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A CHARACTERIZATION OF MONOTONE UNIDIMENSIONAL
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By Brian W. Junker1 and Jules L. Ellis2
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Recently, the problem of characterizing monotone unidimensional la-
tent variable models for binary repeated measures was studied by Ellis
and van den Wollenberg and by Junker. We generalize their work with a
de Finetti–like characterization of the distribution of repeated measures
X = �X1;X2; : : :� that can be represented with mixtures of likelihoods
of independent but not identically distributed random variables, where
the data satisfy a stochastic ordering property with respect to the mixing
variable. The random variables Xj may be arbitrary real-valued random
variables. We show that the distribution of X can be given a monotone
unidimensional latent variable representation that is useful in the sense
of Junker if and only if this distribution satisfies conditional association
(CA) and a vanishing conditional dependence (VCD) condition, which as-
serts that finite subsets of the variables in X become independent as we
condition on a larger and larger segment of the remaining variables in X.
It is also interesting that the mixture representation is in a certain ordi-
nal sense unique, when CA and VCD hold. The characterization theorem
extends and simplifies the main result of Junker and generalizes methods
of Ellis and van den Wollenberg to a much broader class of models.

Exchangeable sequences of binary random variables also satisfy both
CA and VCD, as do exchangeable sequences arising as location mixtures. In
the same way that de Finetti’s theorem provides a path toward justifying
standard i.i.d.-mixture components in hierarchical models on the basis of
our intuitions about the exchangeability of observations, this theorem jus-
tifies one-dimensional latent variable components in hierarchical models,
in terms of our intuitions about positive association and redundancy be-
tween observations. Because these conditions are on the joint distribution
of the observable data X, they may also be used to construct asymptotically
power-1 tests for unidimensional latent variable models.

1. Introduction. Latent variable models for measurement are extremely
common in psychometrics [e.g., Bartholomew (1987)], developmental and cog-
nitive psychology [e.g., DiBello, Stout and Roussos (1995), Huguenard et al.
(1996) and Sijtsma and Junker (1996)], medical diagnosis and psychiatric epi-
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demiology [e.g., Eaton and Bohrnstedt (1989) and Junker and Pilkonis (1993)],
multiple recapture methods for estimating population sizes [e.g., George and
Robert (1992) and Darroch, Fienberg, Glonek and Junker (1993)], as well as ed-
ucational testing, systems reliability, population genetics, geology, chemistry,
archaeology and other areas as surveyed by Holland and Rosenbaum (1986)
and Basilevsky (1994). Typically one is interested in measuring (making in-
ferences on) a latent variable 2, not directly observed, on the basis of repeated
noisy “looks” at 2 via the repeated measures X = �X1;X2; : : :�. Unlike the
usual development of hierarchical Bayes and mixture models, the Xj’s are not
assumed to be exchangeable. Most common models for this situation (factor
analysis, item response models, ordered latent class models etc.) entail the
following assumptions:

1. conditional independence (CI),
∐

X�2, theXj are conditionally independent
(but perhaps not identically distributed), given 2;

2. unidimensionality (U), 2 ∈ R, the real line;
3. monotonicity (M), P�Xj > t�θ� is nondecreasing in θ, for all j and all t.

The notation
∐

X�2 for conditional independence follows Dawid’s (1979)
convention. The distribution for 2 need not have support on the whole real
line; thus both latent variable models (in which 2 is continuous) and ordered
latent class models (in which 2 is discrete) may be considered. The stochastic
ordering property M incorporates the notion that the Xj’s really are “mea-
sures” of 2; for example, 2 may be a disease state and the Xj’s may be
symptoms, or 2 may be a level of achievement and the Xj’s may code correct
and incorrect answers to test questions. We will refer to the three assumptions
CI, U and M together as the monotone unidimensional representation. [Junker
(1993) called the same representation “strictly unidimensional,” to distinguish
it from the “essentially unidimensional” models of Stout (1990).]

From the point of view of model building, both in psychometrics and in
general, it is important that these assumptions restrict the finite-dimensional
distributions of X in some way. Therefore we note that, while these three
assumptions may be weakened in various ways, none may be entirely omitted.
For example, it is easy to see [e.g., Suppes and Zanotti (1981) and Billingsley
(1986), page 276] that if condition M is fully relaxed, then any distribution for
X can be represented as a unidimensional, conditionally independent mixture.
A more complete discussion of these assumptions, from a similar point of view,
is given by Junker (1993).

For continuous Xj’s a familiar example of the monotone unidimensional
representation is the one-dimensional factor analysis model,

Xj = aj2+ εj; i = 1;2; : : : ;

where the aj are fixed nonnegative constants and the εj are distributed inde-
pendently of each other and of 2. If the aj ≡ 1, this is also known as the errors-
in-variables model. For discrete Xj, item response models provide a conve-
nient example: letting Xj ∈ �0;1� and assuming each P�Xj = 1�θ� ≡ Pj�θ�
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is nondecreasing in θ, these models state that, for each J,

P�X1 = x1; : : : ;XJ = xJ� ≡ p�x1; : : : ; xJ�

=
∫ J∏
j=1

Pj�θ�xj�1−Pj�θ��1−xj dF�θ�:
(1)

The problem we take up in this paper is as follows. In practice we only get to
see i.i.d. replications of the repeated measures vector XJ = �X1;X2; : : : ;XJ�,
and we must guess what model, or class of models, makes sense. Partly this
is, and should be, done on substantive grounds, but it is also important to
ask what features the joint distribution of �X1;X2; : : : ;XJ� must satisfy in
order for the monotone unidimensional representation to hold. Thinking about
these features is helpful in deciding whether a unidimensional latent variable
model is appropriate for the data.

Our main result is an asymptotic characterization of monotone unidi-
mensional representations that satisfy a consistent estimation condition, in
terms of two easy-to-state conditions on the joint distribution of an infinite
sequence of measures �X1;X2; : : :� into which �X1;X2; : : : ;XJ� has been
embedded. For example, if �X1;X2; : : : ;XJ� are questions on a math test,
then �XJ+1;XJ+2; : : :� are just more math questions of a similar nature. Such
an embedding, conceptually not much different from considering an infinite
sequence of random variables in the law of large numbers or the central limit
theorem, was introduced formally for examining latent structure by Stout
(1987, 1990) as a way of addressing fundamental questions of identifiability
and consistent estimation inherent in mixture representations. The charac-
terization theorem we present extends and simplifies the main results of
Junker (1993) and generalizes the methods of Ellis and van den Wollenberg
(1993) to a much broader class of models.

There is a natural analogue for this problem in de Finetti’s characterization
of exchangeability. For example, for binary data, de Finetti’s theorem says that
the finite-dimensional distributions of X are invariant under permutations of
theXj’s (i.e., they are exchangeable) if and only if a representation of the form
(1) holds, with each Pj�θ� equal to a common P�θ� [e.g., Galambos (1982)].
Olshen (1974) and Aldous (1981) present related characterizations for the
distributions of more general exchangeable sequences X. Many results in this
direction essentially determine what structure the tail σ-field of X (defined in
Section 3) must have in order to produce a representation like (1), and we
will take this tack also. A rather different direction has been pursued by, for
example, Diaconis and Freedman (1984) and Lauritzen (1988).

Note, however, that our situation is somewhat different from those in which
exchangeability of the Xj might be assumed: in most applications in which
the monotone unidimensional representation would be attractive, it is known
that the measures Xj do not have the same marginal distributions (e.g., some
test questions are hard and others are easy), but there are not usually reliable
covariates upon which to condition to obtain a partially exchangeable struc-
ture. We use the information we have by not assuming identical marginal
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distributions in the monotone unidimensional representation; thus we seek
conditions that in some sense generalize exchangeability to representations
in which the Xj are conditionally independent but not identically distributed.

In Section 2 we introduce the two constraints on the joint distribution
of �X1;X2; : : :� used in our theorem, the conditional association constraint
of Holland and Rosenbaum (1986) and a vanishing conditional dependence
constraint that is related to certain constraints in the papers of Ellis and
van den Wollenberg (1993) and Junker (1993). In Section 3, we present two
fundamental lemmas which help to relate these two observable conditions on
the repeated measures to the structure of the tail σ-field of �X1;X2; : : :�. Sec-
tion 4 gives the main theorem and its proof, and in Section 5 we explore our
two constraints in some simple examples, including simple instances of the
factor analysis and item response models mentioned above.

2. Observable constraints. Holland and Rosenbaum (1986) studied, ex-
tended and unified various notions of positive dependence that must hold for
X whenever X satisfies a monotone unidimensional representation. The most
important of these notions was based on the idea of associated random vari-
ables due to Esary, Proschan and Walkup (1967). Holland and Rosenbaum
show that the monotone unidimensional representation implies conditional
association (CA): for all J, all partitions of �X1; : : : ;XJ� into disjoint subsets
�Y;Z�, all nondecreasing f�· · ·� and g�· · ·�, and all h�· · ·�,
�CA� Cov

(
f�Y�; g�Y��h�Z� = c

)
≥ 0:

Thus, if each Xj is driven monotonically by the same 2, then �X1;X2; : : :�
possesses so much internal coherence that all nondecreasing summaries of Y
should have nonnegative correlation, conditional on any information at all on
the complementary set of measures Z. The CA condition is quite strong; no
examples are known of distributions for X which satisfy CA but do not admit
a monotone unidimensional representation.

We introduce here a second condition, which we call vanishing conditional
dependence (VCD), implied by any monotone unidimensional representation
that is useful in the sense of Junker [(1993), Definition 2.1]. Suppose the
monotone unidimensional representation holds, with 2 in the tail σ-field of
X. Then by standard approximation arguments (see the proof of Theorem 4.1
below), for all partitions �X1; : : : ;XJ� = �Y;Z� and all measurable f�· · ·� and
g�· · ·�,
�VCD� lim

m→∞
Cov

(
f�Y�; g�Z��XJ+1; : : : ;XJ+m

)
= 0;

almost surely. Thus, repeated measures from a monotone unidimensional rep-
resentation are strongly redundant: the information available from Y adds
vanishingly little, as m grows, to that available from �XJ+1; : : : ;XJ+m� for
predicting Z. VCD provides a simple condition, entirely in terms of the ob-
servable measures Xj, that ensures conditional independence. As we shall
see, VCD also ensures the existence of consistent estimators of 2.
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Our main result, presented in Section 4, gives a characterization of the
monotone unidimensional representation in terms of just CA and VCD that is
applicable for arbitrary real-valued Xj’s. Ellis and Junker (1996) consider
this result from a psychometric point of view. Condition CA is pleasantly
symmetric in the Xj’s and can be checked, at least in principle, in what-
ever finite-dimensional distributions of X are available. In this respect, CA is
very much like exchangeability. Condition VCD may also be formulated in a
way that is symmetric in the Xj’s (see Section 4.2), but it is fundamentally
asymptotic in nature. This is less attractive from the point of view of thinking
about whether the distribution of X will admit a monotone unidimensional
representation. However, VCD seems to be a requirement, as our main the-
orem will show. It remains to be seen whether VCD is equivalent to some
other, more finite-dimensional, condition on the distribution of X. Conditions
CA and VCD are conditions on the joint distribution of observable measures
�X1;X2; : : : ;XJ� that become more constraining as J grows; hence they may
be used to construct asymptotically power-1 tests of the monotone unidimen-
sional representation.

3. Structure of the tail s-field. Before presenting the main theorem,
we present two interesting lemmas that elucidate the structure of the tail σ-
field of X. The lemmas are not needed for understanding the statement and
consequences of the theorem, and the reader may proceed directly to Section 4
after reviewing the definitions of Section 3.1.

3.1. Some definitions. Recall [Billingsley (1986), page 295] that the tail
σ-field for the sequence �X1;X2; : : :� may be defined as

τ�X� =
∞⋂
n=1

σ�Xjx j ≥ n�

where σ�· · ·� is the Borel σ-field generated by “· · ·”. It is useful to think of
the tail σ-field as the set of “all” hypotheses and parameters for which there
exist consistent inference procedures based on X1;X2; : : : ; even if we ignore
some finite set of Xj’s. In his discussion of latent variable models useful for
measurement, Junker (1993) argues that if 2 is to be called a latent variable,
it is sensible to require 2 ∈ τ�X� �2 measureable with respect to τ�X�]—for
then we can make arbitrarily precise inferences about 2, but these inferences
do not depend in any essential way on observing any particular Xj’s. This cor-
responds to the notion of “trait validity,” discussed, for example, by Messick
(1989), in the construction of such models. Junker [(1993), Proposition 2.1]
also shows that, for a certain class of monotone unidimensional latent vari-
able models, σ�2� = τ�X� holds almost surely (in a sense to be made precise
following Lemma 3.1).

In this section, we consider the effects of conditioning on a general σ-field F
that is contained in τ�X). To provide a bridge between the observable variables
X1;X2; : : : and the σ-field F , we shall define a set of true scores T = �Tiqx i ∈
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N; q ∈ Q�, where Tiq = P�Xi > q�F �, N is the set of natural numbers and
Q is the set of rational numbers. The dichotomized random variables Yiq ≡
1�Xi>q�, defined to be 1 when Xi > q and 0 when Xi ≤ q, are often used in
the analysis of psychometric models [e.g., Samejima (1972) and Bartholomew
(1987), Chapters 5 and 7]. Clearly Tiq = E�Yiq�F �, and if conditioning on
the abstract σ-field F were replaced with conditioning on the latent variable
2, Tiq ≡ E�Yiq�2� would be recognized as a kind of dose–response function
for responding above threshhold q given a “dose” 2 of the latent trait. The
response functions Tiq are often called true scores in psychometrics.

We also define a kind of tail σ-field for the true scores,

τ�T� =
∞⋂
n=1

σ�Tiqx i > n; q ∈ Q�:

3.2. Two lemmas. In Lemma 3.1, which generalizes Proposition 2.1 of
Junker (1993), we show that everything that can be known about the con-
ditional behavior of the Xi’s given F can be learned from τ�T� alone, and
moreover this tail σ-field is essentially identical to τ�X�. In Lemma 3.2, which
generalizes an important comonotonicity result of Ellis and van den Wollen-
berg (1993), we show that when CA holds the joint variation of the Tiq is
greatly constrained.

Lemma 3.1. Suppose F ⊆ τ�X� and
∐

X�F . Then F = σ�T� = τ�T� =
τ�X�, a.s.

Remarks. We use “F ⊆ G a.s.” (almost surely) to mean that for any set
F ∈ F there is a set G ∈ G such that P�F1G� = 0; and “F = G a.s.” means
that the inclusion goes both ways. The equation F = τ�X� in Lemma 3.1 states
that if F is rich enough to induce CI, then F must “fill out” the entire tail
σ-field. On the other hand, the equation σ�T� = τ�T� tells us that the true
scores Tiq are quite redundant, in the sense that, for any n, all Tiq for i ≤ n
are completely determined by the Tiq with i > n.

Proof of Lemma 3.1. By standard approximations, σ�T� contains all con-
ditional probabilities Tir = P�Xi > r�F �, r ∈ R∪�−∞;∞�. Now consider each
equality of Lemma 3.1 in turn.

F = σ�T� a.s. From the definition of Tiq, σ�T� ⊆ F . For the reverse
inclusion, it suffices to show that P�A�F � ∈ σ�T� for each A ∈ σ�X�; for
then, if A ∈ F , 1A = P�A�F � ∈ σ�T� a.s. Now if A is an interval of the
form �a < Xj ≤ b�, then P�A�F � = Tja − Tjb ∈ σ�T�; then monotone con-
vergence and monotone class arguments show that P�A�F � ∈ σ�T� for all
A ∈ σ�Xj� as well. Next, if A is a cylinder set

⋂J
1 Aj, Aj ∈ σ�Xj�, condi-

tional independence impliesP�A�F � = ∏J
1P�Aj�F � ∈ σ�T�. Finally, we extend

to A ∈ σ�X1; : : : ;XJ� and then to A ∈ σ�X1;X2; : : :� by considering the field
of finite disjoint unions of cylinder sets and applying further monotone class
arguments.



MONOTONE UNIDIMENSIONAL LATENT VARIABLE MODELS 1333

σ�T� = τ�T� a.s. It is enough to show τ�T� = F a.s., and again τ�T� ⊆
F by definition of the Tiq’s. For the reverse inclusion, consider A ∈ F and
define Pn�A� ≡ P�A�σ�Tiqx i ≥ n; q ∈ Q��, which is a bounded martingale
converging to P�A�τ�T�� as n→∞ by reverse martingale convergence. Now,
since �Xn;Xn+1; : : :� has the same tail σ-field as X, it follows from the previous
paragraph that F = σ�Tiqx i ≥ n; q ∈ Q� a.s., for each n. So 1A = Pn�A�
a.s. for all n, and hence 1A = P�A�τ�T�� a.s. This shows F ⊆ τ�T� a.s., as
required.
τ�T� = τ�X� a.s. Obviously τ�T� ⊆ τ�X�. For the reverse inclusion, the

classical 0–1 law for independent random variables (conditional on F ) implies
that for any A ∈ τ�X�, P�A�F � = 1A′ for some F -measurable set A′, and it is
easy to show that P�A1A′� = 0. 2

For the next lemma, we define two random variables S and T to be comono-
tone [cf. Schmeidler (1989) or Wakker (1989)] if there is an almost-sure set
C ∈ σ�S;T� such that

∀ v;w ∈ C; S�v� > S�w� ⇒ T�v� ≥ T�w�:
It is easy to show that comonotonicity is a symmetric relationship in S and T.

Lemma 3.2. Suppose
∐

X�F , F ⊆ τ�X�, and suppose, for all J, all nonde-
creasing f�· · ·� and g�· · ·� and all A ∈ F for which the covariance below is
defined,

�∗� Cov
(
f�X1; : : : ;XJ�; g�X1; : : : ;XJ��A

)
≥ 0:

Then every pair �Tiq;Tjr� is comonotone.

Remarks. If the distribution of X satisfies CA, and F ⊆ τ�X�, then au-
tomatically condition �∗� is satisfied, since any set in F can be approxi-
mated using conditions of the form h�Z� = c on the right in CA. [Indeed,
for any m > J, F ⊆ τ�X� ⊆ σ�Xm;Xm+1; : : :� =

⋃
n σ�Xm;Xm+1; : : : ;Xn�,

so that any set A ∈ F can be approximated arbitrarily well by some An ∈
σ�Xm;Xm+1; : : : ;Xn�, in the sense that limn→∞P�A1An� = 0, and therefore

lim
n→∞

∣∣Cov
(
f�XJ�; g�XJ��A

)
− Cov

(
f�XJ�; g�XJ��An

)∣∣ = 0y

see the appendix of Ellis and Junker (1996) for further details.]. Accordingly,
when CA holds, the variation of the true scores Tiq is severely restricted. It is
easy to see that two random variables are comonotone if and only if each is a
monotone function of a third random variable. Since every pair �Tiq;Tjr�
is comonotone, this suggests that we look for a common variable 2 and mono-
tone functions fiq such that Tiq = fiq�2�.

Proof of Lemma 3.2. i 6= j. By also conditioning on F and using the fact
that

∐
X�F , it follows that

�∗∗� Cov �Tiq;Tjr�A� ≥ 0
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for all A ∈ F for which the covariance is defined. Let Bδ�s; t� be the ball of
radius δ about �s; t� ∈ R2, and consider the almost-sure set

C′ =
{
�s; t�x P��Tiq;Tjr� ∈ Bδ�s; t�� > 0; ∀ δ > 0

}

for a fixed pair �Tiq;Tjr�. [The set C′ is sometimes called the closed support
of the distribution; see Billingsley (1986), page 181.] We will show that C′

cannot contain �s1; t1� and �s2; t2� with s1 < s2 and t1 > t2; using this fact,
it follows immediately that �Tiq;Tjr� is comonotone on the almost-sure set
C = �wx �Tiq;Tjr��w� ∈ C′�. The following geometric argument is adapted
from Ellis and van den Wollenberg (1993); since it is short we repeat it here
for clarity.

Suppose, by way of contradiction, that the set C′ contains two points �s1; t1�
and �s2; t2� with s1 < s2 and t1 > t2. Let A = Bδ1

�s1; t1� ∪ Bδ2
�s2; t2�, where

for sufficiently small δ1 and δ2 the union is disjoint, let �X;Y� = �Tiq;Tjr�
and let Z = 1 or 2 according as �X;Y� is in Bδ1

�s1; t1� or Bδ2
�s2; t2�. [Let

Z = 0 otherwise, but this will not be important.] If we condition on the event
�wx �X;Y��w� ∈ A�, but drop the conditioning from the notation for simplicity,
then from �∗∗� we have

0 ≤ Cov �X;Y� = E�Cov �X;Y�Z�� + Cov
(
E�X�Z�;E�Y�Z�

)
≡ I+ II:

From the Cauchy–Schwarz inequality, we know I ≤ p4δ2
1 + �1−p�4δ2

2, where
p = P�Z = 1�; and calculation shows that

II = p�1− p�
(
E�X�Z = 1� −E�X�Z = 2�

)
�E�Y�Z = 1� −E�Y�Z = 2��

≤ −p�1− p��s2 − s1 + δ1 + δ2��t1 − t2 + δ1 + δ2�:
Hence

Cov �X;Y� ≤ 4�δ2
1 + δ2

2� − p�1− p��s2 − s1 + δ1 + δ2��t1 − t2 + δ1 + δ2�:
If we now let δ1 and δ2 tend to zero in such a way that p�1 − p� is bounded
below by some ε > 0, we will clearly have Cov �X;Y� < 0, contradicting �∗∗�.
i = j. By Lemma 3.1, we know that Tiq, Tir ∈ σ�Tjsx j > i; s ∈ Q� a.s.,

and since σ�Tiq;Tir� is countably generated we can construct an almost-sure
set A such that σ�Tiq;Tir� ∩A ⊆ σ�Tjsx j > i; s ∈ Q� ∩A. Thus, Tiq and Tir
are really functions of the Tjs on A. Let C′′ be an almost-sure set on which
each of Tiq and Tir is comonotone with all Tjs, j > i, s ∈ Q (available by
countable applications of the case i 6= j), and consider w, v ∈ C ≡ C′′ ∩A. If
Tiq�v� > Tiq�w�, then for some j > i, Tjs�v� 6= Tjs�w�, which by the case i 6= j
forces Tjs�v� > Tjs�w�. Therefore Tir�v� ≥ Tir�w�, again by the case i 6= j. 2

4. The monotone unidimensional representation.

4.1. The main result. Theorem 4.1 is a characterization of distributions on
X for which the monotone unidimensional representation holds, with respect
to some 2 ∈ τ�X�. On the other hand, it is easy to construct models for X
in which the monotone unidimensional representation holds, but 2 6∈ τ�X�;
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see Example 5.4. As observed in Section 3, however, 2 ∈ τ�X� is a natural
condition to impose on latent variable models.

Theorem 4.1. Let X = �X1;X2; : : :� be any sequence of real-valued random
variables.

Part 1. The following three conditions are equivalent:

(a) There exists 2 ∈ τ�X� such that the monotone unidimensional represen-
tation holds.

(b) There exists a σ-field F ⊆ τ�X� such that (i)
∐

X�F and (ii) condition
�∗� of Lemma 3.2 holds.

(c) Conditions CA and VCD hold for X = �X1;X2; : : :�.
Part 2. When any (hence all) of the above conditions hold, then σ�2� = F =

τ�X�, a.s.
Part 3. If condition (a) holds for both 21 and 22, then these 2’s are strictly

increasing functions of one another, a.s.

Remarks. This theorem gives a de Finetti–style characterization of the
monotone unidimensional representation. In particular, Part 1(c) of the theo-
rem gives “observable” criteria, CA and VCD, for including monotone unidi-
mensional latent variable components in a statistical model, in much the same
way that exchangeability is an “observable” condition for including condition-
ally i.i.d. components in a statistical model. Part 2 says that if the monotone
unidimensional representation holds with respect to 2 ∈ τ�X�, then σ�2�must
fill out the whole tail σ-field of X; this is a consequence of Lemma 3.1. Part 3
gives a uniqueness result that is important from a model-building perspective:
if the monotone unidimensional representation holds, it holds with respect to
an essentially unique 2. Part 3 also expresses formally the notion that in
general the monotone unidimensional representation leads to an essentially
ordinal level of measurement for the latent trait (i.e., 2 is identified only up
to an arbitrary strictly increasing transformation).

Proof of Theorem 4.1. (a)⇒ (c). Holland and Rosenbaum (1986) show
that the monotone unidimensional representation implies CA. To obtain
VCD from the monotone unidimensional representation, we observe that, by
Lemma 3.1, σ�2� = τ�X� a.s.; hence

∐
X�2 implies

∐
X�τ�X�, and in particular∐�X1; : : : ;XJ���σ�XJ+1; : : : ;XJ+m�; τ�X��. Now let Y and Z be disjoint sets

of variables from �X1; : : : ;XJ�; we can use standard martingale convergence
arguments [e.g., Billingsley (1986), Theorems 35.5 and 35.7] to show that

lim
m→∞

Cov
(
f�Y�; g�Z��σ�XJ+1; : : : ;Xj+m�; τ�X�

)

= Cov
(
f�Y�; g�Z��σ�XJ+1;XJ+2; : : :�

)

= lim
m→∞

Cov
(
f�Y�; g�Z��σ�XJ+1; : : : ;XJ+m�

)
;

for any (measurable) functions f�· · ·� and g�· · ·�. From this we can deduce
VCD.
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(c)⇒ (b). Take F = τ�X�. Then for any (measurable) f and g, and any
n > 0,

lim
m→∞

Cov
(
f�X1; : : : ;XJ�; g�X1; : : : ;XJ��σ�XJ+n; : : : ;XJ+m�

)

= Cov
(
f�X1; : : : ;XJ�; g�X1; : : : ;XJ��σ�XJ+n; : : :�

)

→ Cov
(
f�X1; : : : ;XJ�; g�X1; : : : ;XJ��τ�X�

)

as n tends to ∞, by (reverse) martingale convergence. If we require f and g
to depend on disjoint subsets of X1; : : : ;XJ, we obtain

∐
X�τ�X� from VCD. If

we merely require f and g to be nondecreasing, we obtain �∗�, with F = τ�X�,
from CA, as in the remark following Lemma 3.2.

(b)⇒ (a). As suggested in the remarks following Lemma 3.2, we can directly
construct a 2 ∈ R and show that CI and M hold for this 2. Indeed, for any
particular fixed ordering of the rationals q ∈ Q, choose aiq > 0 such that∑∞
i=1

∑
q aiq <∞, and define

2 =
∞∑
i=1

∑
q∈Q

aiqTiq ∈ F ⊆ τ�X�:

Let C be a common almost-sure set on which all pairs �Tiq;Tjr� are comono-
tone (available by countable applications of Lemma 3.2). We observe the fol-
lowing:

(i) On C, 2�v� > 2�w� implies that there must be some Tiq�v� > Tiq�w�;
hence, by Lemma 3.2, Tjr�v� ≥ Tjr�w� for all j and r. It follows that each Tiq
is a monotone function of 2, a.s.

(ii) By observation (i), Tiq ∈ σ�2� a.s., so from Lemma 3.1 we may deduce

F = σ�T� = τ�T� = τ�X� ⊆ σ�2� ⊆ F a.s.

Hence, almost surely, Tiq = P�Xi > q�F � = P�Xi > q�2� is nondecreasing in
2, which is condition M of the monotone unidimensional representation, and∐

X�F implies
∐

X�2, which is condition CI of the monotone unidimensional
representation.

This proves (b)⇒ (a), as well as Part 2 of the theorem.
For Part 3, let 21 and 22 be two random variables satisfying Part 1(a) of

the theorem, and use Lemma 3.1 with Fk = σ�2k�, for each k = 1; 2, to show
that σ�21� = τ�X� = σ�22�, a.s. Therefore 22 = f�21� a.s. for some invertible
measurable function f�·�; and moreover the true scores Tiq = P�Xi > q�Fk� =
P�Xi > q�2k�, k = 1;2, are equal. Now using the monotonicity assumption
M for each 2i, all pairs �21;Tiq� and �22;Tiq� must be comonotone on some
common almost-sure set C. Therefore, if 21�v� > 21�w� for v, w ∈ C, then
there must be some Tiq�v� > Tiq�w�, and hence 22�v� ≥ 22�w�. Since 21 and
22 are therefore comonotone, it follows that f�·� may be taken to be strictly
increasing. 2
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4.2. A symmetric VCD condition. In Section 2 we observed that CA is a
nonasymptotic symmetric condition on the sequence �X1;X2; : : :� but VCD
appears to be both asymptotic and asymmetric, depending on the order in
which the Xj are encountered. However,

τ�X� =
⋂
n

σ�Xn+1;Xn+2; : : :�

=
⋂
n∈N

⋂

K ⊆�1;:::;n�
σ�Xjx j ∈ N \K �

=
⋂

�K ⊆N; �K �<∞�
σ�Xjx j ∈ N \K �;

where K extends over all finite subsets of the natural numbers N, and the
same argument works if the numbers 1;2; : : : are replaced with any permu-
tation (i.e., any 1–1 function from N onto N). Thus the tail σ-field τ�X� =⋂
n σ�Xn+1;Xn+2; : : :� does not depend on the ordering of the Xj.
Since the role of VCD in the proof of Theorem 4.1 was to be sensitive to

conditional independence given τ�X�, it follows immediately that VCD may be
replaced in the statement of the theorem with an apparently more restrictive
symmetric condition. Namely, we may assume that, for any finite subsets Y
and Z from �X1;X2; : : :�, and any permutation �W1;W2; : : :� of the remaining
items in X \ Y ∪ Z,

lim
m→∞

Cov
(
f�Y�; g�Z��W1;W2; : : : ;Wm

)
= 0;

for all f and g for which the covariance is defined. However, this is still a
fundamentally asymptotic condition on the distribution of �X1;X2; : : :�.

4.3. True scores and multidimensional representations. The technical ar-
guments above were greatly facilitated by the use of the true scores Tiq =
P�Xi > q�τ�X�� to provide a bridge between the Xj’s and the tail σ-field. Hol-
land (1990) discusses two standard formulations of the latent variable model
in psychometrics and educational measurement; it is worth noting that our
results apply within either of these formulations, since the definition of the
Tiq does not depend on an a priori specification of a latent variable for the
model. This point is explored further by Ellis and Junker (1996).

The fact that the true scores Tiq can be defined in a way that does not de-
pend on an a priori specification of the latent variable(s) is important both for
technical manipulations and for interpretation of the results. One can think
of the Tiq as filling out a manifold in some possibly infinite dimensional space.
The dimensionality of the latent space can then be understood as the dimen-
sionality of the manifold “spanned” by the true scores (Ramsay, 1996). By
exploiting the infinite item pool framework of Stout (1990), we have shown
that CA and VCD hold in the distribution of �X1;X2; : : :� if and only if Tiq
in fact trace out a one-dimensional curve in this space; and the latent vari-
able may be thought of as naturally parametrizing this curve. In the proof,
the role of VCD is to ensure conditional independence in the representation,
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while CA guarantees unidimensionality via comonotonicity arguments. The
central question in generalizing our results to characterizations of monotone
d-dimensional representations (d > 1) is to discover what replaces CA when
the manifold of true scores is d-dimensional.

5. Examples. Example 5.1 gives some connections between Theorem 4.1
and characterizations of exchangeable sequences. In Example 5.2 we interpret
the CA and VCD conditions of Theorem 4.1 in terms of the partial correlations
of the observable variables �X1, X2, : : :� in a factor analysis model. In Exam-
ple 5.3 we observe that for the Rasch item response model CA is equivalent to a
well-known condition on the parameters of an equivalent log-linear model. In
both examples, we show that mild conditions that guarantee VCD also ensure
that 2 ∈ τ�X�; in general we expect that VCD would always be closely tied to
this measurability property of 2. We also show that Theorem 4.1 can be used
to distinguish between one- and two-dimensional monotone representations.
Finally, Example 5.4 displays a case in which the monotone unidimensional
representation holds, but not with respect to a τ�X�-measurable 2. This sug-
gests that 2 is “too rich”—there exist features of 2 that cannot be measured
with X alone—and a simpler 2 can be found for which a (different) monotone
unidimensional representation holds.

Example 5.1 (Connections with exchangeable sequences). The VCD con-
dition is always true for an exchangeable sequence, using an argument
like that of Theorem 4.1, (a)⇒ (c). However, CA may fail for an exchange-
able sequence, so—as one readily conjectures—a monotone unidimensional
representation is not possible for arbitrary exchangeable sequences:

Let 2 = 1 with probability p and 2 = 0 with probability 1 − p. Suppose
X01;X02; : : : and X11;X12; : : : are two i.i.d. sequences, and consider the ex-
changeable sequence Xj = 2X1j + �1 − 2�X0j. For x < y and the indicator
random variables 1�Xi>x� and 1�Xj>y�, it follows that

Cov �1�Xi>x�;1�Xj>y��
= p�1− p��P�X1i > x� −P�X0i > x���P�X1j > y� −P�X0j > y��:

This can fail to be nonnegative, despite the fact that Cov �Xi;Xj� must be
nonnegative for any exchangeable sequence; for example, consider the scale
mixture with X0j i.i.d. N�0;4�, X1j i.i.d. N�0;1� and x = −y. Thus X can be
exchangeable, yet fail CA.

When Cov �1�Xi>x�;1�Xj>y�� ≥ 0 for all x and y, then Xi and Xj are said
to be positive quadrant dependent [PQD; Lehmann (1966)]. For exchangeable
sequences [although not in general; see Holland and Rosenbaum (1986)], PQD
for all i and j implies CA: one observes that X will still be exchangeable given
any A ∈ τ�X�; from this and PQD, �∗∗� in the proof of Lemma 3.2 follows;
and then arguing as in Theorem 4.1 one obtains CA as well as a monotone
unidimensional representation for X. Location mixtures, and indeed any i.i.d.
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mixtures in which the Xj are stochastically ordered by 2, provide examples
of this.

Example 5.2 (Errors-in-variables models and linear factor analysis). Con-
sider first a sequence �X1;X2; : : :� satisfying the one-dimensional model

Xj = ajT+ εj;(2)

where T, εj ∼ i.i.d. N�0;1� and aj are nonnegative constants. For the first
J + m variables in the sequence, we may directly compute the conditional
covariance matrix of �X1; : : : ;XJ� given �XJ+1; : : : ;XJ+m� as

6�X1;:::;XJ�·�XJ+1;:::;XJ+m�

= IJ×J +
1

1+∑J+m
j=J+1 a

2
j




a2
1 a1a2 · · · a1aJ

a2a1 a2
2 · · · a2aJ

:::
:::

: : :
:::

aJa1 aJa2 · · · a2
J



:

(3)

It is easy to deduce from (3) that the partial covariance of any pair �Xi;Xj�
conditional on any subset of the other Xk’s must be nonnegative, which is
consistent with CA.

[Regardless of whether representation (2) holds, Karlin and Rinott (1983),
Theorems 2 and 3, show that nonnegativity of all possible partial covari-
ances of pairs �Xi;Xj� is equivalent to multivariate total positivity of order 2
(MTP2) for multivariate normal distributions. Combining this fact with Pitt’s
(1982) result that multivariate normals are associated, in the sense of Esary,
Proschan and Walkup (1967), if and only if all pairwise unconditional covari-
ances are nonnegative, we may deduce that CA implies MTP2, for multivariate
normals. It is an open question whether the converse implication also holds,
for multivariate normals.]

Now let us consider the asymptotic condition VCD. If VCD is to hold, the
conditional covariances in (3) must vanish as m grows; hence, VCD implies
that

lim
J→∞

J∑
j=1

a2
j = ∞:(4)

This is precisely the condition needed to ensure, for example, that

lim
J→∞

∑J
j=1 ajXj∑J
j=1 a

2
j

= T;

in L2 and hence a.s.; it follows from this that T ∈ τ�X�, a.s., as claimed by
Theorem 4.1.

Finally, consider a two-dimensional model for the sequence �X1;X2; : : :�:
Xj = a1jT1 + a2jT2 + εj;(5)
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where Ti, εj ∼ i.i.d. N�0;1� and aij are nonnegative constants. It is easy to
construct sequences of aij’s for which CA fails. For example, if a11 = 1, a21 = 0,
a12 = 0, a22 = 1 and a1j = a2j = 1 for all j > 2, then

Cov �X1;X2�X3 + · · · +XJ = c� < 0;

violating CA. In this case, there cannot exist a 2 ∈ R for which representa-
tion (5) can be converted into a monotone unidimensional representation for
�X1;X2; : : :� using 2, even if we abandon the linear factor model and normal
distribution assumptions.

Example 5.3 (The Rasch model). If there exist βj such that logitPj�θ� =
θ + βj in the integral representation (1), then that representation is known
as the random effects Rasch model. It is well-known [see, e.g., Cressie and
Holland (1983) and Lindsay, Clogg and Grego (1991)] that in this case the
integral representation may be converted to a log-linear representation,

logp�x1; : : : ; xJ� = α+
J∑
j=1

βjxj + γ�x+�;(6)

where x+ =
∑J

1 xj, displaying an “i. but not i.d. part”
∑J
j=1 βjxj, and an “ex-

changeable part” γ�x+�. Conversely, it is known that the log-linear represen-
tation (6) can be converted back to the integral form (1)—and hence satisfies
CA—if and only if γ�k� behaves like the log-moments of a nonnegative random
variable.

The condition VCD is again closely related to the condition that 2 ∈ τ�X�.
If �X1; : : : ; XJ+m� satisfies the Rasch model, VCD requires that

p�x1; : : : ; xJ�xJ+1; : : : ; xJ+m� ≈
J∏
j=1

pi�xiy xJ+1; : : : ; xJ+m�;

an independence distribution for �X1; : : : ;XJ�, as m grows. Intuitively this
should be easy to achieve, since, using CI (conditional independence given θ),

p�x1; : : : ; xJ�xJ+1; : : : ; xJ+m�

=
∫ J∏
j=1

Pj�θ�xj�1−Pj�θ��1−xj dF�θ�xJ+1; : : : ; xJ+m�;

and the posterior distribution dF�θ�xJ+1; : : : ; xJ+m� must tend to a point
mass, under suitable regularity conditions. The regularity conditions are avail-
able in many places: item response models are considered directly, for exam-
ple, by Chang and Stout (1993). These conditions also ensure that the MLE
is consistent for θ, which forces 2 ∈ τ�X�, just as in Example 5.2.

Here too it is easy to create examples for which the CA condition does not
hold. Indeed, one can begin with a model in which

logitPj�θ1; θ2� ≡ log
Pj�θ1; θ2�

1−Pj�θ1; θ2�
= a1jθ1 + a2jθ2 + βj(7)

and proceed exactly as in Example 5.2.
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Example 5.4 (A monotone unidimensional representation outside the scope
of Theorem 4.1). Consider binary �X1;X2; : : :� satisfying (1) with

logitP2j�θ� = θ

logitP2j−1�θ� =




θ; if θ < 0;
0; if 0 ≤ θ < 1;
θ− 1; if 1 ≤ θ:

Following the arguments of Example 5.3 it is easy to see that there is a mono-
tone unidimensional representation for X1;X2; : : : ; with respect to a latent
variable 2 that can be consistently estimated with θ̂n = logit�2/n�∑n

1 X2j,
and both CA and VCD hold for X.

Now consider the subsequence Y = �Y1;Y2; : : :� = �X1;X3; : : :� of X’s with
odd index. Since the monotone unidimensional representation holds with re-
spect to2 for the entire sequence, it still holds for the subsequence Y. However,
2 6∈ τ�Y�, since in particular it is not possible consistently to estimate 2 from
Y when 0 ≤ 2 < 1. [It is still true that CA and VCD hold for the subsequence,
so there must be another latent variable 9 ∈ τ�Y� with respect to which a
monotone unidimensional representation for Y is possible; indeed, 9 = P1�2�
will do the trick.]

The monotone unidimensional representation for Y in terms of 2 described
in Example 5.4 is outside the scope of Theorem 4.1 since CA and VCD hold,
but 2 6∈ τ�Y� and hence is not consistently estimable from the Yj’s. It is also
possible to construct examples in which CA holds and VCD fails, but a mono-
tone unidimensional representation is still possible: for example, consider a
sequence X consisting of five items satisfying the Rasch model of Example 5.3,
followed by an infinite sequence of i.i.d. coin flips. Once again, 2 6∈ τ�X� and
hence is not consistently estimable from the Xj’s. In the former case since
CA and VCD do hold, another monotone unidimensional representation can
be found, in terms of a trait 9 that is consistently estimable from the Yj’s.
In the latter case no such 9 or alternative representation exists, since VCD
does not hold. Thus, while CA guarantees comonotonicity properties (see the
Remarks following Lemma 3.2), VCD is a condition on the observable mea-
sures X that guarantees the existence of a consistently estimable latent trait
or mixing parameter in the monotone unidimensional representation.
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