Open Access
December 1998 Asymptotically efficient estimation in the Wicksell problem
G. K. Golubev, B. Y. Levit
Ann. Statist. 26(6): 2407-2419 (December 1998). DOI: 10.1214/aos/1024691477

Abstract

We consider the classical Wicksell problem of estimating an unknown distribution function $G$of the radii of balls, based on their observed crosssections. It is assumed that the underlying distribution function$G$ belongs to a Hölder class of smoothness $\gamma >1/2$. We prove that, for a suitable choice of the smoothing parameters, kernel-type estimators are asymptotically efficient for a large class of symmetric bowl-shaped loss functions.

Citation

Download Citation

G. K. Golubev. B. Y. Levit. "Asymptotically efficient estimation in the Wicksell problem." Ann. Statist. 26 (6) 2407 - 2419, December 1998. https://doi.org/10.1214/aos/1024691477

Information

Published: December 1998
First available in Project Euclid: 21 June 2002

zbMATH: 0933.62025
MathSciNet: MR1700238
Digital Object Identifier: 10.1214/aos/1024691477

Subjects:
Primary: 62G05 , 62G20
Secondary: 62C20 , 62E20

Keywords: fractional derivatives , Hölder classes , kernel density estimators , Wicksell’s problem

Rights: Copyright © 1998 Institute of Mathematical Statistics

Vol.26 • No. 6 • December 1998
Back to Top