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ASYMPTOTIC OPTIMALITY OF REGULAR
SEQUENCE DESIGNS

BY KLAUS RITTER

Universitat Erlangen-Nurnberg¨ ¨
We study linear estimators for the weighted integral of a stochastic

process. The process may only be observed on a finite sampling design.
The error is defined in a mean square sense, and the process is assumed to
satisfy Sacks]Ylvisaker regularity conditions of order r g N . We show0
that sampling at the quantiles of a particular density already yields
asymptotically optimal estimators. Hereby we extend the results of Sacks
and Ylvisaker for regularity r s 0 or 1, and we confirm a conjecture by
Eubank, Smith and Smith.

Ž . w x1. Introduction. Let X t , t g 0, 1 , be a centered stochastic process
which is at least continuous in quadratic mean. For a known function

Žw x.r g L 0, 1 we want to estimate the weighted integral2

1
Int X s X t r t dt .Ž . Ž . Ž .Hr

0

We consider linear estimators I which are based on n observations of X.n
Hence

n

I X s a X t ,Ž . Ž .Ýn i i
is1

with sampling points 0 F t - ??? - t F 1 and coefficients a g R. The error1 n i
of I is defined in a mean square sense byn

1r22
e I , r , K s E Int X y I X .Ž . Ž . Ž .Ž .ž /n r n

Here E denotes the expectation, K denotes the covariance kernel of X and
the error depends on X only through K.

It is well known how to choose the coefficients a optimally if the samplingi
� 4 Ž Ž ..design T s t , . . . , t is fixed and if K is known. Let K s K t , tn 1 n T i j i, jn

Ž 1 Ž .denote the covariance matrix of the observations, and let b s H K s, t =T 0 in
Ž . . Ur s ds . Then I has minimal error in the class of all linear estimators thati n
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Ž .use the sampling design T iff a s a solves K a s b . The correspond-n i i T Tn n

ing error is

e T , r , K s e IU , r , KŽ . Ž .n n

1r2
1 1 t y1s K s, t r s r t ds dt y b K bŽ . Ž . Ž .H H T T Tn n nž /0 0

if K is nonsingular, which may be assumed without loss of generality.Tn
Ž .In this paper we address the design problem of how to minimize e T , r, Kn

over all n-point designs T . The infimumn

e r , K s inf e T , r , KŽ . Ž .n n
Tn

Ž . Ž .is called the nth minimal error, and any design T with e T , r, K s e r, Kn n n
is called optimal.

The design problem for integral estimation was introduced by Suldin
Ž . Ž .1959, 1960 , who considered the Brownian motion X where K s, t s

Ž . � Ž . 4min s, t . It turned out that T s 2 ir 2n q 1 : i s 1, . . . , n is the optimaln
n-point design for the constant weight function r s 1. The optimal coeffi-

Ž .cients given T are a s 2r 2n q 1 , and this gives the minimal errorn i
y1'Ž . Ž Ž ..e r, K s 3 2n q 1 .n

We briefly present two of several equivalent formulations for the design
Ž . Ž .problem. See Sacks and Ylvisaker 1970b , Cambanis 1985 and Traub,

Ž .Wasilkowski and Wozniakowski 1988 for details and further equivalences.´
Ž .Let H K denote the Hilbert space with reproducing kernel K. This space

w x Ž . Ž .consists of real-valued functions h: 0, 1 ª R such that K ?, t g H K and
Ž . ² Ž .: w x Ž .h t s h, K ?, t for any t g 0, 1 and any h g H K . See, for example,K

Ž . Ž . Ž .Aronszajn 1950 , Parzen 1959 and Wahba 1990 . For any estimator I then
Ž . Ž .average error e I , r, K coincides with the maximal error of I on the unitn n

Ž .ball in H K , that is,

5 5e I , r , K s sup Int h y I h : h g H K , h F 1 ,Ž . Ž . Ž . Ž .� 4Kn r n

5 5 Ž .where ? denotes the norm in H K . Hence the design problem forK

integral estimation is equivalent to finding the worst case optimal quadrature
formula on a unit ball in a reproducing kernel Hilbert space. The general

Ž .problem of optimal quadrature formulas goes back to Nikolskij 1950 .
Consider the linear regression model

Y t s b f t q X t ,Ž . Ž . Ž .
with an unknown constant b g R, where

1
f t s K s, t r s dsŽ . Ž . Ž .H

0

Ž t y1 .y1is known. Then b K b is the variance of the best linear unbiasedT T Tn n n

estimator for b which is based on the design T . Hence the design problemsn
for integral estimation and for linear regression are equivalent if f and r are
related as above. In both cases b t Ky1 b has to be maximized over allT T Tn n n
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n-point designs T . In the context of a regression model with correlatedn
Ž .errors, the design problem was formulated by Sacks and Ylvisaker 1966 .

The design problem is solved exactly only in a few cases. Therefore, Sacks
Ž .and Ylvisaker 1966 have introduced the notion of asymptotic optimality. A

Ž .sequence T of n-point designs is called asymptotically optimal ifn n

e T , r , KŽ .n
e T , r , K f e r , K , that is, lim s 1.Ž . Ž .n n e r , Knª` Ž .n

Regular sequences of designs are of particular interest. The corresponding
sampling points are defined as quantiles of a fixed continuous density c on
w x Ž . � 40, 1 ; see Sacks and Ylvisaker 1970a, 1970b . We have T s t , . . . , tn 1, n n, n
with

i y 1t 1i , n
c t dt s c t dt ,Ž . Ž .H Hn y 10 0

Ž . Ž .and we use the notation T s RS c . Regular sequences enjoy severaln n
advantages. They are easy to describe and implement, and they are also well
suited for an error analysis. These sequences are quasi-uniform if c ) 0;
moreover, t s t . For nonparametric regression, regular sequences2 iy1, 2 ny1 i, n

Ž . Ž .are studied in Speckman 1985 and Golubev and Nussbaum 1990 .
The quality of a regular sequence for integral estimation clearly depends

on c , r and K, and the following questions arise: do regular sequences
already lead to asymptotically optimal designs, that is, does there exist a
density c such that

) e T , r , K f e r , K for T s RS c ?Ž . Ž . Ž . Ž . Ž .n n n n

In case of a positive answer: is it possible to construct such a density without
knowing the covariance kernel K of the process X precisely?

Ž .Positive answers are given in some situations. Sacks and Ylvisaker 1966
consider processes X which are nowhere differentiable in quadratic mean,

Ž . < <2r3and they obtain ) with c s r . The result is proven for a class of kernels
K which is defined by certain regularity conditions. In particular, the Brown-
ian motion kernel is covered. If X X exists in quadratic mean and if the

Ž1, 1. X Ž .covariance kernel K of X satisfies the regularity conditions, then )
< <2r5 Ž .holds with c s r ; see Sacks and Ylvisaker 1970a, 1970b . The order of

the minimal errors is

Ž .2 rq3 r2
1 Ž .2r 2 rq3 yŽrq1.)) e r , K f b ? r t dt n .Ž . Ž . Ž .Hn r ž /0

Here r is the regularity in quadratic mean, r s 0 or 1, and

< <B2 rq22b s ,r 2r q 2 !Ž .

where B denotes the kth Bernoulli number.k
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Ž .Eubank, Smith and Smith 1981, 1982 consider the r-fold integrated
Brownian motion, possibly pinned with some derivatives at t s 1. They

Ž . < <2rŽ2 rq3. Ž .obtain ) with c s r and )) for these specific processes of higher
Ž .regularity. Eubank, Smith and Smith 1982 , Remark 1, conjecture that their

results hold for more general kernels as those which satisfy Sacks]Ylvisaker
conditions of order r.

Ž .Benhenni and Cambanis 1992a consider slightly different regularity
conditions and give further support to the conjecture. They determine the

Ž . Ž . Ž .asymptotic order of e T , r, K for any regular sequence T s RS c . Then nn
< <2rŽ2 rq3.smallest asymptotic constant is again obtained for c s r , and the

Ž . Ž .right-hand side of )) is equivalent to e T , r, K in this case. Since lowern
Ž . Ž .bounds for e r, K were not obtained, the optimality ) and the equiva-n

Ž .lence )) remained open.
In this paper we prove the conjecture from Eubank, Smith and Smith

Ž .1982 . The proof is based on results for integral estimation by Barrow and
Ž . Ž .Smith 1979 and Eubank, Smith and Smith 1981 . Furthermore, we use

Ž .results on the set H K under Sacks]Ylvisaker conditions, which are due to
Ž .Ritter, Wasilkowski and Wozniakowski 1995 . Finally, we provide some´

asymptotic equivalences of norms.
Related results for integral estimation based on Hermite data
Ž . Žr .Ž . Ž .X t , . . . , X t are known. See Sacks and Ylvisaker 1970a, 1970b , Wahbai i

Ž . Ž .1971, 1974 , Hajek and Kimeldorf 1974 and Benhenni and Cambanis´
Ž . Ž . Ž .1992b , where analogs to ) and )) are obtained. The problem of recon-

Ž .structing X in the L -norm is studied by Speckman 1979 , Su and Cambanis2
Ž . Ž .1993 and Muller-Gronbach 1996 . Integration, reconstruction and differen-¨

Ž .tiation of X based on noisy observations X t q « are studied by Plaskotai i
Ž . Ž .1992 and Ritter 1996 .

Ž .Much less is known in the multivariate case for random fields X t , t g D,
d Ž . Ž .with D ; R and d ) 1. Wozniakowski 1991, 1992 and Paskov 1993 study´

integral estimation and L -reconstruction for the r-fold integrated Brownian2
Ž . Ž .sheet. Wasilkowski 1993, 1994 and Ritter and Wasilkowski 1996 study
Ž .both problems for smooth isotropic Brownian motion. Sharp bounds are

obtained in these papers. Bounds which depend on the smoothness of K are
Ž . Ž . Ž .given in Ylvisaker 1975 , Wittwer 1978 , Micchelli and Wahba 1981 ,

Ž . Ž .Ritter, Wasilkowski and Wozniakowski 1993 and Weba 1995 . Sharp bounds´
for tensor products of kernels which satisfy the Sacks]Ylvisaker conditions

Ž .are obtained in Ritter, Wasilkowski and Wozniakowski 1995 . However, in´
the multivariate case only weakly asymptotically optimal designs are con-
structed and asymptotic constants are unknown.

2. Results and remarks. Regularity in quadratic mean of the stochastic
process X is specified by the regularity of its covariance kernel at the

w x2diagonal in 0, 1 . We denote one-sided limits at this diagonal in the follow-
ing way. Let

2 2
V s s, t g 0, 1 : s ) t , V s s, t g 0, 1 : s - t ,Ž . Ž . Ž . Ž .� 4 � 4q y
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and let cl A denote the closure of a set A. Suppose that L is a continuous
<function on V j V such that L is continuously extendable to cl V forVq y jj

� 4 w x2j g q, y . By L we denote the extension of L to 0, 1 which is continuousj
w x2on cl V and on 0, 1 _ cl V .j j

w x2A covariance kernel K on 0, 1 satisfies the Sacks]Ylvisaker conditions
of order r g N if the following three conditions hold:0

Ž . r , rŽw x2 . Žr , r .A K g C 0, 1 , the partial derivatives of L s K up to order 2 are
continuous on V j V and continuously extendable to cl V as well as toq y q
cl V .y

Ž .B There is a constant a ) 0 with

LŽ1, 0. s, s y LŽ1, 0. s, s s a , 0 F s F 1.Ž . Ž .y q

Ž . Ž2, 0.Ž . Ž .C L s, ? g H L for all 0 F s F 1 andq

Ž2, 0.sup L s, ? - `.Ž .q L
0FsF1

Ž .In a series of papers Sacks and Ylvisaker 1966, 1968, 1970a, 1970b have
introduced these conditions to study the design problem. A detailed discus-

Ž .sion and various examples are given there. If K fulfills A and corresponds to
Ž .a wide sense stationary process, then the difference in B is always a
Ž . Ž .nonnegative constant. For arbitrary kernels which satisfy A and C , this

difference is constant, too.
Ž .For r s 0, the conditions are satisfied in particular if K s, t is given by

Ž . < < Ž < <.min s, t , 1 y s y t or exp y s y t . Kernels of higher regularity may be
obtained by r-fold integration of a corresponding process with deterministic

Ž . Ž . Ž .or stochastic boundary conditions. Modifications of A , B and C are used
by several authors. A partial list of references includes Benhenni and

Ž . Ž .Cambanis 1992a, 1992b , Su and Cambanis 1993 and Muller-Gronbach¨
Ž .1996 .

Henceforth we assume
a s 1

to simplify the notation. We define
1r2 rq1

1 1Ž .2 y 2 rq2J c s r t c t dt c t dt .Ž . Ž . Ž . Ž .H Hr , r ž / ž /0 0

THEOREM 1. Let K satisfy the Sacks]Ylvisaker conditions of order r g N0
together with the boundary conditions

K Žr , k . ?, 0 s 0, k s 0, . . . , r y 1.Ž .
Then

e T , r , K f b J c nyŽ rq1.Ž . Ž .n r r , r

Ž . Ž .for any regular sequence T s RS c which is generated by a positive,n n
continuous density c .
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The upper bound in the next theorem follows immediately from

J s inf J c : c positive, continuous density ,Ž .� 4r , r r , r

where
Ž .2 rq3 r2

1 Ž .2r 2 rq3J s r t dt ;Ž .Hr , r ž /0

Ž .see Sacks and Ylvisaker 1970a, 1970b .

THEOREM 2. Under the assumptions of Theorem 1, the minimal errors
Ž .satisfy )) , that is,

e r , K f b J nyŽ rq1. .Ž .n r r , r

Ž . < <2rŽ2 rq3.Note that J c s J for c s r , and this density depends on Kr, r r , r
only through its regularity r in the Sacks]Ylvisaker conditions. Therefore,
Theorems 1 and 2 imply positive answers to our questions, at least if r is
continuous and never 0.

COROLLARY. Under the assumptions of Theorem 1, the asymptotic optimal-
Ž . < <2rŽ2 rq3.ity ) holds with c s r if r is continuous and never 0. For arbitrary

Žw x.r g L 0, 1 , suitable regular sequences yield errors which differ from2
Ž .e r, K by arbitrary small constants if n is sufficiently large.n

REMARK 1. Theorems 1 and 2 and the corollary are due to Sacks and
Ž .Ylvisaker 1966, 1970a, 1970b for the case r s 0 and 1. These authors have

< <2rŽ2 rq3.even obtained the asymptotic optimality of r for any continuous r if
r s 0 and, under mild assumptions on the 0’s of r, if r s 1. Benhenni and

Ž .Cambanis 1992a obtain Theorem 1 for arbitrary r g N and r, c g0
rq2Žw x.C 0, 1 under slightly different regularity conditions for K.

Ž .Eubank, Smith and Smith 1981, 1982 show Theorems 1 and 2 and the
corollary for some specific kernels. In particular, they consider the reproduc-
ing kernel P of the Hilbert spacer

rq1 w x Žk . Žk .H P s h g W 0, 1 : h 0 s h 1 s 0 for k s 0, . . . , rŽ . Ž . Ž .� 4Ž .r 2

equipped with the norm
Žrq1.5 5h s h .2Pr

Note that P is the covariance kernel of an r-fold integrated Brownianr
motion, pinned with all derivatives at t s 1. For r s 0 we have the Brownian

Ž . Ž .bridge kernel P s, t s min s, t y st. Furthermore, Barrow and Smith0
Ž .1979 prove Theorems 1 and 2 and the corollary for the maximal error

rq1 Žrq1.w xsup Int h y I h : h g W 0, 1 , h F 1Ž . Ž . Ž . 2½ 5r n 2

5 Žrq1. 5on the unit ball with respect to the Sobolev seminorm h .2
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Ž . Ž yŽ rq1..REMARK 2. The upper bound e r, K s O n already follows fromn
Ž . Ž . Ž .condition A ; see Sacks and Ylvisaker 1970b . Condition B restricts the

smoothness of the process X, but it is not sufficient to show that the above
Ž . Ž . Ž .bound is sharp. While A , B and C lead to sharp bounds for regularity

Ž .r s 0, Example 1 from Ritter, Wasilkowski and Wozniakowski 1995 shows´
that this is not true for r ) 0. The conditions only guarantee the asymptotic
upper bounds in Theorems 1 and 2. Thus we use the boundary conditions

Žr ,k .Ž . Žr . Žk .Ž .K ?, 0 s 0 for k s 0, . . . , r y 1, which state that X and X 0 are
uncorrelated.

Ž . w xSuppose that a stationary process Y t , t g 0, 1 , is given, whose covari-
ance kernel L satisfies the Sacks]Ylvisaker conditions of order r s 0.

Ž . Ž .Mitchell, Morris and Ylvisaker 1990 and Lasinger 1993 show how to
preserve stationarity by r-fold integration of Y. Clearly, the covariance
kernel K of the integrated process X satisfies the Sacks]Ylvisaker condi-
tions of order r. However, the boundary conditions cannot be satisfied if X is
stationary. Nevertheless, one can show that the conclusions of Theorems 1

Žk , k .Ž . Žk .and 2 are true, as long as the variances K 0, 0 of the processes X are
sufficiently large.

Ž .Weba 1991 considers L -processes X with continuous derivatives up top
order r s 2m q 2 in an L -sense. He obtains upper bounds for the errors,p
defined in an L -sense, of specific quadrature formulas. For instance, thep

Ž yr .Romberg method yields the error bound O n , as in the classical case.

REMARK 3. So far we have studied integral estimation based on samples
Ž .X t only. Now we discuss estimatorsi

n
Žk .iI X s a X tŽ . Ž .Ýn i i

is1

� 4which use derivatives of order k g 0, . . . , r . We compare such estimators byi
their errors and by the total number n of observations.

Ž .Due to results by Zhensykbaev 1983 derivatives do not help for nonnega-
tive r and certain kernels K, as those considered by Eubank, Smith and

Ž .Smith 1981, 1982 . The minimal error in the class of all linear estimators In
which may use derivatives is attained by an estimator with k s 0.i

It follows that derivatives do not help at least asymptotically under the
assumptions of Theorem 1 if r G 0. The minimal errors in the two classes of
estimators with and without derivatives are equivalent. The proof applies
Zhensykbaev’s result to K s P and is similar to the proof of the lowerr
bounds in Theorem 2.

Ž .Sacks and Ylvisaker 1970a, b study estimators which use Hermite data,
that is,

l r
Žk .I X s a X t with n s l r q 1 .Ž . Ž . Ž .Ý Ýn i , k i

is1 ks0
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They show that the errors of optimal coefficient estimators which are based
Ž . Ž .on a regular sequence T s RS c are equivalent ton n

˜ yŽ rq1.1 b ? J c l ,Ž . Ž .r r , r

where
r q 1 !Ž .

b̃ s .r 1r22r q 2 ! 2r q 3 !Ž . Ž .Ž .
Moreover, the minimal errors in the class of all linear estimators which use
Hermite data at l sampling points are equivalent to

˜ yŽ rq1.2 b J l .Ž . r r , r

˜ ˜Clearly, b s b , but note that b s b , too. Since0 0 1 1

˜ yŽ rq1. ˜b l br rrq1lim s lim r q 1 s `,Ž .yŽ rq1. bb nrª` rª` rr

we see that Hermite data are disadvantageous, from this point of view, if n
and r are large. Moreover, it may be impracticable to use high-order deriva-
tives for the integration of smooth processes.

Ž . Ž .Wahba 1971, 1974 and Hajek and Kimeldorf 1974 construct covariance´
kernels from differential operators in the following way. Let DD i f s f Ž i. and
let

rq1
iLL s b DDÝ i

is0

denote the linear differential operator of order r q 1 with coefficients b gi
iŽw x.C 0, 1 and b never being 0. Furthermore, let G denote the Green’srq1

Ž i.Ž .function for the initial value problem LL f s u and f 0 s 0 for i s 0, . . . , r.
Clearly,

1
3 K s, t s G s, u G t , u duŽ . Ž . Ž . Ž .H

0

defines a positive definite function, and any process with covariance kernel K
has exactly r derivatives in quadratic mean.

Ž . Ž .Wahba 1971 , in a particular case, and Hajek and Kimeldorf 1974 , in the´
Ž . Ž .general case, obtain 1 and 2 , with r replaced by rrb , when Hermiterq1

Ž .data are available. Vector processes are studied in Wittwer 1976 . Another
Ž .generalization is due to Wahba 1974 . She considers kernels K such that the

corresponding centered Gaussian process is equivalent to the centered Gauss-
Ž . Ž .ian process with a kernel given by 3 . For two kernels of the form 3 , this

equivalence holds iff the leading coefficients b of the differential operatorsrq1
LL coincide.

Ž .Our proof for integral estimation based on samples X t also applies toi
Ž .covariance kernels K of the form 3 . The conclusions of Theorems 1 and 2

and the corollary are true if r is replaced by rrb again.rq1
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Ž .Comparing the two cases, sampling data X t or sampling Hermite data,i
we see the same dependence on c of the quality of regular sequence designs.
Furthermore, regular sequence designs lead to asymptotically optimal esti-
mators in both cases. We add that equidistant knots always yield the error

Ž yŽ rq1..bound O n . However, they are arbitrarily bad with respect to the
asymptotic constant for some weight functions r.

REMARK 4. We already know how to construct asymptotically optimal
regular sequences if only the regularity r of the covariance kernel K in the
Sacks]Ylvisaker conditions is known. However, we have studied optimal
coefficient estimators once a design is fixed, and optimal coefficients depend

Ž . 1 Ž . Ž .on the covariances K t , t and H K s, t r s ds.i j 0 i
On the other hand, one can also use suitable coefficients which depend on

K only through r to get still asymptotically optimal estimators. For r s 0
Ž .and r s 1, a construction is given in Sacks and Ylvisaker 1970b . For

Ž .arbitrary r, Benhenni and Cambanis 1992a show that the asymptotical
behavior does not change if we switch from optimal coefficient estimators to

Ž .weighted Gregory formulas, given a regular sequence RS c . The Gregory
formulas only depend on r, c and r. Combining this result from Benhenni

Ž .and Cambanis 1992a with Theorem 2, the asymptotic optimality of the
< <2rŽ2 rq3.Gregory formulas with c s r follows. For integral estimation based

on Hermite data, a weighted Rodriguez formula enjoys the same properties;
Ž .see Benhenni and Cambanis 1992b . Practical experiments are presented in

Ž .Benhenni and Cambanis 1992a, b . Additional results are presented in
Ž . Ž .Cambanis 1985 and Istas and Laredo 1994 .

Further estimators with simple coefficients are defined as weighted inte-
grals of natural polynomial splines of degree 2r q 1 which interpolate the

Ž .data X t . It would be interesting to know whether these estimators, basedi
Ž < <2rŽ2 rq3..on RS r , are asymptotically optimal, too.

3. Proofs. Henceforth let K be a covariance kernel which satisfies the
Ž .Sacks]Ylvisaker conditions of order r g N with a s 1 in B . Assume that0

Žr , k .Ž .the boundary conditions K ?, 0 for k s 0, . . . , r y 1 hold. For any n-point
design T letn

5 5B K , T s h g H K : h F 1, h t s 0 for t g T .� 4Ž . Ž . Ž .Kn n

From the worst case formulation of the design problem, we get

e I , r , K G sup Int h : h g B K , TŽ . Ž . Ž .� 4n r n

for any linear estimator which is based on T . We have equality for optimaln
Ž .coefficient estimators; see Traub, Wasilkowski and Wozniakowski 1988 ,´

page 76. Hence

e T , r , K s sup Int h : h g B K , T .Ž . Ž . Ž .� 4n r n

Ž .Therefore, we study the Hilbert space H K and, in particular, the unit ball
Ž . Ž .B K, T in the subspace of all functions from H K which vanish at then

sampling design.
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A proof of the following result is given in Ritter, Wasilkowski and
Ž . Ž0, k .Ž .Wozniakowski 1995 in the case of boundary conditions K ?, 0 for k s´

0, . . . , r y 1. The proof is easily adapted to the more general boundary condi-
tions from Theorem 1.

LEMMA 1.
rq1 w xH P ; H K ; W 0, 1 ,Ž . Ž . Ž .r 2

Ž .where H P is defined in Remark 1.r

Embeddings between reproducing kernel Hilbert spaces are continuous,
and hence we have

c e T , r , P F e T , r , KŽ . Ž .1 n r n

rq1 Žrq1.w xF c sup Int h : h g W 0, 1 , h F 1,Ž . Ž . 2½2 r 2

h t s 0 for t g T ,Ž . 5n

with constants c ) 0 which only depend on K. To get tight bounds, wei
Ž . 5 5 5 Žrq1. 5compare the semi norms h and h for functions h which vanishK 2

on T .n
Let T consist of sampling points 0 F t - ??? - t F 1. Put t s 0 andn 1 n 0

t s 1 to definenq1

d s d s max t y t .Ž .T i iy1n is1, . . . , nq1

The following estimate can be verified by induction.

rq1Žw x. Ž .LEMMA 2. If n G r q 1 and h g W 0, 1 with h t s 0 for t g T ,2 n
then

r q 1 !Ž .
Žk . rykq1 Žrq1.h F d h2 2

k!
for k s 0, . . . , r.

LEMMA 3. There exists a constant c ) 0, depending only on K, with the
Ž .following property. If n ) 2r q 1 and h g B K, T thenn

1r2
tnyr 2Žrq1.h s ds F 1 q cd .Ž .Hž /trq1

Ž .If n G r and h g B P , T , thenr n

5 5h F 1 q cd .K

ˆPROOF. First, we consider the case r s 0. Let K denote the restriction of
w x2K to t , t , and let1 n

m
ˆ ˆ4 h s b K ?, u ,Ž . Ž .Ý j j

js1
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ˆŽ .with distinct t F u F t such that h t s 0 for t g T . Integration by parts1 j n n
yields

m
tn 2X Ž1 , 0. Ž1 , 0.ĥ s ds s b b K t , u K t , u y K t , u K t , uŽ . Ž . Ž .Ž . Ž .ÝH j k n j q n k 1 j y 1 kžt1 j, ks1

qK u , u K Ž1, 0. u , u y K Ž1, 0. u , uŽ . Ž . Ž .Ž .j k y k k q k k

tn Ž2, 0.y K s, u K s, u ds .Ž . Ž .H j q k /t1

ˆ ˆ m mŽ . Ž . Ž . Ž .Observe that 0 s h t s h t s Ý b ? K t , u s Ý b ? K t , u , and1 n js1 j 1 j js1 j n j
Ž .due to B we have

m
Ž1, 0. Ž1 , 0.b b K u , u K u , u y K u , uŽ . Ž . Ž .Ž .Ý j k j k y k k q k k

j, ks1

m
2ˆ5 5s b b K u , u s h .Ž . ˆÝ Kj k j k

j, ks1

Thus
tn 22 Xˆ ˆ5 5h y h s ds s c ,Ž .K̂ H 1

t1

where
m m

t tn nŽ2, 0. Ž2 , 0.ˆc s b b K s, u K s, u dss b h s K s, u ds.Ž . Ž . Ž . Ž .Ý ÝH H1 j k j q k k q k
t t1 1j, ks1 ks1

Ž2, 0.Ž . w xFor t F s F t let g denote the restriction of K s, ? to t , t . Fromˆ1 n s q 1 n
ˆŽ . Ž .C we get g g H K . Henceˆs

m m
Ž2, 0. ˆ ˆ² :b K s, u s b g , K ?, u s g , h² :Ž . Ž . ˆˆ ˆÝ Ý Kˆk q k k s k sK

ks1 ks1

and

tnˆ ˆ< < ² :c s h s g , h dsŽ . ˆˆH K1 s
t1

1r2
t tn n 2Xˆ ˆ ˆ ˆ5 5 5 5F c h h s ds F cd h h s ds ,Ž . Ž .ˆ ˆKH K Hž /t t1 1

with
Ž2, 0.5 5c s sup g F sup K s, ? - `;Ž .ˆˆ Ks q K

t FsFt 0FsF11 n

Ž .see C and Lemma 2. Therefore, we obtain
1r2

t tn n2 22 X Xˆ ˆ ˆ ˆ5 5 5 5h y h s ds F cd h h s ds .Ž . Ž .ˆ ˆK H K Hž /t t1 1
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This implies

1r2
tny1 2Xˆ ˆ ˆ5 5 5 55 1 q cd h F h s ds F 1 q cd h .Ž . Ž . Ž . Ž .ˆ ˆK H Kž /t1

ˆ Ž .Since functions h of the form 4 which vanish on T are dense in the spacen
ˆŽ . Ž .of all functions from H K which vanish on T , the estimate 5 even holds onn

5 < 5 5 5the latter space. By h F h the first estimate from Lemma 3ˆw t , t x K K1 n

5 5 Ž � 4. Ž .follows. By Lemma 1, hr h g B K, T j 0, 1 if h g B P , T , and theK n 0 n
second estimates follows.

Ž . r , rŽw x2 .Now we consider the case r ) 0. Due to A we have K g C 0, 1 , and
this yields the following facts; see Ritter, Wasilkowski and Wozniakowski´
Ž . Žr . Ž . Ž .1995 . By Uh s h , a bounded linear operator from H K to H L is

Žr , r . U Ž . Ž0, r .Ž .defined, where L s K . Moreover, U L ?, t s K ?, t , which implies
U Ž .UU g s g for any g g H L .

Because of the boundary conditions

Ž .kU Žk , r .U L ?, t 0 s K 0, t s 0,Ž . Ž . Ž .Ž .
and therefore

ry1t y uŽ .tUU g t s g u du,Ž . Ž . Ž .H r y 1 !Ž .0

that is, the adjoint of U is given by r-fold integration.
rq1Žw x. Žr .Suppose that h g W 0, 1 vanishes on T . Then h has 0’s, 0 - z -2 n 1

Ž .??? - z - 1, with z F t and z G t as well as max z y z Fnyr 1 rq1 nyr nyr i i iy1
Ž .r q 1 d . Here z s 0 and z s 1. Clearly, L satisfies the Sacks]0 nyrq1

5 Žr . 5 5 5Ylvisaker conditions of order r s 0. Using h F h and Lemma 3 withL K

r s 0, we get

1r2 1r2
zt nyrnyr 2 2Žrq1. Žrq1. Žr .h s ds F h s ds F 1 q c r q 1 d hŽ . Ž . Ž .Ž . LH Hž / ž /t zrq1 1

F 1 q c r q 1 dŽ .
Ž .for h g B K, T .n
Ž . Ž . Ž . Žr . Ž .If h g B P , T , then h g H K see Lemma 1 and h g H P withr n 0

norm bounded by 1. Moreover, h s UUUh. Hence

Žr .5 5h s h F 1 q c r q 1 dŽ .LK

follows from Lemma 3 with r s 0. I

By means of Lemma 3 we reduce Theorems 1 and 2, as stated with
Sacks]Ylvisaker conditions, to the particular versions which are due to

Ž . Ž .Barrow and Smith 1979 and Eubank, Smith and Smith 1981 ; see Re-
mark 1.
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Ž . Ž .PROOF OF THEOREM 1. Let T s RS c , where c is a positive, continu-n n
w xous density on 0, 1 . By c we denote positive constants, which only depend on

K, r and c and which may have different values. Clearly,
c

max t y t F .Ž .i , n iy1, n nis2, . . . , n

Ž . 5 Žrq1. 5Fix 0 - a - 1r2 and let h g B K, T . Note that h F c by Lemma2n
5 5 yŽ rq1.1, and h F cn by Lemma 2. Therefore,2

a
yŽ rq1.5 5h t r t dt F c r1 n ,Ž . Ž .H 2w0, ax

0
6Ž .

1 yŽ rq1.5 5h t r t dt F c r1 n .Ž . Ž .H 2w1ya , 1x
1ya

If n is sufficiently large, then
1r2 c1yar2 2Žrq1.h s ds F 1 qŽ .Hž / nar2

rq1Ž . w x waccording to Lemma 3. Take g g C R with g s 0 on 0, ar2 j 1 y
x w xar2, 1 , g s 1 on a, 1 y a and 0 - g - 1 otherwise. Then

1r2
1yar2Ž . 2rq1 Žrq1.gh F h s dsŽ . Ž .H2 ž /ar2

5 Žk . 5 5 Žrq1yk . 5qc sup g h F A ,Ž .` 2 n
ks1, . . . , rq1

with
c

Žk .5 5A s 1 q 1 q sup g `n ž /n ks1, . . . , rq1

due to Lemma 2. Clearly, lim A s 1. Define z s r ? 1 and note thatn n w a, 1yax
Ž . Ž .Int h s Int gh . We getz z

e T , z , K s sup Int h : h g B K , TŽ . Ž . Ž .� 4n z n

rq1 w xF A sup Int h : h g W 0, 1 ,Ž . Ž .�n z 2

5 Žrq1. 5h F 1, h t s 0 for t g T .Ž . 42 n

Ž .From Barrow and Smith 1979 we know that the right-hand side is equiva-
Ž . yŽ rq1.lent to b J c n , and thereforer z , r

lim sup nrq1e T , z , K F b J c F b J c .Ž . Ž . Ž .Ž .n r z , r r r , r
nª`

Ž .Together with 6 this implies
rq1 5 5 5 5lim sup n e T , r , K F b J c q c r q r1 .Ž . Ž .Ž . Ž .2 2n r r , r 1w0, ax w1ya , 1x

nª`

Ž .Letting a ª 0, the asymptotic upper bound for e T , r, K follows.n



K. RITTER2094

Similarly, Lemma 3 gives

e T , r , K G sup Int h : h g B K , T l H PŽ . Ž . Ž . Ž .� 4n r n r

y1G 1 q crn sup Int h : h g B P , TŽ . Ž . Ž .� 4r r n7Ž .
y1s 1 q crn e T , r , PŽ . Ž .n r

Ž .if n G r. From Eubank, Smith and Smith 1981 we know that the right-hand
Ž . yŽ rq1.side is equivalent to b J c n , and thereforer r , r

lim inf nrq1e T , r , K G b J c ,Ž . Ž .Ž .n r r , r
nª`

which completes the proof. I

PROOF OF THEOREM 2. Take any asymptotically optimal sequence of de-
signs T . Without loss of generality, we may assumen

lim d s 0.Tnnª`

Ž .Analogously to 7 we get
y1

e T , r , K G 1 q cd e T , r , PŽ . Ž .Ž .n T n rn

and

lim inf nrq1e r , K G lim inf nrq1e T , r , PŽ . Ž .Ž . Ž .n n r
nª` nª`

G lim nrq1e r , P s b ? J .Ž .Ž .n r r r , r
nª`

Ž .Here the equality is due to Eubank, Smith and Smith 1981 .
Ž .The asymptotic upper bound for e r, K is already a consequence ofn

Theorem 1. I
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