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The construction and analysis of repair models is an important area in
reliability. A commonly used model is the minimal repair model. Under this
model, repair restores the state of the system to its level prior to failure.
Kijima introduced repair models that could be classified as “better-than-
minimal.” Under Kijima’s models, the system, upon repair, is functionally
the same as a working system of lesser age which has never experienced
failure. In this paper, we present a new approach to the modeling of better-
than-minimal repair models. Using this approach, we construct a general
repair model that contains Kijima’s models as special cases. We also study
the problem of estimating the distribution of the time to first failure of a
system maintained by general repair. We make use of counting processes
to show strong consistency of the estimator and prove results on weak
convergence. Finally, we derive a Hall–Wellner type asymptotic confidence
band for the distribution of the time to first failure of the system.

1. Introduction. Many systems are maintained and kept going by per-
forming repair upon each failure. The construction and analysis of plausible
repair models is therefore an important area in reliability. Let F be the distri-
bution of the time to first failure of the system. The repair models we consider
in this paper postulate that the distribution of the interfailure times depend
in some way on F. Early works on repair models assume that repair restores
the state of a failed system to a level equivalent to a new one each time.
This is the so-called perfect repair model. Clearly, this model is inadequate to
model most repair processes. It is more reasonable to expect the distribution
of the remaining life to vary from one failure time to another. One such model
often used in the literature is the minimal repair model. Under this model,
repair restores the system to its state just before failure. Brown and Proschan
(1983) introduced a model that combines both perfect and minimal repairs.
Under their model, at the time of each repair either a perfect repair occurs
with probability p or a minimal repair occurs with probability 1− p.

There has been a search for repair models where the interfailure times
are stochastically larger than in the case of the minimal repair model. Such
models are loosely called better-than-minimal repair models. Kijima (1989)
introduced two models under which a system, upon repair, is functionally the
same as an identical system of lesser age. Unlike the minimal repair model,
Kijima’s models assume that the distribution of interfailure times depends
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on F not only through the age of the system at failure but on the degree of
repair as well. Further generalizations of the Kijima models can be seen in
Baxter, Kijima and Tortorella (1996). In this paper we introduce a general
repair model in which, instead of reducing the effective age of the system at
failure, we supplement its remaining life in an appropriate way. Such a model
is a better-than-minimal repair model, and contains Kijima’s models as special
cases. We will also study the problem of estimating F based on repair data on
n identical systems working independently and maintained using this general
repair model.

In Section 2 we describe the general repair model. Section 3 discusses
stochastic processes needed to carry out the estimation process. An estimator
F̂n of F is introduced in Section 4 and its strong consistency is proved. The es-
timator F̂n ofF is the solution of the integral equation F̂n�·� =

∫ ·
0�1−F̂n−�d3̂n

where 3̂n is the Aalen–Nelson estimator of the hazard function 3 of F. In Sec-
tion 5 the weak convergence of

√
n�F̂n −F�/F̄ to a Brownian motion is estab-

lished. This in turn is used to construct a confidence band of the Hall–Wellner
type for F in Section 6.

Estimation of the distribution of the time to first failure of a repairable
system was originally done through nonparametric maximum likelihood tech-
niques. Whitaker and Samaniego (1989) used such techniques to estimate
the distribution of the time to first failure of a system maintained under the
Brown–Proschan model. An alternative to the nonparametric maximum like-
lihood approach is the use of the theory of counting processes. Hollander, Pres-
nell and Sethuraman (1992) rederived and extended the large sample results
of Whitaker and Samaniego using such an approach, making use of the meth-
ods developed for the analysis of the censored life-data model. This paper
extends their results to the general repair model discussed informally in this
introduction and formally defined in Section 2.

2. Description of the model. Prior to describing the model, we intro-
duce some notation. In this paper, the terms “increasing” and “decreasing”
will be used loosely; a sequence �aj�j≥1 is said to be increasing if ai ≤ aj for
i < j and a function f�·� is said to be increasing if f�x� ≤ f�y� for x < y. Sim-
ilar definitions apply to decreasing sequences and functions. When we require
the condition that ai < aj for i < j, we will say that the sequence �aj� is
strictly increasing. Similarly, x would be called positive if x ≥ 0 and negative
if x ≤ 0. The notation x∧y will be used in place of min�x;y�. Similarly, x∨y
will be used in place of max�x;y�. An integral of the form

∫ t
0 would denote in-

tegration on �0; t�. We use the Itô integral when the integrating measure is a
stochastic process. The function I�·� will denote the indicator function, so that
I�A� = 1 if A occurs and 0 otherwise. Finally, we will adopt the convention
that 0/0 = 1.

For any function f, we will use f−�t� for lims↑t f�s� and f+�t� for lims↓t
f�s�. A function is cadlag if it is right continuous and has left-hand limits. It
is caglad if it is left continuous with right-hand limits. Let T < ∞. We will
denote by D�0;T� the cadlag functions on �0;T� and by D−�0;T� the caglad
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functions on �0;T�. Unless otherwise stated, we will assume the Skorohod
topology for D�0;T�. The supremum norm on �0;T� will be denoted by � · �T0
and⇒ will denote weak convergence of probability measures onD�0;T� under
the Skorohod topology.

Let G be a distribution function. We will denote the survival function
1 − G by Ḡ. The cumulative hazard function, H, of G is defined by H�·� =∫ ·

0 dG/�1 − G−�. The distribution G is said to be an increasing failure rate
(IFR) distribution if Ḡ�t + x�/Ḡ�t� is decreasing in t for each x. Finally, all
random variables, unless otherwise stated, will be assumed to be defined on
the complete probability space ��;F ;P�:

We will now formally define what we will refer to as the general repair
model. For any distribution function F, θ ∈ �0;1� and a ∈ �0;∞�, consider the
family of distribution functions F̄θ

a�x� = F̄�θx + a�/F̄�a�; x > 0. The family
of distributions �Fθ

a� are stochastically ordered in θ; that is, θ ≤ θ′ implies
that Fθ

a≥stFθ′
a , for each a [i.e., Fθ

a�t� ≤ Fθ′
a �t� for every t]. There is a way to

view the survival function F̄θ
a�x�. It corresponds to the life of a functioning

item of age a which has been scaled by a factor of θ, with lower values of θ
representing longer remaining life. For this reason we will refer to Fθ

a�x� as
the life distribution of an item with an effective age of a and a life supplement
of θ. We will see that this family provides us with a rich class of distributions
for the remaining life of a given system subject to repair.

Consider a system put into operation at time S0 = 0 using a brand-new
unit whose life distribution is F. Upon each failure, the system is repaired in
negligible time and put back into operation. Let �Sj�j≥1 denote the sequence
of failure times of the system and let Tj = Sj−Sj−1; j ≥ 1, be the interfailure
times. We further assume that the Tj’s are strictly positive. A repair model
describes the joint distribution of the random variables �Tj�. In this paper, we
describe a general repair model, based on two sequences �Aj�j≥1 and �2j�j≥1
called the effective ages and life supplements, respectively, satisfying

A1 = 0; 21 = 1; Aj ≥ 0; 2j ∈ �0;1� and

Aj ≤ Aj−1 +2j−1Tj−1 for j > 1 :
(2.1)

The model is obtained by specifying the joint distributions of the interfailure
times �Tj� as follows:

P�Tj ≤ t�Aj;2j;T1; : : : ;Tj−1� = F
2j
Aj
�t� for t > 0; j ≥ 1:(2.2)

Thus for the general repair model described by (2.1) and (2.2), the distri-
bution of Tj given Aj;2j;T1; : : : ;Tj−1, which is F

2j
Aj

, is stochastically larger
than F1

Aj
; that is, is better than a working item of age Aj. Furthermore, from

(2.1) we can see that for each j ≥ 1 the effective age, Aj+1, of the system after
the jth repair, is less than its effective age, Xj =def Aj + 2jTj, just before
the jth failure which in turn is less than the actual age Sj. Thus the general
repair model defined by (2.1) and (2.2) can be considered as a better-than-
minimal repair model and as we shall see, contains the perfect repair and
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minimal repair models. It will be useful to note that the survival distribution
of Xj given Aj;2j;T1; : : : ;Tj−1 simplifies to F̄�x�/F̄�Aj� for x ≥ Aj, as can
be seen from (2.2).

We will illustrate this general repair model and the terms “effective ages”
and “life supplements” through examples discussed in the succeeding para-
graphs.

Consider the case when 2j = 1 and Aj = 0 for j ≥ 1. Then (2.1) is auto-
matically satisfied and (2.2) reduces to

P�Tj ≤ t�T1; : : : ;Tj−1� = F1
0�t� = F�t�:(2.3)

From this we see that the Tj’s are independent with common distribution F.
This corresponds to the perfect repair model.

Next, consider the case when 2j = 1 and Aj = Sj−1 for each j. Clearly,
Aj+1 = Sj = Aj + 2jTj and, hence, (2.1) is satisfied. Moreover, under these
conditions, (2.2) reduces to

P�Tj ≤ t�Sj−1� = F1
Sj−1
�t� :(2.4)

Hence, we see that this case corresponds to the minimal repair model.
We will now show that Kijima’s models can be derived through suitable

choices of �Aj� and �2j� satisfying (2.1) and (2.2). Let �Dj�j≥1 be a se-
quence of random variables independently distributed on �0;1� and inde-
pendent of other processes. Consider the case when 2j = 1 for each j and

Aj =
∑j−1
i=1 DiTi for j > 1. Since Aj+1 = Aj+DjTj and Dj ≤ 1 = 2j for each

j, then (2.1) is satisfied and (2.2) reduces to

P�Tj ≤ t�Ti;Di;1 ≤ i ≤ j− 1� = F1
Aj
�t�:(2.5)

This is Kijima’s Model I. In this model, upon the �j − 1�th repair, the time
to next failure, Tj, of the system has the same distribution as the time to
first failure of a system whose life distribution is F1

Aj
. Hence, upon repair, the

system whose actual age is Sj is functionally the same as an identical system
of age Aj+1 which has never experienced failure. This explains the use of the
term “effective age.”

Consider the case when 2j = 1 for each j and Aj =
∑j−1
k=1�

∏j−1
i=k Di�Tk

for j > 1. Since Aj+1 = Dj�Aj + Tj� and Dj ≤ 1 = 2j for each j, then
(2.1) is satisfied and (2.2) reduces to (2.5). This is Kijima’s Model II. Moreover,
when Dj is 1 with probability p and 0 with probability 1 − p, we obtain the
Brown–Proschan model.

Up to this point we have restricted the 2j’s to be identically equal to 1.
We will now describe repair models obtained through other choices of the life
supplement sequence �2j�. Recall that Fθ

a ≥st Fθ′
a if θ < θ′. This implies that

the smaller θ is the larger in the expected remaining life of the system. Hence,
we can use θ as a measure of how repair supplements the expected remaining
life of the system. This explains the use of the term “life supplement.” If a
minimal repair were performed at the time of the first failure, then T2 would
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have the distribution F1
T1

. If we want a longer expected life for T2 then we can
use the distribution F22

T1
for some 22 satisfying 0 < 22 < 1. Starting with the

distribution F22
T1

for T2 and using minimal repair upon the second failure, the
random variable T3 would have the distribution F1

A3
where A3 = T1 +22T2.

Again, if we want a longer expected life for T3 we can use the distribution
F
23
A3

for some 23 satisfying 0 < 23 < 1. With this in mind, we define 21 = 1,
Aj =

∑j−1
i=1 2iTi and 0 < 2j < 1 for j > 1. Under these conditions, Aj+1 =

Aj +2jTj for j ≥ 1, satisfying (2.1), and (2.2) reduces to

P�Tj ≤ t�Ti;2i; 1 ≤ i ≤ j− 1� = F2j
Aj
�t�:(2.6)

We will refer to this as the supplemented life repair model. By definition,
the system enjoys a larger expected remaining life under a supplemented life
repair than it would under a minimal repair.

3. Some fundamental processes. Observing the general repair process,
as described in the previous section, will result in the following data: the
sequence of failure times 0 = S0; S1; S2; : : : and the sequences of effective
ages A1;A2; : : : and life supplements 21;22; : : : which are the sequences of
characteristics of the first repair, second repair and so on. We will observe the
process till a fixed time T < ∞. The effective age Xj prior to the jth failure
can be derived from the above as Aj+2j�Sj−Sj−1� provided that Sj ≤ T. If
Sj−1 ≤ T < Sj then we cannot observe Xj and the effective age of the system
at timeT is �Aj+2j�T−Sj−1�� which is also equal toXj∧�Aj+2j�T−Sj−1��.

We will now see that there is a close connection between repair models and
censored life-data models which enables us to use techniques developed for
censored life-data models. Define the processes N and Y by

N�t� =
∑
j

I�Xj ≤ t;Sj ≤ T�

and

Y�t� =
∑
j

I�Aj < t ≤ �Xj ∧ �Aj +2j�T−Sj−1����

where I�·� is the usual indicator function. Let δj = I�Sj ≤ T� and X̃j =Xj∧
�Aj + 2j�T− Sj−1��. Then the random variables ��X̃1; δ1�; �X̃2; δ2�; : : :� can
be viewed as observations coming from a censored life-data model. A general
repair model observed during a period of length T is akin to a survival study
where a subject j enters the study at age Aj and either dies during the study
at age Xj or leaves the study by age Aj +2j�T− Sj−1�. So that at the com-
pletion of the study only the variables ��X̃1; δ1�; �X̃2; δ2�; : : :� are actually
observed. The random variable N�t� represents the number of observed (un-
censored) deaths by time t and Y�t� the size of the risk set at time t. Since the
processes N and Y are fundamental in the estimation of the survival function
in a censored life-data model, it is reasonable to expect these processes to play
a similar role in estimating F under general repair.



GENERAL REPAIR MODELS 1145

Let 3 be the hazard function of F and define the process M =N−
∫
Yd3.

The process M plays an important role in establishing the large sample prop-
erties of the Whitaker–Samaniego estimator. Based on this observation, it is
reasonable to expect M to play a similar role in establishing large sample
properties of F̂n. We now find expressions for the mean and covariance func-
tions of M. To simplify expressions we shall use the following notation. For
j ≥ 1, let

Ñj�t� = I�Sj ≤ t�;
Ht
j�s� = I�Aj +2j�s−Sj−1� ≤ t�;

Gj�t� = I�Sj−1 < t ≤ Sj�;
3j�t� = 3�Aj +2j�t−Sj−1��;
Kt
j�s� = I�Aj < s ≤ Aj +2j�t−Sj−1��

and

M̃j�t� = Ñj�t� −
∫ t

0
Gj d3j:

We can now rewrite M as

∑
j

∫ T
Sj−1

Ht
j�s�dM̃j�s�

=
∑
j

∫ T
Sj−1

Ht
j�s�dÑj�s� −

∑
j

∫ T
Sj−1

Ht
j�s�Gj�s�d3j�s�

=
∑
j

I�Xj ≤ t;Sj ≤ T�

−
∑
j

∫ t
0
I�Aj < s ≤Xj ∧ �Aj +2j�T−Sj−1���d3�s�

=
∑
j

Ñj�T�Ht
j�Sj� −

∑
j

∫ t
0
K
T∧Sj
j �s�d3�s�

=N�t� −
∫ t

0
Y�s�d3�s� =M�t�:

(3.1)

Hence to evaluate the mean and covariance functions of M it is enough to
evaluate those of

∫ T
Sj−1

Ht
j�s�dM̃j�s�.

Lemma 3.1. For fixed t and t′,

E

[∫ T
Sj−1

Ht
j dM̃j

]
= 0 for all j;(3.2)

E

[∫ T
Si−1

Ht
i dM̃i

∫ T
Sj−1

Ht′
j dM̃j

]
= 0 for i 6= j;(3.3)
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E

[∫ T
Sj−1

Ht
j dM̃j

∫ T
Sj−1

Ht′
j dM̃j

]
=E

[∫ t∧t′

0
K
T∧Sj
j �1− 13�d3

]
for all j.(3.4)

Proof. For each j, let Fj = σ�Aj;2jyT1; : : : ;Tj−1�. The idea behind the
proof is quite simple. Upon conditioning on Fj, we are left with expressions
of the form

∫
g�syAj;2j; Sj−1�P�Xj > h�syAj;2j; Sj−1��Fj�d3�s�

for some functions g;h. These expressions are then easily simplified using
(2.2). We now carry out the calculations.

To prove (3.2), note that

E

[∫ T
Sj−1

Ht
jGj d3j�Fj

]
= E

[∫ t
0
K
T∧Sj
j d3�Fj

]

=
∫ t

0
KT
j �s�P�Xj ≥ s�Fj�d3�s�

=
∫ t

0
KT
j �s�

dF�s�
F̄�Aj�

= 1− F̄�t ∧ �Aj +2j�T−Sj−1��
F̄�Aj�

= E�Ñj�T�Ht
j�Sj��Fj�

= E
[∫ T
Sj−1

Ht
j dÑj�Fj

]
:

This proves (3.2). From this it follows that for i < j,

E

[∫ T
Si−1

Ht
i dM̃i

∫ T
Sj−1

Ht′
j dM̃j�Fj

]
=
∫ T
Si−1

Ht
i dM̃iE

[∫ T
Sj−1

Ht′
j dM̃j�Fj

]
= 0:

This proves (3.3). To prove (3.4), we assume that t < t′, for simplicity. By using
the identity

∫ T
Sj−1

Ht
j dM̃j = Ñj�T�Ht

j�Sj� −
∫ T

0 Ht
jGj d3j, we obtain

E

[∫ T
Sj−1

Ht
j dM̃j

∫ T
Sj−1

Ht′
j dM̃j�Fj

]

= E�Ñj�T�Ht
j�Sj�Ht′

j�Sj��Fj�

− E

[
Ñj�T�Ht

j�Sj�
∫ T

0
Ht′
jGj d3j�Fj

]

−E
[
Ñj�T�Ht′

j�Sj�
∫ T

0
Ht
jGj d3j�Fj

]

−E
[∫ T

0
Ht
jGj d3j

∫ T
0
Ht′
jGj d3j�Fj

]
:

(3.5)
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Now,

E�Ñj�T�Ht
j�Sj�Ht′

j�Sj��Fj� = P�Xj ≤ t ∧ �Aj +2j�T−Sj−1���Fj�

= 1− F̄�t ∧ �Aj +2j�T−Sj−1���
F̄�Aj�

=
∫ t

0
KT
j �s�

F̄−�s�
F̄�Aj�

d3�s�

(3.6)

and

E�Ñj�T�Ht
j�Sj�

∫ T
0
Ht′
jGj d3j�Fj�

= E
[∫ t

0
KT
j �s�I�s ≤Xj ≤ t ∧ �Aj +2j�T−Sj−1���d3�s��Fj

]

=
∫ t

0
KT
j �s�P�s ≤Xj ≤ t ∧ �Aj +2j�T−Sj−1���Fj�d3�s�

=
∫ t

0
KT
j �s�

F̄−�s� − F̄�t ∧ �Aj +2j�T−Sj−1���
F̄�Aj�

d3�s�:

(3.7)

By symmetry,

E�Ñj�T�Ht′
j�Sj�

∫ T
0
Ht
jGj d3j�Fj�

=
∫ t

0
KT
j �s�

F̄−�s� − F̄�t′ ∧ �Aj +2j�T−Sj−1���
F̄�Aj�

d3�s�:
(3.8)

Finally,

E

[∫ T
0
Ht
jGj d3j

∫ T
0
Ht′
jGj d3j�Fj−1�

= E
[∫ t

0

∫ t′

0
KT
j �s�KT

j �u�I�Xj ≥ s ∨ u�d3�s�d3�u��Fj

]

=
∫ t

0

∫ t′

0
KT
j �s�KT

j �u�P�Xj ≥ s ∨ u�Fj�d3�s�d3�u�

=
∫ t

0

∫ t′

u
KT
j �u�KT

j �s�
F̄−�s�
F̄�Aj�

d3�s�d3�u�

+
∫ t′

0

∫ t
s
KT
j �u�KT

j �s�
F̄−�u�
F̄�Aj�

d3�u�d3�s�

+
∫ t

0
KT
j �s�

F̄−�s�
F̄�Aj�

13�s�d3�s�(3.9)
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=
∫ t

0
KT
j �u�

F�t′ ∧ �Aj +2j�T−Sj−1��� −F�u�
F̄�Aj�

d3�u�

+
∫ t

0
KT
j �s�

F�t ∧ �Aj +2j�T−Sj−1��� −F�s�
F̄�Aj�

d3�s�

+
∫ t

0
KT
j �s�

F̄−�s�
F̄�Aj�

13�s�d3�s�:

Substituting (3.6), (3.7), (3.8) and (3.9) into (3.5) we get

E

[∫ T
Sj−1

Ht
j dM̃j

∫ T
Sj−1

Ht′
j dM̃j�Fj

]
=
∫ t

0
KT
j �s�

F̄−�s�
F̄�Aj�

�1− 13�s��d3�s�

=
∫ t

0
KT
j �s�P�Xj ≥ s�Fj��1− 13�s��d3�s�

= E
[∫ t

0
K
T∧Sj
j �s��1− 13�s��d3�s��Fj

]
:

This proves (3.4) and establishes Lemma 3.1. 2

From this result we obtain the following expressions for the mean and
covariance functions of M.

Theorem 3.1.

EM = EN−
∫
EYd3 = 0;(3.10)

Cov�M�t�M�t′�� =
∫ t∧t′

0
EY�1− 13�d3:(3.11)

Proof. From (3.1) and (3.2) it follows that

EM = E
∑
j

∫ T
Sj−1

Ht
j�s�dM̃j�s� = 0:

This proves (3.10). To prove (3.11) we assume that t < t′ and use equations
(3.1), (3.3) and (3.4) to obtain the following:

E�M�t�M�t′�� = E
∑
i;j

∫ T
Si−1

Ht
i dM̃i

∫ T
Sj−1

Ht′
j dM̃j

= E
∑
j

∫ t
0
K
T∧Sj
j �1− 13�d3

=
∫ t

0
EY�1− 13�d3:

This completes the proof. 2
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4. The estimator and its uniform consistency. Suppose that we ob-
serve n independent copies of the processes N and Y on a finite interval
�0;T�. We will look at the problem of estimating F based on these observa-
tions. Throughout the rest of the paper, we will assume that (i) F�T� < 1
and (ii) F is IFR. Assumption (i) allows us to bound EY�t� away from zero
uniformly on �0;T�. This is pivotal in proving uniform consistency of the es-
timator. Define Ñ�t� = sup�j ≥ 1x Sj ≤ t�. The random variable Ñ�t� is the
number of system failures by time t. Let N∗�t� = sup�j ≥ 1x S∗j ≤ t� where
�S∗j� is the minimal repair process based on F. Assumption (ii) gives us

P�S∗k −S∗k−1 > x�S∗k−1 = t� ≥
F̄�T+ x�
F̄�T�

for all k ≥ 1 and t ∈ �0;T�. It follows that the evaluation at time t of a re-
newal process having recurrence time distribution G�x� = 1− F̄�T+x�/F̄�T�
stochastically dominates N∗�t� on �0;T� which in turn stochastically domi-
nates Ñ�t�. (The counting process N1 stochastically dominates N2 on �0;T�
if P�N1�t� ≥ n� ≥ P�N2�t� ≥ n� for all n and t ∈ �0;T�.) This guarantees
that Ñ�T� has finite moments of all orders. We will need this in proving weak
convergence.

Let Nn and Yn be the sum of the first n independent copies of N and Y,
respectively. We note that from the viewpoint of a life-data model, dF�t�/�1−
F−�t�� represents the instantaneous failure rate at time t. A straightforward
way of estimating this failure rate is by using the ratio of the number of
observed deaths at time t to the number at risk at time t. Hence, a natural
estimator of the hazard function 3 is given by

3̂n�t� =
∫ t

0

JndNn

Yn

;

where Jn�t� = I�Yn�t� > 0� for t ∈ �0;T�. The estimator 3̂n is referred to as
the Aalen–Nelson estimator of 3. Since F�t� =

∫ t
0�1−F−�d3, it is reasonable

to require an estimator F̂n of F to satisfy

F̂n�t� =
∫ t

0
�1− F̂n−�d3̂n:(4.1)

Equation (4.1) is sometimes referred to as a Volterra integral equation. Its
solution is given by

ˆ̄Fn�t� =
∏
s≤t
�1− d3̂n�s�� =

∏
s≤t
�1− 13̂n�s��;

where
∏
s≤t�1 − d3̂n�s�� denotes the product integral [see Gill and Johansen

(1990)].
The rest of this paper will be devoted to a study of the large sample prop-

erties of F̂n. Under a minimal repair assumption, the process M of Section 3
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turns out to be a martingale. This enabled Hollander, Presnell and Sethu-
raman (1992) to use martingale techniques in proving large sample results
for the Whitaker–Samaniego estimator. For the general repair model, finding
a suitable filtration with respect to which M is a martingale proves to be a
formidable task. A lot of the difficulty is due to the fact that, in general, the
Xj’s are not monotonic. This makes the existing methods for computing a
compensator inapplicable in the general case. One could try working with the
failure process, say Ñ, associated with the Sj’s instead of the failure process
N associated with the Xj’s. Since the Sj’s are strictly increasing it would not
be too hard to find the compensator of Ñ. The problem would then turn to
transforming results on Ñ into results on N. Unfortunately, we found this
to be an equally formidable task. However, a closer look at Theorem 3.1 re-
veals that although M may not be a martingale with respect to the history of
N it nevertheless exhibits the same mean and covariance structure it would
have if it were a martingale. Fortunately these features, in conjunction with
techniques used by Gill (1980) for Markov renewal processes, are sufficient to
prove large sample results.

Since most of the distributions considered in reliability are continuous, we
will assume throughout the rest of the paper that F is continuous. This will
help us avoid unnecessary complications. This by no means limits our results
to the continuous case. Most of our arguments carry over to the discontinuous
case with very little, if any, modifications.

The process Y�t� can be written as Y1�t� −Y2�t�, where Y1�t� and Y2 are
two left-continuous increasing processes defined by

Y1�t� =
∑
j

I�Aj < t; Sj−1 ≤ T�

and

Y2�t� =
∑
j

I�X̃j < t; Sj−1 ≤ T�;

where X̃j = Xj ∧ �Aj + 2j�T − Sj−1��. Let Y1n and Y2n be the sum of the
first n independent realizations of Y1 and Y2, respectively. Then the process
F̂n can be considered as the result of the three mappings

(
Nn

n
;
Y1n

n
;
Y2n

n

)
→
(
Nn

n
;
Yn

n

)
→ 3̂n→ F̂n(4.2)

going through the spaces

D�0;T� ×D−�0;T� ×D−�0;T� → D�0;T� ×D−�0;T� → D�0;T� → D�0;T�:

Under the supremum norm � · �, the first mapping is clearly continuous. To
show that the second mapping is continuous we use the following result.
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Lemma 4.1. Let N′n = Nn/n, Y′n = Yn/n and α = inf �0;T�EY�t� . Then
with probability 1,

∥∥∥∥3̂n −
∫ dEN
EY

∥∥∥∥
T

0
≤ �Y

′
n −EY�T0 � EN�T� + �N′n −EN�T0 �

α�α− �Y′n −EY�T0 �

+ 2
α
�N′n −EN�T0

(4.3)

for sufficiently large n.

Proof. Since F�T� < 1 then P�S1 > T� > 0. It follows that for t ∈ �0;T�,

EY�t� ≥ P�Y�t� > 0� ≥ P�Y�T� > 0� ≥ P�S1 > T� > 0:

Hence, α > 0 and

3̂n�t� −
∫
�0; t�

dEN

EY
=
∫
�0; t�

dN′n − dEN
EY

+
∫
�0; t�

(
Jn
Y′n
− 1
EY

)
dN′n

= N
′
n�t� −EN�t�
EY�t� −

∫
�0; t�
�N′n −EN�d

(
1
EY

)

+
∫
�0; t�

(
Jn
Y′n
− 1
EY

)
dN′n:

This implies that

∥∥∥∥3̂n −
∫ dEN
EY

∥∥∥∥
T

0
≤ 1
α
�Y′n −EY�T0

∥∥∥∥
∫
�0;·�

d��N′n −EN� +EN�
EY− �EY−Y′n�

∥∥∥∥
T

0

+ 2
α
�N′n −EN�T0

≤ �Y
′
n −EY�T0 � EN�T� + �N′n −EN�T0 �

α�α− �Y′n −EY�T0 �

+ 2
α
�N′n −EN�T0 : 2

Now, by the Glivenko–Cantelli theorem,

max
{∥∥∥∥
Nn

n
−EN

∥∥∥∥
T

0
;

∥∥∥∥
Y1n

n
−EY1

∥∥∥∥
T

0
;

∥∥∥∥
Y2n

n
−EY2

∥∥∥∥
T

0

}
→ 0 a.s.

From (4.3) and the continuity of the first mapping in (4.2), we get

∥∥∥∥3̂n −
∫ dEN
EY

∥∥∥∥
T

0
→ 0 w.p.1.
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But from (3.10) with t ∈ �0;T�
∫ t

0

dEN

EY
= 3�t�:

Hence,

�3̂n − 3�T0 → 0 w.p.1 as n→∞.(4.4)

Uniform consistency now follows from (4.4) and the continuity of the product
integral as shown in the next result.

Theorem 4.1. �F̂n�t� −F�t��T0 → 0 w.p.1 as n→∞.

Proof. Since 3̂n�t� is increasing in t for each n and 3̂n�T� → 3�T� a.s.
it follows that lim sup �3̂n���0;T�� <∞ w.p.1. This guarantees the continuity,
under the supremum norm, of the last mapping on (4.2). [See Theorem 7 of
Gill and Johansen (1990).] 2

5. Results on weak convergence. Define Zn ≡
√
n�F̂n −F�/F̄ and the

process Mn by

Mn =Nn −
∫
Yn d3:

Now, by Lemma 7.2.1 of Shorack and Wellner

F̂n�t� −F�t�
F̄�t�

=
∫ t

0

1− F̂n

1−F d�3̂n − 3�

=
∫ t

0

( ˆ̄Fn−
F̄

Jn
Yn

)
dMn

for all t ∈ �0;T�. Hence

Zn�t� =
∫ t

0

1− F̂n−
1−F

Jn
Yn/n

dWn;(5.1)

whereWn = n−1/2Mn. Note that from the CLT, the finite-dimensional distribu-
tions of Wn converge to that of a Gaussian process. This suggests that it might
be possible to obtain a weak convergence result for Wn and, consequently, for
Zn in view of (5.1).

Theorem 5.1. Let W be a zero mean Gaussian process with independent
increments and variance function Var�W�t�� =

∫ t
0 EYd3. Then Wn ⇒ W on

D�0;T�.

Proof. This theorem is analogous to that of Lemma 3 in Gill (1980) and
is proved similarly. Note that Mn is the sum of n independent copies of the
process M. That the finite-dimensional distributions of Wn converge to that
of W follows from the CLT. It remains to prove tightness. To prove this, it
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suffices to show that there exist a nondecreasing right-continuous function G
and η > 1/2 such that

n−2E��Mn�u� −Mn�t��2�Mn�t� −Mn�s��2� ≤ �G�u� −G�t��η�G�t� −G�s��η

for 0 ≤ s ≤ t ≤ u ≤ T [see Billingsley (1968), page 133]. For notational
convenience denote 1stH ≡H�t� −H�s�. Then

n−2E�1tuMn · 1stMn�2 = n−1E�1tuM · 1stM�2

+ n− 1
n

E�1tuM�2E�1stM�2

+ 2
n− 1
n
�E�1tuM · 1stM��2:

(5.2)

Recall that Ñ�t� = sup�j ≥ 1x Sj ≤ t�. Let V = Ñ+ 1 and B ≥ �1−F�T��−1.
Then

E�1tuM · 1stM� = 0:(5.3)

E�1tuM�2 =
∫ u
t
EYd3

≤ BEV�T��1tuF�α for any t ≤ u and 0 < α < 1:
(5.4)

�1tuM · 1stM� ≤ �1tuN · 1stN� +
(∫ u

t
Yd3

)(∫ t
s
Yd3

)

+ 1tuN
∫ t
s
Yd3+ 1stN ·

∫ u
t
Yd3

≤ ��1+B�V�T��2:

(5.5)

From (5.3) and Hölder’s inequality it follows that for α1 = 1− β1 ∈ �0;1�,

E�1tuN · 1stN� +E
(∫ u

t
Yd3

∫ t
s
Yd3

)

= E
(
1tuN

∫ t
s
Yd3

)
+E

(
1stN

∫ u
t
Yd3

)

≤ BE�1tuN ·V�T���1stF�
+BE�1stN ·V�T���1tuF�

≤ B�EV�T�1+1/β−1
1 �β1�E�1tuN��α1�1stF�α1

+B�EV�T�1+1/β−1
1 �β1�E�1stN��α1�1tuF�α1 :

Now E�1tuN� ≤ B�EV�T���1tuF� for t ≤ u. Hence,

E��1tuM · 1stM�� ≤ C1�1tuF · 1stF�α1(5.6)
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for some constant C1 provided EV�T�1+1/β−1
1 < ∞. From (5.5), (5.6) and

Hölder’s inequality it follows that for some α2 = 1 − β2 ∈ �0;1� and con-
stant C2,

E�1tuM · 1stM�2 = E��1tuM · 1stM��α2 �1tuM · 1stM��1+β2�
≤ �1+B�2+2β2�E�1tuM · 1stM��α2�EV�T�2+2β−1

2 �β2

≤ C2�1tuF · 1stF�α1α2

(5.7)

provided EV�T�2+2β−1
2 < ∞. Since Ñ�T� has finite moments we can choose

β1 < 1/6 and β2 < 2/5 so that α1α2 > 1/2. Substituting (5.3), (5.4) and (5.7)
into (5.2), we get

n−2E�1tuMn · 1stMn�2 ≤ C�1tuF · 1stF�η

for some constant C and η > 1/2. This completes the proof. 2

From the Skorohod–Dudley–Wichura theorem [see, e.g., Shorack and Well-
ner (1986), Theorem 2.3.4] there exist processes W′n and W′ having the same
distribution as Wn and W, respectively, such that

ρS�W′n;W′� → 0;

where ρS is the Skorohod metric on D�0;T�. In light of this, we will assume
that we actually have ρS�Wn;W� → 0. To prove convergence results for Xn,
however, we would need uniform convergence. If we can show that W has
almost surely continuous paths, then we would have uniform convergence,
since under such a condition the supremum norm distance is equivalent to
Skorohod distance. That W has almost surely continuous paths is shown in
the next theorem.

Theorem 5.2. �Wn�t� −W�t��T0 → 0 w.p.1 as n→∞.

Proof. From Theorem 3.1 and Chebyshev’s inequality, we get

P��M�t� −M�t0�� ≥ ε� ≤
�
∫ t
t0
EYd3�
ε2

→ 0 as �t− t0� → 0

for each ε > 0 and t0 ∈ �0;T�; that is, M is stochastically continuous on �0;T�.
This implies that W has almost surely continuous sample paths [see Theorem
2 of Hahn (1978)]. Hence the result. 2

Remark. If F is not continuous, then M may not be stochastically con-
tinuous. Hence, Theorem 5.2 may fail to hold. Fortunately, we can construct
versions of Wn and W so that Theorem 5.2 holds for these versions. [See
Lemma 4 in Gill (1980).]

Theorem 5.3. Define Z�t� =
∫ t

0�EY�−1 dW. Then �Zn −Z�T0 → 0 w.p.1.
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Proof. Let Hn = � ˆ̄Fn−/F̄��nJn/Yn�−1. It follows from (5.1) that for t ∈
�0;T�, Zn�t� =

∫ t
0 Hn dWn. The result now follows since �Hn−�EY�−1�T0 → 0

w.p.1 and �Wn −W�T0 → 0 w.p.1 [see Lemma 5 of Gill (1980)]. 2

Now since the supremum norm distance is larger than the Skorohod dis-
tance, ρS, it follows that ρS�Zn;Z� → 0 w.p.1. This gives us the following
result.

Theorem 5.4. Zn ≡
√
n�F̂n −F�/F̄⇒ Z on D�0;T� .

The proof is analogous to that of Corollary 2.3.1 of Shorack and Wellner
(1986).

Corollary 5.1. Let B denote Brownian motion on �0;∞� and

C�t� =
∫ t

0

1
EY

dF

1−F:

Then
√
n�F̂n −F�/F̄⇒ B�C� on D�0;T�.

Proof. Note that �W�t��t∈�0;T� is a square integrable martingale with re-
spect to Ft = σ�W�s�x s ≤ t�. Furthermore, it is easily checked that �W�t =∫ t

0 EYd3. Hence

Cov�Z�s�;Z�t�� = E�Z�s ∧ t��2

= E
∫ s∧t

0
�EY�−2 d�W�

=
∫ s∧t

0
�EY�−1 d3 = C�s ∧ t�:

This proves the result. 2

Corollary 5.2. Let B◦ denote a Brownian bridge on �0;1� andK = C/�1+
C�. Then

√
n
K̄

F̄
�F̂n −F� ⇒ B◦�K� on D�0;T�:

Proof. Let

B◦�t� = �1− t�B
(

t

1− t

)
for t ∈ �0;K�T��:

The result follows immediately. 2
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6. A Hall–Wellner type confidence band. In this section we construct
a confidence band for F similar to the bands of Hall and Wellner (1980) for the
censored life-data model. We then present results of some simulation studies
of the coverage probabilities of the band using repair models discussed in
Section 2.

For t in �0;T�, define Ln�t� = I�F̂n�t� < 1� and let

Ĉn�t� =
∫ t

0

JnLn
Yn/n

dF̂n

1− F̂n

:

Define

K̂n�t� =
Ĉn�t�

1+ Ĉn�t�
:

For t such that F̂n�t� = 1, set K̂n�t� = 1. Then the result of Corollary 5.2
suggests a confidence band for F of the form

F̂n ± n−1/2λα
ˆ̄Fn/
ˆ̄Kn;(6.1)

where λα is such that P�supt∈�0;1� �B◦�t�� ≤ λα� = 1 − α. This gives our band
an asymptotic confidence level of at least 100�1−α�%. To justify this band we
need the following result.

Lemma 6.1. �K̂n −K�T0 ⇒ 0 w.p.1.

Proof. For t ∈ �0;T�,

�Ĉn�t� −C�t�� ≤
∣∣∣∣
∫ t

0

[
JnLn

�Yn/n��1− F̂n�
− 1
EY�1−F�

]
dF̂n

∣∣∣∣

+
∣∣∣∣
∫ t

0

1
EY�1−F��dF̂n − dF�

∣∣∣∣:

Note that α ≡ inf t∈�0;T� EY�t� > 0 (Lemma 4.1) and that supt∈�0;T� F�t� ≤
F�T� < 1. These together with the uniform consistency of Yn/n and F̂n imply
that JnLn = 1 on �0;T� with probability 1 for sufficiently large n. Hence, with
probability 1,

�Ĉn�t� −C�t�� ≤
(

2

αF̄�T�

)2

��Yn/n��1− F̂n� −EY�1−F��T0

+
∥∥∥∥

1
EY�1−F�

∥∥∥∥
T

0
�F̂n −F�T0

for sufficiently large n. Since Yn/n and F̂n are uniformly consistent then so
is Ĉn. The result follows. 2
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This leads to the next theorem which justifies our confidence band.

Theorem 6.1.
√
n� ˆ̄Kn/

ˆ̄Fn��F̂n −F� ⇒ B◦�K� on D�0;T� .

Proof. The result follows from the identity

√
n
ˆ̄Kn

ˆ̄Fn

�F̂n −F� =
√
n
K̄

F̄
�F̂n −F� +

[ ˆ̄Kn

ˆ̄Fn

− K̄
F̄

]
�√n�F̂n −F��: 2

Remarks. (i) In practice, it may be that the data obtained lead to
F̂n�t0� = 1 for some 0 < t0 < T. When this happens, the data obtained give
us a confidence band only on the interval �0; σ� where σ = inf�t ∈ �0;T�x
F̂n�t� = 1�.

(ii) Let X�1�;X�2�; : : : ;X�r� be the distinct ordered values of the X’s whose
corresponding failure times are within �0;T�. Also, let δj be the number of
observations with value X�j�. Then for computational purposes we note that

ˆ̄Fn�t� =
∏

X�j�≤t

(
1− δj

Yn�X�j��

)

and

Ĉn�t� = n
∑

X�j�≤t

F̂n�X�j�� − F̂n�X�j−1��
Yn�X�j�� ˆ̄Fn�X�j��

:

We now consider simulation studies of our confidence bands. For our first
repair model, we use Kijima’s Model II where the Dj’s are taken to be uni-
formly distributed on �0;1�. We call this Model A. We compute the coverage
probabilities of the confidence bands for Model A with gamma and Weibull
distributions, using simulation studies. The results of the simulation studies
are shown in Table 1 for the gamma distribution and in Table 3 for the Weibull
distribution. For the gamma distribution we chose T = 10 and for the Weibull
we chose T = 2.

Table 1
Coverage probabilities of 100p% confidence bands for gamma(α) under Model A

p 5 0:90 p 5 0:95 p 5 0:99

n a 5 3:0 a 5 5:0 a 5 7:0 a 5 3:0 a 5 5:0 a 5 7:0 a 5 3:0 a 5 5:0 a 5 7:0

10 0.8808 0.8990 0.9080 0.9242 0.9356 0.9520 0.9704 0.9766 0.9844
20 0.8916 0.9080 0.9062 0.9352 0.9514 0.9522 0.9794 0.9848 0.9888
30 0.8900 0.9056 0.9074 0.9366 0.9494 0.9516 0.9808 0.9852 0.9870
50 0.8922 0.9000 0.9080 0.9394 0.9478 0.9552 0.9852 0.9878 0.9882

100 0.8988 0.9058 0.9002 0.9464 0.9504 0.9474 0.9864 0.9874 0.9888
200 0.8960 0.9020 0.9024 0.9462 0.9500 0.9512 0.9862 0.9906 0.9908
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Table 2
Coverage probabilities of 100p% confidence bands for gamma(α) under Model B

p 5 0:90 p 5 0:95 p 5 0:99

n a 5 3:0 a 5 5:0 a 5 7:0 a 5 3:0 a 5 5:0 a 5 7:0 a 5 3:0 a 5 5:0 a 5 7:0

10 0.7406 0.7936 0.8478 0.7944 0.8448 0.8974 0.8732 0.9134 0.9506
20 0.8146 0.8442 0.8838 0.8716 0.9024 0.9318 0.9364 0.9602 0.9730
30 0.8454 0.8722 0.8914 0.8988 0.9158 0.9368 0.9568 0.9714 0.9780
50 0.8650 0.8826 0.9036 0.9204 0.9338 0.9430 0.9750 0.9814 0.9854

100 0.8878 0.8920 0.8934 0.9390 0.9444 0.9480 0.9850 0.9852 0.9898
200 0.8986 0.8932 0.9096 0.9410 0.9492 0.9500 0.9856 0.9896 0.9878

For our second repair model, we use the supplemented-life repair model
with 2j =

∏j−1
i=1 Di where theDj’s are uniformly distributed on �0:8;1�. We re-

fer to this as Model B. We compute the coverage probabilities of the confidence
bands for Model B. In the context of our interpretation of the supplemented-
life repair model, restricting the Dj’s to be at least 0.8 restricts the increase in
the expected remaining life to be at most 25% of the original. This seems to be
a reasonable assumption; hence the choice of the interval. The results of the
simulation are shown in Table 2 for the gamma distribution and in Table 4
for the Weibull distribution. We use the same value for T as in Model A.

All the results are based on 5,000 iterations of the simulation. To generate
a sample for the gamma distribution, we make use of an algorithm by Dag-
punar (1978) on sampling variates from a truncated gamma distribution. For
the Weibull case, let Z1;Z2; : : : ;Zr be a random sample from a standard ex-
ponential distribution. It is not difficult to see that setting Xj = �Aα

j +Zj�1/α
produces the desired repair process for a Weibull with parameter α under
Model A and setting Xj = �Z1+Z2+ · · · +Zj�1/α produces the desired repair
process for Model B. To generate the exponentials we used the function REXP
given by Marsaglia and Tsang (1984).

In general, the simulation seems to indicate that the band performs well
in both cases with as low a sample size as 20 needed to get within 2% of

Table 3
Coverage probabilities of 100p% confidence bands for Weibull(α) under Model A

p 5 0:90 p 5 0:95 p 5 0:99

n a 5 1:0 a 5 1:5 a 5 2:0 a 5 1:0 a 5 1:5 a 5 2:0 a 5 1:0 a 5 1:5 a 5 2:0

10 0.9044 0.8934 0.9018 0.9452 0.9400 0.9406 0.9792 0.9774 0.9770
20 0.8996 0.8942 0.9034 0.9444 0.9386 0.9464 0.9832 0.9800 0.9824
30 0.9038 0.9010 0.9042 0.9460 0.9474 0.9458 0.9872 0.9862 0.9840
50 0.8944 0.8986 0.9018 0.9506 0.9462 0.9466 0.9870 0.9872 0.9868

100 0.9056 0.9042 0.8998 0.9482 0.9474 0.9472 0.9890 0.9874 0.9880
200 0.9094 0.9016 0.9114 0.9522 0.9502 0.9506 0.9878 0.9892 0.9896
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Table 4
Coverage probabilities of 100p% confidence bands for Weibull(α) under Model B

p 5 0:90 p 5 0:95 p 5 0:99

n a 5 1:0 a 5 1:5 a 5 2:0 a 5 1:0 a 5 1:5 a 5 2:0 a 5 1:0 a 5 1:5 a 5 2:0

10 0.8590 0.8136 0.7776 0.9050 0.8678 0.8344 0.9526 0.9318 0.9064
20 0.8816 0.8562 0.8398 0.9254 0.9110 0.8950 0.9732 0.9634 0.9524
30 0.8876 0.8710 0.8608 0.9340 0.9212 0.9088 0.9766 0.9712 0.9638
50 0.8972 0.8858 0.8736 0.9416 0.9342 0.9250 0.9838 0.9766 0.9780

100 0.9056 0.8980 0.8868 0.9510 0.9420 0.9398 0.9864 0.9868 0.9842
200 0.9104 0.9110 0.8938 0.9546 0.9468 0.9470 0.9888 0.9888 0.9886

the desired confidence level in Model A. In Model B, a sample size of 50 is
sufficient in most cases to attain the same accuracy. The discrepancy is due
mainly to the fact that, in view of the way the data are generated, there are
more failure times per sample under Model A than there are under Model B.
In most instances, the band performed better as F�T� moved further away
from 1 (i.e, large values of α for gamma and small values for Weibull). This is
expected because of the reliance of our large sample results on the assumption
that F�T� < 1. In the gamma case, this could also be attributed to the low
efficiency exhibited by the data generating process when obtaining variates
close to the tails of the distribution. Finally, the results seem to indicate that
a larger sample size is needed to attain the confidence level of 99% than to
attain either a 90% or 95% confidence level.
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