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( )DECONVOLUTION DENSITY ESTIMATION ON SO N

BY PETER T. KIM1

University of Guelph and Yonsei University

This paper develops nonparametric deconvolution density estimation
Ž .over SO N , the group of N � N orthogonal matrices of determinant 1.

The methodology is to use the group and manifold structures to adapt the
Euclidean deconvolution techniques to this Lie group environment. This is
achieved by employing the theory of group representations explicit to

Ž .SO N . General consistency results are obtained with specific rates of
convergence achieved under sufficient smoothness conditions. Application
to empirical Bayes prior estimation and inference is also discussed.

1. Introduction. In Euclidean nonparametric mixture models, one has

1.1 f x � � g � d� ,Ž . Ž . Ž .H
Ž .where f � is assumed known and the parameter of interest is the unknown

Ž .mixing density g � . Estimation of the mixing density can be performed using
deconvolution density estimation, which has been studied in depth by several

Ž . Ž . Ž .authors; see, for example, Devroye 1989 , Zhang 1990 , Fan 1991a, b and
Ž .Diggle and Hall 1993 , and the references therein.

Mixture models in general have been of considerable importance in statis-
Ž .tics. Lindsay 1995 provides an excellent account of the subject as well as an

Ž .extensive bibliography. Although the nonparametric version 1.1 is but one
aspect of the entire mixture modelling strategy, it nevertheless provides
additional statistical procedures such as nonparametric empirical Bayes es-

Ž .timation; see, for example, Maritz and Lwin 1989 , and, for nonparametric
Ž .errors in variable regression, see Fan and Truong 1993 .

Let us now change the discussion and briefly mention some ongoing
research on orientation statistics because orientation statistics provides a
fundamental rationale for extending the mixture framework into a non-
Euclidean environment.

There has been some statistical interest in a situation where one observes
three mutually orthogonal unit direction vectors. The data originates from

Ž .vector cardiogram orientation, which was introduced in Downs 1972 with
Ž .various authors further developing this area; see Khatri and Mardia 1977

Ž .and Prentice 1986, 1989 . As one can see, this takes us away from the
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Euclidean setting to a non-Euclidean environment where the state space now
Ž .becomes SO N , the group of N � N orthogonal matrices of determinant 1.

Ž .Mathematically, SO N is a compact Lie group and there is a certain appeal
Ž .to statisticians because SO N and compact Lie groups can be realized as the

compact space of matrices that are frequently encountered in multivariate
Ž .analysis; see, for example, Farrell 1985 .

Ž .A location type model in SO N often takes the form

1.2 f x��1 � f tr x�t ,Ž . Ž . Ž .
Ž . Ž .where f � is a density on SO N absolutely continuous with respect to the

Ž . Ž .normalized Haar measure on SO N , x, � � SO N and superscript t de-
Ž . Ž .notes matrix transpose; see Khatri and Mardia 1977 . If we then extend 1.2

Ž .into a nonparametric mixture setting, the analogous representation to 1.1
would be

1.3 f x��1 g � d� ,Ž . Ž .Ž .H
Ž .where again f � is assumed known and the parameter of interest is the

Ž . Ž .unknown mixing density g � . It turns out that 1.3 is a convolution in the
Lie group sense and so, if we wish to estimate the mixing density as in
the Euclidean case, one strategy is to develop a deconvolution technique on

Ž .SO N . It should be strongly emphasized that if a successful generalization of
Ž .deconvolution to SO N can be made, this fulfills a first, but an important

step, in extending the statistical tools associated with mixture models to
orientation statistics in general and vector cardiogram orientation in particu-
lar. This extension will therefore be the subject of this paper for which we
now provide an overview.

In Section 2, we undergo some preparation for Fourier analysis on compact
Ž .groups specializing down to SO N . Most of the material is available in the

Ž . Ž .mathematical literature; see, for example, Talman 1968 , Vilenkin 1968 ,
Ž . Ž . Ž .Helgason 1978, 1984 , Warner 1983 , Brocker and tom Dieck 1985 and¨

Ž .Gong 1991 .
In Section 3 we tackle the problem of non-Euclidean deconvolution. In the

statistical literature, deconvolution methods are mainly done on Euclidean
space where the objective is to produce estimators of the measurement
density when observations consist of the true measurement plus additive
noise. However, as stated at the beginning, deconvolution methodologies for
compact Lie groups and homogeneous spaces are also needed. In addition to
vector cardiogram orientation, deconvolution would be appropriate for prob-
lems associated with errors in variables in spherical regression, as developed

Ž .by Chang 1989 , as well as nonparametric empirical Bayes estimators of
prior densities when the parameter space is a compact Lie group; see Kim
Ž . 21991 . We establish L consistent deconvolution density estimators. Rates of
convergence are established under sufficient smoothness conditions on the
density.

Ž .Section 4 deals with applications. We will first examine the case of SO 3 ,
the lowest dimensional non-abelian case. We also discuss a particular error
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Ž .distribution derived from the work of Rosenthal 1994 on random walks on
Ž .SO N . An application to nonparametric empirical Bayes estimation and

Ž . Žinference for SO N parameters is established. This provides nonparamet-
. Ž .ric extensions to some of the earlier parametric work on orientation statis-

Ž . Ž . Ž .tics; see Downs 1972 , Prentice 1986 and Khatri and Mardia 1977 .
Some additional comments are made in Section 5, including the relevance

of implementing fast algorithms. All proofs are provided in Section 6.
The material in this paper requires some technical knowledge concerning

compact Lie groups and their representations. As a minimal requirement, the
Appendices as well as Section 2 sketch the relevant material needed to read
this paper. Consequently, the reader should review this material first.

Prior to starting the discussion, the following comment should be made.
The theory of group representations is a very rich, beautiful and difficult
branch of mathematics. Our short account of the topic is included only for the
purpose of getting the idea across as needed for the problem at hand. Put
differently, we do little justice to portraying the richness of the theory as well
as its broad historical evolution. There are numerous books on group repre-
sentations, and the reader is encouraged to look through them if they find
interest in the current paper. A good source for the understanding of this

Ž .paper is Brocker and tom Dieck 1985 . For general Lie groups, consult¨
Ž . Ž . Ž .Warner 1983 and for finite groups, Serre 1977 or Diaconis 1988 . For

Ž . Ž .differential geometry consult Spivak 1973 , Helgason 1978 and Warner
Ž .1983 .

2. Preparation. For a compact Lie group G, Fourier analysis involves
expanding functions on G by its irreducible representations. In particular,

Ž .denote by Irr G, C the collection of inequivalent irreducible representations
of G. The definition and some properties are reviewed in Appendix A. For

2Ž .f � L G , we define the Fourier transform with respect to an irreducible
representation as

ˆ �12.1 f U � U g f g dgŽ . Ž . Ž .Ž .H
G

Ž .for U � Irr G, C , where dg denotes the unit Haar measure on G normalized
by the volume of G. The Fourier inversion can be written as

ˆ2.2 f g � d tr U g f U ,Ž . Ž . Ž . Ž .Ý U
Ž .U�Irr G , C

Ž .where g � G and d is the dimension of the representation U � Irr G, C .U
Ž . 2We note that, strictly speaking, 2.2 should be interpreted as in the L sense

although with sufficient smoothness, it can hold with equality pointwise
almost everywhere.

2Ž .Given two functions f , h � L G , define the convolution by

2.3 f � h g � f x�1 g h x dx .Ž . Ž . Ž .Ž .H
G
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We note the similarity of the above to convolution on Euclidean space when
we express x�1 � �x. The following is a key result.

2Ž .LEMMA 2.1. For f , h � L G ,
� ˆ ˆf � h U � f U h U ,Ž . Ž . Ž .Ž .

Ž .where U � Irr G, C .

The proof is straightforward.

Ž .2.1. Specialization to SO N . We now specialize the above discussion to
Ž . Ž .G � SO N . First, the dimension of SO N as a manifold is

N�1 N N � 1Ž .
2.4 dim SO N � l � .Ž . Ž . Ý 2l�1

Ž . ŽThis comes from the fact that the Lie algebra of SO N the tangent space at
. Ž .the unit element is so N , the space of N � N skew symmetric matrices.

Ž .For SO N , the indexing of the irreducible representations is fundamental.
Ž . Ž Ž . .Each inequivalent element of Irr SO N , C is characterized by a k-tuple of

Ž .integers j � j , . . . , j called the signature. Now this signature varies de-1 k
pending on whether N is even or odd and so let us make the following
notation. For N � 2k � 1 odd, let

2.5 J � j � Z k : m � j � j � ��� � j � 0 ,Ž . � 4m 1 2 k

where Z denotes the set of all integers. On the other hand for N � 2k even,
let

k � �2.6 J � j � Z : m � j � j � ��� � j � 0 .Ž . � 4m 1 2 k

One notices that in the even case, an extra set of indices come out from the
� �relation j . This is explained in more detail in Appendix B. To get all of thek

irreducible representations, let m � � for both the even and odd cases and
define
2.7 J � lim J .Ž . m

m��

Ž Ž . .Consequently, each U � Irr SO N , C can be indexed by its signature U ,j
along with � � � and d � d for all j; see Appendix A for the appropriateU j U jj j

2Ž Ž .. Ž .definitions. This means that for f � L SO N , we can express 2.1 by

ˆ �12.8 f j � U g f g dgŽ . Ž . Ž .Ž .H j
Ž .SO N

Ž .and 2.2 by

ˆ2.9 f g � d trU g f j .Ž . Ž . Ž . Ž .Ý j j
j�J

Ž Ž . .We should point out that the characterization of elements of Irr SO N , C is
unique only up to conjugation.
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Ž .Consider � the Laplace�Beltrami operator on SO N . Then the compo-
nents of the irreducible representations are the eigenfunctions of � so that

d1�2U : j � J� 4j j

2Ž Ž ..is a complete orthonormal basis of L SO N . For N � 2k � 1, the corre-
sponding eigenvalue is

2.10 � � j2 � ��� �j2 � 2k � 1 j � 2k � 3 j � ��� �j ,Ž . Ž . Ž .j 1 k 1 2 k

while for N � 2k,

2.11 � � j2 � ��� �j2 � 2k � 2 j � 2k � 4 j � ��� �2 j .Ž . Ž . Ž .j 1 k 1 2 k�1

More explicit descriptions are provided in Appendix B.

3. The deconvolution problem and main results. Suppose the obser-
Ž .vation Y is over SO N and is made up of the true measurement X com-

posed with noise � . The true measurement can then be viewed as some
Ž .random quantity on SO N along with the error being some random quantity

Ž .also on SO N . Consequently, the observations consist of
Y � X� ,

Ž . Ž .where the multiplication is with respect to the group action SO N � SO N
Ž .� SO N .

The density of Y is then the convolution of the densities of � and X, that
is,

f u � f � f u � f v�1 u f v dv.Ž . Ž . Ž . Ž .HY X � X �
Ž .SO N

By Lemma 2.1, we can write
�1ˆ ˆ ˆf j � f j f j ,Ž . Ž . Ž .X Y �

ˆŽ .provided that f j is invertible. For ease of notation, henceforth we will�

define
�1ˆ ˆ�13.1 f j � f j .Ž . Ž . Ž .� �

ˆ Ž .In general f is assumed to be unknown, hence f j is unknown. Sup-Y Y
pose we have a random sample Y , . . . , Y . Then we form the empirical char-1 n
acteristic function

n1
n �1ˆ3.2 f j � U Y ,Ž . Ž . Ž .ÝY j ln l�1

similar to the empirical characteristic function on Euclidean space; see
Ž . Ž .Feuerverger and Murieka 1977 . Following this by using 3.2 in the Fourier

Ž .inversion formula 2.9 , we can obtain a nonparametric deconvolution density
estimator for f byX

n n̂ ˆ�13.3 f g � d tr U g f j f j ,Ž . Ž . Ž . Ž . Ž .½ 5ÝX j j Y �
j�Jm

Ž .where m � m n � � as n � �.
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Alternatively, define
� ˆ�1K g � d tr U g f j .Ž . Ž . Ž .½ 5Ýn j j �

j�Jm

Ž .Then 3.3 can be written in the more familiar kernel form,
n1

n � �13.4 f g � K Y gŽ . Ž . Ž .ÝX n ln l�1

Ž .for g � SO N .

3.1. Consistency results. The following notation will be used. For two
� 4 � 4 Ž .sequences a and b , we will denote a � O b by a � b . Furthermore,n n n n n n

� � 2 � �� will denote the usual L -norm while � will denote the usual operator2 op

norm.
We now state the main results where the meaning of differentiability is

Ž .with respect to SO N being a differentiable manifold in addition to being a
group.

ˆ u� Ž .��1THEOREM 3.1. Suppose f j � d for some u � 0. If f is boundedop� j Y
and f is the pointwise limit of its Fourier series, thenX

� n � 2E f g � f g � 0Ž . Ž .X X

Ž . �Žd im SO ŽN .�k .u�dim SO ŽN .� Ž .as n � � for all g � SO N provided m � o n .

To obtain rates of convergence, smoothness conditions need to be imposed
on f .X

ˆ u� Ž .��1THEOREM 3.2. Suppose f j � d for some u � 0. If f is bounded,op� j Y
f is s � 1 times differentiable and square-integrable, thenX

� n � 2 �2 s��2 s�Ždim SO ŽN .�k .u�dim SO ŽN .�E f � f � n2X X

as n � �.

The question that naturally arises concerns the distribution of the errors
Ž . Ž .� . At one extreme is the Haar measure uniform distribution on SO N . In

ˆthis case deconvolution is not possible since f � 0. One can see that in this�

case the true measurements are uniformly perturbed according to the group
action, thus resulting in no hope of being able to recover f .X

Ž .The other extreme would be point mass at the unit element of SO N .
Ž .Denote by 	 the density concentrated at the unit element e � SO N . Thene

ˆ �1f j � U g 	 g dg � U e � I ,Ž . Ž . Ž .Ž .H� j e j d jŽ .SO N

ˆ� Ž .��1where I is the d � d identity matrix; therefore f j 	 1. Thisopd j j �j

corresponds to the case u � 0 in the above results and would be the ordinary
Ž .density estimation on SO N . In fact, we get the following, which is Theorem

�Ž . �2.1 of Hendriks 1990 , page 834 .
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� Ž .�COROLLARY 3.3 Hendriks 1990 . Suppose f � 	 . If f is s � 1 times� e X
differentiable and square-integrable, then

� n � 2 �2 s��2 s�dim SO ŽN .�E f � f � n2X X

as n � �.

Therefore, in order for deconvolution to work and at the same time be
meaningful, the situation would have to be somewhere between the above
two extremes. In the following section, we look at such an example.

4. Applications and examples. In this section, we will examine some
special cases. In addition, application of the methodology to empirical Bayes
estimation and inference will be discussed.

Ž .4.1. Application to SO 3 . As described in Section 2.1, define the empiri-
Ž .cal transform on SO 3 by

n1
n �1f̂ j � D Y ,Ž . Ž .ÝY j ln l�1

Ž .where j � 0, 1, . . . and the inequivalent irreducible representations D are
explicitly written out in Appendix A. Then

n1
n �1ˆ ˆ�1f j � D Y f j ,Ž . Ž .Ž .ÝX j l �n l�1

for j � 0, 1, . . . and the nonparametric deconvolution density estimator of fX
Ž .on SO 3 will be

m n
n �1 �1 ˆ�14.1 f g � 2 j � 1 tr D g n D Y f j ,Ž . Ž . Ž . Ž . Ž .Ž .Ý ÝX j j l �½ 5

j�0 l�1

Ž . Ž .for g � SO 3 . Special cases of 4.1 have been considered in Healy, Hendriks
Ž . Ž .and Kim 1995 and Healy and Kim 1996 .

4.2. An example inspired by Rosenthal. Although some parametric esti-
Ž . �mation on SO N has appeared in the statistical literature see, e.g., Chang

Ž . Ž .�1986 and Prentice and Mardia 1995 , a general deconvolution estimation
Ž .problem on SO N has not appeared. Consequently, there is in general a lack

Ž .of models for errors on SO N with well-understood spectral properties.
There has, however, appeared a somewhat related problem in probability

Ž .associated with random walks on groups; see Diaconis 1988 . Here one is
interested in performing random walks on groups according to the group
structure, followed by establishing ways in which the measure converges to
the uniform measure, the so-called ‘‘mixing.’’ In terms of the mathematical
structure, each movement in the random walk is represented by a convolu-
tion product. The nature in which finite convolution products converge to the
uniform measure is analytically studied using Fourier methods on the group.
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Thus one can see the similarity of random walks on groups with deconvolu-
Ž . Ž .tion. The case for SO N has been studied in Rosenthal 1994 . Borrowing

from his work, we will consider the situation where f is a p-fold convolution�

product of conjugate invariant random measures for a fixed axis, where the
p � 0 measures the degree of uniformity.

A very useful simplification for conjugate invariant functions, that is,
Ž �1 . Ž . Ž .f g xg � f x , x, g � SO N is Schur’s lemma; see, for example, Brocker¨� �

Ž .and tom Dieck 1985 . In our case, this amounts to the following:

ˆ �1 �14.2 f j � 
 I where 
 � d f g � g dg .Ž . Ž . Ž . Ž .H� j d j j � jj Ž .SO N

Ž . ŽTo be concrete, consider the case of SO 5 although this argument should
.work for all N and take the conjugacy class of

cos � �sin � 0 0 0
sin � cos � 0 0 0

R � ,0 0 1 0 0�

0 0 0 1 0
0 0 0 0 1

Ž �for � � 0, � . Setting � � � and taking the uniform measure over the con-
jugacy class of R , let f be the p-fold convolution product. Rosenthal� �

�Ž . �1994 , page 407 , shows that
pcj

f̂ j � I ,Ž .� d jdj

where d is defined in Section 6 and c is formally the evaluation of thej j
Ž .integral in 4.2 for this particular case. The particular evaluation is not of

concern for us but rather that c2 � 1, which can be established by consultingj
� Ž . �Proposition 3.1 Rosenthal 1994 , page 406 . Therefore,

ˆ p� ��1f j 	 d ,Ž . op� j

for some fixed finite constant p � 0.
Ž . Ž . �For SO 5 or any fixed SO N , as the convolution product index p � � in
Ž . �Rosenthal 1994 , he uses k instead of p , then

f g dg � dgŽ .�

in various metrics including L2. Consequently, given such an error structure,
under the conditions of Theorem 3.2, convergence occurs at a rate of

n�s �� s�4 p�5� , as n � �.

4.3. Empirical Bayes application. Deconvolution methods can be used in
an empirical Bayes setting. Let the sampling density be of the form

4.3 f x 
 � � f ��1 xŽ . Ž . Ž .
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Ž . Ž . Ž .for x, � � SO N . Let 
 � be the prior density on SO N . Then the mar-
ginal density is

4.4 M x � 
 � f ��1 x d� ,Ž . Ž . Ž . Ž .H
Ž .SO N

Ž .x � SO N .
Ž . Ž . Ž �1 .One can see that 4.4 is a convolution on SO N . Let us assume f � x

Ž̂ .is known; consequently, f j is known. The statistical analysis comes in with
Ž .respect to prior uncertainty, that is, an unknown 
 � , which of course

Ž . Ž .implies an unknown M � as defined in 4.4 . From a Bayesian point of view,
we can regard the observations X , . . . , X as unconditionally coming from1 n
Ž .4.4 . This of course can then be used to construct an unbiased estimator of
ˆŽ .M j . Indeed, define

n1
n �1M̂ j � U X .Ž . Ž .Ý j ln l�1

ˆ �1 u�� Ž .� � Ž .Assuming that f j � d for some u � 0, a logical estimator for 
 �op j
would be

�1n nˆ ˆ4.5 
 g � d tr U g M j f j ,Ž . Ž . Ž . Ž . Ž .Ý ½ 5j j
j�Jm

Ž .where g � SO N . Consistency results will follow by applying Theorems 3.1
or 3.2.

One can use this result for point estimation of �. Suppose we want to
make inference about � based on the observation X. We note that in terms of
squared error loss, if �* is an estimator of �, then

L � , �* � N � tr�*�1�Ž .
Ž . Ž .for �, �* � SO N . Consequently, if 
 � is the prior density, then the Bayes

risk of �* is

r �* � N � tr �*�1� f ��1 x 
 � dx d�.� 4Ž . Ž .Ž .H
Ž . Ž .SO N �SO N

Now in terms of the usual Fubini argument, we have

tr �*�1� f x�1� 
 � dx d�� 4 Ž .Ž .H H
Ž . Ž .��SO N x�SO N

� tr �*�1�
 � 
 x M x d� dxŽ . Ž .H H½ 5Ž . Ž .x�SO N ��SO N

� tr �*�1 �
 � 
 x d� M x dxŽ . Ž .H H½ 5Ž . Ž .x�SO N ��SO N

� tr �*�1 E
 Ž � 
 x .� M x dx ,� 4 Ž .H
Ž .x�SO N
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Ž . Ž .where 
 � 
 x is the posterior density. Thus for each x � SO N , the
solution to

max tr �*�1 E
 Ž � 
 x .�� 4
Ž .�*�SO N

is the Bayes estimator. One can solve this problem by using a modified
Ž .singular value decomposition similar to Chang 1986 . Consider the modified

singular value decomposition

4.6 E
 Ž � 
 x .� � O�Qt ,Ž .
Ž .where O, Q � SO N and � is a diagonal matrix of singular values. Then the

Bayes estimator is
4.7 � � OQt .Ž . b

Ž .We are assuming that the prior density 
 � is unknown; however, suppose
we have observations X , . . . , X . Let X � X and use X , . . . , X to1 n�1 n�1 1 n

Ž . Ž .form a consistent estimator of 
 � as in 4.5 . An empirical Bayes estimator
of � can be formulated by

tn n4.8 � � O Q ,Ž . Ž .eb

n n Ž .where Q , O � SO N are elements of the empirical singular value decom-
position

n t
 Ž � 
 x . n n n4.9 E � � O � Q .Ž . Ž .
Under consistency of 
 n along with the continuous mapping theorem, we can
show that � � � as n � �.eb b

5. Discussion. An enormous amount of statistical literature is available
on nonparametric density estimation in Euclidean space. The contributions

Ž .are cited in several monographs; see, for example, Prakasa Rao 1983 ,
Ž . Ž .Devroye and Gyorfi 1985 and Silverman 1985 . For an important extension¨

of the above to deconvolution density estimation, see, for example, Devroye
Ž . Ž . Ž .1989 , Fan 1991a, b and Diggle and Hall 1993 and the references therein.

Although theoretical work in non-Euclidean statistical methodologies is
� Ž . Ž .abundant see, for example, Gine 1975 , Jupp and Spurr 1983 , Naiman´

Ž . Ž .�1990 and Prentice and Mardia 1995 , more recently, practical statistical
methodology beyond the Euclidean space is gaining momentum. In part this
is due to current computing capabilities in addition to statistical problems
that are genuinely non-Euclidean. Several examples of such in addition to
vector cardiogram orientation are plate tectonic issues studied by Chang
Ž . �1986 , statistical classification of macroscopic folds Kelker and Langenberg
Ž .�1988 as well as problems in geometric quality assurance by Chapman,

Ž .Chen and Kim 1995 .
Therefore, in light of the general statistical interest in non-Euclidean

spaces along with the popularity of nonparametric density estimation on
Euclidean space, it is only natural to attempt the generalization of these
methods to non-Euclidean spaces, which this paper explores. This generaliza-
tion, aside from theoretical interests, can prove to be very valuable from a
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practical point of view, particularly with respect to vector cardiogram orienta-
tion where the practical benefits of mixture modelling can be extended.

Some works on nonparametric density estimation on non-Euclidean spaces
are available, although the number is miniscule in comparison to the Eu-

Ž . Ž .clidean counterpart; see Beran 1979 , Hall, Watson, and Cabrera 1987 , Bai,
Ž . Ž .Rao and Zhao 1988 and Hendriks 1990 . To date, contributions on non-

Euclidean deconvolution density estimation are restricted to Healy, Hendriks
Ž . Ž .and Kim 1995 and Healy and Kim 1996 , as far as this author is aware,

and each are special cases of the contents of this paper. Further, the methods
of this paper should easily extend to all of the classical compact Lie groups.

Finally, some comments on computational considerations should be made.
Ž .In Healy and Kim 1996 , computational consideration using a fast Fourier

transform now available on S2, the unit 2-sphere is given explicit attention.
The idea comes from applying the fast algorithm on S2, as developed in

Ž . Ž .Driscoll and Healy 1994 , in a format similar to the idea of Silverman 1985
for the case of the circle S1. We note that S1 and S2 are not only different in
dimension, they are quite different topologically so the generalization is not
necessarily straightforward. Now it is a mathematical fact that S2 can be

Ž .realized as a homogeneous space of SO 3 , consequently, the computational
Ž . Ž .discussion in Healy and Kim 1996 can be carried over to SO 3 . In fact, a

Ž .generalization of Driscoll and Healy 1994 has been made in a Harvard
� Ž .� Ž .Ph.D. dissertation Maslan 1993 to compact groups of which SO N is an

example. Therefore, computational considerations for efficiently implement-
Ž .ing the ideas of this paper can be formatted to SO N according to Silverman

Ž . Ž .1985 and Healy and Kim 1996 .

6. Proofs. We will work out the odd case, that is, N � 2k � 1. The even
case can be worked out using similar arguments.

Some specific results will be needed with respect to d . Indeed, the latter isj

2 k

2k � 1 ! ��� 3!1!Ž .
2 k�1 2 k�1 2 k�1j � k � 1�2 j � k � 3�2 ��� j � 1�2Ž . Ž . Ž .1 2 k

2 k�3 2 k�3 2 k�3j � k � 1�2 j � k � 3�2 ��� j � 1�2Ž . Ž . Ž .1 2 k
�

��� ��� ��� ���
��� ��� ��� ���

j � k � 1�2 j � k � 3�2 ��� j � 1�21 2 k

6.1Ž .

� Ž . �see Gong 1991 , page 123 . The evaluation of the above determinant can be
expressed in simpler form due to the structure of the matrix in question and
in fact is

k k2 2j � l � 1�2 j � r � 1�2Ž . Ž .Ł Łk� l�1 k�r�12k � 1 ! ��� 3!1!Ž . r�sl�1

2� j � s � 1�2 ,Ž .k�s�1
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where j � J and l � 1, . . . , k. The case N � 2k is similar and can be found in
�Ž . � �Ž . �Gong 1991 , page 123 and Rosenthal 1994 , page 406 .

� 4 � 4We will need the following lemma, where for two sequences a and b ,n n
a � b if a �b � 1, as n � �.n n n n

LEMMA 6.1. There exists a C � 0 such that

d2�2 u � CmŽdim SO ŽN .�k .u�dim SO ŽN . , as m � �,Ý j
j�Jm

where u � 0.

PROOF. Define
a � j � l � 1�2,l k�l�1

where l � 1, . . . , k and j � J . Note thatm

6.3 1�2 	 a � a � ��� � a 	 m � k � 1�2 and a � 1 	 aŽ . 1 2 k j j�1

Ž .for j � 1, . . . , k � 1. Letting a � a , . . . , a ,1 k
k

2 2d � d � a a � a .Ł Łj a l r s
r�sl�1

Ž .Now divide 6.3 by m and consider
2�2 u 2�2 ud 1 d 1j a

6.4 � .Ž . Ý Ý2 2k kk km mm maj

Ž .Notice that 6.4 is a Riemann sum; consequently, as m � �, the domain
becomes

0 	 x 	 x 	 ��� 	 x 	 1,1 2 k

Ž .and the right-hand side of 6.4 converges to
2�2 uk

2 26.5 x x � x dx ��� dx ,Ž . � 4Ł ŁH l r s 1 k
0	x 	 ��� 	x 	1 r�sl�11 k

as m � �. Let x* be a vector such that 0 � x� � ��� � x� 	 1. Then the1 k
integrand is strictly positive at x*. By continuity, we can find an open

� 4neighborhood B containing x* as a subset of 0 	 x 	 ��� 	 x 	 1 for1 k
which the integrand remains strictly positive. Consequently, by the nonnega-

Ž .tivity of the integrand of 6.5 , the latter can be bounded below by
2�2 uk

2 2x x � x dx ��� dx � 0,� 4Ł ŁH l r s 1 k
B r�sl�1

thus providing a lower positive bound for the limit of the sum in question.
Ž .Some similarity of 6.4 to Selberg’s integral is apparent. In fact, exact

Ž .evaluation may be possible using the ideas surveyed in Richards 1989 . �

ˆ u� Ž .��1LEMMA 6.2. If f j � d for some u � 0, thenop� j

� � � 2 Ždim SO ŽN .�k .u�dim SO ŽN .K g dg � m , as m � �.Ž .H n
Ž .SO N
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PROOF. We have

� � ˆ ˆ�1 �1K g K g dg � d tr U f j d tr U f jŽ . Ž . Ž . Ž .½ 5Ý ÝH H ½ 5n n j j � j j �
Ž . Ž .SO N SO N j�J j�Jm m

ˆ 2� ��1� d tr f j ,Ž .� 4Ý j �
j�Jm

Ž .where the overbar denotes complex conjugation; see Lo and Ng 1988 . Now
ˆ u� Ž .��1by the assumption f j � d for some u � 0, we note thatop� j

ˆ 2 2�2 u� ��16.6 d tr f j � d .Ž . Ž .� 4Ý Ýj � j
j�J j�Jm m

By Lemma 6.1 we have

2�2 ud 1j � C , as m � �,Ý 2 kk mmj�Jm

where C � 0 is some constant. Consequently, we have

ˆ 2 Ždim SO ŽN .�k .u�dim SO ŽN .� ��1d tr f j � m , as m � �. �Ž .� 4Ý j �
j�Jm

This leads to the following.

ˆ u� Ž .��1LEMMA 6.3. If f j � d for some u � 0 and f is bounded, thenop� j Y

mŽdim SO ŽN .�k .u�dim SO ŽN .
nsup Var f g � , as n � �.Ž .Ž .X nŽ .g�SO N

PROOF. We note that

1
n � �1 � �1 � �1 � �1Var f g � EK X g K X g � EK X g EK X gŽ .Ž . Ž . Ž . Ž . Ž .� n n n nn

1 2� �1� �� K x g f x dxŽ .Ž .H n Yn G

1 2�� �	 sup f g K x dx .Ž . Ž .HY nn GŽ .g�SO N

The result follows from applying Lemma 6.2. �

PROOF OF THEOREM 3.1. Consider the variance bias decomposition

� n � 2 n � n � 26.7 E f g � f g � Var f g � Ef g � f gŽ . Ž . Ž . Ž . Ž . Ž .Ž .X X X X X

Ž . Ž nŽ ..for g � SO N . We note that Var f g � 0 as n � �. Consequently, weX
must show that the bias term goes to zero.
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We have the following:

Ef n g � EK � Y�1 gŽ . Ž .X n

�1 ˆ�1� d tr U y g f j f y dyŽ . Ž .Ž .½ 5ÝH j j � Y
Ž .SO N j�Jm

�1 ˆ�1� d tr U y U g f j f y dyŽ . Ž . Ž .Ž .½ 5ÝH j j j � Y
Ž .SO N j�Jm

�1 ˆ�1� d tr U y f y dy U g f jŽ . Ž . Ž .Ž .Ý Hj j Y j �½ 5Ž .SO Nj�Jm

ˆ ˆ�1� d tr U g f f jŽ . Ž .Ý ½ 5j j Y , j �
j�Jm

ˆ� d tr U g f jŽ . Ž .½ 5Ý j j X
j�Jm

� f gŽ .X

Ž .for all g � SO N since f is assumed to be the pointwise limit of its FourierX
series. Consequently,

� n � 2Ef g � f g � 0 as n � �Ž . Ž .X X

Ž .for all g � SO N as required. �

PROOF OF THEOREM 3.2. We can decompose

� n � 2 n � n � 2E f � f � Var f g dg � Ef � f .Ž .Ž .2 HX X X X X
Ž .SO N

By Lemma 6.3,

mŽdim SO ŽN .�k .u�dim SO ŽN .
nVar f g dg � , as n � �.Ž .Ž .H X nŽ .SO N

For the integrated bias, let

� � 0 	 j 	 j 	 ��� 	 j , � 	 m2 ,� 4m 1 2 k j

�
� � 0 	 j 	 j 	 ��� 	 j , � � m2 ,� 4m 1 2 k j

� � 4J � 0 	 j 	 j 	 ��� 	 j , j � m .m 1 2 k k

Clearly � � J and J � � �
� .m m m m
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Now
n 2 ˆ 2� � � �Ef � f � d tr f jŽ .ÝX X j X

�j�Jm

ˆ 2� �	 d tr f jŽ .Ý j X
�j�� m

s �2 s ˆ 2� �	 d � m tr f jŽ .Ý j j X
�j�� m

� Ž s. � 2 �2 s	 f m .2

The first inequality comes from J � � �
� while the third inequality comesm m

from

Ž s. 2 s ˆ 2� � � �f g dg � � d tr f j ,Ž . Ž .ÝH j j
Ž .SO N j�Jm

where f Ž s. denotes the sth derivative of f for s � 1; see Lemma 4.1 of
�Ž . �Hendriks 1990 , page 842 . Of course the above is also true for s � 0, in

Ž . Žwhich case it is the Plancherel Theorem for SO N ; see Helgason 1978,
.1984 .

Putting the two together, we get that

mŽdim SO ŽN .�k .u�dim SO ŽN .
2n �2 s� �E f � f � � m , as n � �.2X X n

Consequently, this rate is optimized when

m � n1��2 s�Ždim SO ŽN .�k .u�dim SO ŽN .� . �

APPENDIX A

Compact Lie groups. A Lie group is a differentiable manifold whose
group action and the map g � g�1 are continuous. Let G be a Lie group and
V a complex vector space. A representation of the Lie group G on the vector
space V is a continuous mapping

U : G � Aut V ,Ž .
Ž . Ž . Ž . Ž . Ž .so that U gh � U g U h and U e � id , where Aut V is the space of allV

invertible linear operators on V, e is the identity element in G and id is theV
identity operator on V. The vector space V is known as the representation

Ž . Ž .space. If we fix a basis for V, then Aut V � GL n, C , the latter being the
general linear group of invertible n � n complex matrices. Consequently, a
matrix representation of G can be regarded as a group homomorphism

Ž .G � GL n, C .
Let U and W be two representations of G with representation spaces VU

and V . Suppose f : V � V is a linear map between the two representationW U W
Ž Ž . . Ž . Ž .spaces such that f U g v � W g f v for all g � G and v � V . Then f isU

called an intertwining operator and if for a given intertwining operator, a
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unique inverse intertwining operator exists, then we say that U and W are
equivalent representations of G.

Let U be a representation of G with representation space V and supposeU
Ž .V � is a subspace of V such that U g u � V � for all g � G and for allU

u � V �, that is, the subspace V � is an invariant subspace of V for all op-U
Ž . � 4erators U g , g � G. If the only invariant subspaces are 0 and V , that is,U

V � is either the trivial subspace or the entire vector space, then the represen-
tation U is called an irreducible representation.

Ž .Denote by Irr G, C , the collection of all inequivalent irreducible represen-
tations of G. For compact Lie groups, there are countably many. Further-

Ž .more, each representation space in Irr G, C is finite dimensional and each
representation a unitary representation in the sense that there is an inner

² :product � ,� on V such that

² : ² :Uv, Uw � v , w
Ž .for all v, w � V, U � Irr G, C and g � G.

For a representation U, define a mapping � : G � C, called the character
of U by

� g � tr U g ,Ž . Ž .
for all g � G. Note that although we need a matrix to define the character,

Ž .the trace is independent of the basis so that � � is canonical, that is, basis
Ž .free. Note also that � e � tr id � dim V , where the latter denotes theV UU

Ž .dimension of the representation space V . Consequently, d � � e is theU U
Ž .dimension for U � Irr G, C .

Some basic examples of representations: the trivial representation is a
� 4map G � C � 0 so that its dimension is 1. Consequently, if we reduce this

� 4representation to a unitary representation, G � 1 . The standard represen-
tation is the matrix form of the group with the group action being matrix
multiplication.

Given two representations U, W of a Lie group G, there are two ways we
can form new representations. One construction is the direct sum U 


Ž .Ž . Ž . Ž . Ž . Ž . Ž . Ž .W where U 
 W gh � U gh 
 W gh � U g U h 
 W g W h with
Ž . Ž . Ž .� g � � g � � g for all g, h � G. Thus we have that the dim VU
W U W U
W

� dim V � dim V . A second construction is the direct product U � WU W
Ž .Ž . Ž . Ž . Ž . Ž . Ž . Ž .where U � W gh � U gh � W gh � U g U h � W g W h with

Ž . Ž . Ž .� g � � g � � g for all g, h � G. Thus we have that the dim VU�W U W U�W
� dim V dim V .U W

Ž .As an example, we illustrate the situation for SO 3 . Let

cos � �sin � 0 cos � 0 sin �
u � � , a � � ,Ž . Ž .sin � cos � 0 0 1 0ž /� 0 �sin � 0 cos �0 0 1

� . � .where � � 0, 2� , � � 0, � . The well-known Euler angle decomposition
Ž .implies that an arbitrary g � SO 3 can be uniquely written as

g � u � a � u � ,Ž . Ž . Ž .
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� . � . � .where � � 0, 2� , � � 0, � and � � 0, 2� and are known as the Euler
angles. Consider the function

jD u � a � u � � exp �iq � d � exp �iq � , A.1Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .j 1 q q 2q q 1 21 2

jŽ .where �j 	 q , q 	 j, j � 0, 1, . . . and d � are related to the Jacobi polyno-1 2
Ž . Ž .mials; see Vilenkin 1968 . The function A.1 can be thought of as matrix

Ž . Ž .entries of the 2 j � 1 � 2 j � 1 matrix

D � D where �j 	 q , q 	 jŽ .j j 1 2q q1 2

Ž .for j � 0, 1, . . . . These are the irreducible representations of SO 3 .

APPENDIX B

( ) Ž .Eigenstructure of SO N . For K, L � so n consider the invariant
inner product

1² :K , L � � tr KL.2

Ž . Ž .Then we obtain a left-invariant Riemannian structure g �,� on SO N sat-
isfying

² :g K , L � K , L ,Ž .e

Ž .for K, L � so n .
Ž . Ž .Now dim SO N � N N � 1 �2 � q, hence there exists an orthonormal

Ž .basis K , . . . , K on so N so that every K gives a left-invariant vector field1 q l
˜ Ž .K on SO N withl

K̃ � KŽ .l le

for l � 1, . . . , q.
Ž . Ž .The Laplace�Beltrami operator related to g �,� on SO N is

˜ ˜� � K � ��� �K .1 q

Ž .Denote the Cartan subalgebra of so N by HH which consists of all the
following real matrices:

0 � 0 �1 k
 ��� 
ž / ž /�� 0 �� 01 k

for N � 2k,

0 � 0 �1 k 0 0
 ��� 
 
 ž /ž / ž /�� 0 �� 0 0 01 k

for N � 2k � 1.
Let H � HH be the above matrix with � � 0 for k 	 l and � � 1 forl k l

l � 1, . . . , k. Let � be a real linear functional on HH satisfyingl

² :� H � H , HŽ .l l
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for any H � HH, l � 1, . . . , k. Then every dominant weight � can be expressed
as

� � j � � ��� �j � ,1 1 k k

where j are integers satisfyingl

� �j � j � ��� � j � 0 for N � 2k ,1 2 k

j � j � ��� � j � 0 for N � 2k � 1.1 2 k

Every such dominant weight determines uniquely an eigenvalue class of
Ž .irreducible unitary representations.

Ž .Let U be an irreducible representation of SO N with dominant weight � .�

Write
U x � u x ,Ž . Ž .� � , i j

Ž .x � SO n , as a unitary matrix of order d where�

² :� � 	 , �
d � ,Ł� ² :	 , ���0

1� is a positive root and 	 � Ý � .� � 02

We have
�u x � �� u x ,Ž . Ž .� , i j � � , i j

where

� � j2 � ��� �j2 � 2k � 1 j � 2k � 3 j � ��� �j for N � 2k � 1Ž . Ž .� 1 k 1 2 k

and

� � j2 � ��� �j2 � 2k � 2 j � 2k � 4 j � ��� �2 j for N � 2k .Ž . Ž .� 1 k 1 2 k�1
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