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An autoregressive time series is said to be unstable if all of its
characteristic roots lie on or outside the unit circle, with at least one on
the unit circle. This paper aims at developing asymptotic inferential
schemes for an unstable autoregressive model generated by long-memory
innovations. This setting allows both nonstationarity and long-memory
behavior in the modeling of low-frequency phenomena. In developing
these procedures, a novel weak convergence result for a sequence of
long-memory random variables to a stochastic integral of fractional Brown-
ian motions is established. Results of this paper can be used to test for
unit roots in a fractional AR model.

1. Introduction. Statistical analysis of time series data which exhibit
high power at very low frequencies has received considerable attention in the
literature recently. On the one hand, unstable time series with roots on the
unit circle are an example of this phenomenon. General results for unstable
time series are given in Chan and Wei (1988). These results involve nonstan-
dard asymptotics which have a significant impact on inference for so-called
unit root econometrics. The latter subject has been under intensive study for
the last decade. Empirical work in this field can be found in Stock and
Watson (1988). For a recent comprehensive review on this topic, see Banerjee,
Dolado, Galbraith and Hendry (1993) and the references therein.

On the other hand, processes displaying long-memory behavior possess
spectra with high power at low frequencies. Long-memory behavior can be
found in diverse disciplines ranging from hydrology to economics. The recent
survey article by Beran (1992) provides an interesting and comprehensive
discussion on the statistical aspect of this subject. Among different long-mem-
ory models, the so-called fractional ARMA models play a particular role in
econometrics. Illustrations on economic applications of fractional ARMA mod-
els can be found in Robinson (1994) and Diebold (1988).

Although both unstable time series and fractional ARMA are used to
model the phenomenon of high power at low frequencies, their underlying
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motivations are quite different. The first attempt to connect these two con-
cepts is given by Sowell (1990), who considered the fractional unit root
distribution for a simple AR(1) model. In this paper, a comprehensive study is
conducted to link these two approaches for a general unstable AR(p) model.
Instead of assuming the innovations of the model to be a martingale differ-
ence sequence, as in Chan and Wei (1988), we allow it to be generated by
some long-memory process such as a fractional ARMA so that both long-mem-
ory behavior and unit roots are allowed in the model. There are two basic
motivations for studying this general model.

First, as shown in Sowell (1990), the asymptotics of a unit root fractional
AR(1) model differ significantly from a short-memory AR case. It is thus
important to study the theoretical properties of the least squares estimates
(LSE) in this general case. A weak convergence result involving integration of
fractional Brownian motions is established and used to develop the asymp-
totic theory of the model.

Second, the differencing parameter d of the fractional AR model (1 — B)%y,
= g, & ~ iid(0, 0?), must satisfy |d| < 1. If we extend this model to the case
(1 - B)y, = x,, where {x,} itself is a fractional AR process, (1 — B)%x, = ¢,,
then (1 — B)?*'y, = (1 — B)?x, = ¢,. Thus, {y,} satisfies a more general frac-
tional AR with d* =d + 1 €(3,2). Such a case seems to have special
interest in economics [see Diebold (1988)]. More generally, if we consider
(1 - B)%y, = x,, where {x,} satisfies (1 — B)%x, = ¢,, and a is an integer,
then (1 — B)**?y, = ¢,. Thus, {y,} can be viewed as a general fractional AR
with order a + d € (a — %,a + D).

This paper is organized as follows. Preliminaries on unstable AR( p) model
are given in Section 2, and the convergence of certain functionals of long-
memory processes to stochastic integrals is proved in Section 3. Asymptotic
distributions of the LSE by componentwise arguments are given in Sections
4-6. Section 7 consists of concluding remarks.

2. Preliminaries. Consider the unstable AR( p) model
(2.1) a(B)y, =e,,

where a(B) has the general unstable form as in Chan and Wei (1988),
! d
(22) «(B)=(1-B)*"(1+B)"I](1-2cos 6,B + B?)™¢(B),
E=1

¢(B) is a gth-order polynomial in B with roots outside the unit circle and
g =p —(a + b+ 2%X,_,d,). The innovation {e,} in (2.1), assumed to be gener-
ated by a long-memory process, will be defined more precisely in the next
section. As shown by Chan and Wei (1988), abbreviated as CW herein, we can
transform {y,} into various components corresponding to the location of their
roots and proceed to analyze each individual component. Specifically, let
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u, = a(BX1 - B) *y,, v, = a(BX1 + B)%y,, 2z, = a(B)¢"'(B)y, and x,(k)
= a(BX1 — 2cos §,B + B2)"%y, k=1,...,I1. Then (1 — B)%, =¢,, (1 +
B)’v, =e,, o(B)z, = e, and (1 — 2cos 6, B + B*)? x,(k) = e,. Define

(2.3) w, = (U Uygr1) Ve = (Vg5 Vipe1) s
(24)  x,(k) = (2(k),. s % pg,01(R))s  Fe = (Deseees Vemp)

and

(2.5) Z,= (2,1 2_441) -
As shown in (3.2) of CW, there exists a nonsingular matrix @ such that
Qy, = (0}, v/, x}(D),...,x(I),2,). Further, there exists a normalization ma-

trix G, = diag(J,, K, L,(1),..., L, (1), M,) such that

GnQZYt—lYt’—lQIG;L
(26) ~p dlag(Jn Zut—lu,t—lJrIw R Ln(l) th—l(l)xlt—l(l)l’,n(l)’
M, Zzt—lz’t—er’z)’

and
_ -1
(J7) I(Zut—lult—l) Yu, e,

@1 (@G (& =) | )1y Tx, (D) xea(De

(Mrlz)_l( Zzt—lz;—l)_l 22,18,

where &, is the least squares estimate of the parameter vector a =
(ag,..., ).

Unless otherwise stated, summations are always taken from 1 to n over ¢
and limits are always taken as n tends to infinity in this paper. The
normalization matrices J,,K,,..., L, (1), M, will be defined in subsequent
sections. Observe that the reparametrizations (2.3)—(2.5) translate the origi-
nal LSE of (2.1) into individual components in (2.6) and (2.7). We further

assume that y, = 0 for i = 1,..., —p +'1, which in turn implies that u,; = 0,
i=0,...,-a+1,v,=0,i=0,...,-b+1,and x;(k)=0,7i=0,..., —-2d,
+1,k=1,...,land 2;,=0,i=0,..., —q + 1. ,

3. Probability results for long-memory processes. In order to study
the asymptotic behavior of the components described in the preceding section,
three limit theorems involving long-memory processes are derived in this
section. The results will be applied to the long-memory errors {e,} in the
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model (2.1). In this section, however, the notation X, is used in place of e,.
The results pertain to a very general class of stationary, Gaussian processes
with regularly varying spectral density f(A); that is,

(3.1) F(A) =AM 2EL(ATY),

where 0 < H < 1, L is slowly varying at « [i.e.,, L(ta)/L(¢) - 1 as t — » for
any a > 0] and f is integrable on [ —, w]. Two special cases of the model
(8.1) are fractional Gaussian noise and fractional ARIMA with differencing
parameter d = H — 3. If 1 < H < 1, then the spectrum has a singularity at
the origin, and the process is said to exhibit long memory. When H = % and
L is constant, the process is white noise.

If X, is the Gaussian process defined by its spectrum (3.1), then X, has
spectral representation

(3.2) X, = [ exp(ind) /A (N W(dD),
n=12,..., where W(:) is the complex-valued, Gaussian random measure
satisfying

W(d\) = W(—=dX),

o, if A # pu,

EW(d)) =0 and EW(dA)W(dp) = {dA A n

When H > 3, the covariance function r, of {X,} satisfies the relation
ry ~ 2k*M2L(R)T(2 — 2H)sin(w(H - 3)),

as k — o, where I' is the gamma function [see, e.g., Zygmund (1988), Theo-
rem 2.24].

The following theorem describes the asymptotic behavior of the stationary
component {z,} of the model given in Section 2.

THEOREM 3.1. Let X, be the sequence defined by (8.2), with 3< H < 1.
Suppose z, is a sequence of random vectors in #? which satisfies
z, =Az, , +X,,

where z, = 0, X, = (X,,0,...,0) and A is a g X q invertible constant matrix
with all eigenvalues lying inside the unit circle. Then

n -1 5
( > zt—lz,t—l) Y z,,X,

t=1 t=1

(3.3)
-, 2—1{[_:[14 exp(id) — A] 0N d/\}l,
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where
3 = [T [Lexp(in) — A] 7 [1, exp(—id) — A]7'F(N) dA,

1, is the q-dimensional identity matrix, 1 = (10...0) and, for any matrix M,
[fM]ij = fMij'

REMARK. Note that z, in Theorem 3.1 is expressed in the companion form
of the AR(q) model ¢(B)z, = X,. The left-hand side of (3.3) then simply
equals the normalized LSE &, — ¢, where &, = (&5,..., $,) is the LSE of
the parameter vector ¢ = {¢,,..., ¢,) of the stationary AR(q) polynomial
¢(B). In contrast to the case where X, is a martingale difference sequence,
the limit in Theorem 3.1 is a constant. Thus, for a stationary AR model with
long-memory innovations, the LSE is inconsistent.

ProOF oF THEOREM 3.1. For simplicity, the proof is carried out with
L = 1. With slight modifications, the proof is valid for any slowly varying
function. It is easy to check that

t
z, = Z At_kxk.
k=1

t—1

M=
N
i

I
M=

A“l"“XkXt}l
1
-1

~
I

—

~
I

M=

|

A [T exp(ik ALY 2T EW(d )

~
Il
-

k=1

(5.4) ><f_ﬂexp(it)tz)l)tzll/z_HW(d)\2)}1

"
‘

2exp( ik A;)exp(ithy)

(£ ma

XY 2 H A M2 EW(dA)W(dA,)

-, 7]

+[_” exp[i(k — t)A]IAI1"2H dA]}l,

where [” indicates that integration on the diagonals A; = + A, is excluded.
The double integral is a Wiener-Itd integral defined by Major (1981). The
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right-hand side of (3.4) consists of a random term plus the mean of the
left-hand side of (3.4). We will show that the random term is 0,(n) and that
the mean, divided by n, converges to

(3.5) {j" [1, exp(id) — A] |27 dA}l.
We have

n t-1 ”

Y ratthf exp(ikA,)exp(itA,)

t=1k=1 [—m,w]?

X A2 H G2 EW (d A ) W(dA,)
n " t—1
= ) Al A~ *exp(ik A
t=21 f[-mﬂlz{kﬂ (k)

X exp(itAy) [ MV 2 H M)V 2HEW (d A, ) W(dA,)

= s -1 ’
!

[—m,m]

- . -1
2[A Yexp(id;) — I ]
(3.6) ><[A“ exp(iAt) —A'lexp(i/\l)]
Xexp(idgt) A2 NV ETHW(dA)W(dAy)

! . -1
- j[’_m”]z[lq exp(id;) — A
X Y expli( Ay + A)e]IA Y2 H A2 HW (M) W(dAy)
t=1
" . -1, .
_./[‘_7,,,,]2[1‘1 exp(id) —A] T A lexp(i),)
n

X Y Atexp(idyt) A2 H NIV ETHEW(dA)W(dAy).
t=1

The first term on the right-hand side of (3.6) is

f exp[i()t1 + A)(n + 1)] — exp[i(Al + )‘2)]
(3.7) [-m, m]? exp[i(,\l + A2)] -1

X [1, exp(id) — A] _ll)\lll/z_H|A2|l/2_HW(dA1)W(d)‘2)'

After making the change of variables y, = n\,, i = 1,2, it can be seen, by
Lemma 3 of Dobrushin and Major (1979), that the integral (3.7), divided by
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n2#-1 converges in distribution to

_1oexpli(A +Ay)] -1
7= 4] j;?z (A +4y)

012 H AW (dA) W(dAy),

since 3 < H < 1. Hence it is 0,(n), since 2H — 1 < 1. The second term on the
right-hand side of (3.6) is

—[[_ AT exp(ing) ~A] T A Vexp(idy) [ Aexp(ihy) — 1]t
X[ A Lexp[idy(n + 1)] — Aexp(id,)]
XA 2T H AV EH GW (ML) dW(Ay),
which is O,(1), since the entries of
: - : -1
[Iq exp(iA;) —A] 1[Aexp(z)\z) - Iq]
X[ A"+ Lexp[idy(n + 1)] — Aexp(iry)],

are bounded. Thus the random term on the right-hand side of (3.4) is o,(n).
The second term on the right-hand side of (3.4) is
t

£z

Atm1-k fﬂ exp(ikA)exp( —itA)| A" 2 d)\}l

1
; _
= {f_: _ilA"lexp(—it)t)[A‘lexp(i)t) —Iq]_l

X[A~texp(ith) — A Lexp(iA)]IA""2H dA}l
(3.8)

) { Y [ [1,exp(in) — A] A da
t=1"-m
[ [1 exp(in) — A] " A exp(in)

n
X Y Atexp(—itA)|A'2H dA}l.
t=1

The first term on the right-hand side of (3.8), when divided by n, converges
(indeed is equal) to (3.5), and the second term of (3.8) is O(1). Hence
n~1¥r_,z, ,X, converges in probability to (3.5). It can be seen by a similar
calculation that

n n
Z Z,_1Z;_q _E( Z zt—lzlt—l) = p(n)’
t=1 t=1
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and
lim—&( Y 2, .2 = [7 [1,exp(in) - A]
rd Rt L P

X [I, exp(—i)) — A THA2E g,
This establishes (3.3). O

The following theorem gives the joint limiting distribution for the “build-
ing blocks” of those components of @ which correspond to roots on the unit
circle.

THEOREM 3.2. Let X, be the sequence defined by (3.2), with 0 < H < 1.
Let 6, € (0, w) such that 0, # 0; if i #j, fori,j=1,2,...,1, and let

Y. (u,v,ty,...,t5;)

[nu] [nv]

=la, ¥ X, 6, ¥ (-1)*X,,
k=1 k=1

[nt1]

b, V2 sin k6, X,
(3.9) ,El L

[ntzl

b, Y V2 cos k0, X,,...,
k=1

[ntg-1] [nty]
b, Y V2sink6,X,,b, Y V2 cosk6,X,]|,
k=1 k=1
where a, = n"¥L"'%(n) and b, = [nL(n)]"'/2%. Then there exist constants C,,
C,, C(6,)) and Cy(6,), i = 1,...,1, such that Y, converges weakly to

(CyBy,CyBM,Cy(8,) B®,Cy(0,)B®,...,Cy(6,) B D, Cy(6,) BY),

where By is a fractional Brownian motion with parameter H, the BY) are
standard Brownian motions, i = 1,...,21, and the components of the limiting
vector are independent.

REMARK. It follows from Theorem 8.3 that C, = Ky', where K =
7w 'HT(2H)sin wH and T is the gamma function.

PrOOF OF THEOREM 3.2. Let r(k) be the covariance function of {X,},
r(k) = EX, X, , ;. To prove convergence of the components of (3.9), it suffices
to show the following, for some constants C;, C,, C,(6), and C,(0):

G Tz, xrr(k—1) ~ Cin?HL(n),
Gi) T¢_ X (—D*lr(k — 1) ~ CinL(n),
Gii) T7r_,Xr jexpli(k — DOlr(k — 1) ~ (CE(6) + CZ(6))nL(n).
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[See Taqqu (1975), Lemma 5.1.] We have

2 Y Y rk-1)

k=11=1

a2 Y Zf exp[i(k — DAL ?HL(IA7Y) dA
k 11=1"—7

IAT2EL(AITY) da

ik A)

expli(n + 1)A] — exp(iA) |

1-2H -1
oxp(ih) — 1 IATT*PL(IA7 ") dA

T
a?,[

-

exp[i(n + 1)A/n]
n(exp(ir/n) — 1)

nw

|A|1_2HL(|AI_1)d)\

ol
LA) — 1
R f exp( ‘ )
7 A
which establishes (i). To see that (iii) holds, note that

|A|1_2H dA,

n

Y ¥ exoli(k - 1)6]r(k - 1)

k=11=1
f7T

fn(w-+ 0)
(—7+6)

n

1y da

explim(n + 1)/n] — exp(iu/n) |*
n(exp(iu/n) — 1)
X|n"u — 0|1_2HL(|n'1,u - 6" 1) du,

which converges to

. 2
_om @ |exp(ip) — 1
Ioll 2Hf lM ‘ d/.L.

Hence, (iii) holds. Condition (ii) is established by similar arguments.
It remains only to prove asymptotic independence. We have

[nt4] [nty].
b2E ) exp(ik0,)X, Y. exp(—il0,)X,
k=1 =1

[nt1]

=b f Z exp[ik( 8, + )]

[nt2]

X Y exp[—il(0y + A)]IAPIL(IAIY) da,
-1
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which is bounded in magnitude by a constant multiple of
26

nL(n)

for any 0 < & < ;. Likewise, the remaining covariances tend to zero. O

toe3 " 6y + AP0y + APTNTTHIL(ATY) dA > o,

The first component of @ involves a functional of the first component of the
right-hand side of (3.9). If X, were a sequence of martingale differences, the
limit of that functional would be an integral of Brownian motions, as shown
by CW. However, in this case X, has long memory, and hence the limit
involves fractional Brownian motions rather than Brownian motions, as is
demonstrated in Theorem 3.3. Fractional Brownian motion with parameter
H, 0 < H < 1, has spectral representation

(3.10) By(t) = Ky &(lt—?———

where K, = n'HT(2H)sinmH and T is the gamma function. Although
fractional Brownian motion is nowhere differentiable, formally,

dBy(t)
dt
This heuristic serves to justify the definition

fo "By (t) dBy(t) = Ky Ky, [9? 2[ fo “exp(itA)

Y2 HwW(da),

= Ky [ exp(itA) A2 HW(d D).
74

exp(itp) — 1 dt]

L
(3.11) X| w2 A2 W (d W)W (dA)
s1 — exp(—itu) 1-(H,+Hy)
+KH1KH2[% j(; iM dt |/.L| L 2 dM,

The first term on the right-hand side is a double Wiener-It6 integral, which
exists in the L, sense for H, + H, > 1,0 < H; < 1, i = 1,2. The presence of
the second term, a nonzero constant, reflects the fact that the increments of
By, and By, are dependent. Note that [jBy dBy cannot be defined in the’
usual It6 sense, because fractional Brownian motion is not a semimartingale.

Let X, and Y, be defined by (3.2) with parameters H = H,; and L =L,
for X, and H=H, and L =L, for Y,, and suppose also that the slowly
varying functions are of bounded vdriation on bounded intervals.

THEOREM 3.3. Let U,(¢) = L1 X, V,(¢) = 2*)Y, and 3<H;<1,i=
1,2. Then

( a,Uy, bV, }:U( )Ym)

_ _ -1 1
>, (KHIIBHI, Ky'By ,(KyKy,) [0 By, dBHz) ,
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where a, = n 1 L71/%(n), b, = n™H2L;1/%(n) and Ky, is the constant in the
spectral representation of fractional Brownian motion (3.10).

PrOOF. Since a,U, and b,V, are both tight [Taqqu (1975)], it suffices to
prove convergence of finite-dimensional distributions (fdd). The proof for a
fixed value of ¢ is given here, since the proof for fdd is similar.

Let

n-1 k 1,1
Z,=a,b, Y Un(;)Yk“ and Z = (KyKy) fOBHl dBy,.
k=1

To obtain convergence for a fixed value of ¢, it suffices to show that, for any
real constants p;, p, and p,,

p1a,U,(t) + pyd,V,(t) + psZ, = p Ky By (t) +p2K;I:Bf_IleH2(t) + psZ

in distribution. Since convergence in distribution follows from convergence in
mean square, it suffices to show that

E|(p,a,U,(t) + pyb,V,(t) + p3Z,)
_(P1KI_{IBH1(t) + Py Ky, By (t) +Paz)|2’
which is bounded by
C{Ela,U,(t) — Kz'Bu(t) + EIbV,(t) — Ki: By (t)I* + EZ, - 2I*},

for some constant C, converges to 0 as n — o,
As in the proof of Theorem 3.1, slowly varying functions are assumed to be
constant. With a change of variables, a,U,(¢) can be written

[nt]

@, U, () =n" ™ ¥ [" exp(ik )NV W (dA)

k=1"-m
= expliA([nt] + 1)/n]| — exp(ir/n
e eeliaLe) £ 1/m) = oA/ gy
—nm n(exp(iA/n) — 1)
Furthermore,
exp(itd) — 1
Kq'By(t) = [ D L s .
& A
Let

exp[iA([nt] + 1) /n] — exp(iA/n)
n(exp(iA/n) — 1)

Dn( /\) = 1[—n1r,n7r](/\)

and
exp(itd) — 1

D()) = Y
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Then
(3.12) Ela,U,(t) - Kg!Bu(t)I = [ ID,(2) — D(N)PIN'"* d.
74

Clearly, D,(A) — D()) pointwise. Hence, to show that the right-hand side of
(3.12) converges to 0 as n_— o, it suffices to find an integrable function which
dominates |D,(D)|*[AI'" 2%t for every n.

Observe that

|D,(M)| < 4min(|AI7", ¢)

and
[ IO G) <o,
[AI>1
[t A <o,
A<l
Hence,
Ela,U,(t) — Kz'By(t)I* - 0.
Similarly,

E|b,V,(¢t) — Kg'By () - 0.
To complete the proof, it suffices to show that E|Z, — Z|*> — 0. We have

n-1 k
— ,—(H,+H
Z, =n ) 3| 3 X | Vs
r=1\j=1

n—

k m
=n D VY [ exp(iju)l ul AW (dp)
k=1j=1"—m

x [" expli(k + 1) AIIAM2H2 W (dN)
n! 1 exp[i(k + 1)u/n] — exp(ip/n)

[-nm,nwl2p_1 I n(exp(il-‘“/n) - 1)

(i(k:l)A)l

(3.13) -

X exp w2V E W (g u)W(dA)

ne "=1 1 exp[i(k + 1)A/n] — exp(iA/n)
—nmp—1 n n(exp(iA/n) — 1)

(—i(kn+ 1)/\)

X exp (AL~ EHtH) g )

Convergence of Z, to Z in mean square can be demonstrated by showing
that the random term and the nonrandom term on the right-hand side of
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(3.13) converge in mean square to the random and nonrandom terms of Z.
Equation (3.11) displays the two limiting terms, multiplied by Ky Ky,
Focusing on the random term, let
Bn( M, )l) = 1[—n1r,nﬂ']2( M, )t)
n-11 exp[i(k + 1)u/n] — exp(ipn/n) (i(k + 1)/\)
X J—

P n(exp(ip/n) — 1) n
and
exp(itp) — 1
B(u,A) = flexp(it)\)—p(—rlf—)— dt.
0 o

To get convergence in mean square of the random terms, it suffices to show
that

(3.14) ngBn( ) = B( o, )Pl 2N 2 e gy da - 0

as n — «, Observe that

) exp[i( u + A)/n]
(—nm,nm L Mo n(exp(ip/n) — 1)

- <Zloliz)owe o] el ()

- mfol(exp[it( w+ A)] — exp(itr)) dt
=B(u, 7).

Let 0 < € < 1, and set

B,(p,A) =1

(e, A):lul <1,0M < 1},

(s A):lpl <1, 1 <M <nm,lp+ Al > €,

={
3nm
{([J,,/\) 1<|ul<nm, 0<|N<nw, O<|M+AI<T},
{
{([.L,)l) lul < 1,1 <Al <nm,|p+ Al <e},

E,
E,
E,

= UEn,i‘

i=1
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Then

E¢=[-nm,nw]’ \E,
3nm
= {(,LL,)\)Z].SlMlSﬂﬂ,OSl/\lSn’ﬂ,—z— <|[J,+)l|£2n77}.
To show (3.14), it suffices to find functions g;, i = 1,2, 3,4, such that

[ g DIl >IN e dpdn < o
R
and

]'E,,,,( ) /\)IBn( 1) )‘)l2 < Cgi( My /\),

for i = 1,2,3,4 and some constant c, and also to show that
J 1B, VPl 2522 g dx - 0
Ej,

as n — o,
Let

g1 m, A) = 1[—1,1]2( By A),
g2( 1, A) = 1{|M|>l}{|’*‘(‘|_2(f(#’ +A) +f()‘))},

where f(x) = minf|x|"2,1}; let
g3( 1) ’\) = 1(|[l.|<1,|/\|21y|l"+)‘|> E)lp’ + )ll_2’

84( e, A) = 1{|,L|<1,|A|21,|;L+A|s €)>
and observe that

[ g, DIl PN e dpda <o, i=1,2,3,4.
%4

Since
n-11 i(E+1)A\1 * i
Ni=| ¥ Zexp| ———|— <1,
e[ B ) o
it follows that
]-E,,,l( M, )‘)an( M, )‘)lz <& m )‘)'

Observe that
(3.16) lexp(ix) — 1| < 217 7| x|,
for0 <np<1land x €%, and

x

(3.17) lexp(ix) — 1| =2 sin(g)' > 2c, 3|~ c,lx|,

for some ¢, > 0 when |x/2| < 7 < 7. If 7= m/2, ¢, can be chosen equal to 1.
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By the first equality in equation (3.15) and inequalities (3.16) and (3.17),

-2

i
lEn‘lenI2 = n(exp(—:—) -1
expli(p+A)] -1
n(exp[i(n + A)/n] — 1)
exp(ir) — 1 ?
n(exp(ir/n) — 1)
< Cg2( M, A)’
where ¢ is a constant.
Note that
B N =|———7Fr--"r
I n( M, )l ’n(ew/n _ 1)
ei(p.+A) -1 ei/\ -1
X - — -
n(ez(y.+).)/n _ 1) n(ezA/n _ 1)
1
n(e/m - 1)

><[(e"“”“—1>(n(e"“"—1>) — (" -1)(n(e 1)) ”

n(ei(p+A)/n _ l)n(ei/\/n _ 1)

The numerator is

oo o oo{ 2] 1] oo - afe( 2) 1

—(exp(iA) — 1)(n(exp(%\) - 1)

ol S50 ) oo 2] |

oot ofoo{ 2) 1] iy -

S N L WL

+n
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Hence
2 _ exp(ip) — 1 ’
1B,(p, MI" < 2 n(exp(ip/n) — ) n(exp[i( n + A)/n] — 1)
exp(iA) — 1 ’

2}

2
n(exp(ir/n) — 1)n(exp[i( u + A)/n] — 1)
Therefore, by the inequality (3.16),

exp(iA) — 1
A(w +A)

exp(ip) — 1 2
p( e+ A)

2
1g, JBal” < clyyci iz, iprns e){

< 2Cg3( M, /\),

for some constant c.
Finally,

1y, |B,* < gy( . ).

To show that the integral on E° goes to zero, observe that, by (3.16) and
(3.17),

"yt expliCh + Dul —expCip) oo g0y

E=1 exp(ip) — 1
n-1lexp(ikun) — 1 n-1
_p(_.L < 22"’|pd|"“1 Z |E|",
n_1| exp(ip) — 1 k=1

where 7 is a number between 0 and 1, to be specified later. Hence

[ 1B, V)12 A2y d
B

n—1 exp[l,(k + 1)[1«] - exp(lM) ’

_ o —2(H;+H,) ;
-n “ exp[i(k + 1)A]
Ei/n|lp=1 eXp(l;L) -1
% |M|1_2H1|A|1_2H2 d[l« dA
< n—z(H1+H2)+2(n+1)cf |M|2(n—1)|M|1—2H1|A|1*2H2 duda,

m/2<|ul, A< 7

for some constant c¢. The region of integration is a result of the inequality
37/2 <|u + Al. Since u and A are bounded away from 0, the integral is
finite, and n~2H1tH)*T20+ D 0 when 0 < 9 < H; + H, — 1. This completes
the proof of the convergence of the random term on the right-hand side of
(3.13). Convergence of the nonrandom term can be shown using similar
arguments. O
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Using similar techniques, we get the following corollary.

COROLLARY 3.1. We have
1

.n—l k J Iy ll
anUn’ann’anbnn_J 2 2 2 2 [le( ) Yk+1
! =1

k=1 \1;=11_,=1 Ly

J

_ _ -1
g (KHllBHl’ KH;BHZ ) (KHIKHZ)

xfol{[O‘[O‘fme‘ZBHl(tl) dt, - dtj} dBHz(t)),

where
1 t tjooo tz cee
jo { [0 [0 [0 By(t,) dt, dtj} dBy (t)
is defined as
K. K S| A trt, tzexp(itl,u,)—ld e dt ) at
H, Hzfngoexp(lt ) fofo fo—m"—' ty i

% IM|1/2_H1|A|1/2_H2W(d[«b)W(d)l)
: 1 . trt, e exp(ityp) — 1
+ Ky K, [ [ W){ R e AL
X IMII_(H1+H2) d[.b.
4. Roots equal to 1 and —1. Let {e,} be a long-memory process, as
defined by (3.2), with 2 < H < 1, and consider the component «, such that
(4.1) : (1-B)u, =e,.

It follows from (3.1.3) of CW that there exists an a X a matrix M such that
Mu, = U,, where U, = (u,(),...,u(a)) with u,(j)=Q0Q—-B)* Ju, j=
1,...,a. Clearly, u,(1) =X} _je,, A —Bu,(j+1 =u,)) and u,(j+ 1) =
Yt _ui(p), j=0,...,a — 1. Let By(¢) denote a fractional Brownian motion
with parameter H, 3 < H < 1. Define the following recursions:

(4.2) Fo(t) = CiBu(t),  Fi(t) = ['F_y(s) ds;
(43) F= (o), aﬂ=f011rj_1(t)1rl_1(t)dt, Jl=1,...,a;

@) &= O F0) By (), O B (1) dBa(0)]

and
(4.5) J,=N'M, N, = diag(n,...,n%),
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where the integrals in (4.4) are defined in Corollary 8.1 and C, = Kz'. With
this notation, we are now ready to prove the following result.

THEOREM 4.1. We have
(4.6) n72H+1L71(n)JnZutflu,t—lJrlz -g F,

(4.7) (J;L)_l(Zut—lu,t—l)ﬁl Yu, e~y FE

ProoF. Since u,(1) = X} _,e,, it follows from Theorem 3.3 that
n"HL7Y2(n)upuy(1) 5 CiBy(t),
in D[O0, 1]. Accordingly, we have, for j =1,...,a,

i -1 .
(nj 1+HL1/2("')) u[nt](J) g F}—l(t)’
and
. _ -1 .
(n/* 2L (n))  Xu(f)u(l) »o oy
Since all quantities in the left-hand side of (4.6) and (4.7) are functionals of

n~"L~*(n)u,, (1), the continuous mapping theorem together with Theo-
rem 3.3 and Corollary 3.1 imply (4.6) and (4.7). O

Note that the proper normalization for (4.6) involves H. This is due to the
presence of the fractional Brownian motion By (¢). When H = %, n!72H =1
and Theorem 4.1 reduces to Theorem 3.1.2 of CW.

The case for roots equal to —1 can be dealt with in a similar manner.

Specifically, following (3.2.2) of CW, if

(4.8) (1+B)’y, =e,
then there exists a b X b matrix M such that Mv, =V,, where V, =
(v,(V), ..., v,(B), V,(j) = + B)®*Jv,, j=1,...,b. Again v,(1) =

s (=1 ke, and (=D'v,(j+ 1) =X _(—DFv,(j), j=0,...,b — 1. Let
F=(6"ﬂ)9

(4.9) K,=N'M, N, =diag(n,...,nb)

n
and

(410) = —(szolﬁo(t) dB(t),...,cszlﬁ,,,l(t) dB(t)),,

where B is a Brownian motion and F; and g; are the same as F; and oy,
with By(¢) replaced by B and C; replaced by C,, for j,I =1,..., 5. We have
the following result.

THEOREM 4.2. We have
(4.11) L Y(n)K,Yv, v, K, -5 F,

(4.12) (K;L)_l(thflvtifl)il(th—let) —g Fln.
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Proor. The proof follows an argument similar to the proof of Theorem
4.1. The difference is that now the building block, ¥(— 1)*e,, when properly
normalized, converges to a Brownian motion, by Theorem 3.2. Details can be
found in Theorem 3.2.1 of CW. O

5. Complex roots. In this section, we consider the case of a conjugate
pair of complex roots in (2.1), that is,

(5.1) (1 - 2cos 6B + B2)’x, —e,.
Define the component vector x, = (x,,..., x,_54,,), ¥,(j) = (¥(B))? /x,,
Jj=0,...,d, y(B) =1 — 2cos B + B?) and Y, = (y,(1), y,_,(D),..., y(d),

¥:-1(d)). As in CW, there exists a 2d X 2d matrix C such that Cx, =Y,.
Clearly, for j = 0,...,d — 1,

(5.2) Y(B)y.(j + 1) = 5.(J),

and

(5.3) ¥(j+1)=csch ft_‘, sin(t — k& + 1)0y,(J).
k=1

For j = 0,...,d, define the basic building blocks
t ¢
S,(J) = > cos k0 y,(J), T.(Jj) = Z sin k0 y,(J),
k=1 k=1

S; = 8,(0), T, = Tt(O)'
Observe that quantities such as L7 ,y,(R)y,(j), T .y, .(R)y,()),
Xr1yj)e,; and L} y,_,(je,,, can be expressed as recursive sums of
S,(j—1 and T(k — 1) as given in Lemmas 3.3.1-3.3.6 of CW. All the
arguments given in Section 3.3 of CW can be carried over to this analysis.
Specifically, let

fo(t) = By(t), 8o = By(?),

fi(t) = 3 csc 0|sin Ofotfj_l(s) ds — cos Oj;tgj_l(s) ds),

D[

¢ . t
g;(t) = 3 csc 6| cos 0];)@_1(3) ds + sin OLgi—l(s) ds),

|
(
(5.4) Cojo1 = desc e(folfj_l(s) dB,(s) — [Olgj_l(s) dBl(s)),
Ly, = L ese 0{cos o(folfj_l(s) dBIZ(s) - jolgj_l(s) dBl(s)),

—sin G(Llf}_l(s) dB,(s) + ./;)lgj_1(8) de(S))},

O2k-1,2j-1 = O2r,2j

— Sesc? o [ ()5 do + [ (5)81(9) as).
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O9kr—1,2j = O2j,2k-1

= % csc? o{cos O(Llfk_l(s)f}_l(s) ds + /:gk_l(s)gj_l(s) ds)

_sino(j;lf}_l(s)gk_l(s) ds — folgj_l(s)fk_l(s) ds)},
{= (4.5 82q) and D =(o;;), a2d X 2d matrix,

where B,(¢) and B,(¢) are two independent Brownian motions with variance
C2(0)t and CZ(0)t, respectively. By virtue of the arguments in Lemmas
3.3.1-3.3.6 in CW, we have the following joint convergence results.

THEOREM 5.1. The following hold:

(i) ‘/gn_j_I/ZL_l/Z(n)(S[nt](j)’T[nt](j)) _’3’(fj(t)’gj(t))
in D[0,1] x D[0,1];

(i) n~*L"Y(n) ¥ y,(k)y,(J) =% Oa,2;5
t=1
. n

(iii) n_(k+J)L_1(n) 2 (R)y.(J) s Ogk—-1,255
t=1

(iv) n7L7(n) Zlyt(j)et+1 ~g {25
t=

(v) n_jL_l(n) Zlyt_l(j)eHl g Z2]'—1‘
t=

Proor. In view of Theorem 3.2 and arguments similar to Lemmas
3.3.1-3.3.6 in CW, (i)—(v) are readily established. O

THEOREM 5.2. Let N, = diag(nl,, ..., nl,), where I, is the 2 X 2 identity
matrix. Let L, = N, *C, where C is such that Cx, = Y,. Then

(5.5) L_l(n)anxt—lx't—lﬂn -g D,

(5.6) (L) (%, %) (T se) > DL

‘

Proor. This follows directly from Theorem 5.1 and the fact that Cx, = Y.
The rest of the proof is exactly the same as Theorem 3.3.4 of CW. O

6. Main results. We are now ready to prove our main result. Suppose
{y,} follows

(61) a(B)yt=et’

with «(B) satisfying (2.2) and {e,} satisfying (3.2), with 1< H < 1. For
k=1,...,1, define the corresponding L, (k), {, and D, as in Section 5 by
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replacing d by d,. Also, define F, §, F and v as in Theorems 4.1 and 4.2,
respectively. Let a = (ay,...,,) and let &, =(&y,...,&,) be its least
squares estimate. Let

A, = diag(n 2#*'L"Y(n)I,, L™ (n) I, 54, n 'L} (R)1,),

where I, is the m X m identity matrix, A = diag(F, F, D,,..., D,,3), Q is
such that Qy, = (u,, v, x,(1),...,x,(0),z,) and G, = diag(J,, K,,
L,),...,L, (1), M,), with J,, K, and L,(k) defined in Sections 4 and 5, =
defined in Section 3, N’ the limit in (3.3) and M, =1 e

THEOREM 6.1. We have
(6.2) AnGnQZYtqy;—lQ’G; -y A

and
(QG,) (&, - a)

(6.3) ' ~ I3 ! U U
—o((FE), (F '), (Dr'e,),. . (D E,) . N').

Proor. By virtue of Theorems 3.1, 4.1, 4.2 and 5.1, we only need to
establish (2.6); the off-diagonal submatrices of A,G,QXy,_,y,_,Q G, con-
verge to zero in probability. This follows directly from Theorems 2.1, 3.4.1 and
3.4.2 of CW. For example, the (1,1) entry of n #*/2L~Y(n)J,Yu,_v,_,K,
is

nH32L Y (n) Y u,_1(1)v,_4(1)
= n~H=32L73(n) Teos((t — Dm)u,_y(1)((=1)" 'o,_4(1)).

Direct calculation shows E(u,(1X—Dfv,(1)) = o(nf*1/2L(n)). By virtue of
Theorem 2.1 of CW, we conclude that ¥ cos((¢ — Dm)u,_,(D(— 1) v, (1)
= 0,(n*3/2L(n)). Similar arguments can be used to deal with other compo-
nents in exactly the same manner. Details can be found in Theorem 3.4.1 of
CW and are omitted here. O

Note that when H = %, Theorem 6.1 reduces to Theorem 3.5.1 of CW.

7. Concluding remarks.

1. In this paper, a unified asymptotic theory for the study of both long-mem-
ory and unit root phenomena is formulated, providing a comprehensive
link between these two methods for understanding low-frequency behav-
ior. In particular, a new weak convergence result involving fractional
Brownian motion is derived.

2. The results hold not only for specific parametric models such as
ﬁ&RIMA(O, d,0), but for any long-memory process {e,} satisfying (3.1) with
7 < H<1.
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3. An important application of our results will be to use the limiting distribu-
tions to test for the presence of unit roots in fractional ARMA models.
Since this will involve tabulations of the percentiles of fractional Brownian
motions, it will be interesting to explore the computational aspects of
tabulating the limiting distributions through the stochastic integral for-
mulae given in Section 3. Testing for a unit root in a fractional integrated
model may, however, suffer from the misspecification of the fractional
parameter d [Sowell (1990)]. It will thus be interesting to find out to what
extent such a phenomenon will affect the computational results.

4. It will be interesting to extend our results to the case of near unit root as
given in Chan and Wei (1987). In view of the recent paper of Jeganathan
(1991), such an extension is plausible and is currently being undertaken.

Acknowledgments. The authors would like to thank the Editor and the
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