample mean of the �zt��̂�� from the sth order fit, and the
remaining terms are defined above.
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4. Empirical results.

4.1. Simulation results. In this section we describe a simulation study
undertaken to evaluate the asymptotic theory. We considered all-pass model
orders 1 and 2 and sample sizes n=500 and 5000. For each case, we simu-
lated 1000 replications of the all-pass model, using as noise Student’s t with
3 degrees of freedom. We used the Hooke and Jeeves (1961) algorithm to min-
imize the LAD criterion for each replicate.

To guard against the possibility of being trapped in local minima, we used
a large number (250) of starting values for each replicate. These were dis-
tributed uniformly in the space of partial autocorrelations, then mapped to
the space of autoregressive coefficients using the Durbin–Levinson algorithm
[Brockwell and Davis (1991), Proposition 5.2.1]. That is, for a model of order
p, the kth starting value �φ�k�

p1 �����φ
�k�
pp �′ was computed recursively as follows:

1. Draw φ
�k�
11 �φ

�k�
22 �����φ

�k�
pp iid uniform�−1�1�.

2. For j=2�����p, compute φ
�k�
j1
���

φ
�k�
j�j−1

=

 φ
�k�
j−1�1
���

φ
�k�
j−1�j−1

−φ
�k�
jj

φ
�k�
j−1�j−1
���

φ
�k�
j−1�1

�
The initial 250 candidate starting values were pared to the 10 that gave

the smallest function evaluations. Optimized values were then found by imple-
menting the Hooke and Jeeves algorithm with each of these 10 candidates as
starting values. Among the 10 optimized values, the one that gave the smallest
function evaluation was selected as the estimate. Residuals for each realiza-
tion were obtained, and confidence intervals for �0 were constructed using
equations (3.1) and (3.4). In computing (3.4), we used a normal kernel density
estimator with a normal scale bandwidth selector v̂1/22 �3n/4�−1/5.

Results appear in Tables 1 and 2. In all cases, the LAD estimates are
approximately unbiased and the confidence interval coverages are close to
the nominal 95% level. The asymptotic standard errors understate the true
variability of the LAD estimates for the smaller sample size but are accurate
at the larger sample size. Normal probability plots and histograms suggest
that this extra variation in the LAD estimates comes from a relatively small
number of large outliers, while most of the estimates follow the asymptotic
normal law quite closely.

Table 1 shows results for all-pass of order one with φ1=0�1, 0.5 and 0.9.
Asymptotic results are symmetric about zero and empirical results for φ1=
−0�1, −0�5 and −0�9 (not shown) are roughly symmetric. The simulation
results show that estimation is more difficult when 	Xt
 has weaker depen-
dence, and convergence to the limiting distribution is slower. Unlike the usual
unit root case for autoregressive processes, dependence is weaker for all-pass
as φ1→±1, since these boundary cases correspond to iid noise as the AR and
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Table 1

Empirical means, standard deviations and percent coverages of nominal 95% confidence intervals
for LAD estimates of all-pass model of order 1*

Empirical
Asymptotic

Mean Std. dev. % coverage
n Mean Std. dev. (c.i.) (c.i.) (c.i.)

500 φ1=0�1 0.0381 0.1013 0.1323 91.1
(0.0931, 0.1095) (0.1264, 0.1380) (89.3, 92.9)

5000 φ1=0�1 0.0121 0.0999 0.0130 94.5
(0.0991, 0.1007) (0.0124, 0.0135) (93.1, 95.9)

500 φ1=0�5 0.0332 0.4979 0.0397 94.2
(0.4954, 0.5004) (0.0379, 0.0414) (92.8, 95.6)

5000 φ1=0�5 0.0105 0.4998 0.0109 95.4
(0.4991, 0.5005) (0.0105, 0.0112) (94.1, 96.7)

500 φ1=0�9 0.0167 0.8834 0.1027 91.2
(0.8770, 0.8898) (0.0981, 0.1071) (89.4, 93.0)

5000 φ1=0�9 0.0053 0.8993 0.0056 95.7
(0.8990, 0.8996) (0.0054, 0.0059) (94.4, 97.0)

*To quantify simulation uncertainty, empirical confidence intervals (c.i.’s) are computed from
standard asymptotic theory for 1000 iid replicates at each sample size, n. Asymptotic means and
standard deviations are from (3.1). Noise distribution is t with 3 degrees of freedom.

Table 2

Empirical means, standard deviations and percent coverages of nominal 95% confidence intervals
for LAD estimates of all-pass model of order 2*

Empirical
Asymptotic

Mean Std. dev. % coverage
n Mean Std. dev. (c.i.) (c.i.) (c.i.)

500 φ1=0�3 0.0351 0.2990 0.0456 92.5
(0.2962, 0.3018) (0.0435, 0.0475) (90.9, 94.1)

φ2=0�4 0.0351 0.3965 0.0447 92.1
(0.3937, 0.3993) (0.0427, 0.0467) (90.4, 93.8)

5000 φ1=0�3 0.0111 0.3003 0.0118 95.5
(0.2996, 0.3010) (0.0113, 0.0123) (94.2, 96.8)

φ2=0�4 0.0111 0.3990 0.0117 94.7
(0.3983, 0.3997) (0.0112, 0.0122) (93.3, 96.1)

*To quantify simulation uncertainty, empirical confidence intervals (c.i.’s) are computed from
standard asymptotic theory for 1000 iid replicates at each sample size, n. Asymptotic means and
standard deviations are from (3.1). Noise distribution is t with 3 degrees of freedom.
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MA factors �1−φ1B� and �1−φ−1
1 B� cancel. Dependence is also weaker as

φ1→0. To see this, rescaleXt∼�0�σ2φ−2
1 � to have bounded variance as φ1→0,

φ1Xt=φ1Zt+φ1�φ1−φ−1
1 �

∞∑
j=0

φ
j
1Zt−1−j�

Now the variance of the �t−1� term is �1−φ2
1�2σ2=O�1�, while the variance of

the sum of the remaining terms is φ2
1�2−φ2

1�σ2=O�φ2
1�. Hence 	Xt
 behaves

like the iid sequence 	−φ−1
1 Zt−1
 for small φ1.

We also compared the performance of the LAD estimators to the perfor-
mance of a cumulant-based estimator, which maximizes the absolute residual
kurtosis ∣∣∣∣ 1

n−s

n−s∑
t=1

(
zt���
v̂
1/2
2

)4

−3
∣∣∣∣(4.1)

with respect to � [see Rosenblatt (2000), Section 8.7, and the references
therein]. Results are tabled in Table 3. The cumulant-based estimator suffers
from some bias at the smaller sample size, primarily due to a pile-up effect
on ±1. The LAD estimators have much smaller mean squared error (MSE)
in most cases. The best case for the cumulant-based estimator is φ1=0�9,
n=500, for which the empirical MSE of the cumulant-based estimator is still
20% higher than that of the LAD estimator. For this case, 347 of the 1000 esti-
mates were equal to +1, reducing the variability of the estimator, but missing
the dependence structure in the data. The performance of the cumulant-based
estimators was much worse for second-order all-pass models. We do not report
those results here.

4.2. Linear time series with “nonlinear” behavior. We now turn to some
examples with real data. Figure 1(a)–1(d) shows 500 daily log returns of
the New Zealand/U.S. exchange rate together with autocorrelations for the

Table 3

Empirical means, standard deviations and efficiencies relative to LAD for maximum absolute
residual kurtosis estimation method*

Empirical
True values

MSE relative
n Mean Mean Std. dev. to LAD

500 φ1=0�1 0.2999 0.4949 16.3
5000 φ1=0�1 0.1180 0.1496 134.3

500 φ1=0�5 0.5254 0.1342 11.8
5000 φ1=0�5 0.5011 0.0333 9.3

500 φ1=0�9 0.9203 0.1114 1.2
5000 φ1=0�9 0.9197 0.0420 67.6

*MSE relative to LAD is empirical mean squared error of cumulant estimator divided by empirical
MSE of LAD estimator. Results are based on the same 1000 simulated realizations as in Table 1.
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returns, their squares, and their absolute values. These data show many of
the stylized facts that would lead to consideration of GARCH or stochastic
volatility models: lack of serial correlation, heavy-tailed marginal distribution
and volatility clustering. We fit an all-pass model of order 6 to show that a
linear model can produce this same behavior. The order was determined using
the model selection procedure based on the φ̂pp as described in Section 3.2.
(The AIC had local minima at p=6 and 10.) The autoregressive polynomial
of the fitted model is

1+0�367B+0�75B2+0�391B3−0�088B4+0�193B5+0�096B6�

Autocorrelations for the residuals and the squares of the residuals from the
all-pass fit are shown in Figure 2(a) and 2(b). These diagnostics show that a
non-Gaussian linear model can capture many of the features often regarded as
characteristic of nonlinearity. Though this example shows that in some cases
all-pass models can mimic the behavior of more familiar nonlinear models for

t

X
(t

)

0 100 200 300 400 500

-0
.0

4
0.

0
0.

02

(a)

Lag

A
C

F

0 5 10 15 20

0.
0

0.
4

0.
8

(b)

Lag

A
C

F

0 5 10 15 20

0.
0

0.
4

0.
8

(c) 

Lag

A
C

F

0 5 10 15 20

0.
0

0.
4

0.
8

(d) 

Fig. 1. (a) Daily log returns of the New Zealand/U.S. exchange rate. (b) ACF for the returns.
(c) ACF for squares of returns. (d) ACF for absolute values of returns.
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Fig. 2. Diagnostics for fitted all-pass model of order six for New Zeland/U.S. exchange rate
returns. (a) ACF of residuals. (b) ACF for squares of residuals.

financial data, the constrained forms of all-pass models limit their usefulness
in general for this kind of application. A more natural application of all-pass
modeling is illustrated in the next subsection.

4.3. Noncausal autoregressive modeling. As mentioned in the Introduc-
tion, an important application of all-pass models is in noncausal autoregres-
sive model fitting. Suppose that 	Xt
 satisfies the difference equations

φc�B�φnc�B�Xt=Zt�

where the q roots of φc�z� are outside the unit circle, the r roots of φnc�z� are
inside the unit circle and 	Zt
 is iid. Let φ�c�

nc �z� denote the causal rth order
polynomial whose roots are the reciprocals of the roots of φnc�z�. If 	Xt
 is
mistakenly modeled with the second-order equivalent causal representation,

φc�B�φ�c�
nc �B�Xt=Ut�

then 	Ut
 satisfies the difference equations

Ut =
φc�B�φ�c�

nc �B�
φc�B�φnc�B�Zt=

φ
�c�
nc �B�

−φnc�rB
rφ

�c�
nc �B−1�

Zt�(4.2)

where φnc�r is the coefficient of −Br in φnc�B�. Thus, by (2.1), 	Ut
 is a purely
noncausal all-pass time series. Equivalently, the reversed-time process 	U−t

is a causal all-pass time series.

This suggests a two-step procedure for fitting noncausal autoregressive time
series models. Using a standard method such as Gaussian maximum likeli-
hood, fit a causal sth order autoregressive model to 	Xt
 and obtain residuals
	Ût
. Select a model order r and fit a purely noncausal rth order all-pass model
to 	Ût
. The fitted model can be evaluated by residual diagnostics, looking for
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Fig. 3. Volumes of Microsoft (MSFT) stock traded over 754 transaction days from 06/03/96 to
05/27/99.

iid (not merely white) noise. Once a suitable all-pass model is fitted to obtain
the purely noncausal AR(r), the appropriate causal AR(q) polynomial can be
identified by canceling the roots in the causal AR(s) polynomial which corre-
spond to the inverses of the roots in the purely noncausal AR(r) polynomial.
The resulting estimates could be used as preliminary estimates in a more
refined estimation procedure as in Breidt, Davis, Lii and Rosenblatt (1991).
This two-step procedure avoids the need to study all possible 2s configurations
of roots inside and outside the unit circle. Note that this methodology can be
easily adapted to identify the roots of a noninvertible moving average.

Example (Microsoft trading volume). The data in Figure 3 are volumes
of Microsoft (MSFT) stock traded over 754 transaction days from 06/03/96
to 05/27/99. Because the data are skewed and show some evidence of het-
eroskedasticity, we transformed with natural logarithms. The autocorrelations
and partial autocorrelations of the resulting series suggest that an autoregres-
sive model of order 1 or 3 might be appropriate. To focus on the estimation
problem and not on the order selection problem, we fit an AR(1) via Gaussian
maximum likelihood, yielding the estimate φ̂

�c�
nc =0�5834 with standard error

0�0296. The resulting residuals 	Ût
 show little evidence of correlation, but
both 	Û2

t 
 and 	�Ût�
 have significant lag 1 autocorrelations, with asymptotic
p-values less than 0�001 [McLeod and Li (1983)]; see Figures 4(a) and 4(b).
Thus a causal AR(1) model with iid noise is inappropriate for the MSFT data,
and we investigate the noncausal alternative.

Fitting a purely noncausal all-pass of order 1 to 	Ût
, we obtain the estimate
φ̃nc=1�7522, with standard error 0�0989. From (4.2),

Ût=φ̂c�B�φ̂�c�
nc �B�Xt�

φ̃
�c�
nc �B�

−φ̃nc�rB
rφ̃

�c�
nc �B−1�

Z̃t�
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so that the all-pass residuals are obtained from

Z̃t =
�1−1�7522B��1−0�5834B�

1−�1�7522�−1B Xt

= �1−1�7522B��1−0�5834B�
1−0�5707B

Xt�

(4.3)

In Figures 4(c) and 4(d), these residuals show no evidence of correlation in
their squares or absolute values, suggesting that a noncausal AR(1) is a more
appropriate model than a causal AR(1) for these data.

Note that another possible modeling strategy would be to fit a causal AR(1)
and then model the non-iid residuals as GARCH. This would require at least
two more parameters (intercept and slope in ARCH(1)) than the noncausal
AR(1) fitted here.

We also fitted log volumes over the same trading period for two small compa-
nies [Atmel Corporation (ATML) and Microchip (MCHP)] in the same sector as
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Fig. 4. Diagnostics for causal and noncausal autoregressive models fitted to log Microsoft vol-
ume (a) ACF of squares of residuals 	Ût
 from causal AR(1) fit. (b) ACF of absolute values of

	Ût
. (c) ACF of squares of residuals 	Z̃t
 from noncausal all-pass fit. (d) ACF of absolute values

of 	Z̃t
.
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Microsoft, but found that causal AR models adequately described their dynam-
ics. A possible explanation for this phenomenon is that forthcoming actions of
Microsoft are widely anticipated by the market, so that the effect of shocks
precedes their arrival and a noncausal model is appropriate. The actions of
smaller companies do not receive as much attention, so causal models are
appropriate.

Because the model order is low in the Microsoft example, we could fit all pos-
sible causal–noncausal models and compare diagnostics, rather than employ
the two-step procedure. If we had fitted a noncausal AR(1) model directly,
rather than via the two-step procedure, we would have obtained the estimated
model �1−1�7141B�Xt=Zt, which is quite close to the model which would be
obtained through cancellation of the common factors in (4.3). Diagnostics for
the residuals from the noncausal AR(1) fit are virtually identical to those for
the 	Z̃t
 above. Note that for higher-order models it may not be possible to fit
and assess all 2s possible models.

5. Discussion. This article has reviewed all-pass models, which generate
uncorrelated but dependent time series in the non-Gaussian case. An approx-
imation to the likelihood of the model in the case of Laplacian noise yielded a
modified absolute deviations criterion, which can be used even if the underly-
ing noise is not Laplacian. Asymptotic normality for least absolute deviation
estimators of the model parameters was established under general conditions,
and order selection methods were developed. Behavior of the LAD estimators
in finite samples was studied via simulation, showing agreement with the
asymptotic theory and marked superiority over the maximum absolute resid-
ual kurtosis technique. The methodology was applied to exchange rate returns
to show that linear all-pass models can mimic “nonlinear” behavior often asso-
ciated with GARCH or stochastic volatility models. The methodology was also
applied to Microsoft volume data as part of a two-step procedure for fitting
noncausal autoregressions. In this example, a noncausal AR(1) model provides
a better fit than does a causal AR(1). Because of the low order of the fitted
model, order selection was not an issue in this example.

In future work, we intend to investigate the behavior of the LAD estimates
for all-pass models when order selection is required and further compare our
methodology to methods based on higher-order moments. We are also currently
looking at maximum likelihood estimation for the same problem.

APPENDIX

In this Appendix we derive two preliminary results used in establishing our
main theorem, and we prove a strong consistency result for the LAD estimator.
The first preliminary result extends Theorem 1 of Davis and Dunsmuir (1997)
from one-sided to two-sided linear processes.



LAD FOR ALL-PASS MODELS 937

Lemma 1. Suppose 	Yt
 is the linear process

Yt=
∞∑

j=−∞
cjzt−j�

where c0=0,
∑∞

j=−∞�cj�<∞, 	zt
 is iid with mean 0, finite variance, and com-
mon distribution function G which has median 0 and is continuously differ-
entiable in a neighborhood of 0. Then

Sn �=
n−s∑
t=1

(�zt−n−1/2Yt�−�zt�
) �→var�Yt�g�0�+N�

where

N∼N

(
0�γ∗�0�+2

∞∑
h=1

γ∗�h�
)
�

γ∗�h�=E�Ytsgn�zt�Yt+hsgn�zt+h���

and g�z� is the density corresponding to G.

Proof. Using the identity for z �=0,

�z−y�−�z�=−ysgn�z�+2�y−z�	1	0<z<y
−1	y<z<0

�

we have

Sn = −n−1/2
n−s∑
t=1

Ytsgn�zt�

+2
n−s∑
t=1

�n−1/2Yt−zt�	1	0<zt<n−1/2Yt
−1	n−1/2Yt<zt<0



=� An+Bn�

A standard truncation argument, truncating Yt to create the 2M-dependent
sequence 	YM

t sgn�zt�
=	∑M
j=−Mcjzt−jsgn�zt�
, allows application of a cen-

tral limit theorem [Brockwell and Davis (1991), Theorem 6.4.2] for each M,

from which it follows that An

�→N.
Now turning to Bn, let

Wnt �=�n−1/2Yt−zt�1	0<zt<n−1/2Yt
�
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Let FY denote the distribution of Y1. Then

limsup
n→∞

nE�W2
nt�

= limsup
n→∞

[
n
∫ εn1/2

0

∫ n−1/2y

0
�n−1/2y−z�2G�dz�FY�dy�

+n
∫ ∞

εn1/2

∫ n−1/2y

0
�n−1/2y−z�2G�dz�FY�dy�

]
≤ limsup

n→∞

[
n
∫ εn1/2

0

∫ n−1/2y

0
�n−1/2y−z�2�g�0�+δ�dzFY�dy�

+n
∫ ∞

εn1/2

∫ n−1/2y

0
n−1y2G�dz�FY�dy�

]
≤ limsup

n→∞
(const) n

∫ εn1/2

0
n−3/2y3FY�dy�

≤ limsup
n→∞

(const) εE�Y2
11	Y1>0
��

(A.1)

and since ε>0 is arbitrary, the bound must be zero.
Write

Yt=Y−
t +Y+

t =
∞∑
j=1

cjzt−j+
∞∑
j=1

c−jzt+j�

Then, on the set 	Yt>0
,
E�Wnt�zt−1�zt−2�����

=E��n−1/2Yt−zt�1	0<zt<n−1/2Yt
�zt−1�zt−2�����

=
∫ ∞

−Y−
t

∫ n−1/2�Y−
t +y�

0
	n−1/2�Y−

t +y�−z
G�dz�FY+ �dy�

=
∫ ∞

−Y−
t

n−1/2�Y−
t +y�	G�n−1/2�Y−

t +y��−G�0�
FY+�dy�

−
∫ ∞

−Y−
t

∫ n−1/2�Y−
t +y�

0
zG�dz�FY+ �dy�

∼
∫ ∞

−Y−
t

n−1�Y−
t +y�2g�0�FY+�dy�−

∫ ∞

−Y−
t

g�0�n
−1�Y−

t +y�2
2

FY+�dy�

= g�0�
2n

∫ ∞

−Y−
t

�Y−
t +y�2FY+�dy��

where the approximation holds on the set �n−1/2Yt�<ε, for ε>0 small. Since

Pr	n−1/2max��Y1�������Yn��>ε
 ≤ Pr
{ n⋃
t=1

	�Yt�>εn1/2

}

≤ nPr	�Y1�>εn1/2

≤ ε−2E�Y2

11	Y2
1>ε

2n
�→0
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as n→∞, it follows from the ergodic theorem that

n−s∑
t=1

E�Wnt�zt−1�zt−2�����
P→ g�0�

2
E
[∫ ∞

−Y−
t

�Y−
t +y�2FY+�dy�

]
�(A.2)

By (A.1),

var
(n−s∑
t=1

�Wnt−E�Wnt�zt−1�zt−2������
)
=

n−s∑
t=1

var�Wnt−E�Wnt�zt−1�zt−2������

≤
n−s∑
t=1

E�W2
nt�→0�

so that from (A.2) we have

n−s∑
t=1

Wnt

P→ g�0�
2

E
[∫ ∞

−Y−
t

�Y−
t +y�2FY+�dy�

]
�

Using the same argument for the second indicator in Bn, we obtain

Bn

P→ g�0�
2

E
[∫ ∞

−∞
�Y−

t +y�2FY+�dy�
]

= g�0�
2

var�Yt��

which concludes the proof. ✷

To apply Lemma 1 in the context of LAD for all-pass models, we need to
identify an appropriate 	Yt
 and compute the autocovariance function γ∗�h�
of the stationary process 	Ytsgn�zt�
. We now undertake these intermediate
computations, which are then used in Lemma 2 to establish a functional con-
vergence theorem for the centered absolute deviations criterion.

Define ϕ�z�=φ1z+···+φsz
s=1−φ�z� and ϕ0�z�=1−φ0�z�. In what fol-

lows, we linearize ϕ�B−1�zt��� around �0 within the criterion function mn;
that is, ϕ�B−1�zt��� is approximated by

ϕ0�B−1�zt��0�+
s∑

j=1

∂

∂φj

	ϕ�B−1�zt���

∣∣∣
�=�0

�φj−φ0j��
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By (2.3), the criterion function (2.10) can be written as

mn =
n−s∑
t=1

�ϕ�B−1�zt���−φ�B�Xt+s�

=
n−s∑
t=1

�ϕ�B−1�Bszt+s���−φ0�B�Xt+s+�φ0�B�−φ�B��Xt+s�

�
n−s∑
t=1

∣∣∣ϕ0�B−1�Bszt+s��0�−Bszt+s��0�+zt��0�

+
s∑

j=1

∂

∂φj

	ϕ�B−1�zt���

∣∣∣
�=�0

�φj−φ0j�

−φ0�B�Xt+s+n1/2��−�0�′n−1/2�Xt+s−1�����Xt�′
∣∣∣

=
n−s∑
t=1

∣∣∣∣∣zt��0�+n−1/2u′
[

∂

∂φj

	ϕ�B−1�zt���

∣∣∣
�=�0

+Xt+s−j

]s
j=1

∣∣∣∣∣�

(A.3)

where u=n1/2��−�0�.
Now

φ�B�Xt+s=−zt���+ϕ�B−1�zt����
so

∂

∂φj

	ϕ�B−1�zt���
=−Xt+s−j+
∂

∂φj

zt����(A.4)

Also,

∂

∂φj

	ϕ�B−1�zt���
=ϕ�B−1� ∂

∂φj

zt���+zt+j����(A.5)

Equating (A.4) and (A.5) and solving for ∂zt�φ�/∂φj, we obtain

∂

∂φj

zt���= 1
φ�B−1�	Xt+s−j+zt+j���
�(A.6)

Substituting (A.6) in (A.4), we have

∂

∂φj

	ϕ�B−1�zt���

∣∣∣
�=�0

=
{
−Xt+s−j+

1
φ�B−1��Xt+s−j+zt+j����

}
�=�0

=
{
−Xt+s−j+

φ0�B−1�BsZt+s−j
−φ0rφ�B−1�φ0�B� +

zt+j���
φ�B−1�

}
�=�0

=−Xt+s−j−
zt−j
φ0�B� +

zt+j��0�
φ0�B−1� �

(A.7)
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Finally, note that (A.7) implies that the coefficient of n−1/2 in (A.3) is

u′
[

∂

∂φj

	ϕ�B−1�zt���

∣∣∣
�=�0

+Xt+s−j

]s
j=1

=u′
[
− zt−j
φ0�B� +

zt+j��0�
φ0�B−1�

]s
j=1

�u′
[
− zt−j
φ0�B� +

zt+j
φ0�B−1�

]s
j=1

=�−Y−
t −Y+

t =−Yt�

(A.8)

where Y−
t ∈σ�zt−1�zt−2����� because φ0�B� is a causal operator, and Y+

t ∈
σ�zt+1�zt+2����� because φ0�B−1� is a purely noncausal operator. It follows that
Yt is independent of zt �=Ztφ

−1
0r .

Note that

var�Yt� = φ−2
0r u

′
[
cov

(
− Zt−j
φ0�B� +

Zt+j
φ0�B−1� �−

Zt−k
φ0�B� +

Zt+k
φ0�B−1�

)]s
j�k=1

u

= φ−2
0r u

′�2γ�j−k��sj�k=1u(A.9)

= 2φ−2
0r u

′�su�

where γ�·� is the autocovariance function of the causal AR(r) 	Zt/φ0�B�
 and
�s=�γ�j−k��sj�k=1.

We now compute the autocovariance function γ∗�h� of the stationary process
	Ytsgn�zt�
:

γ∗�h� = E �Ytsgn�zt�Yt+hsgn�zt+h��

= u′E

[[(
− zt−j
φ0�B� +

zt+j
φ0�B−1�

)
sgn�zt�

×
(
−zt+h−k
φ0�B� +

zt+h+k
φ0�B−1�

)
sgn�zt+h�

]s
j�k=1

]
u

= u′E
[[(

−
∞∑
�=0

ψ�zt−j−�+
∞∑
�=0

ψ�zt+j+�

)
sgn�zt�

×
(
−

∞∑
m=0

ψmzt+h−k−m+
∞∑

m=0
ψmzt+h+k+m

)
sgn�zt+h�

]s
j�k=1

]
u

= u′�νjk�h��sj�k=1u�

(A.10)

where

νjk�h�=


2γ�j−k�

φ2
0r

� h=0�

−ψ�h�−jψ�h�−k
φ2
0r

E 2�Z1�� h �=0�

and the 	ψ�
 are given by
∑∞

�=0ψ�z
�=1/φ0�z�.
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Thus,

γ∗�0�+2
∞∑
h=1

γ∗�h�

=u′
{
2φ−2

0r �γ�j−k��sj�k=1−2φ−2
0r E 2�Z1�

[ ∞∑
h=1

ψh−jψh−k
]s
j�k=1

}
u

=u′
{ 2

φ2
0r

�s−
2 E 2�Z1�
φ2
0rσ

2
�s

}
u

= 2 var �Z1�
φ2
0rσ

2
u′�su�

(A.11)

Lemma 2. For u∈�s, let

Sn�u�=mn��0+n−1/2u�−
n−s∑
t=1

�zt��0��

and define

S∗
n�u� =

n−s∑
t=1

{∣∣∣∣zt��0�+n−1/2u′

×
[

∂

∂φj

	ϕ�B−1�zt���

∣∣∣
�=�0

+Xt+s−j

]s
j=1

∣∣∣∣−�zt��0��
}
�

Then:

1. S∗
n

�→S on C��s� where

S�u�= fσ�0�
�φ0r�

u′�su+u′N

and

N∼N

(
0�

2var��Z1��
φ2
0rσ

2
�s

)
�

2. Sn

�→S.

Proof. (1) Define

S†
n�u� =

n−s∑
t=1

{∣∣zt−n−1/2Yt

∣∣−�zt�
}
�

where Yt is given in equation (A.8). By Lemma (1) and (A.9),

S†
n�u�=−n−1/2

n−s∑
t=1

Ytsgn�zt�+
fσ�0�
�φ0r�

u′�su+op�1��
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Thus, using (A.11), we have that the finite-dimensional distributions of S†
n

converge to those of S. But since S†
n has convex sample paths, this implies that

the convergence is in fact on C��s�. [As shown in Theorem 10.8 of Rockafellar
(1970), pointwise convergence of convex functions implies uniform convergence
on compact sets, from which tightness of the S†

n can be established.] It follows

that S†
n

�→S on C��s�.
In order to transfer the convergence of S†

n onto S∗
n, we first note that

zn−t−s=
∞∑
j=0

ψjUn−t+j and zn−t−s��0�=
t∑

j=0
ψjUn−t+j

for t=0�1�����n−s+1, where Ut=−φ0�B�Xt and ψ�B�=1/φ0�B�. Thus,

�zn−t−s−zn−t−s��0��=
∣∣∣ ∞∑
j=t+1

ψjUn−t+j
∣∣∣

and hence

limsup
n→∞

E
n−s+1∑
t=M

�zn−t−s−zn−t−s��0�� ≤ C
∞∑

t=M

∞∑
j=t+1

�ψj�

→ 0�

asM→∞. It now follows simply from these relations and the triangle inequal-

ity that S∗
n�u�−S†

n�u�
P→0 uniformly on compact sets which, combined with

the convergence of S†
n�u�, yields (1).

(2) This argument is nearly identical to the one given on page 487 of Davis
and Dunsmuir (1997) and is omitted. ✷

We conclude this Appendix with a result on strong consistency of the LAD
estimators under a suitable identifiability condition.

Proposition 1. Assume the all-pass model (2.1) holds with A1–A4. Let
z̃1���=−φ�B�X1+s/φ�B−1�. Given ε>0, let � be the compact parameter space
consisting of

	� �φ�z� �=0 for all �z�≤1−ε
�
If E�z̃1���� has a unique minimum at �=�0∈�, then

�̂LAD=argmin
�∈�

mn���→�0

almost surely.

Proof. By the ergodic theorem, Tn���=n−1mn���→E�z̃���� a.s. It suf-
fices to show that Tn���→E�z̃���� a.s. uniformly on �∈�. We begin by show-
ing that 	Tn���
 is uniformly equicontinuous on � a.s.
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Using the identity for z �=0,

�y�−�z�=�y−z�sgn�z�+2y	1	z<0<y
−1	y<0<z

�
we have for ���∈�,

Tn���−Tn��� = n−1
n−s∑
t=1

��zt����−�zt�����

= n−1
n−s∑
t=1

�zt���−zt����sgn�zt����

+ 2
n−s∑
t=1

zt���{1	zt���<0<zt���
−1	zt���<0<zt���



=� I+II�

(A.12)

By the mean value theorem,

�I�≤n−1
n−s∑
t=1

∣∣∣∂zt��∗�
∂�

∣∣∣��−���

where �∗ is between � and �. Using (A.6) and the definition of zt���, it follows
that there exist coefficients ψj≥0 decaying at a geometric rate such that

sup
�∈�

∣∣∣∂zt���
∂�

∣∣∣≤ ∞∑
j=0

ψj�Xt−s+j�

and

sup
�∈�

�zt����≤
∞∑
j=0

ψj�Xt−s+j��

Hence

�I� ≤ ��−��n−1
n−s∑
t=1

∞∑
j=0

ψj�Xt−s+j�=��−��O�1� a.s.(A.13)

Turning to the second term in (A.12), we have for a fixed δ>0,

�II�≤2n−1
n−s∑
t=1

�zt����1	�zt����≤δ
+2n−1
n−s∑
t=1

�zt����1	�zt����>δ
1	�zt���−zt����>δ


≤2δ+2n−1
n−s∑
t=1

�zt�����zt���−zt����/δ

≤2δ+2n−1δ−1
n−s∑
t=1

��−��
( ∞∑
j=0

ψj�Xt−s+j�
)2

=2δ+δ−1��−��O�1� a.s.

(A.14)

Since the O�1� terms in (A.13) and (A.14) do not depend on �, �, or δ, it
follows that 	Tn
 is equicontinuous on � a.s. It is also easily shown that the
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sequence 	Tn
 is uniformly bounded a.s. Applying the Arzelà-Ascoli theorem,
we conclude that Tn���→E �z̃1���� a.s. uniformly. The uniqueness of the min-
imizer of E�z̃1���� ensures that �̂LAD→�0 a.s. ✷
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