
The Annals of Statistics
2000, Vol. 28, No. 1, 298–335

ADAPTIVE CONFIDENCE INTERVAL FOR POINTWISE CURVE
ESTIMATION

By Dominique Picard and Karine Tribouley

Université Paris VI et Université Paris VII, and Université Paris XI

We present a procedure associated with nonlinear wavelet methods
that provides adaptive confidence intervals around f�x0�, in either a white
noise model or a regression setting. A suitable modification in the trun-
cation rule for wavelets allows construction of confidence intervals that
achieve optimal coverage accuracy up to a logarithmic factor. The proce-
dure does not require knowledge of the regularity of the unknown function
f; it is also efficient for functions with a low degree of regularity.

1. Introduction. A major advantage of non linear methods in curve esti-
mation (wavelet thresholding, local bandwidth selection� � �) is their adaptivity
to erratic fluctuations in the signal. They enjoy excellent mean squared error
properties when they are used for estimating functions containing singulari-
ties of different forms (cups, chirps,� � �). They also have minimax convergence
rates that are close to optimal for large function classes and large classes of
norms. Of course, these minimax rates reflect the complexity of the estimated
function. For instance, a very regular function (with, say, only a few disconti-
nuities in its derivative) can be estimated at a higher rate than a function with
a very deep singularity, such as a chirp. For details and discussion see, among
others, Donoho, Johnstone, Kerkyacharian and Picard (1995, 1996), Hall and
Patil (1995a, b), Hall, Kerkyacharian and Picard (1996), Lepski, Mammen and
Spokoiny (1996) and Kerkyacharian, Picard and Tribouley (1996).

There is a well-developed theory for obtaining pointwise confidence inter-
vals for an unknown function, based on kernel estimators with non-random
bandwidths. This theory establishes the rates of convergence to nominal val-
ues for the coverage probabilities [see Hall (1991) and Hall (1992)]. More re-
cently, confidence intervals have been constructed using kernel estimators
with data-driven selected bandwidths [Neumann (1995); see also Fareway
(1990) and Fareway and Jhun (1990)].

However, in both situations, there are serious practical limitations. First,
a high degree of regularity is generally required for the unknown function.
(Typically, the function must be three or four times differentiable.) Second,
knowledge of the degree of regularity is generally needed for construction of
the confidence intervals. Even for procedures using data-driven selected band-
widths, the construction generally requires knowledge of a lower bound on the
regularity.
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In this paper, our aim is to show that the new adaptive non-linear methods
can be used to address these limitations in the construction of confidence
intervals. We will primarily focus on the following two features:

Possible low regularity. The function may have singularities or be highly
oscillating in small intervals.

Adaptation. The procedure should be able to adapt to the function without
requiring knowledge of the regularity of the function, since this information
is lacking in most practical situations.

We present results in the case of a white noise model and in the case of a
regression model.

The first step in constructing confidence intervals is to obtain the asymp-
totic distribution of a pivotal quantity based on a nonparametric estimator.
Thus our first goal will be to prove asymptotic normality of quantities based
on adaptive estimators. For the sake of simplicity, we will mainly focus on
thresholding wavelet estimators, although we will use a slight modification
of these estimators, inspired by Lepski’s method, that is more efficient in the
context of confidence intervals. (Interestingly, the modification makes no dif-
ference to minimax properties.)

When constructing confidence intervals for the unknown quantity f�x0�,
a central issue is the problem of bias of the underlying estimator. There are
two common methods for dealing with this bias: undersmoothing and explicit
bias correction. In Hall (1991, 1992a) and Neumann (1992b), it is shown that,
for a large variety of situations, undersmoothing leads to better coverage of
the confidence intervals. We thus adopt undersmoothing as our bias correc-
tion method. Moreover, in the wavelet context, undersmoothing takes a very
simple form: we simply add j-levels to the wavelet basis. Our confidence in-
terval is thus constructed from a nonlinear estimator similar to thresholding
estimators, but with a modified truncation rule. To choose this rule optimally
we mimic, in an adaptive way, the results in Hall (1991) and Hall (1992) con-
cerning theoretical bandwidths and Edgeworth corrections that yield coverage
accuracy up to a fixed order. Of course, no correction is needed in the white
noise setting because we can obtain the exact distribution of the pivotal statis-
tic. For this model, we construct a confidence interval with a coverage accurate
to within n−s (up to a logarithmic factor), for any regularity s > 0 [s being
roughly, the number of derivatives at f�x0�]. In the regression setting, it is
shown that the rates of convergence of the coverage accuracy are compara-
ble to the optimal rates in Hall (1991) and Hall (1992) (up to a logarithmic
factor). We are even able to reduce the assumptions on the regularity s: for
instance, to obtain an accuracy up to third order, we only need to assume that
s ≥ N/�1 + 2N�, where N is a parameter depending on the wavelet system
that is used.

Our method does require some assumptions (in addition to the usual reg-
ularity conditions), which can be interpreted in the following way. We do not
need to know the regularity of f, but the precision of estimation is linked
with the local regularity at x0 and, somehow, this local regularity must be es-
timated. This problem has no solution without additional assumptions, unless
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extremely low rates of convergence are allowed; see Low (1997) and Iouditski
and Lepski (1997). This phenomenon can be explained through the following
example. There is no difficulty in estimating the local regularity of a func-
tion f that is locally given by �x− x0�1/2. However, suppose that the function
is, instead, like f only at some particular points accumulating near x0, but
is very smooth elsewhere. If we have no access to these particular points in
our observations, there is little hope of sharply estimating the true regularity.
Hence, we need to assume that the observations contain enough information,
relative to the complexity of the function. In signal or image processing, this
assumption is, more or less, tacitly assumed, each time a procedure relying
on estimating the local regularity is used [see Arneodo et al. (1997)].

We use a thresholding method to estimate f�x0�. The procedure will usually
depend on two crucial constants, κ andM. κ appears as a tuning constant for
the thresholding; its choice is delicate and crucial in practice. The constantM
is connected with the regularity of f: M is the radius of the ball of the space
(Hölder, Sobolev, Besov,� � �) in which f is assumed to belong. The constantM is
important in measuring the performance of the estimation method and bound-
ing the bias; indeed, it may even be an a priori of the method (especially in the
density model). Here, our procedure for giving confidence intervals imposesM
to be equal to κ. Hence, a practitioner starts the thresholding method with
the constantM and the regularity is automatically driven byM.

Although we restrict consideration to a white noise model and to a regres-
sion model, similar results can be obtained for any situation in which a cen-
tral limit theorem and Edgeworth expansions can be established and in which
large deviation inequalities for the wavelet coefficients can be evaluated. For
instance, the same results can be achieved for estimating a density. As usual,
in this case, the length of the confidence interval depends on the estimated
value. Hence, there is then the additional task of providing a double estima-
tion, for instance using resampling methods. This will be investigated in a
later paper.

This paper is organized as follows. The white noise and the regression mod-
els are presented in Section 2. Section 3 discusses the thresholding procedures,
bandwidth selection truncation, and optimal rules for undersmoothing. At the
end of this section, the adaptive confidence intervals are introduced. Section
4 is devoted to the assumptions that are needed and to discussion of their
consequences in terms of the construction of the confidence intervals. Section
5 states the main results. Theorem 1 develops an asymptotic expansion for the
distribution of the pivotal statistic based on the thresholding estimators. The-
orem 2 considers the construction based on the modified Lepski’s estimator.
Section 6 is devoted to the proofs. We first present the main tools: concentra-
tion inequalities and Edgeworth expansions. Then we prove Theorem 1 and
Theorem 2, first for the white noise model where the technical difficulties
are less. The Edgeworth expansions are primarily needed to handle the re-
gression model. Standard proofs or technical computations are postponed to
appendices. Appendix A deals with the proofs of the Edgeworth expansions;
in Appendix B, we prove the technical properties and lemmas; Appendix C is
devoted to the concentration inequalities.
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2. Models. Let N be a fixed positive constant. Suppose that the scaling
function, φ, and associated wavelet function, ψ, are compactly supported on
�−N�N�, and that the q-th moments of the wavelet ψ vanish for q = 1� � � �N
[see, e.g., the Daubechies wavelets: Daubechies (1992)]. In the following and
for any function g, we define gjk to be the function 2j/2g�2ju− k�.

For technical reasons, we need to split the sample into two independent
parts. This is easy to do in the regression framework. In the white noise set-
ting, we use the wavelet decomposition to perform this splitting. Throughout
the paper, we use the following notations: P1 and E1 (respectively, P2 and E2)
denote probability and expectation with respect to the first part of the sample
(respectively, the second part).

2.1. White noise model. Consider the model

dYt = f�t�dt+ �2n�−1/2dWt� t ∈ �0�1��
where W is Brownian motion, f is the function we want to estimate and n
tends to infinity. It is usual to transform the continuous white noise model into
the discrete model with coefficients β̂jk, using the cascade algorithm. Indeed,
letting J = log2�2n� and j0 > 0, we first construct

α̂Jk =
∫
φJk�t�dYt�

We then can calculate the α̂jk� β̂jk for j0 ≤ j ≤ J − 1 by using the cascade
Daubechies formulae [Daubechies (1992)]. We divide the 
αJk�k into two parts
by considering the odd and even k’s. This splitting leads to 2 independent
samples 
β̂jk�1�� α̂j0k′�1��k�k′�j=j0�����J−1 and 
 β̂jk�2�� α̂j0k′�2��k�k′�j=j0����J−1. In
each case, we have for l = 1�2{

β̂jk�l� = βjk�l� + n−1/2 εjk�l�� j = j0� � � � J− 1� k ∈ ��

α̂j0k�l� = αj0k�l� + n−1/2 ηj0k�l�� k ∈ ��

where 
εjk� ηj0k′�j=j0�����J−1�k�k′ are independent Gaussian variables with zero
mean and variance equal to σ22 .

2.2. Regression model. Consider the regression model

Xi = f�i/2n� + εi� i = 1� � � � �2n�

where f is again the function to be estimated and where the ε’s are inde-
pendent zero mean random variables with characteristic function χ in L1,
variance equal to σ22 and qth moment equal to σq. In addition, assume that
one of the following conditions is satisfied:

1. For all q ≥ 2, the qth moment of the ε’s is finite and ∃µ > 0 such that

E�ε�q ≤ q!σ22µq−2/2�
2. The ε’s are either bounded by �ε�∞ or Gaussian.
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We need the first condition in the case of local thresholding and the second
condition in the case of block thresholding (see the proof of the concentration
inequalities, Appendix C).

As before, we can again split the sample into two independent parts

X1�X3� � � � �X2n−1� and 
X2�X4� � � � �X2n�. As usual, we define the empiri-
cal wavelet coefficients, for l = 1�2, by

α̂jk�l� =
1
n

n−1∑
i=0
X2i+lφjk

(
2i+ l
2n

)
� β̂jk�l� =

1
n

n−1∑
i=0
X2i+lψjk

(
2i+ l
2n

)
�(1)

3. Confidence intervals. As discussed in the introduction, the construc-
tion of adaptive confidence intervals will proceed in several steps. First, we
present the adaptive estimators of f�x0� that will be used to develop an asymp-
totically normal pivotal quantity. Second, we construct adaptive undersmooth-
ing statistics. Finally, we combine these to yield confidence intervals for f�x0�
and give their asymptotic coverage properties.

3.1. Estimators. In the first subsection, we briefly introduce thresholding
methods. In the second subsection, we provide a new estimator, which, al-
though directly connected to wavelet thresholding, is also very much inspired
by Lepski’s method of adaptation [see Lepski, Mammen and Spokoiny (1994)].

3.1.1. Wavelet thresholding. The idea of thresholding is to keep only the
more meaningful empirical wavelet coefficients, setting the others to zero.
Let j∞ = log2�n/ log n�� j0 = �1 + 2N�−1 log2�n� and consider the empiri-
cal wavelet coefficients defined in (1) for the regression model or in (1) for
the white noise model. Define the “local thresholding” estimate[Donoho, John-
stone, Kerkyacharian, Picard (1996)]

f̂�x0� =
∑
k

α̂j0k�1�φj0k�x0� +
j∞∑
j=j0

∑
k

β̂jk�1�1{β̂jk�1�>M√log n/n
}ψjk�x0�(2)

for some M > 0. In the double index �j� k�, the level index j plays a special
role very similar to a bandwidth. Indeed, local thresholding has an action quite
comparable to selecting a local bandwidth. However, in the context of confi-
dence intervals, local bandwidth selection has the drawback of being unstable
and, as mentioned in Bowman and Härdle (1988), its advantage is rather un-
clear. For these reasons, we also investigate selecting procedures acting on
“blocks” of β̂jk, covering both global and local choice.

The following description of the family of block thresholding estimators
comes from Hall, Kerkyacharian and Picard (1996). For all indices j ∈ 
j0� � � � �
j∞�, divide the set of integers between −N and 2j + N into consecutive,
nonoverlapping blocks of length lj (non decreasing in j), say

�jK = 
k � �K− 1� lj + 1 ≤ k ≤Klj�� −∞ < K <∞ �
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Fix p ≥ 2. Let
∑
�K� denote summation over k ∈ �jK and define

BjK =
∑
�K�
�βjk�p �

This quantity can be estimated by

B̂jK�l� =
∑
�K�
�β̂jk�l��p� l = 1�2�

leading to the following estimator of f�x0�:

f̂T�x0� =
∑
k

α̂j0k�1�φj0k�x0� +
j∞∑
j=j0

∑
K

(∑
�K�
β̂jk�1�ψjk�x0�

)
1
B̂jK�1�>tj�n��

for some threshold tj�n > 0. In the sequel, we only consider the following
particular choices:

1. lj = 2j + 2N� tj�n = Mplj n
−p/2�M > 0 provides the global threshold-

ing estimator [Kerkyacharian, Picard and Tribouley (1996)]. In this case,
�jK = 
−2N− 2j� � � � �2j� is the set of all the indices k of the level j. The
βjk for each level j are either estimated or thresholded, in a global way.
This selection is made by evaluating the global lp-energy of the level j.

2. Allowing blocks of differing lengths lj, where log�n�p/2 ≤ lj ≤ 2j+2N� j =
j0� � � � � j∞ (and still using the threshold tj�n = Mplj n

−p/2, M > 0) re-
sults in the block thresholding estimators [Hall, Kerkyacharian and Picard
(1996)]. Smaller block sizes result in more local selection.

3. Finally, the local thresholding estimator f̂ [defined in (2)], also belongs to
this family with the particular choices lj = 1 and tj�n =Mp�n−1 log n�p/2�
M > 0. In this case, �jK is the single point 
k�. Here p is clearly not a
meaningful quantity; thus we take, for instance, p = 2.

3.1.2. Local bandwidth selection. We introduce the following index of local
complexity of the estimated function:

ĵ1 = ĵ1�x0�

= sup

{
j ∈ 
j0� � � � � j∞�� ∃K�

∑
�K�
�β̂jk�2��p1
�ψ�2jx0−k��>m� ≥ 2−2ptj�n

}
�

(3)

where m is related to an assumption concerning the point x0 [see Condition
F�x0� in section 4.2]. Set ĵ1 = j0 if, for all indices j and K, the empirical
quantity

∑
�K� �β̂jk�2��p1
�ψ�2jx0−k��>m� is less than 2−2ptj�n.

The smoother the function to be estimated, the smaller ĵ1 is expected to
be. While ĵ1 is generally a local quantity, its local aspect decreases when the
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size of the blocks increases. Indeed, ĵ1 does not depend on x0 in the case of
global thresholding.

Moreover, as proven in Lepski, Mammen and Spokoiny (1994) for Lp-loss,
such an index plays the same role as the optimal bandwidth, up to some
logarithmic factor. This leads to the following estimator of f�x0�:

f̂L�x0� =
∑
k

α̂j0k�1�φj0k�x0� +
ĵ1∑
j=j0

∑
k

β̂jk�1�ψjk�x0��

At first glance (and also for minimax results), this estimator is not very differ-
ent from the thresholding estimator. The only difference is in the coefficients
between the levels j0 and ĵ1, which have a contribution here even if they are
below the threshold. We will see that, in the context of confidence intervals,
this difference is crucial.

3.2. Undersmoothing. We first construct the undersmoothing statistics in
a non-adaptive way (i.e., for known regularity of the function) and then explain
how to slightly modify the procedure to obtain adaptation.

3.2.1. Correction when s is known. In the case of kernel methods, Hall
(1992) and Hall (1991) show that the best coverage accuracy to second order
(respectively, to third order) is obtained by choosing a bandwidth of order
hn ∼ n−1/1+s (respectively, hn ∼ n−1/1+2s/3). In the wavelet context, because of
the orthogonal projection properties, undersmoothing is equivalent to adding
j-levels. More precisely, instead of dealing with f̂T�x0� or f̂L�x0�, we consider
f̂T�x0� + B̂�x0� or f̂L�x0� + B̂�x0� with

B̂�x0� =
j′∑
ĵ1

∑
k

β̂jk�1�ψjk�x0��

where j′ is an index to be determined. We focus on the following family of
indices 
jηs�η≥1:

η = 1� 2js�n� ≤
(

28n
log n

)1/�1+2s�
≤ 2�2js�n� for local thresholding,

η = 1� 2js�n� ≤ (
28n

)1/�1+2s� ≤ 2�2js�n�

for block or global thresholding,

η ∈ �1�∞� � 2jηs�n� ≤ n 1
1+2s/η ≤ 2�2jηs�n��

η = ∞� 2j∞�n� ≤ n

log n
≤ 2�2j∞�n��

(4)

In the sequel, we omit the dependence on n of the indices j. From Hall, we can
obtain good candidates for j′, corresponding to η = 2 or η = 3 in the previous
family. But these give non-adaptive solutions to the problem.
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3.2.2. Correction when s is unknown. Our goal is to provide “estimators”
of the indices defined in (4), in such a way that they do not depend on the
unknown regularity s. Suppose that ĵ1, defined in (3), is a “good estimator”
of the minimax optimal bandwidth js, which corresponds to η = 1, calculated
using the second part of the sample. (We explain, in the next section, what
we mean by a “good estimator.”) Then it is easy to derive a “good estimator”
of jηs as follows. First compute

ŝ = ŝ�x0� =
1
2

(
log2 n

ĵ1
− 1

)
�

which is an approximation to the local regularity s. Then plug the value ŝ
into jηs:

1
1+ 2ŝ/η

log2 n− 1 ≤ ĵη ≤
1

1+ 2ŝ/η
log2 n�(5)

Finally, we propose as candidates for the adaptive undersmoothing statistics

∀η ≥ 1� B̂η�x0� =
ĵη∑
ĵ1

∑
k

β̂jk�1�ψjk�x0��

3.3. Confidence intervals. Let uα be the αth quantile of the standard Gaus-
sian distribution. Denote, by �s��q, the lq norm (q ≥ 1) of the sequence 
sl�l.
We introduce the following quantities:

(i) In the white noise case,

b�n� =

 1
n

ĵη∑
j0

∑
k

ψ2
jk�x0� +

1
n

∑
k

φ2
j0k
�x0�



−1/2

�(6)

(ii) in the regression model,

b�n� = σ−12 �s��−12 �(7)

where

s2i+1 =
1
n

ĵη∑
j0

∑
k

ψjk�x0�ψjk
(
2i+ 1
2n

)
+ 1
n

∑
k

φj0k�x0�φjk
(
2i+ 1
2n

)
�

�s��qq =
n−1∑
i=0
�s2i+1�q� �s��∞ = sup

i=0�����n−1
�s2i+1��

(8)

We also need to consider correction statistics, Tqn, that are needed to deter-
mine the accuracy of the confidence intervals proposed in the sequel:

∀q ≥ 2� Tqn = b�n�q�s��qq� T∞n = b�n��s��∞�(9)

These quantities are random variables depending on the second part of the
sample (because of the way we defined ĵη). Their orders of magnitude are
evaluated in Section 6.1.2.
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We introduce the following confidence intervals at level α:

I2η =
[
f̂T�x0� + B̂η�x0� − u1+α/2b�n�−1� f̂T�x0� + B̂η�x0� + u1+α/2b�n�−1

]
�

J2
η =

[
f̂L�x0� + B̂η�x0� − u1+α/2b�n�−1� f̂L�x0� + B̂η�x0� + u1+α/2b�n�−1

]
�

J3
η =

[
f̂L�x0� + B̂η�x0� + b�n�−1

(
−u1+α/2 + �u21+α/2 − 1�σ3

3!
T3n

)
�

f̂L�x0� + B̂η�x0� + b�n�−1
(
u1+α/2 + �u21+α/2 − 1�σ3

3!
T3n

)]
�

Our aim is to prove (under appropriate assumptions on the regularity of f) the
following properties about the asymptotic coverage of these confidence inter-
vals. Here, γi� i = 1�2�3, are positive constants that depend on the regularity
of f and will be defined later.

1. In both models, the accuracy of the interval associated to f̂L is always
better than that associated to f̂T.

2. In the white noise model, the interval J2
η is optimum (in the sense of min-

imum coverage) for η = ∞ and the coverage error is given by∣∣P�f�x0� ∈ J2
∞� − α

∣∣ ≤ C n−s �log n�γ1 �
3. In the regression model, the interval J2

η is optimum (in the sense of second
order best coverage accuracy) for η = 2, and the coverage error is given by∣∣P�f�x0� ∈ J2

2� − α
∣∣ ≤ C n− s/21+s �log n�γ2 �

The interval J3
η is optimum (in the sense of the third order best coverage

accuracy) for η = 3, and the coverage error is given by∣∣P�f�x0� ∈ J3
3� − α

∣∣ ≤ C n− 2s/3
1+2s/3 �log n�γ3 �

If we compare these results with those in Hall (1991), Hall (1992) and Neu-
mann (1995), we find that the cost for adaptation is only a logarithmic factor.
This is similar to what happens in the minimax setting.

4. Regularity assumptions and results about the estimators ĵ�.

4.1. Functional space. We assume that the function to be estimated has a
certain degree of smoothness. Because we focus on adaptation, this smoothness
does not affect the construction of the procedure but is, of course, important
in the evaluation of procedure.

For s ∈ R∗+ −N andM> 0, we consider the following space of functions:

Ls�M� =
{
f � �0�1� → R� ∀�x�y� ∈ �0�1�2�
�f��s���x� − f��s���y�� ≤ �M/c��x− y�α�

where s = �s� + α� 1 ≥ α > 0
}
�

(10)
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The positive constant c is defined by the following remark: it is known that,
if the number of vanishing moments of the wavelet ψ is N, then, for s <
N + 1, the regularity can be determined from the wavelets coefficients. More
precisely, there exists a constant c, depending only on ψ, such that, if g has
the expansion

g =∑
k

α0kφ0k +
∞∑
j=0

∑
k

βjkψjk�

then g ∈ Ls�M� implies

sup
0≤j

(
2j�s+1/2� sup

k

�βjk�
)
≤ c�M/c� =M(11)

[see, e.g., Härdle, Kerkyacharian, Picard and Tsybakov (1998), Chapter 8 and
notice that the converse is also true].

For s ∈N∗, we define our functional space Ls�M� by the condition (11) and
notice that, in this case, the ball does not exactly coincide with (10), although
the difference is small.

4.2. Assumptions on the point x0. The following condition, F�x0�, is very
easy to verify in practice. In fact, it usually holds and, if not, a slight change
in x0 will usually fix the problem.

Condition F�x0� . ∃m > 0 such that

inf
j0≤j≤j1

sup
k�i

∣∣∣∣ψ�2jx0 + k�ψ
(
2j
i

n
+ k

)∣∣∣∣ > m��ψ��∞�
sup
k

�φ�2j0x0 + k�� > m�

4.3. Key assumption on the function f. It is a well known fact that it is
impossible to estimate the smoothness of a function or to obtain adaptive
confidence bands of reasonable length under the usual regularity conditions
[see Low (1997) and Iouditski and Lepski (1997)]. We thus need to add an
assumption; this assumption is the most important restriction imposed in
the paper, since the following sequence, ρn, precisely measures the loss in
adaptation.

Condition Hs�M�x0�. There exists some ρn > 0 such that, for all n ≥ 2,

∃j∗� js−ρn ≤j∗ ≤js� ∃K�
∑
�K�
�βj∗k�p1
�ψ�2j∗x0+k��>m� ≥ 23pMp2−js�s+1/2�plj∗�

where m is defined by Condition F�x0� and js is defined in (4).
The additional assumptions considered here can be interpreted as ensuring

that the data contain enough information to estimate the regularity of the
function. These assumptions are, more or less, tacitly made each time esti-
mation of local regularity is needed. This is the case in the signal processing
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community when analyzing, reproducing or coding highly complex signals, in
turbulence, seismology, voice reconstruction, etc. [see Arneodo, Jaffard, Levy-
Vehel and Meyer (1997)]. It can also be seen as a rough self-similarity property
on f in the sense that, if it happens that the β’s are large around one point,
then they are similarly large at any level. Note that condition Hs�M�x0� can
easily be proved with s =N, if f�N+1��x0� �= 0 and f�N+1� is continuous at x0.

Another way of visualizing this condition is by quantifying the idea of self-
similarity of the wavelet coefficients. For instance, suppose that, for any j� k,

M2−j�s+1/2�ω�j� ≤ �βjk� ≤M2−j�s+1/2��

Then, for ω�j� = j−β, any ρn > 23β/�s+ 1/2� log log n is suitable.

4.4. Properties of the indices jηs and ĵη. The following property is very
easy to obtain from definition (4) and inequality (11).

Property 1.

f ∈ Ls�M� ⇒ ∀j ≥ js ∀K� BjK ≤ 2−4ptj�n �

Let us now consider the impact of the previous hypotheses on the behavior of
the index ĵη defined in (5). First, observe that ĵ1 [defined in (3)] is a function
of the second sample; this implies that α̂ or β̂ and ĵη, for all η ≥ 1, are
independent variables. Moreover, ĵη is a good estimator of jηs, in the sense
of the following Properties 2 and 3. In these properties, the positive function
γ�C0�M� is defined in Section 6 and the positive constant R̃�p� is defined in
Appendix C.

Property 2. Assume that f ∈ Ls�M�. Under the constraints (for block
thresholding) M > 8σp for the white noise model and M > 8R̃�p� for the
regression model, there exists some constant C > 0 such that, for all n,

P�ĵη > jηs� ≤ Cn−γ�1/8�M��

Property 3. Assume that f ∈ Ls�M� and that the condition Hs�M�x0� is
satisfied for some positive sequence ρn. Under the constraints (for block thresh-
olding) M > 4σp for the white noise model and M > 4R̃�p� for the regression
model, there exists some constant C > 0 such that, for all n,

P�ĵη + �1+ 2N� ρn < jηs� ≤ Cn−�γ�1/4�M�∧γ�1/8�M���

The previous large deviation inequalities on ĵη are direct consequences of
our assumptions on f� they are proved in the first part of Appendix B.

5. Main results. In this section, we denote by 7 (respectively, φ) the
distribution function (respectively, the density) of the standard Gaussian dis-
tribution.
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Theorem 1. Assume that f belongs toLs�M�, for someM larger than some
absolute constant, and that the conditions F�x0� and Hs�M�x0� are satisfied
for some positive sequence ρn. Then, for all δn ≥ �2N+ 1�ρn, we can conclude
that:

(i) in the white noise model,

∀t� P
(
b�n�

[
f̂T�x0� + B̂η�x0� − f�x0�

]
< t

)
= 7�t� +O�un + vn��

(ii) in the regression model,

∀t� P1

(
b�n�

[
f̂T�x0� + B̂η�x0� − f�x0�

]
< t

)
= 7�t� +O�Un +Vn +Wn�2���

where

E2�Un� = un =
(
n2−jηs�2s+1�2δn�2s+1�

)1/2
�

E2�Vn� = vn =
(
n2js−jηst2/pjs�n2

δn
)1/2
�

E2�Wn�2�� = wn =
(
2jηs

n

)1/2

23δn/2�

Theorem 2. Assume that f belongs toLs�M�, for someM larger than some
absolute constant, and that the conditions F�x0� and Hs�M�x0� are satisfied
for some positive sequence ρn. Then, for all δn ≥ �2N+ 1�ρn, we can conclude
that:

(i) in the white noise model,

∀t� P
(
b�n�

[
f̂L�x0� + B̂η�x0� − f�x0�

]
< t

)
= 7�t� +O�un��

(ii) in the regression model, for r ≥ 2,

∀t� P1

(
b�n�

[
f̂L�x0� + B̂η�x0� − f�x0�

]
≤ t

)

= 7�t�+φ�t�
r∑
k=1


 ∑
�I1�����Ip�∈�k

Ti1n · · ·TipnQi1����ip�t�

+O�Un+Wn�r���

where:

(a) the set of indices is defined by

�k = 
�i1� � � � � ip�� p ≥ 1� �i1 − 2� + · · · + �ip − 2� = k�3 ≤ i1 ≤ · · · ≤ ip ≤ r��
(b) the Tqn’s are defined in (9) and satisfy

∀�i1� � � � ip� ∈ �k� E2Ti1n · · ·Tipn ≤ C
(
2jηs

n

)k/2
2δn�k/2+p��

(c) the Qi1�����ip are polynomials defined later depending only on σ3� � � � � σr+1
and built from integrated Hermite polynomials;
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(d) in particular, the first term of the expansion is T3n�σ3/3!��1− t2��
(e) the statistics Un and Wn�r� satisfy

E2�Un� ≤
(
n2−jηs�2s+1�2δn�2s+1�

)1/2
�

E2�Wn�r�� ≤
(
2jηs

n

) r−1
2

2δn
3�r−1�

2 �= wn�r��

Remarks. Theorem 1 (compared to Theorem 2) explains the differences
between the thresholding estimator f̂T and its modification f̂L, inspired by
Lepski’s adaptation method. If we omit the factor δn which we discuss later,
the terms un and vn are determining the respective behaviors of the first order
coverage accuracy of the confidence intervals built on f̂T and f̂L, with a bias
correction adjusted by the extra parameter η. The relation

vn = unn
4s2�1−1/η�
1+2s/η �1+2s�hn�

where hn = ljs (or log n, depending on whether we use block thresholding or
local thresholding), immediately shows that the thresholding estimator still
has bias that needs to be corrected. This part of the bias is an increasing
function of the length of the blocks. One could think of performing a new
correction for f̂T but, if we look at Theorem 2, it is obvious that fL performs
an automatic correction of this part of the bias.

At this stage, without performing any additional correction to improve the
coverage accuracy, the previous theorems provide confidence intervals around
f�x0� of length b�n�−1. The magnitude of b�n� is directly computable but, if
we are concerned with the rates of convergence in various cases, one must
evaluate the asymptotic order of b�n�. Considering, for instance, the Haar
wavelet (or extrapolating from lemma 1) we have

b�n� =
(
σ22

2ĵηs

n

)−1/2
�

Because jηs−δn ≤ ĵη ≤ jηs with high probability, the length of the confidence
interval is between n1/�1+s/η� and n1/�1+s/η�2δn .

It is also interesting to consider the asymptotic behavior of f̂T or f̂L, with-
out any bias correction (or undersmoothing). This means considering the case
where η = 1. Then limn un = ∞. This shows that, even to establish a simple
“central limit theorem” around the adaptive estimators, we need to under-
smooth. This is also a consequence of the usual phenomena that the rates of
convergence of the nonlinear thresholding methods are governed by their bias.

In the white noise model, the interval J2
η is optimum (in the sense of min-

imum coverage) for η = ∞ and the coverage error is∣∣P�f�x0� ∈ J2
∞� − α

∣∣ ≤ C n−s�2δn log n�s+1/2�
Obviously, no correction is needed to obtain optimal coverage accuracy.
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In the regression model, applying Theorem 2, with r = 2, yields

P
(
b�n�

[
f̂L�x0� + B̂η�x0� − f�x0�

]
≤ u1+α/2

)
= E2P1

(
b�n�

[
f̂L�x0� + B̂η�x0� − f�x0�

]
≤ u1+α/2

)

= 1+ α
2

+O �un +wn�2�� �

The best coverage accuracy is obtained for η = 2 [when un and wn�2� are
roughly of the same order]. The best confidence interval of second order is J2

2,
and its coverage error is given by∣∣P�f�x0� ∈ J2

2� − α
∣∣ ≤ C n−s/2/�1+s�2δn��s+1/2�∨3/2��

Applying Theorem 2 with r = 3, we obtain

P1

(
b�n�

[
f̂L�x0� + B̂η�x0� − f�x0�

]
≤ u1+α/2

)

= 1+ α
2

+φ�u1+α/2��1− u21+α/2�T3n
σ3
6
+O �Un +Wn�3�� �

The best coverage accuracy is again obtained when un and wn�3� are of the
same order, that is, for η = 3. Inverting the expansion above, we prove that
J3

3 is optimal at the third order. The coverage error is then given by∣∣P�f�x0� ∈ J3
3� − α

∣∣ ≤ C n− 2s/3
1+2s/3 2δn��s+1/2�∨3��

More generally, by inverting the expansion given in Theorem 2 for r = m,
it is possible to obtain a confidence interval constructed from the statistics
b�n��T3n� � � � �Tmn. We have to choose η = m to obtain the best interval of
order m. The coverage error is given by∣∣P�f�x0� ∈ Jmm� − α∣∣ ≤ C n −s�m−1/m�

1+2s/m 2δn��s+1/2�∨�3/2��m−1���

If we compare these results with those in Hall (1991) and Hall (1992) in
a non-adaptive framework and Neumann (1995), we find that the loss for
adaptation depends on the regularity condition Hs�M�x0�. If ρn ∼ log log n,
the loss for adaptation is only a logarithmic factor. This result is comparable
with what is known in the minimax setting.

It is also worth noting that this loss does not depend on the type of thresh-
olding (global, block or local) that was used. This corroborates the rather com-
mon opinion that, for confidence intervals, the potential advantages of local
bandwidth selection are rather unclear [see Bowman and Härdle (1988)]. It
also seems to be linked with the results in the minimax setting, when the loss
is measured in the “sup”-norm. In this case, also, all the types of thresholding
are equivalent.

However, it is worthwhile to note that, at a finer scale, there is an advantage
to local bandwidth selection. Indeed, we can refine our results and see that
the condition imposed on f, to be in Ls�M�, need only be true for the pairs
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j� k such that
∑
k∈�K� I
ψjk�x0� �= 0� > 0. Hence, the more local the procedure

is, the sharper the regularity condition is.
Let us now detail what we mean by “M large enough.” This condition is

obtained by collecting the conditions on the function γ throughout the proofs.
It is not difficult to state them in generality (for r and η) but, for the sake of
simplicity, we will focus on the most interesting practical case of the optimal
confidence interval of third order (regression model, Theorem 2, η = r = 3).
We obtain

γ�1/8�M� > 16
1+ 3/�2s� ∨

6
1+ 2s/3

∨ s+ 1/2
1+ 2s/3

�

γ�1/4�M� > 6
1+ 3/�2s� ∨

6
1+ 2s/3

∨ s+ 1/2
1+ 2s/3

and, in the case of block thresholding,

M> 8R̃�p��
Because of the definition of the function γ (see Appendix C), we obtain the
sufficient (but not optimal) following conditions onM:

1. In the case of the local thresholding,

M ≥ 64��ψ��∞
(
8µ ∨

√
2Nσ2

)
�

2. In the case of block thresholding with Gaussian error,

M ≥ 8��ψ��∞�4
√
2σ2 + σp��

3. in the case of block thresholding with bounded error,

M ≥ 8
(
4σ2��ψ��∞T−1/2 + R̃�p�

)
∨ 8

(
16�ε�∞��ψ��∞T−1 + R̃�p�

)
�

where σ2� σp�µ are defined in Section 2.2, N is the number of vanishing
moments of the wavelet, T is an universal constant (see the Talagrand
theorem, Appendix C.2.2.), R̃�p� is function of the Rosenthal constantR�p�
[see the Rosenthal inequality, Appendix C.2.2.; for instance, R�2� = 1/2]:

R̃�p� = 21/p�2N�1/2��ψ��∞�ε�∞R�p��(12)

6. Proofs of theorems.

6.1. Preliminaries.

6.1.1. Large deviation inequalities. The following inequality is a conse-
quence of different concentration or large deviation inequalities. The proof is
postponed to Appendix C.

Proposition 1. Let C0�M > 0 be fixed such that, in the case of the block
thresholding, C0M > σp for the white noise model and C0M > R̃�p� for the
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regression model [see the definition of R̃�p� in (12)]. There exists C > 0 such
that for all indices j�n and blocks K

P

(∑
�K�
�β̂jk − βjk�p > Cp0 tj�n

)
≤ Cn−γ�C0�M�

where γ�C0�M� is a positive function which properties are detailed in Appendix
C.

6.1.2. Interval lengths and other meaningful rates. We recall that the cru-
cial quantities for the interval length are b�n� [defined in (6) or in (7)] and the
sequence of statistics 
sl� in (8) (in the case of the regression model). Combin-
ing the following lemmas, it is easy to deduce the order of magnitude of the
correction statistics Tqn [defined in (9)] via the Cauchy-Schwarz inequality.
The proofs of Lemma 1 and Lemma 2 are given in Appendix B.

Lemma 1. We assume that f belongs to Ls�M� and that Hs�M�x0� and
F�x0� are satisfied for some sequence ρn. Let q ≥ 1. Then, for all δn > ρn, we
get

b�n�q ≤ C
[(
n2−jηs+δn

)q/2
1
ĵη+δn≥jηs�1
ĵη≤jηs� + nq/21
ĵη+δn<jηs or ĵη>jηs�

]
and, for all δn > �2N+ 1�ρn,

E2b�n�q ≤ C
(
n2−jηs+δn

)q/2
as soon as

γ�1/4�M� ∧ γ�1/8�M� ≥ q/2
(

1
1+ 2s/η

∨ 1
1+ η/�2s�

)
�

Lemma 2. We assume that f belongs to Ls�M� and that F�x0� is satisfied.
Let q ≥ 2. We get, for all m ≥ 1,

�s��qmq ≤ C


(
2jηs

n

)m�q−1�
1
ĵη≤jηs� + 1
ĵη>jηs�


 �

�s��m∞ ≤ C
[(

2jηs

n

)m
1
ĵη≤jηs� + 1
ĵη>jηs�

]
�

as soon as

γ�1/8�M� > �q− 1�m
1+ η/�2s� � E2�s��qmq ≤ C

(
2jηs

n

)m�q−1�

and, as soon as

γ�1/8�M� > m

1+ η/�2s� � E2�s��m∞ ≤ C
(
2jηs

n

)m
�
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6.1.3. Edgeworth expansion of the density in the regression model. We de-
note f1b�n�Sn the density, conditionally to the second part of the sample, of the
random variable b�n�Sn for

Sn =
n−1∑
i=1
ε2i+1s2i+1(13)

where the s2i+1’s are defined in (8). Let us recall that the kth moment of the
errors ε exists, for all k and is denoted σk.

Proposition 2. Let r ≥ 2. For all m ≥ 1, we get, conditionally to the
second part of the sample,

∀x�
∣∣∣∣f1b�n�Sn�x� −φ�x� −φ�x�

r∑
k≥1

∑
�i1�����ip�∈�k

Ti1n · · ·TipnPi1···ip�x�
∣∣∣∣

≤ C

T�r+1�n +

(
r∑
k=3
Tkn

)r−1
+Tm∞n + �n2−ĵη�−m




where the Tqn’s are defined in (9). The set of indices is defined by

�k =
{�i1� � � � � ip�� p ≥ 1� �i1 − 2� + · · ·
+ �ip − 2� = k�3 ≤ i1 ≤ · · · ≤ ip ≤ r

}
�

(14)

and Pi1���ip�x� is a real polynomial (precised in the proof) of degree i1+ · · ·+ ip
depending only on σi1� � � � � σip but not on n or r. For instance, for r ≥ 4, the
first terms of the expansion are

T3n
σ3
3!
H3�x� �k = 1� and T2

3n
σ23
3!2
H6�x� +T4n

σ4
4!
H4�x� �k = 2��

where H3�H4�H6 denote the Hermite’s polynomials.

6.1.4. Edgeworth expansion for the distribution in the regression model.
We keep the same notations as above and we denote by F1

b�n�Sn the distri-
bution function associated with the density f1b�n�Sn .

Proposition 3. Under the same assumptions as in Proposition 2, we get,
for all m ≥ 1,

∀x�
∣∣∣∣F1
b�n�Sn�x� −7�x� −φ�x�

r∑
k≥1

∑
�i1�����ip�∈�k

Ti1n · · ·TipnQi1···ip�x�
∣∣∣∣

≤ C

T�r+1�n +

(
r∑
k=3
Tkn

)r−1
+Tm∞n + �n2−ĵη�−m



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where Qi1···ip�x� is a real polynomial (precised in the proof) depending only
on σi1� � � � � σip but not on n or r. For instance, for r ≥ 4, the first term of the

expansion of the expansion is T3n
σ3
3! �1− t2�.

6.2. Proof of Theorem 1 in the white noise model. We have the following
expansion:

f̂T�x0� + B̂η�x0� − f�x0� = S′n −Rn1 +Rn2 −Rn3 +Rn4(15)

where

S′n =
∑
k

�α̂j0k�1� − αj0k�φj0k�x0� +
ĵη∑
j0

∑
k

�β̂jk�1� − βjk�ψjk�x0�

Rn1 =
ĵ1∑
j0

∑
K

[∑
�K�
ψjk�x0�β̂jk�1�

]
1
B̂jK�1�<tj�n��

Rn2 =
j∞∑
ĵ1

∑
K

[∑
�K�
ψjk�x0��β̂jk�1� − βjk�

]
1
B̂jK�1�>tj�n��(16)

Rn3 =
∞∑
ĵη

∑
k

ψjk�x0�βjk�

Rn4 =
j∞∑
ĵ1

∑
K

[∑
�K�
ψjk�x0�βjk

]
1
B̂jK�1�>tj�n��

Because of the regularity of f and using Lemma 1, we get

b�n��Rn3� ≤ C
[(
n2−jηs+δn

)1/2 (
2−�jηs−δn�s

)
1
ĵη>jηs−δn�

+n1/22−j0s1
ĵη≤jηs−δn or ĵη≥jηs�
]

= C
[
un1
ĵη>jηs−δn� + n1/21
ĵη≤jηs−δn�

]
�

Applying Property 3 for δn > �1+ 2N�ρn and Property 2, we deduce

P�b�n��Rn3� > C un� ≤ P�ĵη < jηs − δn� +P�ĵη > jηs�
≤ C n−�γ�1/4�M�∧γ�1/8�M���

(17)

and, as soon as

γ�1/4�M� ∧ γ�1/8�M� > s+ 1/2
1+ 2s/η

� E2b�n��Rn3� ≤ C un�(18)
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Using Lemma 1, observing that at each level j, only a finite number of k’s
are such that ψjk�x0� �= 0, we get for p′ � �1/p� + �1/p′� = 1

b�n��Rn1� ≤ b�n�
ĵ1∑
j0

∑
K

[∑
�K�
�ψjk�x0��p

′
]1/p′

t
1/p
j�n

≤ C
[ (
n2−jηs+δn

)1/2 (
2jst2/pj1�n

)1/2
1
ĵ1<js�1
ĵη≥jηs−δn�

+n1/2
(
2j1t2pj1�n

)1/2
1
ĵ1>js or ĵη<jηs−δn�

]

= C
[
vn1
ĵ1<js� + nt

1/p
j1�n

1
ĵ1>js or ĵη<jηs−δn�
]
�

Applying Property 2 and Property 3, we deduce

P�b�n��Rn1� > C vn� ≤ P�ĵ1 > js� +P�ĵη < jηs − δn�
≤ C n−�γ�1/4�M�∧γ�1/8�M���

(19)

and, as soon as

γ�1/4�M�∧γ�1/8�M�> 2+ s�1−1/η�
�1+2s��1+2s/η� � E2b�n��Rn1� ≤C vn�(20)

Because of definition (3) of ĵ1 and the triangular inequalities, we have

�Rn2� ≤
j∞∑
ĵ1

∑
K

[∑
�K�
�ψjk�x0��β̂jk�1� − βjk��

]
1
B̂jK�1�>tj�n�1
B̂jK�2�≤2−2ptj�n�

×
(
1
BjK≤2−ptj�n� + 1
BjK>2−ptj�n�

)

≤
j∞∑
j0

∑
K

[∑
�K�

∣∣ψjk�x0��β̂jk�1� − βjk�∣∣
]
1
∑�K� �β̂jk�1�−βjk�p≥2−ptj�n�

+
j∞∑
j0

∑
K

[∑
�K�

∣∣ψjk�x0��β̂jk�1� − βjk�∣∣
]
1
∑�K� �β̂jk�2�−βjk�p≥2−2ptj�n��

Applying Proposition 1 for the first part of the sample, we get

E1�Rn2�2 ≤ C
((

2j∞

n
n−

1
2γ� 12 �M�

)

+ 1
n

j∞∑
j0

∑
k

ψ2
jk�x0�1
∑�K� �β̂jk�2�−βjk�p≥2−2ptj�n�

)
�
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Using the Cauchy-Schwarz inequality, Proposition 1 for the second part of the
sample and Lemma 1, we obtain

E�b�n�Rn2�2 ≤
(
E2b�n�4

)1/2 (
E2�E1R

2
n2�2

)1/2
≤ C (

n2−jηs+δn
) (2j∞
n
n−

1
2γ� 12 �M�− 1

2γ� 14 �M�
)
�

It follows that

P1�b�n��Rn2� > Cun� ≤ C−2u−2n E1�b�n�Rn2�2 = U1n(21)

where U1n is a random variable depending on the second part of the sample,
such that

E2U1n ≤ C
(
n2−jηs�2s+1�2δn�2s+1�

)−1 (
n−

1
2γ� 12 �M�− 1

2γ� 14 �M�2j∞2−jηs+δn
)

≤ C un
as soon as

γ�1/2�M� + γ�1/4�M� > 2s�1− 1/η� − 2
1+ 2sη

�

Obviously, we also deduce

P�b�n��Rn2� > Cun� ≤ C un�(22)

In the same way, we have

�Rn4� ≤
j∞∑
j0

∑
K

[∑
�K�

∣∣ψjk�x0�βjk∣∣
]
1
∑�K� �β̂jk�1�−βjk�p≥2−ptj�n�

+
j∞∑
j0

∑
K

[∑
�K�

∣∣ψjk�x0�βjk∣∣
]
1
∑�K� �β̂jk�2�−βjk�p≥2−2ptj�n��

Using the regularity of f and the same arguments as above, we obtain the
same result

P1�b�n��Rn4� > Cun� ≤ C U2n(23)

where

E2U2n ≤ C
(
n2−jηs�2s+1�2δn�2s+1�

)−1 (
n−

1
2γ� 12 �M�− 1

2γ� 14 �M�2−2j0sn2−jηs+δn
)

≤ C un�
with the same constraint on γ�1/2�M� and γ�1/4�M�. We also get

P�b�n��Rn4� > Cun� ≤ un�(24)
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We now use Lemma 4 for the probabilityP (see Appendix B): since the variable
b�n�Sn is standard Gaussian and because (17), (19), (22) and (24), we obtain

P
(
b�n�

[
f̂�x0� − B̂η�x0� − f�x0�

]
< t

)
= P�b�n�S′n − b�n�Rn1 + b�n�Rn2 − b�n�Rn3 + b�n�Rn4 < t�

= 7�t� +O
(
un + vn + n−γ�1/4�M� + n−γ�1/8�M�

+n−1/2γ�1/2�M�−1/2γ�1/4�M�n 2s
1+2s/η

)

which leads to the result becauseM is supposed large enough so we are able to
choose γ���M� as prescribed (see the definition of the function γ in Appendix
C). ✷

6.3. Proof of Theorem 1 in the regression model. We have an analogue of
the expansion (15) with S′n replaced by

Sn =
n−1∑
i=1
ε2i+1s2i+1

where the s2i+1’s are defined in (8). We observe that all the arguments using
the wavelet coefficients hold without modifications. We now apply Proposition
3 for r = 2. Since �1 = �2 = ∅, we find (with m = 1)

∀t� �F1
b�n�Sn�t� −7�t�� ≤ C

(
T3n +T∞n + �n−12ĵη�

)
�

Using the Cauchy-Schwarz inequality and applying Lemma 1 and Lemma 2
for some

γ�1/4�M� ∧ γ�1/8�M� > 4
(

1
1+ 2sη

∨ 1
1+ η/�2s�

)
�

we obtain

E2T
m
3n ≤ �E2b�n�6E2�s��63�1/2 ≤ C

(
2jηs

n

) 1
2

2δn
3
2 �

E2T∞n ≤ �E2b�n�2E2�s��2∞�1/2 ≤ C
(
2jηs

n

) 1
2

2δn
1
2 �

Applying Property 2 gives the bound E2�n−12ĵη � ≤ C n−12jηs and we deduce

∀t� �F1
b�n�Sn�t� −7�t�� ≤ O�Wn�2��

where Wn�2� is a random variable such that

E2�Wn�2�� ≤


(
2jηs

n

) 1
2

23δn/2


 �
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Choosing γ�1/2�M�� γ�1/4�M�� γ�1/8�M� as prescribed (which is possible be-
causeM is large enough), remembering (18), (20), (21) and (23) and applying
Lemma 4 for the probability P1 (see Appendix B), we get the result.

6.4. Proof of Theorem 2 in the white noise model. We have the following
expansion:

f̂L�x0� + B̂η�x0� − f�x0� = S′n −Rn3(25)

where S′n and Rn3 are defined in (16). The proof is exactly similar to the proof
of Theorem 1 in the white noise setting.

6.5. Proof of Theorem 2 in the regression model. We have an analogue of
the expansion (25) for the variable Sn [defined in (13)]. Thanks to Lemma 4
(see Appendix B), we can restrict our attention to the expansion of the distri-
bution function of the random variable b�n�Sn. This will be done using Propo-
sition 3. We need to bound the random quantities appearing in the expansion
of Proposition 3. Let 1 ≤ k ≤ r and let �i1� � � � � ip� be an index. Using the
Cauchy-Schwarz inequality and applying Lemma 1 and Lemma 2, we obtain,
for all q�m ≥ 2

E2T
m
qn ≤

(
E2b�n�2qmE2�s��2qmq

)1/2 ≤ C
(
2jηs

n

)m�q−2�
2

2δn
qm
2 �

Using the Hölder inequality for 1/a1 + · · · + 1/ap = 1, we have

E2�Ti1n · · ·Tipn� ≤ C
p∏
l=1

(
E2T

al
iln

)1/al

≤ C
p∏
l=1

(
2jηs

n

)�il−2�/2 (
2δn il/2

)
�

We deduce

E2�Ti1n · · ·Tipn� ≤ C
(
2jηs

n

) k
2

2δn�k/2+p� if �i1� � � � � ip� ∈ �k�

E2T�r+1�n ≤ C
(
2jηs

n

) r−1
2

2δn
�r−1�
2 �

E2

(
r∑
k=3
Tkn

)r−1
≤ C

(
2jηs

n

) r−1
2

2δn
3�r−1�

2 �

E2T
m
∞n ≤ C

(
2jηs

n

)m
2

2δn
m
2 �

Applying Property 2 gives the bound

E2

(
n2−ĵη

)−m
≤ C

(
2jηs

n

)m
�
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Theorem 2 follows from Proposition 3 with m chosen so that m > r−1/2, and
γ�1/8�M� large enough in such a way that the contribution of n−γ�1/8�M� is
negligible.

APPENDIX A: PROOF OF THE EDGEWORTH EXPANSIONS

In this section, we work conditionally to the second part of the sample.
We follow along the line Feller (Chap XVI). The proofs are standard: first,
we establish the Edgeworth expansion for the density (Proposition 2). The
construction of the terms in the expansion comes out of this proof. Next, us-
ing the previous construction, we establish the expansion for the distribution
(Proposition 3). For that, we need to bound the tails of the density (Lemma 3).

A.1. Preliminary: Study of the characteristic function associated to b�n�Sn.
Let χ be the characteristic function associated to the distribution of the ε’s.
We derive the characteristic function associated to b�n�Sn

∀x� χb�n�Sn�x� =
n−1∏
l=0
χ�b�n�s2l+1x��

Using the identity b�n� = σ−12 �s��−22 , we get

χb�n�Sn�x� = exp−x
2

2

[
exp

(
n−1∑
l=0

log χ�b�n�s2l+1x� +
x2

2

)]

= exp−x
2

2

[
exp

n−1∑
l=0

(
log χ�b�n�s2l+1x� +

σ22 �b�n�s2l+1x�2
2

)]

= exp−x
2

2

[
exp

n−1∑
l=0
�χ̃�b�n�s2l+1x��

]

where

χ̃�x� = log χ�x� + σ
2
2 x

2

2
�

Thanks to a Taylor expansion of χ̃ around the origin, we get

χb�n�Sn�x� = exp−x
2

2
�exp �α�x� + β�x��� �(26)

where

α�x� =
r∑
k=3
Tkn�ix�k

σk
k!
�β�x�� ≤ C Tr+1n�x�r+1�
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A.2. Proof of Proposition 2: Construction of the expansion. Let Hk denote
the kth Hermite polynomial and � the Fourier transform. Let P denote the
following polynomial with real coefficients p1� p2� � � � �

P�x� =
r−2∑
k=1

α�−ix�k
k!

�

Then

g = fb�n�Sn −φ−φ
∑
k

pkHk(27)

satisfies [because � �g� ∈ L1], for all T > 0,

�g�t�� = 1
2π

∣∣∣∫ e−itx� �g��x�dx∣∣∣
≤ C

∫
�x�≤T

∣∣� �g��x�∣∣dx+C ∫
�x�>T

∣∣� �fb�n�Sn��x�∣∣dx
+C

∫
�x�>T

∣∣∣∣∣� �φ−φ
∑
k

pkHk��x�
∣∣∣∣∣dx �

Using equality (26) and the properties of the Hermite polynomials, we obtain

�g�t�� ≤ C
∫
�x�≤T

∣∣exp�α�x� + β�x�� − 1−P�ix�∣∣ exp−x2
2
dx

+C
∫
�x�>T

∣∣� �fb�n�Sn��x�∣∣dx+C
∫
�x�>T

�1+ �P�ix��� exp−x
2

2
dx

≤ A1 +A2 +A3�

For the first term, we use the formula∣∣∣∣∣ea − 1−
r−2∑
1

bk

k!

∣∣∣∣∣ ≤ ec
(
�a− b� + �b�r−1

r− 1!

)
�

valid when �a� < c and �b� < c. We take a �= α�x� + β�x� and b �= α�x�. We
choose

T̃n = min
(
T3n

T4n
� � � � �

T�r−1�n
Trn

�T−13n

)
= min

(
T�r−1�n
Trn

�T−13n

)

in such a way that exp��α�x�� + �β�x��� ≤ exp c0 x2 (for 0 < c0 < 1/2) when
�x� ≤ cT̃n where c is a positive constant to determine. In fact, using again the
identity b�n� = σ−12 �s��−22 , we remark that

Tn = C T−1∞n ≤ T̃n



322 D. PICARD AND K. TRIBOULEY

and then we consider Tn instead of T̃n. We obtain

A1 ≤ C
∫
�x�≤cTn

(�β�x�� + �α�x��r−1) exp ��α�x�� + �β�x��� exp−x2
2
dx

≤ C
∫ 
T�r+1�n�x�r+1 +

∣∣∣∣∣
r∑
k=3
Tknx

k

∣∣∣∣∣
r−1 exp−�1/2− c0�x2 dx

≤ C

T�r+1�n +

(
r∑
k=3
Tkn

)r−1 �
The last term A3 is obviously bounded by any power of �cTn�−1 = C T∞n. Let
us study A2. Because of Condition F�x0�, there exists l0 ∈ �x0−1/n� x0+1/n�
such that

b�n��sl0 � ≥ b�n�m
2ĵη

n
��ψ��∞ = λn�

Let us consider l such that b�n��sl−sl0 � ≤ λn/2. Then l satisfies b�n��sl� > λn/2.
Because we obviously have

�sl − sl0 � ≤
22ĵη

n2
�l− l0� ��ψ��∞ = �l− l0�µn�

we deduce

#
l� b�n��sl� > λn/2� ≥ #
l� b�n��sl − sl0 � ≤ λn/2�
≥ #
l� �l− l0� ≤ C λn/2 µ−1n b�n�−1�
≥ C λnµ−1n b�n�−1

≥ C n2−ĵη =Nn�

The assumption on the characteristic function of the ε’s implies that

lim
x−→∞ �χ�x�� = 0�

Then there exists some q < 1 and some cq > 0 such that

sup
�x�>cq

�χ�x�� < q�

Using Lemma 2, there exists some constant C such that

b�n��s��∞�x� > c⇒ �y� = b�n��sl��x� > �sl��s��−1∞ c ≥
(
m2

2
2ĵη

n

)(
C

2ĵη

n

)−1
c�
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We just have to choose c > cq C�2/m2� to obtain

A2 ≤
∫
b�n��s��∞�x�>c

∏
l∈
l�b�n��sl�>λn/2�

∣∣χ�b�n�s2l+1x�∣∣
× ∏
l∈
l�b�n��sl�≤λn/2�

∣∣χ�b�n�s2l+1x�∣∣dx
≤ CqNn

∫ ∏
l∈
l�b�n��sl�≤λn/2�

∣∣χ�b�n�s2l+1x�∣∣dx
and this tends to zero more rapidly than any power of N−1

n .
To complete the proof and obtain the result given in Proposition 2, it re-

mains to rearrange the coefficients pk of the polynomial

P�x� =∑
k′

(
r∑
k=3
Tknx

kσk
k!

)k′
�

with respect to the order of (14).

A.3. Proof of Proposition 3. We follow along the lines the proof of Proposition
2 and we apply the following Lemma [see Feller (1966), volume 2, page 512]
when G is the standard Gaussian and F is the distribution associated with
the function g defined in (27).

Lemma 3. Let F be a probability distribution with vanishing expectation
and characteristic function ξ. Suppose thatF−G vanishes at +−∞ and thatG
has a derivative g such that �g� ≤m. Finally, suppose that g has a continuously
differentiable Fourier transform γ such that γ�0� = 1 and γ′�0� = 0. Then, for
all x and for all T > 0, we get∣∣F�t� −G�t�∣∣ ≤ 1

π

∫ T
−T

∣∣∣∣ξ�x� − γ�x�x

∣∣∣∣dx+ 24m
πT
�

Choosing T ≥ cTn and remembering that Tn = T−1∞n, we obtain∣∣F�x� −G�x�∣∣ ≤ C(∫
�x�≤cTn

∣∣∣∣� �g��x� − γ�x�x

∣∣∣∣dx
+
∫
cTn<�x�≤T

∣∣∣∣� �g��x� − γ�x�x

∣∣∣∣dx+T−1
)
�

The study of the first term (respectively the second) is similar to the study of
A1 (respectively, A2 and A3). The choice T = �n2−ĵη�m leads to the result. ✷

APPENDIX B: TECHNICAL RESULTS AND PROOFS

B.1. Proofs of Property 2 and Property 3.

B.1.1. Case η = 1. On one hand, because of the definition (3) of ĵ1, we have


ĵ1 > js� ⊂ 
∃j∗ > js� ∃K∗� B̂j∗K∗�2� > 2−2ptj∗�n��(28)
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On the other hand, using Property 1, we have

f ∈ Ls�M� ⇒ ∀K�BjK < 2−4ptj�n as soon as j > js�(29)

By the triangular inequality, we get

∑
�K�
�β̂jk�2��p ≤ 2�p−1�

(∑
�K�
�β̂jk�2� − βjk�p +

∑
�K�
�βjk�p

)
�(30)

Then combining (28), (29) and (30), we obtain

P�ĵ1 > js� ≤ P
( ∑
k∈K∗

�β̂j∗k�2� − βj∗k�p > 2−3ptj∗�n

)
�

Using Proposition 1 (large deviation inequality), we obtain Property 2 for η =
1. We establish Property 3 usingHs�M�x0� instead of the assumption of Besov
regularity. Because of definition (3) of ĵ1, we have


ĵ1 < js − ρn� ⊂ 
∀j1 ≥ j ≥ js − ρn�∀K� B̂jK�2� ≤ 2−2ptj�n��(31)

Now,

Hs�M�x0� ⇒ ∃j∗� j1 ≥ j∗ ≥ js − ρn� ∃K∗�Bj∗K∗ > 2−ptj∗�n�(32)

By the triangular inequality, we get∑
�K�
�β̂jk�2� − βjk�p ≥ 2�1−p�BjK − B̂j∗K∗�2��(33)

Combining (31), (32) and (33), we obtain

P�ĵ1 < js − ρn� ≤ P
(∑
�K∗�

�β̂j∗k∗ − βj∗k∗�p ≥ 2−2ptj∗�n

)
�

Using Proposition 1 (large deviation inequality), we establish Property 3 for
η = 1.

B.1.2. Case η > 1. Considering now the formulas

ŝ = 1
2

(
log2 n

ĵ1
− 1

)
and ĵη =

1+ 2ŝ
1+ 2ŝ/η

ĵ1�

we easily get that

ĵ1 ≤ js ⇒ ĵη ≤ jηs
and then

∀η ≥ 1� P�ĵη > jηs� ≤ P�ĵ1 > js�
which ends the proof of Property 2. Moreover, let us assume that ĵ1 > js− ρn
and put

rn =
ρn

log2 n
�
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Using the bounds 0 < ŝ� s ≤N, it follows that

ĵη =
1+ 2ŝ

1+ 2ŝ/η
ĵ1 ≥

1+ 2s
1+ 2s/η

js +
(

1+ 2ŝ
1+ 2ŝ/η

− 1+ 2s
1+ 2s/η

)
js − ρn

(
1+ 2ŝ

1+ 2ŝ/η

)

≥ jηs +
ρn
rn

(
2�ŝ− s��1− �1/η�

�1+ 2s��1+ 2ŝ/η��1+ 2s/η�
)
− ρn

(
1+ 2ŝ

1+ 2ŝ/η

)

≥ −ρn�1+ 2N� if ŝ ≥ s
Then, applying Property 1, we obtain for τn = �1+ 2N�ρn,

P�ĵ1 > js − ρn� ≤ P�ĵη > jηs − τn and ĵ1 < js� +P�ĵ1 ≥ js�
≤ P�ĵη > jηs − τn� +P�ĵ1 ≥ js�
≤ P�ĵη > jηs − τn� +Cn−γ�1/8�M�

We deduce

P�ĵη ≤ jηs − τn� ≤ P�ĵ1 ≤ js − ρn� +Cn−γ�1/8�M��
which completes the proof of Property 3 for any η ≥ 1. ✷

B.2. Probability technical lemma.

Lemma 4. Let Xn be a sequence of random variables admitting the Edge-
worth expansion

P�Xn < t� = 7�t� + pn�t�φ�t� +O�un�
with some polynomials pn of bounded order with bounded coefficients. We as-
sume that the sequence Yn of random variables satisfies

P��Yn� > vn� ≤ wn�
Then

P�Xn +Yn < t� = P�Xn < t� +O�un + vn +wn��

The proof follows immediately from the inequalities

P�Xn +Yn < t� ≤ P�Xn < t+ vn� +P��Yn� > vn�
≥ P�Xn < t+ vn� −P��Yn� > vn�

and the Lipschitz equicontinuity of the functions 7�t� + pn�t�φ�t�.
B.3. Approximation of a Riemann integral with a sum.

Lemma 5. Let �gl�l=1�����q be q compactly supported (support included in
�−N�N�) functions in Bsl�∞�∞for sl > 0. Let us denote

σl = min�sl�1�� G�x� =
q∏
l=1
gljlkl�x�� ��G�� =

q∏
l=1
��gl��∞�
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For j1 ≥ sup�jl� l = 2� � � � � q�, we have

I = �G�x0��
∣∣∣∣∣
∫ 1

0
G�x�dx− 1

n

n−1∑
i=0
G�2i+ 1

2n
�
∣∣∣∣∣

≤ 2N��G��2
q∏
l=2

2jl
q∑
l=1

(
2jl

n

)σl ��gl��σl�∞�∞
��gl��∞

�

Proof. Let l = 1� � � � � q. To simplify the notation, we put

ωl�u� =
∣∣∣∣gljlkl�u� − gljlkl

(
2i+ 1
2n

)∣∣∣∣
(ignoring the index i). Let us first remark that, if g ∈ L2, then

n∑
i=0

∫ 2i+3
2n

2i+1
2n

�g�u��ωl�u�du ≤ 2jl/2
(
2jl

n

)σl
��gl��σl∞∞

∫ 1

0
�g��(34)

We decompose I into q terms

I ≤ �G�x0��
n−1∑
i=0

∫ 2i+3
2n

2i+1
2n

∣∣∣∣G
(
2i+ 1
2n

)
−G�u�

∣∣∣∣du
≤ �G�x0��

n−1∑
i=0

∫ 2i+3
2n

2i+1
2n

q∑
p=1

∣∣∣∣∣
p−1∏
l=1
gljlkl�u� ωp�u�

q∏
l=p+1

gljlkl

(
2i+ 1
2n

)∣∣∣∣∣du
=

q∑
l=1
Iq�

The terms I2� � � � � Iq can be bounded using the same argument. For example,
we study the last one. Using the inequality (34) and noticing that∫ 1
0 �g1j1k1�u��du ≤ 2−j1/2!g1!∞� we get

Iq ≤ 2j2+···+jq ��g1��2∞� · · · ��gq��∞
(
2j1

n

)σ1
��g1��σ1∞∞�

The first term requires a slightly different treatment:

I1 ≤ 2j2+···+jq ��g1��2∞ · · · ��gq−1��2∞
(
2jq

n

)σq

×��gq��σq∞∞2jq ��gq��∞n−1 #
{
i/g

q
jqkq

�x0�gqjqkq
(
2i+ 1
n

)
�= 0

}

Observing that

#
{
i/g

q
jqkq

�x0�gqjqkq
(
2i+ 1
n

)
�= 0

}
≤ 2Nn2−jq�

we obtain the result. ✷
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B.4. Proofs of Lemma 1 and Lemma 2.

B.4.1. White noise model. Because of Condition F�x0�, we get

b�n�q =

 1
n

ĵη∑
j0

∑
k

ψ2
jk�x0� +

1
n

∑
k

φ2
j0k
�x0�



−q/2 (

1
jηs−δn≤ĵη� + 1
ĵη<jηs−δn�
)

≤ C
(
2jηs−δn

n

)−q/2
1
jηs−δn≤ĵη� +

(
2j0

n

)−q/2
1
ĵη<jηs−δn��

Moreover, assuming ConditionHs�M�x0�, we apply Property 3 for δn > �2N+
1�ρn and for some

γ�1/4�M� ∧ γ�1/8�M� ≥ q/2
1+ 2s/η

�

We obtain

E2b�n�q ≤ C
(
2jηs−δn

n

)−q/2

which completes the proof of Lemma 1. ✷

B.4.2. Regression model. Let q ≥ 2. For sake of simplicity, we denote
ψj0−1�k = φj0k. We use the approximation of a sum by a Riemann integral

n∑
i=1
�si�q =

n∑
i=1

∣∣∣∣∣∣
1
n

ĵη∑
j=j0−1

∑
k

ψjk�x0�ψjk
(
i

n

)∣∣∣∣∣∣
q

≤ 1
nq−1

ĵη∑
l1�����lq=j0−1

∑
k1�����kq

q∏
p=1

�ψlpkp�x0��
(
1
n

n∑
i=1

q∏
p=1

∣∣∣∣ψlpkp
(
i

n

)∣∣∣∣
)

≤ 1
nq−1

ĵη∑
l1�����lq=j0−1

∑
k1�����kq

q∏
p=1

�ψlpkp�x0��
(∫ 1

0

q∏
p=1

�ψlpkp�u��du
)
+Rn

where

Rn =
1
nq−1

ĵη∑
l1�����lq=j0

∑
k1�����kq

Rl1�����lq

(
1
ĵη<jηs� + 1
ĵη≥jηs�

)

for

∑
k1�����kq

Rl1�����lq =
∑

k1�����kq

q∏
p=1

�ψlpkp�x0��

×
(
1
n

n∑
i=1

q∏
p=1

∣∣∣∣∣ψlpkp
(
i

n

)∣∣∣∣∣−
∫ 1

0

q∏
p=1

�ψlpkp�u��du
)
�
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Using Lemma 5 taking l1� � � � � lq arbitrary and g1 = · · · = gq = ψ, we obtain

∑
k1�����kq

�Rl1�����lq � ≤ C
2l1+l2+···+lq

n
�

Then we get

�Rn� ≤ C
[(

2jηs

n

)q
1
ĵη<jηs� +

(
2j∞

n

)q
1
ĵη≥jηs�

]

It comes that, for all m ≥ 2,

(
n∑
i=1
�si�q

)m
=
(

1
nq−1

ĵη∑
l1�����lq=j0−1

∑
k1�����kq

q∏
p=1

�ψlpkp�x0��
(∫ 1

0

q∏
p=1

�ψlpkp�u��du
)

×(1
ĵη<jηs� + 1
ĵη≥jηs�
)+Rn

)m

≤ C
[(2jηs
n

)q−1
1
ĵη<jηs� +

(2j∞
n

)q−1
1
ĵη≥jηs� +Rn

]m
�

Moreover, applying Property 2 for some

γ�1/8�M� ≥ m�q− 1�
1+ η/�2s� �

we obtain

E2�s��mqq ≤ C
(
2jηs

n

)m�q−1�

which ends the proof of Lemma 2. The proof is similar when q = ∞. We
immediately get, for all m ≥ 2,

�s��m∞ = sup
l

∣∣∣∣∣∣
1
n

ĵη∑
j=j0

∑
k

ψjk�x0�ψjk�
2l+ 1
2n

�
∣∣∣∣∣∣
m

≤ C
[(

2jηs

n

)m
1
ĵη<jηs� +

(
2j∞

n

)m
1
ĵη≥jηs�

]

which leads to Lemma 2 for some

γ�1/8�M� ≥ m

1+ η/�2s� �
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Using Condition F�x0�, Condition Hs�M�x0� and taking some δn > �2N +
1�ρn, it comes

(
n∑
i=1
�si�2

)−q/2
=

 1
n

ĵη∑
l1�l2=j0−1

∑
k1�k2

2∏
p=1
ψlpkp�x0�

(∫ 1

0

2∏
p=1
ψlpkp�u�du

)

×
(
1
ĵη>jηs−δn� + 1
ĵη≤jηs−δn�

)
+Rn

)−q/2

≤ C
[(

2jηs−δn

n

)
+
(
2j0

n

)
1
ĵη≤jηs−δn� +Rn

]−q/2

≤ C


(
2jηs−δn

n

)−q/2
1
ĵη≤jηs�1
ĵη>jηs−δn�

+
((

2jηs−δn

n

)
−
(
2j∞

n

)2)−q/2
1
ĵη>jηs�1
ĵη>jηs−δn�

+

(2j0
n

)
−
(
2jηs

n

)2


−q/2

1
ĵη≤jηs�1
ĵη≤jηs−δn�

+
((

2j0

n

)
−
(
2j∞

n

)2)−q/2
1
ĵη>jηs�1
ĵη≤jηs−δn�




Hence, if ĵη ≤ jηs and ĵη > jηs − δn, we get

(
n∑
i=1
�si�2

)−q/2
≤ C

(
2jηs−δn

n

)−q/2
�

Moreover, applying Property 3 for some

γ�1/4�M� ∧ γ�1/8�M� ≥ q/2
(

1
1+ η/�2s� ∨

1
1+ 2s/η

)
�

we obtain

E2

(
n∑
i=1
�si�2

)−q/2
≤ C

(
2jηs−δn

n

)−q/2
�

Because of definition (7) of b�n�, it ends the proof of Lemma 1 in the case of
the regression model.
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APPENDIX C: PROOF OF THE EXPONENTIAL INEQUALITIES

Let γ�C0�M� be a positive function satisfying:

(i) in the case of the local thresholding, white noise model:

γ�C0�M� ≤ �MC0�2/�2σ22 ��
(ii) in the case of the local thresholding, regression model:

γ�C0�M� ≤ inf �C2
0M

2/�8Nσ22 ��ψ��2∞��C0M/�4��ψ��∞µ���
(iii) in the case of blocks thresholding, if log�n�p/2l−1j = O�1�, white noise

model:

γ�C0�M� ≤ �C0M− σp�2/�2σ22 ��
(iv) in the case of block thresholding, regression model with Gaussian error:

γ�C0�M� ≤ �MC0 − σp��ψ��∞�2/�2σ22 ��ψ��2∞��
(v) in the case of block thresholding, regression model with bounded error:

γ�C0�M� ≤ inf
(
T�MC0 − R̃�p��2/�σ22 ��ψ��2∞��T�MC0 − R̃�p��/��ε�∞��ψ��∞�

)
�

C.1. Proof of Proposition 1 in the case of the local thresholding.

C.1.1. White noise model. We just have to use the following inequality:

∀ λ > 0� P��η� ≥ λ� ≤ 2 exp−λ
2

2
�

where η is a standard Gaussian variable. Then Proposition 1 is true for 0 <
γ�C0�M� ≤ �MC0�2/2.

C.1.2. Regression model. Let us remark that

β̂jk − βjk =
(
β̂jk −Eβ̂jk

)
−
(
Eβ̂jk − βjk

)

=
(
1
n

n∑
i=1
εiψjk�

i

n
�
)
+
(
1
n

n∑
i=1
f� i
n
�ψjk�

i

n
� −

∫ 1

0
f�u�ψjk�u�du

)
�

First, we bound the bias term

�Eβ̂jk − βjk� ≤
n∑
i=1

∫ i
n

i−1
n

�ψjk�u���f�u� − f
(
i

n

)
�du

+
n∑
i=1

∫ i
n

i−1
n

�f
(
i

n

)
��ψjk�u� − ψjk

(
i

n

)
�du

≤ n−�s∧1���f��s∧1�∞�∞2−j/2��ψ��∞
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+��f��∞2j/2��ψ′��∞
2j

n
n−1#

{
i = 1� � � � � n�ψjk

(
i

n

)
�= 0

}

≤ C
(
n−�s∧1�2−j0/2 + 2j1/2

n

)
≤ C

√
log n
n

(
n

N
1+2N−�s∧1� + �log n�−1

)
because the number of terms in the sum is

m = #
{
i = 1� � � � � n� ψjk

(
i

n

)
�= 0

}
≤ 2N2−jn�

Hence, this term is negligible as soon as s ≥ N/�1 + 2N�. For the stochastic
term, we apply the following inequality to

Yi = ψjk
( i
n

)
εi�

Bernstein’s inequality [Petrov (1995), page 57]. Let Y1� � � � �Ym be m
independent random variables such that EYi = 0� EY2

i ≤ µ2i < ∞ �i −
1� � � �m�� B =∑m

1 µ
2
i . Suppose there exists a positive constant C such that

E�Yi�q ≤
q!
2
µ2iC

p−2� i = 1� � � � �m

for all integers q ≥ 2. Then

∀λ ≥ B
C
� P

(
�
m∑
i=1
Yi� ≥ λ

)
≤ 2 exp

(
− λ
4C

)
�

∀0 ≤ λ ≤ B
C
� P

(
�
m∑
i=1
Yi� ≥ λ

)
≤ 2 exp

(
− λ

2

4B

)
�

Here, the quantities µi, m and B are easily evaluable

µ2i ≤ ��ψ��2∞ σ22 2j� m ≤ 2Nn2−j� B ≤ 2N��ψ��2∞ σ22 n �
Because of the assumption on the q−moments of the ε’s, we take

C = ��ψ��∞µ 2j/2�

Then Proposition 1 is true for

0 < γ�C0�M� ≤ inf

(
C2

0M
2

8N��ψ��2∞ σ22
�
C0M

4��ψ��∞µ

)
�

C.2. Proof of Proposition 1 in the other cases.

C.2.1. White noise model. The duality equality

sup

ajk�∑�K� �ajk�p′ ≤1�

∑
�K�
ajkεjk =

(∑
�K�
�εjk�p

)1/p

�
1
p′
+ 1
p
= 1(35)
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allows us to apply the following proposition [cf. C’irelson, Ibragimov and Su-
dakov (1976)].

Cires’lon-Ibragimov-Sudakov inequality. Let �ηt� t ∈ T� be a Gaussian
process. Let H and V be defined by

H = E sup
t∈T
ηt� V = sup

t∈T
Var�ηt��

Then

∀λ > 0� P

(
sup
t∈T
ηt ≥H+ λ

)
≤ exp− λ

2

2V
�

First we have to evaluate H. By equality (35) and Jensen’s inequality, we
have

H = E
(∑
�K�
�εjk�p

)1/p

≤
(∑
�K�
E�εjk�p

)1/p

= σp l1/pj �

Next, we calculate

V = sup

ajk�∑�K� �ajk�p′ ≤1�

Var

(∑
�K�
ajkεjk

)
= sup

ajk�∑�K� �ajk�p′ ≤1�

σ22
∑
�K�
a2jk ≤ σ22 �

Under the constraint C0M − σp > 0, we take λ = �C0M − σp�l1/pj . Hence,
Proposition 1 is true for

0 < γ�C0�M� ≤
�C0M− σp�2

2σ22
if log�n�p/2l−1j0 = O�1��

0 < γ�C0�M� if log�n�p/2l−1j0 = o�1��

C.2.2. Regression model. In the same way as in the previous section (case of
the local thresholding in the regression model), we decompose β̂jk − βjk into
a bias term and a stochastic term. We bound the bias term as before as soon
s > N/�1+ 2N�. For the stochastic term, we consider two different cases: the
case where the ε′s are Gaussian and the case where they are bounded.

(i) The Gaussian case is close to the previous section: we only need to replace
εjk by n−1/2

∑n
i=1ψjk�i/n�εi. This leads to bound H by ��ψ��∞l1/pj and V by

σ22 ��ψ��2∞. Hence, under the constraint C0M − σp��ψ��∞ > 0, Proposition 1 is
true for

0 < γ�C0�M� ≤
�C0M− σp��ψ��∞�2

2σ22 ��ψ��2∞
if log�n�p/2l−1j0 = O�1��

0 < γ�C0�M� if log�n�p/2l−1j0 = o�1��
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(ii) If the ε’s are bounded, we use the duality equality with 1/p+ 1/p′ = 1

sup

ajk�

∑
�K� �ajk�p′≤1�

n−1
∑
�K�
ajk

n∑
i=1
ψjk�

i

n
�εi =

(∑
�K�
�β̂jk −Eβ̂jk�p

)1/p

(36)

and apply the following inequality to

Yi = ψjk
(
i

n

)
εi�

Talagrand’s theorem [cf. Talagrand (1994)]. Let Y1� � � � �Yn be n inde-
pendent identically distributed random variables. Let � be a family of uni-
formly bounded (by some constant B) functions. Let H and V be defined by

H ≥ E
(
sup
h∈�

�
n∑
i=1
h�Yi��

)
� V = sup

h∈�
Var�h�Y1���

Then there exists a universal constant T such that

∀λ > 0� P

(
sup
h∈�

n∑
i=1
�h�Yi� −Eh�Yi�

)
≥ λ+H� ≤ C exp

(
−T� λ

2

nV
∧ λ
B
�
)
�

Under the assumption that the ε’s are bounded by �ε�∞, we get

B ≤ 2j/2�ε�∞��ψ��∞�
As previously, the evaluation of V is bounded by

V ≤ ��ψ��2∞σ22 �
In view to evaluate H, we use equality (36) and Jensen’s inequality

H = E
(∑
�K�
�β̂jk −Eβ̂jk�p

)1/p

≤
(∑
�K�
E�β̂jk −Eβ̂jk�p

)1/p

�

Let us now apply the following inequality.

Rosenthal’s inequality [cf. Petrov (1995), page 59]. Let Y1� � � � �Ym be
m independent centered random variables having moments up to p ≥ 2. Then
there exists some constant R�p� such that

E

∣∣∣∣∣
m∑
1

Yi

∣∣∣∣∣
p

≤ R�p�p

 m∑

1

E�Yi�p +
(
m∑
1

EY2
i

)p/2 �
We obtain for all indices j�n and K,

Hp ≤ �#K� E�
m∑
1

Yi�p ≤ R̃p�p� lj np/2�
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where

R̃�p� = 21/p�2N�1/2��ψ��∞�ε�∞R�p��

Applying now Talagrand’s theorem, under the constraint C0M−R̃�p� > 0, we
take λ = �C0M− R̃�p��l1/pj n1/2. Hence, Proposition 1 is true for

0 < γ�C0�M� ≤ inf

(
T
�C0M− R̃�p��2
σ22 ��ψ��2∞

� T
C0M− R̃�p�
�ε�∞��ψ��∞

)
�
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