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MINIMAX BIAS-ROBUST ESTIMATION OF THE DISPERSION
MATRIX OF A MULTIVARIATE DISTRIBUTION

By Jorge G. Adrover

Universidad Nacional de Córdoba

Maronna defines affine equivariant M-estimators for multivariate lo-
cation and scatter. They are particularly suited for estimating the pseudo-
covariance or scatter matrix of an elliptical population. By defining the bias
of a dispersion matrix properly, we consider the maximum bias of an M-
estimator over an ε-neighborhood of the underlying elliptical distribution
(location known). We find that Tyler’s estimator minimizes the maximum
bias.

1. Introduction. The classical approach of multivariate analysis is based
on the multivariate normal distribution �m�µ�V� with location vector µ and
dispersion matrix V. The maximum likelihood estimators for these param-
eters are the sampling mean and covariance matrix, respectively. However,
it is well known that slight departures from this model or the presence of a
small fraction of outliers have a large influence on the estimators. The maxi-
mum asymptotic bias over an ε-neighborhood of contamination from the target
model gives a measure of the global robustness of an estimator. The smallest
level of contamination for which the maximum asymptotic bias becomes in-
finite is called the gross-error breakdown point of the estimator. The concept
of breakdown point only guarantees that the bias remains bounded over an
ε-contamination neighborhood of distributions. Formalizing the concept out-
lined above, maximum likelihood estimators have a zero breakdown point.
Several robust methods to estimate location and scatter have been proposed.
Maronna (1976) defines affine equivariant M-estimators of multivariate loca-
tion and scatter, showing existence, uniqueness, consistency and asymptotic
normality. Huber (1977, 1981) generalizes Maronna’s M-estimators. Unfortu-
nately, M-estimators may be deficient for high-dimensional problems, since
such estimators have a gross-error breakdown point smaller than 1/�m + 1�,
where m is the dimension of the multivariate vector. Tyler (1987) considers a
limiting case of M-estimators for multivariate scatter whose asymptotic dis-
tribution is distribution free with respect to the class of continuous elliptically
distributed populations. In addition, it is the most robust estimator in the
sense of minimizing the maximum asymptotic variance.

Maronna and Yohai (1990) define the asymptotic bias for dispersion ma-
trices. They establish that the choice of Tyler’s estimator within the class of
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M-estimators was suggested by the results given in Martin, Yohai and Za-
mar (1989). More precisely, a weighted L1 estimator obtained from an im-
plicit equation using a sign function minimizes the maximum asymptotic bias
for a given ε among the M-estimators for regression. They conjecture that a
similar result should hold for the robust covariance problem. In this paper
we prove that Tyler’s M-functional is bias-minimax among M-functionals. In
other words, we show that Tyler’s M-functional minimizes the maximum bias
within the class of M-functionals of the dispersion matrix of a multivariate
distribution. The main points of the paper are the following.

1. Let V�G� be a matrix-valued M-functional of scatter of a distribution G
on �m. Let F0 be spherically symmetric around zero. Define the maximum
bias as

b�V�F0� ε�

= sup
{
λ1�V�G��
λm�V�G�� �G = �1 − ε�F0 + εH�H any distribution on �m

}

for 0 < ε < 1, where λ1, λm denote maximal and minimal eigenvalues,
respectively. Then, under some conditions on V and F0, the maximum bias
occurs under point mass contaminations. That is,

b�V�F0� ε� = sup
{
λ1�V�G��
λm�V�G�� �G = �1 − ε�F0 + εδx�x ∈ �m

}
�

where δx is Dirac measure at some point x ∈ �m.
2. Let V and VT denote Maronna’s and Tyler’s M-functionals, respectively.

Then, under certain conditions on V and F0,

b�VT�F0� ε� ≤ b�V�F0� ε��
The heuristics behind formal statement (1) are the following: restricting to

point mass contamination seems to be the most suitable way to force the M-
estimators to yield the largest degree of asymmetry while the solution under a
spherically symmetric distribution results in a multiple of the identity matrix.
The bias as defined above detects such an asymmetry through the condition
number of the dispersion matrix, measuring its departure from the identity.
The actual importance of discrete measures in the bias is formally established
through Lemma 3.3, which was proved by a referee.

The wide range of applications for robust affine equivariant estimators of
multivariate scatter matrix is not confined to classical areas of multivariate
analysis such as discriminant analysis, principals components, canonical cor-
relations, multivariate linear model and outlier detection. Robust dispersion
matrix estimators are also useful to compute some robust regression estima-
tors such as GM or to compute projection-based estimators which require the
covariance matrix of random regressors in order to be optimal bias-robust [see
Martin, Yohai and Zamar (1989) and Maronna and Yohai (1993)].

In Section 2 we introduce the notation and define the basic concepts. In Sec-
tion 3 we obtain the maximum bias of M-estimators over the ε-contamination
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neighborhood. Section 4 deals with M-functionals under point mass contami-
nation. In Section 5 we show that Tyler’s functional estimator is bias-minimax.
All the proofs are deferred to the Appendix.

2. Definitions and notation. The Euclidean norm of a vector z ∈ �m will
be denoted by 	z	, I will represent the identity matrix in �m×m and C′ the
transpose of C. If a ∈ �m, A = diag�a′� denotes the diagonal matrix such that
Aii = ai. The relation “A − B is positive definite” will be written as “A > B.”

The indicator function of the set A will be written as 1�A
. Given a prob-
ability measure P ∈ �m� we define the support of P by supp�P� = �z ∈ �m

such that for all neighborhoods V0�z� of z, P�V0�z�� > 0
. Then δK is the point
mass contamination at �K1/2�0� � � � �0� with K > 0.

Let z be an m-dimensional vector with ellipsoidal distribution, that is, z =
Ax + t0 where A is a nonsingular m × m matrix, t0 is an m-dimensional
vector and x is spherically symmetric distributed with density f0� �+ → �+.
If V0 = AA′� the density of z is

f�z� t0�V0� f0� = �det�V0��−1/2f0��z − t0�′V−1
0 �z − t0���

Let � be the set of positive definite symmetric m × m matrices. Given
V ∈ � , we denote by λ1�V� ≥ · · · ≥ λm�V� the eigenvalues of V and by γ�V�
its condition number,

γ�V� = λ1�V�
λm�V� �

If F0 denotes the distribution under the elliptical model, we define the
contaminated ε-neighborhood as

�ε =
{
G = �1−ε�F0+εH� where H denotes an arbitrary distribution in �m

}
�

for 0 < ε < 1. Let z be distributed as G = �1 − ε�F0 + εH. For the sake of
simplicity we will often write �1 − ε�EF0

h + εEHh instead of EGh�z� = �1 −
ε�EF0

h�z�+εEHh�z�, provided the expectation exists. Let V be a multivariate
dispersion functional with the following properties: its domain contains �ε for
every elliptical F0, and V�G� is a symmetric definite positive matrix. V will be
assumed to be an affine equivariant dispersion functional; that is, let z have
a distribution function G, take any nonsingular m ×m matrix C and t any
vector in �m. If H is the distribution function of Cz+t, then V�H� = CV�G�C′.
The gross-error asymptotical breakdown point of the functional V measures
the amount of contamination needed to carry V over all bounds or making it
“almost singular.” More precisely, it is defined as

ε∗�V�F0� = sup

{
ε > 0� there exists a compact set K�ε� ⊂ �+ such that

λj�V�G�� ∈K�ε� for all 1 ≤ j ≤m and G ∈ �ε

}
�

Asymptotic bias can be measured in the following affine invariant way. Let us
assume that V�F0� = BB′. Define the asymptotic bias of the dispersion matrix
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V in G ∈ �ε as γ�B−1V�G��B′�−1� and the maximum asymptotic bias of the
dispersion matrix V in the neighborhood �ε as

b�V�F0� ε� = sup
G∈�ε

γ
(
B−1V�G��B′�−1)�

Under such a definition, the bias is invariant under affine transformation
of the data and does not depend on the decomposition V�F0� = BB′ [see
Muirhead (1982), page 589]. Only the shape of V matters. This measure of
bias reflects the degree of spherical asymmetry caused by contamination for
a spherically symmetric target model.

We will study the effect of contamination for M-functionals. Maronna (1976)
defines M-functionals of multivariate location and scatter as the solutions of
the following equations:

EPw
((�z − t�V−1�z − t�)1/2)�z − t� = 0�

EPu
(�z − t�′V−1�z − t�)�z − t��z − t�′ = V�

where �t�V� ∈ �m × � and the functions w�s� and u�s� are defined for s ≥ 0.
Existence and uniqueness of solutions can be proved under regularity condi-
tions on w, u and P. Tyler (1987) considers the estimation of parameters of
the form H�V�, where H is such that H�V� =H�cV� for any V > 0 and c > 0.
He treats a limiting form of a Huber-type M-estimator of scatter defined by
u�s� = α if s ≤ r2 and u�s� = αr2/s otherwise, for a chosen r and a scaling
factor α. Then r and α can be taken so as to get Fisher-consistency under
normality. More precisely, the estimator is chosen by solving

m

P�z �= t�EP
�z − t��z − t�′

�z − t�′V−1�z − t�1�z �= t
 = V�(2.1)

or equivalently,

m

P�z �= t�EP
V−1/2�z − t��z − t�′V−1/2

�z − t�′V−1�z − t� 1�z �= t
 = I�(2.2)

where t is either known or assumed to be a robust affine equivariant loca-
tion estimator satisfying several conditions given in Tyler (1987) that assure
consistency and asymptotic normality. He proves existence of solutions and
uniqueness up to a positive factor in the case of the empirical distribution
function being based on a random sample. Consequently, additional condi-
tions such as trace�V� = m or det�V� = 1 are required to assure uniqueness.
In Adrover (1993) it is shown that these results also hold within the contam-
inated ε-neighborhood, getting existence for ε < 1/�m + 1� and uniqueness
unless there is a positive factor. As mentioned, Tyler’s estimator is optimum
in the following sense: let us take the parameter H�V�, where H is a contin-
uously differentiable real function. Let � be the set of elliptical continuous
distribution functions F. If VT�n�F� denotes the Tyler’s estimator obtained
from sampling a distribution F ∈ � then

max
F∈�

VarH�VT�n�F�� ≤ max
F∈�

VarH�Vn�F���
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where Var�·� denotes the asymptotic variance and H�Vn�F�� is any consistent,
asymptotically normal estimator of H�V�.

Throughout, t will be assumed to be known and without loss of generality
it will be taken equal to 0. Since we consider only the case of fixed location,
the M-functional of scatter to consider will be the solution to

EPψ�z′V−1z� zz′

z′V−1z
1�z �= 0
 = V(2.3)

for a function ψ ≥ 0, or equivalently,

S�P�V� = EPψ�z′V−1z�V−1/2zz′V−1/2

z′V−1z
1�z �= 0
 = I�(2.4)

On the other hand, (2.2) becomes

ST�P�V� = m

P�z �= 0�EP
V−1/2zz′V−1/2

z′V−1z
1�z �= 0
 = I�(2.5)

We will impose the following conditions on P, u and ψ.

(A1) u�s� is a nonnegative, nonincreasing and continuous function for s > 0.
(A2) ψ�s� = su�s� is nonnegative, continuous and bounded for s ≥ 0; let

ψ�∞� = sups≥0 ψ�s�.
(A3) ψ�s� is nondecreasing and strictly increasing on the interval �0� x0�ψ��,

where x0�ψ� = sup�x� ψ�x� < ψ�∞�
.
(A4) There exists s0 such that ψ�s2

0� > m.
(A5) lims→0+ ψ�s� = ψ�0� < m.
(A6) For all H hyperplane in �m, P�H� < 1−m/ψ�∞�� For all H hyperplane

in �m, P�H� ≤ 1/m.

3. Maximum bias of M-functionals of multivariate scatter. In order
to analyze the bias of M-functionals of multivariate scatter, it is necessary
to determine its breakdown point. This is done by the following lemma [see
Adrover (1993)].

Lemma 3.1. (a) Suppose (A1)–(A6) hold. Then the breakdown point of an
M-functional of multivariate scatter V, defined by the solution to (2.3), is

ε∗�V�F0� = min
{

1
ψ�∞� �

m− ψ�0�
ψ�∞� − ψ�0� �1 − m

ψ�∞�
}
�

(b) Let V be as in (a) and VT the solution of (2.1). Then ε∗�V�F0� ≤
1/�m+ 1� ≤ ε∗�VT�F0� ≤ 1/m.

The quantity 1−m/ψ�∞� is related to implosion due to inlier contamination
making the smallest eigenvalue 0. Here 1/ψ�∞� and �m−ψ�0��/�ψ�∞�−ψ�0��
are related to explosion because certain type outlier contamination makes the
largest eigenvalue go to infinity. In order to define bias we need to compare
the M-functional under the target model and the M-functional under a con-
taminated distribution. Then we will require, without loss of generality, the
following condition.
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(A7) F0 is spherically symmetric if F0 denotes the distribution under the
target model.

Remark. The condition ε < 1 −m/ψ�∞� is also necessary to guarantee
the existence of M-functionals over the whole ε-neighborhood. It follows after
taking P0 = �1−ε�F0 +εδ0. If there exists V ∈ � such that S�P0�V� = I, then
trace�S�P0�V�� = �1−ε�EF0

ψ�z′V−1z� =m and consequently ε < 1−m/ψ�∞�.
As was mentioned, Tyler’s functional is well defined for any distribution in the
contaminated neighborhood, provided ε < 1/�m+ 1�.

The following lemma will show that the solution of (2.3) under the target
model is a multiple of the identity matrix (i.e., Fisher consistent) provided
(A7) holds.

Lemma 3.2. Let us suppose that (A2)–(A5) hold and F0 satisfies (A7). Let
a = �a1� � � � � am�′, ai > 0 for all 1 ≤ i ≤m. Then:

(a) If V = diag�a′� then S�F0�V� is a diagonal matrix.
(b) If V = c1I, c1 > 0, then S�F0�V� = c2I, for some c2 > 0.
(c) If V = diag�a′� and a1 ≥ a2 ≥ · · · ≥ am� then S�F0�V� is a diagonal

matrix with nondecreasing diagonal elements.
(d) The solution of (2.3) is a multiple of the identity matrix.

The following lemma shows why we can restrict ourselves to discrete mea-
sures to yield any bias.

Lemma 3.3. Under (A1)–(A6) and given V ∈ � :

(a) �S�H�V�� H some distribution on �m
 = � = �symmetric A ∈ �m×m�
λm�A� ≥ 0� trace�A� < ψ�∞�
 if x0�ψ� = ∞.

(b) �S�H�V�� H some distribution on �m
 = � = �symmetric A ∈ �m×m�
λm�A� ≥ 0� trace�A� ≤ ψ�∞�
 if x0�ψ� <∞�

(c) �ST�H�V�� H some distribution on �m, H��0
� < 1
 = �T = �symmet-
ric A ∈ �m×m� λm�A� ≥ 0, trace�A� =m
�

(d) Let S�H�V� with V ∈ � and H some distribution on �m. Then there
exists a distribution Hm supported by m or fewer points such that S�Hm�V� =
S�H�V�.

Let us note that � , � and �T do not depend on V.
A sufficient condition to obtain the results is given by the following condi-

tion, connecting ψ and the distribution F0.

(A8) Either x0�ψ� = ∞ or 0 ∈ supp�F0�.
Let us restrict ourselves to the case x0�ψ� = ∞, since the case x0�ψ� < ∞

is completely similar. We will also assume that EF0
ψ�z′z� = m. With the

representations for S�H�V� and ST�H�V� given by Lemma 3.3, one can easily



BIAS-ROBUST ESTIMATION OF A DISPERSION MATRIX 2307

conclude that b�V�F0� ε� exceeds b if, and only if, there exists a V ∈ � such
that λ1/λm�V� > b and

A�V� = ε−1(I − �1 − ε�S�F0�V�) ∈ � �(3.1)

But A�V� ∈ � is easily seen to be equivalent to

trace�S�F0�V�� > m− εψ�∞�
1 − ε

and λ1�S�F0�V�� ≤ 1
1 − ε

�

On the other hand,

ST��1 − ε�F0 + εH�V�

=




1 − ε

1 − εH��0
�ST�F0�V� + ε�1 −H��0
��
1 − εH��0
� ST�H�V�� if H��0
� < 1�

ST�F0�V�� if H��0
� = 1�

and AT�V� ∈ �T� if and only if,

λ1�ST�F0�V�� ≤ 1
1 − ε

�

Thus we end up with the representations

b�V�F0� ε� = sup
{
λ1

λm
�V�� V ∈ � � trace�S�F0�V��

>
m− εψ�∞�

1 − ε
and λ1�S�F0�V�� ≤ 1

1 − ε

}
�

b�VT�F0� ε� = sup
{
λ1

λm
�V�� V ∈ � � λ1�S�F0�V�� ≤ 1

1 − ε

}
�

(3.2)

We could get more precision in the previous representation. Let R = 	z	
and y = 	z	−1z. Let us define

Ht�b =
R2

t

(
1 − y2

1�1 − b−1�) and Db =
1 − y2

1

1 − y2
1�1 − b−1� �

Then we can state the following result.

Theorem 3.1. Let ε < min�1/ψ�∞�� �m − ψ�0��/�ψ�∞� − ψ�0��, 1 −
m/ψ�∞�
 and EF0

ψ�z′z� =m. Assume (A1)–(A8). Then

b�V�F0� ε� = max
{
b ≥ 1� for some t > 0�EF0

ψ�Ht�b� ≥
m− εψ�∞�

1 − ε
and

EF0
ψ�Ht�b�Db ≤

m− 1
1 − ε

}
�

b�VT�F0� ε� = max
{
b ≥ 1� mEF0

Db ≤
m− 1
1 − ε

}
�
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Remark. Note that under F0, the random variables R and y are inde-
pendent with y being uniformly distributed on the unit sphere in �m. Thus
EF0

Db and b�VT�F0� ε� do not depend on F0. Then we can denote b�VT�F0� ε�
by bT�ε�.

Let us observe that maximal bias is caused (approximately) by point mass
contaminations. Let

t�b� = max
{
t ∈ �0�∞�� EF0

ψ�Ht�b� ≥
m− εψ�∞�

1 − ε

}
�

Note first that

EF0
ψ�Ht�b�� b�Db =

m− 1
1 − ε

< m for b = b�V�F0� ε��

because EF0
ψ�Ht�b�� b�Db is continuous in b ∈ �1�∞�. For arbitrary b′ < b�V�

F0� ε�� one can find a pair �t� b� with b′ < b < b�V�F0� ε� and 0 < t <
t�b�V�F0� ε�� such that

m− εψ�∞�
1 − ε

> EF0
ψ�Ht�b��

But this implies that the matrix A�V� defined in (3.1) corresponding to V =
diag�tb� t� � � � � t� satisfies that λ2�A�V�� = · · ·λm�A�V�� = 0. The proof of
Lemma 3.3 will show that if we take the degenerate distribution H�A�V��
V� = δrtb, where r is chosen so that ψ�r2� = ε−1�m − �1 − ε�EF0

ψ�z′V−1z��,
then V solves S��1 − ε�F0 + εH�V� = I. Then we will get some insight into
the behavior of M-functionals under point mass contamination through the
next section.

4. M-functionals under point mass contamination. It will be shown
that the solution of (2.3) when P = �1 − ε�F0 + εδK, 0 < K <∞, is a positive
definite diagonal matrix V = diag�tb� t� � � � � t� where b > 1. This could be intu-
itively expected: the estimator of scatter should reflect the lack of associations
between the variables (the contamination just affects one particular direction).
One eigenvector follows the contaminated direction and its eigenvalue should
be clearly affected, differing from the indistinguishable remaining eigenval-
ues.

Instead of using some general theorems about existence of solutions [see
Huber (1981) and Maronna (1976)], we will give a proof tailored to the case
of point mass contamination. The proof will not require assumption (A6). The
equations defining the M-functionals under point mass contamination are
taken according to the solution we are seeking and then we show that the M-
functionals are actually as they were supposed. Taking PK = �1−ε�F0 +εδK,
we are looking for V ∈ � such that

S�PK�V� = �1 − ε�S�F0�V� + εS�δK�V� = I�(4.1)
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Then, by Lemma 3.2, we may restrict the search for solutions of (4.1) to di-
agonal matrices V = diag�tb� t� � � � � t� where t > 0, b > 0. Then we search for
the solutions to

�1 − ε�EF0
ψ�Ht�b�

y2
1

y2
1 + �1 − y2

1�b
+ εψ

(
K

tb

)
1�0 < K <∞
 = 1�

�1 − ε�EF0
ψ�Ht�b�

y2
j

1 − y2
1�1 − b−1� = 1�

(4.2)

where 2 ≤ j ≤m.
If we call g�1�

1 �t� b� = trace�S�PK�V�� and g2�t� b� = m − λ1�S�PK�V��,
we get

g
�1�
1 �t� b� = �1 − ε�EF0

ψ�Ht�b� + εψ

(
K

tb

)
1�0 < K <∞
 =m�

g2�t� b� = �1 − ε�EF0
ψ
(
Ht�b

)
Db =m− 1�

(4.3)

According to Theorem 3.1, �b�V�F0� ε�� t�b�V�F0� ε��� solve a similar sys-
tem,

g
�2�
1 �t� b� = �1 − ε�EF0

ψ�Ht�b� + εψ�∞� =m�

g2�t� b� = �1 − ε�EF0
ψ�Ht�b�Db =m− 1�

(4.4)

From Lemma 3.2, we may deduce that (4.1) and (4.3) are actually equiva-
lent.

The solutions of (4.3) and (4.4) (whose existence and uniqueness will follow
from Theorem 4.1) will be denoted by �t�K�ε�� b�K�ε�� and �t�ε�� b�ε��, re-
spectively. Although the existence of solutions of (4.4) is given by Theorem 3.1,
we treat it simultaneously with the case of point mass contaminations. We see
that we can actually omit condition (A1), in order to assure the existence of
solutions of (4.4), and we specify the inequality that ε should satisfy, which is
less stringent than in Theorem 3.1.

Theorem 4.1 proves the existence of solutions of (4.1) without imposing
condition (A6). Uniqueness follows as in Maronna (1976). But we first need
some lemmas.

Lemma 4.1. Let ψ satisfy (A2)–(A5). If (A7) and (A8) hold, then:

(a) g�i�
1 �t� b�, i = 1�2, is strictly decreasing in t for a fixed b and strictly

decreasing in b for a fixed t; g2�t� b� is strictly decreasing in t for a fixed b.

(b) g�i�
1 �t� b�, i = 1�2� is strictly decreasing in b for a fixed t and g2�t� b� is

strictly increasing in b for a fixed t provided (A1) also holds.

Lemma 4.2. Let h�b� = EF0
Db. Then:

(a) h�b� is a continuous, bounded and strictly increasing function.
(b) Let ε < 1/m. Then b∗ = inf�b� �1 − ε�ψ�∞�h�b� ≥ m − 1
. Then b∗ ≥ 1

if and only if K2 ≥m/�1 − ε�.
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(c) Let b∗∗ = sup�b� �1 − ε�ψ�0�h�b� ≤ m− 1
. Then b∗∗ = ∞ if and only if
ψ�0� ≤ �m− 1�/�1 − ε�.

All the verifications for the previous lemma are straightforward.
Let t�i�1 �b� and t2�b� be any solutions to g�i�

1 �t� b� =m and g2�t� b� =m− 1,
i = 1�2, respectively. The following lemma shows that t�i�1 �b� and t2�b� are
unique for each b, defining continuous functions.

Lemma 4.3. Let us suppose that (A2)–(A5), (A7) and (A8) hold. Let ε <
1/m. Then:

(a) t�1�1 �b� exists for every b and t2�b� exists for b ∈ �b∗� b∗∗�. If ε < min
�1/ψ�∞�� �m−ψ�0��/�ψ�∞�−ψ�0��
, t�2�1 �b� exists for every b. Moreover, t

�1�
1 �b�,

t
�2�
1 �b� and t2�b� are unique if they exist, defining continuous functions.

(b) limb→b∗∗ t2�b� = ∞.
(c) limb→b∗ t2�b� = 0.

Theorem 4.1. Let us suppose that (A2)–(A5), (A7) and (A8) hold. Then:

(a) If ε < 1/m, then (4.3) admits a solution.
(b) If ε < min�1/ψ�∞�� �m − ψ�0��/�ψ�∞� − ψ�0��
, then there exists a so-

lution of (4.4).

Theorem 4.1 and Lemma 3.2(b) say that (4.1) with a diagonal matrix V
admits solution. The uniqueness of the solution of (4.1) follows using the same
arguments as in Maronna (1976). Therefore the solutions of (4.3) and (4.4) are
unique.

Remark. When ε < 1 −m/ψ�∞�, existence of solutions for a distribution
G belonging to an ε-neighborhood follows from results in Huber (1981) and
Maronna(1976).

We next describe the behavior of b�K�ε� and t�K�ε�. We show that both
estimators increase monotonically with the contamination δK. The following
lemma determines the values of �K�ε� for which �t�K�ε�� b�K�ε�� remains
bounded away from 0 and ∞ in �+ × �+.

Lemma 4.4. Let us assume (A2)–(A5), (A7) and (A8) hold and ε0 < 1/m.
Then:

(a) lim infK→K0� ε→ε0
b�K�ε� > 0 for all K0 ∈ �0�∞�.

(b) lim supK→K0� ε→ε0
t�K�ε� < ∞ if and only if K0 < ∞ or ε0 < min

�1/ψ�∞�� �m− ψ�0��/�ψ�∞� − ψ�0�
.
(c) lim supK→K0� ε→ε0

b�K�ε� < ∞ if and only if K0 < ∞ or ε0 < min
�1/ψ�∞�, �m− ψ�0��/�ψ�∞� − ψ�0��
.

(d) lim infK→K0� ε→ε0
t�K�ε� > 0 if and only if ε0 < 1−�m−ψ�0��/�ψ�∞�−

ψ�0�� or K0 > 0.
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Lemma 4.5. Under (A2)–(A5), (A7) and (A8), �t�K�ε�� b�K�ε�� is contin-
uous in �+ × �0�1/m�.

The following lemma shows that b�K�ε� is nondecreasing in K, which im-
plies that there exist contaminations which produce biases as close to the
maximum as possible.

Lemma 4.6. Under (A2)–(A5), (A7) and (A8), b�K�ε� is nondecreasing in
K > 0.

The estimator t�K�ε� shows the same qualitative behavior as b�K�ε� under
point mass contamination.

Corollary 4.1. Assume (A1)–(A5), (A7) and (A8). Then t�K�ε� is nonde-
creasing in K > 0.

The next corollary shows that the maximum eigenvalue corresponds to the
direction of the point mass contamination.

Corollary 4.2. Assume (A1)–(A5), (A7) and (A8). Then b�K�ε� > 1 for
all K > 0.

Remark. Lemma 4.6 and Corollary 4.1 imply that limK→∞ b�K�ε� =
supK b�K�ε� = b∗ and limK→∞ t�K�ε� = supK t�K�ε� = t∗. By the domi-
nated convergence theorem, �t∗� b∗� verifies (4.4). By uniqueness, �t∗� b∗� =
�t�ε�� b�ε��.

5. Optimality of Tyler’s functional. In this section we prove that
Tyler’s functional as defined by (2.1) is bias-minimax. Let ε1 < ε2 < ε∗�V�F0�.
Therefore, b�ε1� ≤ b�ε2� since �ε1

⊆ �ε2
. In Lemma 3.1 we have seen that

ε∗�V�F0� depends on the quantity 1−m/ψ�∞�, which is related to implosion,
while b�ε� is just related to explosion. Then, the following lemma shows that
the function b�ε� is monotone for ε beyond the breakdown point.

Lemma 5.1. Assume (A2)–(A5), (A7) and (A8) hold. Then the maximum
bias function b�ε�� �0�min�1/ψ�∞�� �m − ψ�0��/�ψ�∞� − ψ�0��
� → �1�∞� is
nondecreasing.

Figure 1 displays the bias function
√
bT�ε� for Tyler’s functional and the bias

function
√
b�ε� for the M-functional obtained by using u�t� = �m+ 1�/�t+ 1�.

This M-estimator coincides with the maximum likelihood estimator for the
m-variate Cauchy distribution. In our case m = 2, and we assume that F0
is Gaussian at the target model. The vertical line drawn at 1/ψ�∞� = 0�269
marks the breakdown point of the M-functional.

We observe that the maximum bias b�ε� of the M-functional is always
greater than that of Tyler’s depicted by the function bT. The behavior dis-
played at the picture is not an isolated case as will be proved in Theorem 5.1.
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The example takes a decreasing density function in 	z	. We will obtain the
optimality result under such a condition.

(A9) f0�u� is decreasing in u for u ≥ 0.

Theorem 3.1 seems to indicate the convenience of choosing a ψ penaliz-
ing severely a contamination at the infinity, since it provides the worst case
for maximum bias. Besides, we have the evidence given in Figure 1. Hence,
Tyler’s functional with ψ = m seems to be the most natural candidate. Let
� be the set of bounded, continuous, nonnegative and nondecreasing func-
tions defined on �+. The idea of the proof is to define a curve ψ̃

�c�
2 ∈ �

so that ψ and m are connected by such a curve. If the M-functional solv-
ing (4.4) depends continuously and monotonically on the parameter c, we
will be able to prove that the maximum bias of Tyler’s functional is a lower
bound for the maximum bias of any M-functional. More precisely, let us con-
sider ψ̃�c�

2 �x� = mψ�cx��EF0
ψ�cz′z��−1 for c ≥ 1, where ψ satisfies sufficient

conditions for existence and uniqueness of the estimators. The solutions to
(4.4) will be denoted as �tc�ψ�� bc�ψ��. However, the solutions to (4.4) for
ψ�c��x� = mψ�x� �EF0

ψ�cz′z��−1, are �c−1tc�ψ�� bc�ψ��, and consequently ψ̃
�c�
2

as well as ψ�c� yield the same maximum bias. Then we use ψ�c� instead of ψ̃�c�
2

and we can establish the following result.

Theorem 5.1. Tyler’s functional is bias-minimax in the class of M-func-
tionals of multivariate scatter which satisfy conditions (A1)–(A9), that is, b�VT�
F0� ε� ≤ b�V�F0� ε�.

Fig. 1. Maximum bias functions of Tyler’s functional and an M-functional.
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APPENDIX

Proof of Lemma 3.2. (a) Let us take B�i� j� the orthogonal matrix ob-
tained by transposing the ith. and the jth row in the identity matrix. The
result follows by considering B�i� j�z and the spherical symmetry of z.

(b) Let B�j� be a diagonal matrix such that every diagonal element is 1
unless the jth element which is −1 and consider B�j�z. Hence, the result
follows by the spherical symmetry of z.

(c) The jth diagonal element of S�F0�V� is

EF0
ψ

( m∑
i=1

z2
i

ai

)
z2
j/aj∑m

i=1 z
2
i /ai

�

Since a−1
j ≤ a−1

j+1, then the result follows.
(d) By (b), S�F0� sI� is a multiple of the identity for all s > 0. Let c =

EF0
ψ�s−1z′z�/m. By choosing s0 such that c = 1, S�F0� s0I� = I. ✷

Proof of Lemma 3.3. (a) The inclusion ⊆ is obvious. To see the other one
let us take A = ∑m

i=1 λi�A�tit′i where t1� � � � tm are a basis of orthonormal
vectors in �m. Therefore taking the discrete measure

H =H�A�V� =




m∑
i=1

λi�A�
trace�A�δrV1/2ti � if trace�A� > 0�

δ0� if trace�A� = 0�

where r > 0 such that ψ�r2� = trace�A� > 0, we get that S�H�V� = A.
(b) Follows completely similarly.
(c) Let A ∈ �T. Then ST�HT�V� = A, where

HT =HT�A�V� =
m∑
i=1

λi�A�
m

δV1/2ti �

(d) It follows from (a), (b) and (c). ✷

Proof of Lemma 4.3. (a) (A2) and (A3) imply that for a fixed b, the func-
tions g�2�

1 �t� b� and g2�t� b� are continuous in t ∈ �0�∞�. By (A5) we get that
limt→0 g

�i�
1 �t� b� = ψ�∞� > m, i = 1�2 and limt→∞ g

�1�
1 �t� b� = ψ�0� < m. Since

ε < �m− ψ�0��/�ψ�∞� − ψ�0��, it holds that

lim
t→∞

g
�2�
1 �t� b� = �1 − ε�ψ�0� + εψ�∞� < m�

By Bolzano’s theorem, t�i�1 �b� exists for all b. On the other hand, limt→0 g2�t� b�
= �1 − ε�ψ�∞�h�b� > m− 1 if b > b∗ and limt→∞ g2�t� b� = �1 − ε�ψ�0�h�b� <
m− 1 if b < b∗∗. Thus, by the continuity of g2�t� b� there exists t2�b� for b∗ <
b < b∗∗. Let us observe that 0 < lim inf bn→b t

�i�
1 �bn� ≤ lim supbn→b t

�i�
1 �bn� < ∞

if 0 < b < ∞ and 0 < lim inf bn→b t2�bn� ≤ lim supbn→b t2�bn� < ∞ if b∗ <
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b < b∗∗. Then we conclude that t�i�1 �b� and t2�b� are continuous by using that
g

�i�
1 �t� b� and g2�t� b� are strictly decreasing and continuous in t.
(b) Suppose that t1 = lim inf b→b∗∗ t2�b� <∞. If ψ�0� ≤ �m−1�/�1−ε�, then

lim supb→b∗∗ g2�t2�b�� b� = �1 − ε�ψ�∞� = m − 1. This implies ε = 1 − �m −
1�/ψ�∞� > 1/m contradicting the assumptions on ε. If ψ�0� > �m− 1�/�1− ε�
then m − 1 = �1 − ε�ψ�0�h�b∗∗� < g2�t1� b∗∗� which is again a contradiction
and limb→b∗∗ t2�b� = ∞. On the other hand,

m− 1 = g2�t2�b�� b� < �1 − ε�ψ�∞�h�b��(A.1)

Therefore, b∗ > 0. If lim inf b→b∗ t2�b� > 0, using (A.1) we contradict that b∗ is
an infimum and lim inf b→b∗ t2�b� > 0. ✷

Proof of Theorem 4.1. Lemma 4.3 implies that t�1�1 �b� and t2�b� intersect
for some b > b∗. Hence, (4.3) can be solved and (a) holds; (b) follows, using a
similar argument. ✷

Proof of Lemma 4.4. (a) Suppose that (a) does not hold. Then taking lim-
its in (4.3) leads to the obvious contradiction m− 1 = 0.

(b) We simply prove by contradiction using the first equation of (4.2) and
(4.3). Assertions (c) and (d) follow, using a similar argument. ✷

Proof of Lemma 4.5. Let limn→∞Kn = K0 ∈ �0�∞� and limn→∞ εn =
ε0 ∈ �0�1/m�. By Lemma 4.4, both �t�Kn� εn�
∞n=1 and �b�Kn� εn�
∞n=1 are
bounded. By taking a subsequence if necessary, we may assume that limn→∞
t�Kn� εn� = t0 and limn→∞ b�Kn� εn� = b0. The dominated convergence the-
orem implies that �t0� b0� solves (4.3) if K = K0 and ε = ε0. Therefore, by
uniqueness of the solution, t�K0� ε0� = t0 and b�K0� ε0� = b0. This implies
that �t�K�ε�� b�K�ε�� is continuous. ✷

Proof of Lemma 4.6. Let K0 < K1 < ∞. Thus

g
�1�
1 �t� b�K0� ≤ g

�1�
1 �t� b�K1��

and consequently g
�1�
1 �t�1�1 �b�K0�� b�K1� ≥ g

�1�
1 �t�1�1 �b�K0�� b�K0� = m� Since

g
�1�
1 �t� b�K� is decreasing in t,

t
�1�
1 �b�K1� ≥ t

�1�
1 �b�K0��(A.2)

Let �t0� b0� and �t1� b1� be the solutions of (4.3) when the contaminations are
δK0

and δK1
respectively. Then t0 = t

�1�
1 �b0�K0� and t1 = t

�1�
1 �b1�K1�. By the
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existence and uniqueness of solutions of (4.3) we obtain

t
�1�
1 �b�K0� < t2�b�K0� if b > b0�

t
�1�
1 �b�K0� > t2�b�K0� if b < b0�

t
�1�
1 �b�K1� < t2�b�K1� = t2�b�K0� if b > b1�

t
�1�
1 �b�K1� > t2�b�K1� = t2�b�K0� if b < b1�

(A.3)

When b1 < b0, (A.2) and (A.3) imply

t1 = t
�1�
1 �b1�K1� ≥ t

�1�
1 �b1�K0� > t2�b1�K0�

= t2�b1�K1� = t
�1�
1 �b1�K1� = t1�

which is a contradiction. Therefore, b0 ≤ b1 and b�K0� ε� ≤ b�K1� ε� for K0 <
K1. ✷

Proof of Corollary 4.2. Let K̃ = inf�K� b�K�ε� ≥ 1
. If K̃ ∈ �0�∞��
then the continuity of b�K�ε� entails that b�K̃� ε� = 1 and (4.2) becomes

�1 − ε�EF0
ψ

(
R2

t

)
y2

1 + εψ

(
K̃

t

)
= 1�

�1 − ε�EF0
ψ

(
R2

t

)
y2
j = 1� 2 ≤ j ≤m�

Consequently, we get that ψ
(
K̃/t

)
= 0. This implies that either K̃ = 0 and

b�K�ε� > 1 for all K > 0 or K̃ = ∞ and b�K�ε� < 1 for all K > 0. Since
b�ε� > 1 and limK→∞ b�K�ε� = b�ε�, the corollary follows. ✷

Proof of Lemma 5.1. If ε0 < ε1 then g
�2�
1 �t� b� ε0� ≤ g

�2�
1 �t� b� ε1�, and con-

sequently m = g
�2�
1 �t�2�1 �b� ε0�� b� ε0� ≤ g

�2�
1 �t�2�1 �b� ε0�� b� ε1�. Since g�2�

1 �t� b� ε�
is decreasing in t,

t
�2�
1 �b� ε1� ≥ t

�2�
1 �b� ε0��

On the other hand, g2�t� b� ε0� ≥ g2�t� b� ε1� and m− 1 = g2�t2�b� ε0�� b� ε0� ≥
g2�t2�b� ε0�� b� ε1�. Let b∗�ε� and b∗∗�ε� be defined as in Lemma 4.2. Then b∗�ε�
and b∗∗�ε� are nondecreasing in ε. As in Lemma 4.3(a) we know that t2�b� ε� ex-
ists if b ∈ �b∗�ε�� b∗∗�ε��. Since g2�t� b� ε� is decreasing in t, t2�b� ε0� ≥ t2�b� ε1�
if b ∈ �b∗�ε1�� b∗∗�ε0��. Let �t0� b0� and �t1� b1� be the solutions of (4.4) for ε0

and ε1, respectively. Then t0 = t
�2�
1 �b0� ε0� and t1 = t

�2�
1 �b1� ε1�. By the existence

and uniqueness of solutions of (4.4) we obtain that

t
�2�
1 �b� ε0� < t2�b� ε0� if b > b0�

t
�2�
1 �b� ε0� > t2�b� ε0� if b < b0�

t
�2�
1 �b� ε1� < t2�b� ε1� ≤ t2�b� ε0� if b > b1�
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In case that b1 < b0, we have

t1 = t
�2�
1 �b1� ε1� ≥ t

�2�
1 �b1� ε0� > t2�b1� ε0� ≥ t2�b1� ε1� = t

�2�
1 �b1� ε1� = t1�

which is a contradiction. Therefore, b0 ≤ b1 and b�ε0� ≤ b�ε1� for ε0 < ε1. ✷

Proof of Theorem 3.1. Using the spectral decomposition of a matrix V ∈
� and the spherical symmetry of F0, one can easily show that it suffices to
consider diagonal matrices V = diag�a′� with vector a in + = �a ∈ �m� a1 ≥
a2 · · · ≥ am > 0
. For a ∈ +� define

ã = �a1� am� � � � � am�′�
From Lemma 3.2 we obtain that ST�F0�diag�a′�� and ST�F0�diag�ã′�� are di-
agonal matrices with nondecreasing diagonal elements. Thus a1/am = ã1/ãm
and

λ1

λm
�diag�ã′�� = λ1

λm
�diag�a′�� = a1

am
�

trace�S�F0�diag�ã′��� = EF0
ψ
(
z′ diag�ã′�−1z

)
≥ EF0

ψ
(
z′ diag�a′�−1z

)
[by (A3)]

= trace�S�F0�diag�a′����

λ1�S�F0�diag�ã′��� = EF0

ψ
(
z′ diag�ã′�−1z

)
z′ diag�ã′�−1z

z2
m

am

≤ EF0
u
(
z′ diag�ã′�−1z

)z2
m

am
[by (A1)]

= λ1�S�F0�diag�a′����
Similarly,

λ1
(
ST�F0�diag�ã′��) ≤ λ1

(
ST�F0�diag�a′��)�

Hence it suffices to consider V = diag�tb� t� � � � � t� in (3.2), where b ≥ 1 and
t > 0. Then, we may write

trace
(
S�F0�diag�tb� t� � � � � t��) = EF0

ψ
(
Ht�b

)
�

λ1
(
S�F0�diag�tb� t� � � � � t��) = EF0

ψ
(
Ht�b

) y2
m

1 − y2
1�1 − b−1�

= EF0
ψ
(
Ht�b

)�1 − y2
1�/�m− 1�

1 − y2
1�1 − b−1� �

λ1
(
ST�F0�diag�tb� t� � � � � t��) =mEF0

Db/�m− 1��
This entails the result. ✷
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In order to prove Theorem 5.1, we need to show that the M-functionals
are continuous, in a certain sense, with respect to the function ψ ∈ � which
appears in their definition. The following lemma establishes formally the M-
functionals’ continuity and its proof can be found in Adrover (1993).

Lemma A.1. Assume (A1)–(A6) hold. Let V = ∑m
i=1 λi�V�tit′i ∈ � , where

λ1�V� ≥ · · · ≥ λm�V� are the eigenvalues of V and t1� � � � � tm their correspond-
ing eigenvectors. Then:

(a) λm�V� ≤ z′z/�z′V−1z� ≤ λ1�V� for any z ∈ �m − �0
.
(b) Suppose that limn→∞ supx∈� �ψ�n��x� −ψ�x�� = 0. Let V�n� and V denote

the solutions of (2.3) associated with ψ�n� and ψ respectively. Suppose that there
exists a compact set K in ��+�m such that �λ1�V�n��� � � � � λm�V�n��� ∈K for all
1 ≤ i ≤m and n. Then limn→∞ λi�V�n�� = λi�V�.

(c) If limn→∞ supx∈�+ �ψ�n��x� − ψ�x�� = 0, then the solutions to (4.4) corre-
sponding to ψ�n� remain bounded and the conclusion in part (b) still holds.

We next define some function subsets in � , which will be used in Theo-
rem 5.1:

�c =
{
ψ ∈ � � x0�ψ� <∞}

�

�d =
{
ψ ∈ � � is continuously differentiable in �+�

sup
x∈�

ψ′�x� <∞ and ψ′ > 0 in �0� x0�ψ��
}
�

�c� d = �c ∩ �d�

Let us note that the set �c� d is dense in � with respect to the uniform conver-
gence topology. This fact will be used in the proof of Theorem 5.1.

Proof of Theorem 5.1. Let ψ ∈ �c� d. Let us consider the functions ψ�c��x�
= �EF0

ψ�cz′z��−1mψ�x�, c ≥ 1. Then, putting ψ�c� in (4.4) we obtain

g1�t� b� ε� c� = �1 − ε�EF0
ψ
(
Ht�b

)+ εψ�∞� −EF0
ψ�cz′z� = 0�

g2�t� b� ε� c� = �1 − ε�mEF0
ψ
(
Ht�b

)
Db − �m− 1�EF0

ψ�cz′z� = 0�
(A.4)

Then, by differentiating (A.4) under the integral sign and using the mono-
tonicity of the corresponding functions we get

gt�1�t� b� ε� = −1 − ε

t2
EF0

ψ′�Ht�b�R2�1 − y2
1�1 − b−1�� < 0�

gt�2�t� b� ε� = −�1 − ε�m
t2

EF0
ψ′�Ht�b�R2�1 − y2

1� < 0�

gb�1�t� b� ε� =
1 − ε

t
EF0

ψ′�Ht�b�R2�−y2
1�b−2�� ≤ 0�

gε�1�t� b� ε� = ψ�∞� −EF0
ψ�Ht�b��

gε�2�t� b� ε� = −mEF0
ψ�Ht�b�Db�
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where the first subscript refers to the variable and the second one is 1 or 2,
referring to the first or the second equation in (A.4), respectively.

The solution to (A.4) will be denoted by �t�ε� c�� b�ε� c�� (for c = 1, �t�ε�1��
b�ε�1� = �t�ε�� b�ε���. For ε fixed, such functions are continuous in c by
Lemma A.1(c). By Lemma 5.1, b�ε� c� is nondecreasing in ε for fixed c. Let
t2�b� ε� c� be such that g2�t2�b� ε� c�� b� ε� c� = m − 1 and t1�b� ε� c� be such
that g1�t1�b� ε� c�� b� ε� c� =m. Using the implicit function theorem and Lem-
ma 5.1, the function t�ε� c� = t2�b�ε� c�� ε� c� = t1�b�ε� c�� ε� c� turns out to
be differentiable with respect to ε except in a zero Lebesgue measure set for
fixed c. Let E0�c� ⊆ �0�min�1/ψ�∞�� �m−ψ�0��/�ψ�∞�−ψ�0��
� be such a set.
Differentiating g1 and g2 with respect to ε� we obtain a system of equations
whose determinant does not vanish if ε ∈ E0�c�. Moreover, we can assure that
the determinant does not vanish if ε ∈ O�c� = ⋃

ε̃∈E0�c� I�ε̃� where I�ε̃� is an
interval centered at ε̃ where the determinant does not vanish by the continuity
of the functions involved. Here O�c� is an open dense set in �0�min�1/ψ�∞�,
�m − ψ�0��/�ψ�∞� − ψ�0��
�. Let �cn
∞n=1 be a countable dense set in �1�∞).
Thus

⋂∞
n=1 O�cn� is a dense set and b�ε� cj� is differentiable in ε for all j ∈ N.

Whence, we get

(
gt�1gb�2 − gt�2gb�1

)(
t�ε� cj�� b�ε� cj�� ε� cj

)
< 0 for all cj and ε ∈

∞⋂
n=1

O�cn��

Fixing ε and according to the implicit function theorem, there exist open sets
V1�cj� and V2�cj� in � such that b�ε� c�� V1�cj� → V2�cj� is continuously
differentiable, and their derivative is given by

∂

∂c
b�ε� c� = �gc�1gt�2 − gc�2gt�1��t�ε� c�� b�ε� c�� ε� c�

�gt�1gb�2 − gt�2gb�1��t�ε� c�� b�ε� c�� ε� c�
�

Since gc�2 = −�m − 1��∂/∂c�EF0
ψ�cz′z� = �m − 1�gc�1 and gt�1 = gt�2/m −

�1 − ε/t2�EF0
ψ′�Ht�b�R2y2

1b
−1 = gt�2/m− a�t� b� < gt�1, where a�t� b� > 0 for

all t > 0, b > 0, then gc�1gt�2 −gc�2gt�1 = gc�1�gt�2/m+�m−1�a�t� b��. Using
that gt�2/m+�m−1�a�t� b� ≤ 0 (see Lemma A.2), we get that �∂/∂c�b�ε� c� ≤ 0
for c ∈ V1�cj�. By noting that

⋃∞
n=1 V1�cn� is an open dense set in �1�∞�,

�∂/∂c�b�ε� c� ≤ 0 for c ∈ ⋃∞
n=1 V1�cn� and b�ε� c� is continuous for all c ∈

�1�∞�, there results that b�ε� c� is nonincreasing in �1�∞�. Let us call b∗ =
b∗�ε� = limc→∞ b�ε� c� = inf c≥1 b�ε� c�. Since �∂/∂c�t�ε� c� ≤ 0 and t�ε� c� is
continuous for all c ∈ �1�∞�, there results that t�ε� c� is nonincreasing in
�1�∞� and lim supc→∞ t�ε� c� < ∞. In case that 0 < lim inf c→∞ t�ε� c�, we get
after taking the limit as c → ∞ that ψ�∞� = �1 − ε�EF0

ψ�Ht∗� b∗� + εψ�∞� <
ψ�∞�. Therefore, lim inf c→∞ t�ε� c� = 0 and we get that �1− ε�mψ�∞�h�b∗� =
�m−1�ψ�∞�. Consequently, b∗ = bT�ε�. Since b�ε� c� is nonincreasing in c, we
conclude that b�ε� ≥ bT�ε�.

The result follows for ε ∈ ⋂∞
j=1 O�cj�. Suppose now that b�ε0� < bT�ε0�

where ε0 ∈ �⋂∞
j=1 O�cj��c∩�0�min�1/ψ�∞�� �m−ψ�0��/�ψ�∞�−ψ�0��
�. Using

the continuity of b�ε� and bT�ε�� there exists δ > 0 such that b�ε� < bT�ε� for
all ε ∈ �ε0 − δ� ε0 + δ� and this contradicts the fact that

⋂∞
j=1 O�cj� is dense.
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This proves the theorem for ψ ∈ �c� d. Since �c� d is dense in � , Lemma A.1(c)
lets us conclude the result of the theorem for ψ ∈ � . ✷

Lemma A.2. Assume ψ ∈ � and that condition (A9) holds. Then:

(a) EF0
ψ�1/s�z2

1/v + v1/�m−1��R2 − z2
1��� is nondecreasing for v ≥ 1 when

s > 0 is fixed.
(b) If ψ ∈ �c� d, gt�2/m+ �m− 1�a�t� b� ≤ 0 for b ≥ 1 and t > 0.

Proof. (a) Maronna and Yohai [(1990), Lemma 1, page 3928] proved the
lemma for the case ψ�x� = 1 − I�0� t��x�. More precisely, they show∫

I�0� t��z′+−1z�f0�z′z�dz <
∫
I�0� t��z′0−1z�f0�z′z�dz�

where + = diag�v� a� � � � � a� and 0 = diag�v′� a′� � � � � a′� with v > v′ > 1. A
straightforward argument generalizes the result first to step functions and
then uses an approximation by step functions to any ψ ∈ � .

(b) Let s = tb1/m and v = b�m−1�/m. Then

gt�2/m+ �m− 1�a�t� b�

= −1 − ε

t2
EF0

ψ′
(
R2

t
�1 − y2

1�1 − b−1��
)
R2�1 − y2

1 − �m− 1�y2
1b

−1�

= −v−�m−2�/�m−1� 1 − ε

s2
EF0

ψ′
(

1
s

(
�R2 − z2

1�v1/�m−1� + z2
1

v

))

× (�R2 − z2
1�vm/�m−1� − �m− 1�z2

1

)
= −vm/�m−1� �1 − ε��m− 1�

s

∂

∂v
EF0

ψ

(
1
s

(
�R2 − z2

1�v1/�m−1� + z2
1

v

))
≤ 0

by item (a). ✷
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