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Variable window width kernel density estimators, with the width vary-
ing proportionally to the square root of the density, have been thought
to have superior asymptotic properties. The rate of convergence has been
claimed to be as good as those typical for higher-order kernels, which makes
the variable width estimators more attractive because no adjustment is
needed to handle the negativity usually entailed by the latter. However, in
a recent paper, Terrell and Scott show that these results can fail in impor-
tant cases. In this paper, we characterize situations where the fast rate is
valid, and also give rates for a variety of cases where they are slower. In
addition, a modification of the usual variable window width estimator is
proposed, which does have the earlier claimed rates of convergence.

1. Introduction. There are many curve estimation problems where it is
intuitively clear that it would be desirable to use different amounts of smooth-
ing at different locations. Since it provides a simple setting in which to study
the main ideas, most of the research on this topic has been done in the context
of kernel density estimation.

A useful mathematical structure for understanding this problem involves
consideration of using independent, identically distributed observations
X1,..., X, from a probability density f(x), in an attempt to estimate f. The
(global bandwidth) kernel estimator of f is

<1> Flx1h)=n'Y Ku(x - X3),
i=1

where K is a kernel function, taken here to be a symmetric probability density,
and the parameter A, often called bandwidth or window width, controls the
scale in the sense K;(y) = K(y/h)/h. See Silverman [(1986), Section 2.4] for
good motivation and intuitive discussion of this estimator.

Bandwidth variation, that is, allowing the bandwidth to be different at
different locations, is typically done in one of two ways, but see Wand, Marron
and Ruppert (1991) for another approach based on transformations. The first of
these usual methods involves allowing % to depend on x, and the most common
choice of i(x) involves nearest neighbor ideas [see Mack and Rosenblatt (1979)
and Hall (1983)]. While this method can yield improvements and has a definite
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intuitive appeal, these improvements have been relatively minor compared to
the dramatic improvements shown for allowing A to depend instead on X;
[see Abramson (1982a)].

When these ideas are studied asymptotically, as n — oo, A — 0, it is often
enough to consider the rate of convergence of the bias, because all these vari-
ations on the kernel estimator have variances of the same order n=1A~1. The
bias rate of convergence for A(x) bandwidth variation is the same as for the
global bandwidth estimator (i.e., of order A2), although the constant coefficient
may sometimes be expected to be better. On the other hand, when the func-
tion A(X;) is inversely proportional to the square root of £, Silverman [(1986),
see Section 5.3.3], Hall and Marron (1988), Hall (1990) and Jones (1990) have
claimed a much faster bias rate, 4%, can be obtained. Hall and Marron (1988)
go on to show that the same fast rate applies, even if a conventional global
kernel estimator is used as an estimate of the best A-function.

However, more recently, Terrell and Scott (1992) have pointed out that the
bias rate is much slower, in fact (k/log k)2, in the important special case of
K uniform and f Normal. This example indicates a technical flaw with the
earlier rate of convergence results. The h* rate given in the earlier papers
is correct only under some rather stringent assumptions requiring f to have
heavy tails.

In Section 2 of this paper, we establish conditions which ensure that the
bias rate of A* is correct. It is seen that the tail of f needs to be nearly so
heavy that the third moment does not exist. The bias rate of convergence is
also quantified, in terms of tail conditions on f, in many cases where the
rate is slower than A%. In particular, an asymptotic representation is given for
the bias, which has several terms, one of which is the same as found in the
previous works. However, the other terms are dominant in many important
cases. When [ has roughly polynomial tails, these latter terms dominate when
the tails of f(x) go down more rapidly than x~*. These latter terms always
dominate when f has exponential tails.

In Section 3, we present an “ideal” means of fixing the location adaptive
estimator, to give the previously advertised rates, under more reasonable con-
ditions, based on a type of truncation of the kernel function. The estimator
is “ideal” in the sense that it still makes use of the unknown density in the
bandwidth function.

The ideal estimator is made practical in Section 4, where the idea of sub-
stituting a pilot kernel estimate into the bandwidth function is investigated.
It is seen that this does have an effect on the limiting distribution, but that
the data adaptive version still has the same fast rates of convergence.

All results in this paper are only for estimation at a single point. See Hall
(1992) for analogs of many of these ideas in the rather different case of inte-
grated squared error.

2. Asymptotic bias analysis. The modification of the estimator (1) dis-
cussed in this section allows the window width & to vary with the kernel cen-
ter X; according to the inverse of the square root of the density. In particular,
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define
@ Flx k) =n'Y Ky (x— X)),
i=1

where h; = h f(X;)71/2. Of course this estimator is not useful in practice
because f is unknown, but Hall and Marron (1988) have shown that when a
pilot estimate is used, the asymptotic perforrpance is essentially equivalent in
a useful sense. As this idealized estimator f exhibits the technical problems
discovered by Terrell and Scott, it is the focus in this section.

We consider two types of underlying densities, those with regularly vary-
ing tails and those with exponentially decreasing tails. In the first case the
defining criterion is

(3) f(x) ~x™*Ly(x),  f(=x)~x"*Ly(x),

as x — 0o, where a1, @2 > 1 and L; and Ly are continuous, monotone, slowly
varying functions. In the second case,

f(x) ~ c11 exp(—c12x®),
f(—=x) ~ c21 exp(—cg2x°?)

as x — 0o, where c;; and «a; are positive constants. Our proofs apply to more
general distributions, for example to distributions which have one tail regu-
larly varying and the other exponentially decreasing. However, from the view-
point of stating theorems economically it is convenient to assume either (3) or
(4).

In addition to (3) and (4) we suppose that, for fixed x, f has four bounded
derivatives and that K is compactly supported and Lipschitz continuous, with

4)

. 1, for j=0,
5) /y’K(y)dy =10, forj=1,3,
Kj, for J = 2,4.

First we treat the context of (3) and let A; = A;(h) denote a solution of the
equation

Li(h 2 )) = a7 72,

for a; > 2.

THEOREM 2.1. Assume (3) and (5). Then, for constants ki(a) defined in
Section 5.1,

E{f(x | h)} - f(x) = h*(xq/24)(d/dx)* f(x)
+ hzal/(“l_z)/\fzk_(al)l(al >4)

+ B2l )\ 2 () (ap = 4)

2
+ o{h4 + > Rl 22 (g > 4)}

i=1
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REMARK 2.1. For each & > 0, the quantity )‘;2 is between h¢ and A~°
in order of magnitude. Thus, the term of order h2%/(2=2))~2 only becomes
significant if a; > 4. When «; > 4, it dominates the term of order h*. For
a; = 4, the relative sizes of terms in A2%/(@=2)-% = p*A72 and A are of
course determined by A;, and hence by the slowly varying function L;.

REMARK 2.2. If max(aj,as) < 4 or, equivalently, if, for some ¢ > 0,
® 3 ® 3
[y tdy= [y F-y)dy = oo,
then

E(f(x)) — f(x) = h*(x4/24)(d/dx)*f(x)7! + o(h*);

that is, the terms of order A2%/(« ‘2)/\;2 play no role, and the bias has the prop-
erties noted in Silverman [(1986), Section 5.3.3], in Hall and Marron (1988),
in Hall (1990) and in Jones (1990). Thus, we see that, for f with tails that
are either polynomial or exponential, bias is of the order stated in these ear-
lier results “if and only if” moments of order 3 and above are infinite in each
tail. It is easily checked that a different sufficient condition for the earlier
results to hold is that f be compactly supported, and bounded above 0 on
its support. This result is true as stated if we continue attention to the case
where L; and Ly are asymptotically constant. More generally, in the event
that max(a1, ag) = 4, a little additional qualification is required.

REMARK 2.3. Good heuristic discussion as to why tail behavior is so domi-
nant in this “local” estimator can be found in Terrell and Scott [(1992), Section
4]. Essentially what happens is that when f has light enough tails, the kernel
windows for extreme observations get such large bandwidths that they affect
estimation even at interior points, to the level quantified here. A referee has
made the nice comment that these tail effects cause the interchange of dif-
ferentiation and integration assumed in Silverman [(1986), Section 5.3.3] to
break down when min(ay, ag) > 4.

Next we treat the case of distributions satisfying (4).

THEOREM 2.2. Assume (4) and (5). Then, for constants ki(c1,c2, a) defined
in Section 5.1,

E{f(x|h)} - f(x) = h*(log B~1) 1"/ _(c11, c12, @1)
+ h2(log 1) 1=/ k¢, (91, cog, at2)
+ofh?(log A~1)71-®/®) 4 2 (log A1)~ ®/e ),

as h - 0.
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REMARK 2.4. When tails are exponentially small the improvement in bias,
from the use of variable window width estimates, is virtually negligible, be-
ing only logarithmic in character. However, bias is of smaller order than
h%(log h~1)~1, no matter how large the values of @; and as.

REMARK 2.5. Anice example in McKay (1993a) indicates there will be some
interesting companion results to Theorems 2.1 and 2.2, in the case where f
is compactly supported. In particular if f “comes down to the endpoints of its
support sufficiently rapidly” (e.g., as a beta density with high enough order),
then the bias will again be different, and will be dependent on the rate of
decrease of f at these endpoints.

3. An improved variable window estimator. The extra, very trouble-
some, bias terms for the estimator f, made precise in the last section, may
be viewed as coming from extreme tail observations. One would suspect that
this problem could be avoided, if the effect of far away data points could be
eliminated.

One means of eliminating this effect has already been proposed by Abram-
son (1982a), who replaced A; in (2) by A[ f(X;)Vv(f(x)/10)]. Analysis as in this
section shows that this modification does indeed yield a bias which is asymp-
totically equal to only the first term given in Theorem 2.1, without unnatural
heavy tail conditions. Terrell and Scott (1992) discuss other modifications. See
McKay (1993a, b) for a modification which is both nonnegative and integrates
to 1.

To get the main ideas across as simply as possible, we work here with
a modification which is chosen because it allows straightforward adaptation
of the methods, and also the main lessons, of Hall and Marron (1988). In
particular, define

(6) Flx|h)=n""Y Kn(x — Xi)1@—x,)/h<C)>
i=1

where, as above, K;,(-) = K(-/h)/h and h; = hf(X;)~V/2.

Any sufficiently large constant C will give the desired asymptotic result;
however, a sufficient condition is that C > c;c; 1 where K vanishes outside
(—c1,c1), and f(x)/2 > 2cy. While specific choice of C makes no difference
in the first-order asymptotic analysis presented here, it should make at least
some difference in practice. Perhaps deeper asymptotic analysis could provide
insight into possibilities for optimizing the choice of C, although this will
clearly be of only second-order importance.

The beneficial effects of this modification are demonstrated by the following
theorem.

THEOREM 3.1. Assume (5) and C > clcgl. Then
E{f(x| h)} — f(x) = h*(ka/24)(d/dx)* f(x)™" + o(h?),

as h— 0.
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Explicit proof of Theorem 3.1 is not given, because it follows directly from
arguments of Hall and Marron (1988). In particular, integration by substitu-
tion gives

Ef(x|h)= /_Z K{-z f(x +h2)"?}f(x + h2)*? dz,

from which the assumption C > cy;c; ! yields the desired result, as in that

paper.
To analyze (6) further, define x = [ K2. For C > c1¢; 7,

var(f(x | b)) = (nh)“lf_ZK{—z f(x+h2)Y2}f(x + hz)?dz

™ —nlEf(x| h)
= (nh) ' f(£)*k + o((nh) 7).
This, together with Theorem 3.1 gives
(8) E[f(x|h) = f(x)]? =ca(nh)L +c5h® + o((nh)~L + A®).

Therefore the minimizer in A of (8) is asymptotic to a constant multiple of
n~1/%, and the best mean squared error is of the order n=8/7.

It is also straightforward to see that f satisfies a central limit theorem. In
particular, when n — oo with A — 0 and nh — oo, f(x | k) — E{f(x | h)} is
asymptotically normal, with zero mean and variance satisfying (7).

The case where A is a random variable, denoted ﬁ, as in data driven band-
width selection, is also readily treated. If we add to our conditions on K the
assumption that K is continuously differentiable, and if the bandwidth h satis-
fies n1/%h — cg in probability [some cg € (0, 00)], then arguments of Abramson
(1982b) may be adapted to show that

flx|h)=Ff(x]cen )+ 0,(n10).

Note that in general the estimate f(x | A) will have an integral less than 1
and hence will not be a density. However, this effect will vanish asymptotically
and is easily adjusted for in situations where this poses any difficulty.

4. An adaptive improved variable window estimator. The ideal es-
timator f(x | &) discussed in the last section has good asymptotic properties,
but cannot be used in practice, since it still makes use of the unknown den-
sity f(x). In this section we analyze the obvious idea of using a “pilot” kernel
estimator in the place of f.

For this, let f (x| h1) denote the ordinary kernel estimator given in (1),
using a data driven bandwidth h1. Assume that A is “good” in the sense that,
for some a > 0,

9) P[n™® < n'Phy <n®]— 1.



VARIABLE WINDOW KERNEL ESTIMATES 7

See Marron (1988) and Jones, Marron and Sheather (1993) for surveys of data
driven bandwidths, including some that are good in this sense. Now consider
replacing the bandwidth 4 in (6) with another data driven bandwidth hg,
where

(10) lim liminf P[n < n?hy < A]=1.

7—0, A>0c0 n—00

It is straightforward to adapt, for example, the ideas of Park and Marron
(1990) to find such data driven bandwidths. Now define the fully data adaptive,
variable bandwidth, kernel density estimator by

(11) f’:(x | ’;’1”;2) = n_l Z Kﬁl(x - Xi)l{l(x—Xi)/iLz|<C}’
i=1

1=

where, as above, Kx(-) = K(-/h)/h and h; = hof (X; | hy)~ V2.
In addition to (5) and the symmetry of K, we further assume that K has
two bounded derivatives. Quantities that appear in the limiting behavior of

f(x | ﬁl, ﬁz) include
T(u,x | by, he) = E[f(X1) " {K(X1—u)/h1) — hau(X1 | h1)}
x L{f(X1)"2(x — X1)/ha}1{j(a—X1)/ho<C} )5

where u(x | hy) = E[f(x | h1)] and L(z) = K(z) + zK'(z), and also include

T(x | k1, hg) = (2nh1hg) ™'Y 7(Xi, x | by, hs).

i=1

THEOREM 4.1. Assume (9), (10) and that fL2 /he — 1 in probability. Then

f(x| A1, h2) — f(x | h2) = T(x | b1, h2) = 0,(n~4°).

The proof of Theorem 4.1 is omitted because it is essentially the same,
although slightly easier because of the truncation represented by the indicator
function, as that of Theorem 3.1 of Hall and Marron (1988).

Theorem 4.1 shows that, except for the term T'(x | le, };,2), the behavior of
f (x| ﬁl,fm) is the same as that described for f(x | h2) in Section 3. To see
how the term 7T'(x | ﬁl, ﬁz) affects this, define

S(x | hg) = f(x | ha) — E{f(x | h2)}.

THEOREM 4.2. Suppose that for nonrandom hy and hg satisfying n®(hy v
hg) — 0, n1=¢(hy A hy) — oo for some ¢ > 0, and h1h2_1 — 0. Also suppose

that hy /h1 — 1 and hg /he — 1 in probability. Then
(nh2)Y2(S(x | ha), T(x | k1, h2)) — (N1, N3)
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in distribution, where (N1, N3) are bivariate normal, with zero means and
covariances given by

var(Ny) = f(x)¥2 / K?,
var(Na) = £(x)* [ L/4,
cov(N1, N3) = f(x)32 / KL/2.

The proof of Theorem 4.2 is also omitted since it is so close to that of The-
orem 3.2 of Hall and Marron (1988).
Theorem 4.2 shows that the limiting distribution of f (x| h1, hz) is indeed

different from that of f(x | he). However, it also shows that f (x| h1, h2) still
has the same fast n~%9 rate of mean square error convergence to f(x).

5. Outline of proofs.
5.1. Definition of constants. The constants appearing in Theorem 2.1 are
k() = 2(a — 2)7! fom K (+u)u?/@D gy,
where & > 0. The constants appearing in Theorem 2.2 are
k+(c1,co, @) = C?/2(2C2)1+(2/a) /Z K(:I:cl/2 exp(— ac2u)) exp(—3acou)du
for ¢1,c,a > 0.
5.2. Proof of Theorem 2.1. Integration by substitution gives
E{f(X)}= f: K(—2f(x + h2)'*)f(x + hz)** dz.
As in Section 3, for c3 > c1c; 1
® K{—2f(x+ h2)Y2}f(x + h2)*2 dz

(12) s
= f(x) + h*(xe/24)(d/d2)*f (x) 7" + o(h*).

The extra terms in the expansion of the theorem come from integrals outside
the range (—cs, c3). We shall prove that, for c3 > c1c; L

(13) I= / Y K{—zf(x+ h2) 2 f(x + h2)¥2 dz

(14) = k_(ay)h2a/(a=2))\ 72 4 o(p2er/(1=2) )\ 2)

if a1 > 4, and equals o(h?*) if a; < 4. The other tail, that is, the integral from
—o00 to —c3, may be treated similarly and produces the analogous result.
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For brevity of notation we shall delete the subscript “1” from L1, a; and
A1. The case @ < 2 is relatively straightforward, and so we treat only a > 2.
There,

—1) p—af(a-2)
I=ho/t2) [ T R{eu e f (w1
0
x f(x+u"th2@2))32y-2 gy
~ h—oz/(oz—Z))t /cglAh_a/(a_2) K{_u(a—Z)/ZA—a/(a—Z)L(h—Z/(a—Z)/\)}
(15) 0
x u(3a/2)—2h3a/(a—2)A—Sa/ZL(h—Z/(a—Z)A)S/Z du

_ p2a/(a-2) -2 /°° K {—u 2121, 622 gy,
0

= k_(a)h2a/(@2) )2,
5.3. Proof of Theorem 2.2. Result (12) holds as before. With I defined as
in (13), we must now prove the following analog of (14):
I = k_(c11, c12, a1)h*(log h™1) 71~ #/*1) 1 o{h?(log A~1) 1= 3/=0)},
Drop the subscript “1” from a;, and let A denote the solution of the equation
log(h~A) + %clz(a)ﬁ"'lx —A%)=0.
Then A ~ (2¢75 log A~1A)Y* as h — 0. With z = A~*A(1 + A™%v) and v fixed,
lx — hz|® = (h2)*{1 — (hz) 1x}* = A% + av — aA® 1x + o(1),
and so
log{zc];*f(x — h2)/2} =log(h™*A) — 1e12(A% + av — aA®1x) + o(1)
= —Laciv +o(1).
Therefore, arguing as in (15),
I~hp g2 /Z K{—cﬂ2 exp(—%aclz U)}C?{Z(hA_l)S exp(—3acizv) dv
~ Kk_(c11, c12, @)h2(log B~1) 713/,

as had to be shown.
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