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LARGE SAMPLE CONFIDENCE REGIONS BASED ON SUBSAMPLES
UNDER MINIMAL ASSUMPTIONS!

By DiMITrIs N. PoLiTis AND JOSEPH P. ROMANO

Purdue University and Stanford University

In this article, the construction of confidence regions by approximating
the sampling distribution of some statistic is studied. The true sampling
distribution is estimated by an appropriate normalization of the values of
the statistic computed over subsamples of the data. In the i.i.d. context, the
method has been studied by Wu in regular situations where the statistic is
asymptotically normal. The goal of the present work is to prove the method
yields asymptotically valid confidence regions under minimal conditions.
Essentially, all that is required is that the statistic, suitably normalized,
possesses a limit distribution under the true model. Unlike the bootstrap,
the convergence to the limit distribution need not be uniform in any sense.
The method is readily adapted to parameters of stationary time series or,
more generally, homogeneous random fields. For example, an immediate ap-
plication is the construction of a confidence interval for the spectral density
function of a homogeneous random field.

1. Introduction. In this article, a general theory for the construction of
confidence intervals or regions is presented. The basic idea is to approximate
the sampling distribution of a statistic based on the values of the statistic com-
puted over smaller subsets of the data. For example, in the case where the data
are n i.i.d. observations, a statistic is computed based on the entire data set
and is recomputed over all () data sets of size b. These recomputed values of
the statistic are suitably normalized to approximate the true sampling distri-
bution. Under certain assumptions on b (which require 6 — o0 and b/n — 0),
the method is valid whenever the original statistic, suitably normalized, has a
limit distribution under the true model. Other methods, such as the bootstrap,
require that the distribution of the statistic is somehow locally smooth as a
function of the unknown model. In contrast, no such assumption or verification
of such smoothness is required in our theory. Indeed, the method here is appli-
cable even in the several known situations which represent counterexamples
to the bootstrap. To appreciate why our method behaves well under such weak
assumptions, note that each subset of size b (taken without replacement from
the original data) is indeed a sample of size b from the true model. Hence, it
should be intuitively clear that one can at least approximate the sampling dis-
tribution of the (normalized) statistic based on a sample of size b. But, under
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the weak convergence hypothesis, the sampling distributions based on samples
of size b and n should be close.

The method extends to the context of a stationary time series or, more gener-
ally, a homogeneous random field. Here, the statistic is computed over subsets
of the data that retain the dependence structure of the observations. For ex-
ample, if Xj,...,X, represent n observations from a stationary time series,
the statistic is recomputed over the n — b + 1 subsets of size b of the form
{X;,Xi+1,---,Xi;+b-1}. The extension to homogeneous random fields will be
described later.

The use of subsample values to approximate the variance of a statistic is
well known. The Quenouille-Tukey jackknife estimates of bias and variance
based on computing a statistic over all subsamples of size n — 1 has been well
studied and is closely related to the mean and variance of our estimated sam-
pling distribution with b = n — 1. Half sampling methods have been well stud-
ied in the context of survey sampling; see McCarthy (1969). Hartigan (1969)
has introduced what Efron (1982) calls a random subsampling method, which
is based on the computation of a statistic over all 2" — 1 nonempty subsets
of the data. Hartigan (1975) has adapted his finite sample results to a more
general context of certain classes of estimators which have asymptotic normal
distributions.

Efron’s (1979) bootstrap, while sharing some similar properties to the afore-
mentioned methods, has corrected some deficiencies in the jackknife and has
tackled the more ambitious goal of approximating an entire sampling distribu-
tion. Shao and Wu (1989) have shown that, by basing a jackknife estimate
of variance on the statistic computed over subsamples with d observations
deleted, many of the deficiencies of the usual jackknife estimate of variance
can be removed. Later, Wu (1990) used these subsample values to approximate
an entire sampling distribution by what he calls a jackknife histogram, but
only in regular i.i.d. situations where the statistic is asymptotically linear so
that asymptotic normality ensues; see Remark 2.1 for further remarks on Wu’s
work. A more refined analysis of Wu’s method in the case of quantile estima-
tion is presented in Shi (1991). Here, we show how these subsample values
can accurately estimate a sampling distribution without any assumptions of
asymptotic normality.

In addition, we extend our results to the setting of stationary time series
and homogeneous random fields. In this case, the existence of a limiting distri-
bution and a very weak mixing condition yields asymptotically valid estimates
of the true sampling distribution. In the context of a stationary time series,
Carlstein (1986) has considered the problem of estimating the variance of a
statistic based on the values of the statistic computed over subseries. Here,
we develop consistent properties for an estimated sampling distribution under
weaker assumptions.
~ The main drawback to our method as presented is its lack of second-order
correctness. However, Tu (1992) has shown how, in some situations where
Edgeworth expansions are valid, the approximation of a sampling distribu-
tion based on jackknife pseudo-values can be appropriately modified to yield
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second-order accuracy. Thus, Tu’s work has demonstrated the possibility that
our method can be adapted to yield desirable higher-order properties.

In Section 2, the method is described in the context of i.i.d. observations. The
main theorem is presented and several examples are given. Some comparisons
with the bootstrap are drawn. In Section 3, the method is adapted to homoge-
neous random fields. The theorem yields such general asymptotic results under
such weak assumptions, that the problem of constructing a confidence interval
for the spectral density function of a homogeneous random field is an immediate
application. In addition, the problem of bias reduction using the subsampling
method is discussed.

2. General theorem in the i.i.d. case.

2.1. The basic theorem. In this section, Xi,...,X, is a sample of n ii.d.
random variables taking values in an arbitrary sample space S. The common
probability measure generating the observations is denoted P. The goal is to
construct a confidence region for some parameter 6(P). For now, assume 6 is real
valued, but this can be generalized to allow for the construction of confidence
regions for multivariate parameters or confidence bands for functions. Let T,
=T,(Xy,...,X,) be an estimator of 4(P). It is desired to estimate the true sam-
pling distribution of T}, in order to make inferences about §. Define J,(P) to be
the sampling distribution of 7,,(T,, — 6(P)) based on a sample of size n from P,
with corresponding c.d.f. denoted J,(-, P). Essentially, the only assumption that
we will need to construct asymptotically valid confidence intervals for 6(P) is
the following.

AssuMPTION A.  J,(P) converges weakly to a limit law J(P) as n — oo.

To describe the method studied in this section, let Y7y, ..., Yy, be equal to the
N, = (}) subsets of {Xj,...,X,}, ordered in any fashion. In typical situations,
it will be assumed that 5/n — 0 and b — oo as n — oo. Now, let S, ; be equal to
the statistic T, evaluated at the data set Y;. The approximation to ,(x, P) we
study is defined by

N,
(2.1) Ly@) =N;* > 1{ry(Sp,; — Tn) < x}.
i=1

The motivation behind the method is the following. For any i, Y; is a random
sample of size b from P. Hence, the exact distribution of 74(S, ; — 0(P)) is Jp(P).
The empirical distribution of the N,, values of 7,(S,,; — 6(P)) should then serve
as a good approximation to JJ,(P). Replacing 6(P) by T}, is permissible because
7(T, — 0(P)) is of order 7, /7, — 0.

THEOREM 2.1. Assume Assumption A. Also assume 7/7, — 0, b — oo and
b/n — 0 as n — oco. Let x be a continuity point of J(-,P).

(i) Then L,(x) — J(x,P) in probability.
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(ii) If J(.,P) is continuous, then

(2.2) sup |L,(x) — Jy(x,P)] — 0

in probability.
(iii) Let c,(1 — o) = inf{x: L,(x) > 1 — a}. Correspondingly, define c¢(1 — o, P)
=inf{x: J(x,P) > 1 — a}. If J(-, P) is continuous at c(1 — o, P), then

(2.3) Probp{r,, [Tn - 9(P)] <ecp,(1- a)} —1-a,

and the asymptotic coverage probability under P of the interval [T, —
Tn‘lc,,(l —a),0)isl-—a.

(iv) Assume, for every d > 0, ¥, exp{—dIn/bl} < oo and (T, — 6(P)) — 0
almost surely. Then the convergences in (i) and (ii) hold with probability 1.

Proor. Let
Nn
Un@) = N7y 1{m[Sn,s — 6P)] <},
i=1

To prove (i), it suffices to show U, (x) converges in probability to J/(x, P) for every
continuity point x of J(x, P). To see why,

L,(x)=N;! Z 1{7,, [Sn,i — 6(P)] + 7 [6(P) — T}, ] < x},

so that for every € > 0, U,(x — &)1(E,) < L,(x)1(E,) < U,(x + €), where 1(E,)
is the indicator of the event E, = {n|0(P) — T| < €}. But, the event E, has
probability tending to 1. So, with probability tending to 1, U,(x — €) < L,(x) <
U,(x + ¢) for any € > 0. Hence , if x + £ and x — ¢ are continuity points of J(-, P),
then U, (x + €) — J(x =+ ¢, P) in probability implies

Jx —¢,P)—e < Lyx) <Jx+¢,P)+¢,

with probability tending to 1. Now, let ¢ — 0 so that x + ¢ are continuity
points of J(.,P). Therefore, it suffices to show U,(x) — J(x,P) in probability
for all continuity points x of J(-, P). But, U,(x) is a U-statistic of degree b. Also,
0 < U,(x) < 1 and E[U,(x)] = Jy(x,P). By an inequality of Hoeffding [see Ser-
fling (1980), Theorem A, page 201]: for any ¢ > 0,

2.4) Probp{Uy(x) - J(x,P) > t} < exp{-2[n/b]¢}.

One can obtain a similar inequality for ¢ < 0 by considering the U-statistic
—U,(x). Hence, U,(x) — Jp(x, P) — 0 in probability. The result (i) follows since
Jy(x,P) — J(x,P). To prove (ii), given any subsequence {n;}, one can extract
a further subsequence {nkj} so that thj(x) — J(x,P) almost surely. Hence,
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L,,kj (x) — J(x,P) almost surely for all x in some countable dense set of the real
line. So L,,kj tends weakly to J(x,P) and this convergence is uniform by Pélya’s
theorem. Hence, the result (ii) holds. The proof of (iii) is very similar to the proof
of Theorem 1 of Beran (1984) given our result (i). To prove (iv), follow the same
argument, using the added assumptions and the Borel-Centelli lemma on the
inequality (2.4). O

REMARK 2.1. Inregular cases, 7, = n1/2, and the assumptions on b simplify
tob/n — 0 and b — co. The further assumption on b in part (iv) of the theorem
will then hold, for example, if b = n” for any v € (0, 1). More generally, it holds
if blog(n)/n — 0. The assumptions on b are as weak as possible under the
assumptions of the theorem. However, in some cases, the choice b6 = O(n) also
works, though it will not work in general as shown in Example 2.1.2. However,
the case b = O(n) does work in the situations analyzed by Wu (1990), where the
statistic is approximately linear with an asymptotic Gaussian distribution and
T, = n1/2, Specifically, Wu assumes the statistic T, has an expansion

Tn(Xy,...,.Xa) = 60P)+n™1 > ¢p(X;) + Ra,

i=1

where n'/2R,, — 0 in probability. Then (2.2) follows even if b/n — p and p > 0;
see Theorem 2 of Wu (1990). Wu's result is especially nice in that this form
of asymptotic linearity is extremely weak in situations of asymptotic normal-
ity, and avoids having to invoke any differentiability hypotheses for example.
Our goal here is to obtain consistency without having to assume any further
structure on the statistic sequence. Although Example 2.1.2 shows that some
structure must be assumed if we wish to assume only 6/n — p withp > 0,
it does not rule out the possibility that choice of b will not work in situations
less extreme than that of Example 2.1.2. It would be interesting to investigate
further situations where b/n — p with p > 0 could be used, as it would perhaps
lend support to the use of the method in finite samples. Note, however, that in
nice situations where the statistic is asymptotically linear, optimal choices of b
will actually satisfy b/n — 0 [specifically b = O(n?/3)], so that a choice of b (such
as b/n — p with p > 0) too big should be avoided even in simple situations; see
Section 2.4 below, Shao and Wu (1989) and Section 4 of Wu (1990). Finally, it
is interesting to mention that in the time series context of Section 3, the choice
b/n — p with p > 0 will not work even for linear statistics.

Assumption A is satisfied in numerous examples. Next, we offer an interest-
ing example which illustrates the scope of our method, as it falls outside the
range of n'/2-consistent estimators and normal limits. While methods like the
bootstrap are potentially applicable in this example, the validity of the boot-
strap is not known.

ExaMPLE 2.1.1 (Optimal replacement time). Consider the problem of age
replacement where replacements of a unit X occur at failure of the unit or at age
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¢, whichever comes first. X is assumed continuous with an increasing failure
rate distribution F having density . Suppose a cost ¢; is incurred for each
failed unit which is replaced and a cost ¢z < ¢; is incurred for each nonfailed
unit which is exchanged. Then the average cost per time unit, over an infinite
time horizon, based on the strategy of preventively replacing the unit at time ¢
is given by

c1F(t) +ca[1 — F2))
Jy [1 - Fx)]dx

The problem is to find §(F) which minimizes A(t, F) over ¢. Let r(x) = f(x)/[1
— F(x)] be the failure rate of F. If r(x) is assumed continuous and increas-
ing to oo, then 4(F) is well defined. The optimal minimum cost is then B(F)

= (c1 — c2)r(6(F)). In practice, F is unknown, so our problem is to construct a
confidence interval for (F) based on a sample Xj,...,X, from F. Let F denote
the empirical d1str1butio/13 of the data, and let T, be a value of ¢ minimizing
A, F, ); that is, T, = 6(F,). To handle problems of existence or uniqueness,
see Arunkumar (1972) Arunkumar (1972) has shown that n'/3[T,, — (F)] has
a nondegenerate limiting distribution, so our Assumption A is verified with
. = n/3. The asymptotic distribution is the distribution of c¢(F) times the
value of ¢ which minimizes [W(¢) — t2], where W(¢) is a two-sided Wiener—
Lévy process and the constant c(F) depends on intricate properties of F' such
as f(6(F)). Hence, the asymptotic distribution is of little use toward the con-
struction of confidence intervals for 8(F). Léger and Cléroux (1990) have con-
structed bootstrap confidence intervals for ,@\(F). The approach here may be
used for this problem as well because n'/2[3(F,) — B(F)] has a limiting normal
distribution.

A@F) =

EXAMPLE 2.1.2 (Extreme order statistic). Bickel and Freedman (1981) pro-
vide the following counterexample to the bootstrap. [For other counterexamples
to the bootstrap, see Beran’s (1984) analysis of Hodges’ superefficient estima-
tor; Bickel and Freedman’s (1981) U-statistic, and the correction suggested
by Arcones and Giné (1992); Bretagnolle (1983); Babu (1984); Athreya’s (1987)
analysis of the mean in the infinite variance case; and the variance of a quantile
as discussed in Ghosh, Parr, Singh and Babu (1984). Shi (1991) shows how sub-
sampling works for this problem under weaker conditions than the bootstrap
requires. In all these examples, our Assumption A holds.] IfX;, ..., X, arei.id.
uniform on (0, §), then n[max(X;,...,X,) — 6] has a limit distribution given by
the distribution of —6X, where X is exponential with mean 1. In Theorem 2.1,
the conditions on b (with 7, = n) reduce to b/n — 0 and b — co. In this example,
it is clear that we cannot assume b/n — c, where ¢ > 0. Indeed, L,(x) places
mass b/n at 0. Thus, while it is sometimes true that, under further conditions

.such as Wu (1990) assumes, we can assume b is of the same order as n, this
example makes it clear that we cannot in general weaken our assumptions on b
without assuming further structure. Note that, in some of the aforementioned
cases where the bootstrap is known to fail, it has been realized that a smaller
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bootstrap resample size can lead to consistency. In fact, under our Assumption
A, this is generally true; see Politis and Romano (1993b).

2.2. Random subsampling. Because (};) may be large, L, may be difficult
to compute. Instead, a stochastic approximation may be employed. For ex-
ample, let I;,...,I; be chosen randomly with or without replacement from
{1,2,...,N,}. Then L,(x) may be approximated by

Lox)=s"! Z 1{n, (Snz; = Tn) < x}
i=1

COROLLARY 2.1. Under the assumptions of Theorem 2.1 and the assumption
s — ooasn — oo, the results of Theorem 2.1 are valid if L, (x) is replaced by L,(x).

ProOF. Inthe casethel; are sampled with replacement, sup, Iin(x) — L, (x)|
— 0 almost surely by the Dvoretzky—Kiefer~Wolfowitz inequality; see Serfling
(1980), page 59. This result is also true in the case the I; are sampled without
replacement by a similar inequality; see Romano (1989). O

2.3. General parameters and other choices of root.

2.3.1. Studentized roots. Here, the goal is to approximate the distribution
of 7,[T, — 6(P)]/G», where G, is some estimate of scale. Let 3, ; be equal to the
estimate of scale based on the ith subsample of size b from the original data.
Analogous to (2.1), define

N,
(2.5) Kn(x) = N; 1> " 1{ny(Sp,i — Tn)/G,i < 2}

i=1

Under the conditions of Theorem 2.1 afid the added assumption that 5, — o,
where o = o(P) is a positive constant, K, will be a consistent estimate of the
distribution of 7, [T, — 6(P)]/5,. The proof is similar to that of Theorem 2.1, so
it is omitted.

2.3.2. General parameter space. It is often desirable to construct confidence
regions for multivariate parameters, or for parameters taking values in function
space. For example, consider the problem of constructing confidence bands for
the density or distribution function, which may form the basis of a goodness of
fit test. Assume 4(P) takes values in a normed linear space ©, with norm denoted
||-|I. Let T}, be an estimate of 6(P). Assume Assumption A, with the interpretation
that 7, [T, —0(P)] has a distribution in ©. Here, © is endowed with an appropriate
. o-field so that 7, [T, —#(P)] is measurable and an appropriate weak convergence
theory ensues, though we omit such measurability issues here. Let H,(P) denote
the distribution of 7,,||T, — 6(P)| under P, with corresponding c.d.f. H,(x,P). If
Assumption A holds, then H,(P) converges weakly to H(P), where H(P) is the
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distributionof ¢ when ¢ has distribution J(P). The corresponding c.d.f. H(P) is
denoted H(x,P). The approximation to H,(x) we study is defined analogously
to (2.1):

Nn
By =N 318} - T <},

i=1

THEOREM 2.2. Assume Assumption A. Also assume 7, /1, — 0, b — o0 and
b/n — 0 as n — oco. Let x be a continuity point of H(-, P).

(i) Then FIn(x) — H(x, P) in probability.
(ii) If H(-,P) is continuous, then sup, |IAI,,(x) — Hy(x,P)| — 0in probability.
(iii) Let hp(1 — @) = inf{x: fIn(x) > 1 — a}. Correspondingly, define h(1 — o, P)
=inf{x: H(x,P) > 1 — a}. If H(., P) is continuous at h(1 — «, P), then

Probp{m | T, — 0(P)|| < hn(1— )} - 1 —a,

and the asymptotic coverage probability of the set {6 € ©: 7,,||T, —6|| < h,(1-a)}
isl-a.

(iv) Assume, for every d > 0, ¥, exp{—d[n/bl} < oo and 7(T, — 6(P)) — O
almost surely. Then the convergences in (i) and (ii) hold with probability 1.

The proof of the above theorem is similar to that of Theorem 2.1, and is
omitted. Immediate applications of the theorem result in uniform confidence
bands for a cumulative distribution function F, based oni.i.d. observations from
F or in the case where observations are censored. The theory is also applicable
to biased sampling models, including stratified sampling, enriched statified
sampling, choice-based sampling and case-control studies; these models are
developed in Gill, Vardi and Wellner (1988), where they show Assumption A is
satisfied under weak assumptions. Although distributional theory is quite hard
in these models, our method is justified.

2.4. Second-order asymptotics and choice of b. The theory developed thus
far assumes b — oo and b/n — 0. In order to choose b optimally, higher-order
considerations are necessary. Consider the following heuristic argument. As-
sume J,(x,P) = J(x, P) + n=Pc(P) + o(n=P) for some 3 > 0. Here, J,, could repre-
sent the distribution of a studentized or unstudentized root. Our approximation
L, (x) serves as a good approximation to J;(x, P), with the main error due to the
fact that T, in (2.1) is not &(P). Specifically, L, — J; is of order b/n in prob-
ability. To appreciate why, L, is the distribution, conditional on Xj,...,X,, of
75 [Sn, 1 — 6(P)] + 7[0(P) — T},], where I is uniform on 1, ..., N,. The distribution
U, of the first term Z, | = 7,[S,,1 — 6(P)] is a good approximation to /;; indeed,
one can show, in regular situations (by a variance calculation), that U, differs
from J;, by Op(n~'/2). The second term Z, 3 = 7,[0(P) — T}] is of order 7, /7, in
probability. In regular cases, 7, = n'/2, in which case Z, 5 is Op(b/n)'/2. Hence,

Lo(8)=Prob{Z, 1+ Zn 5 <t|X1,...,X0} = Un(t — Zy 2).
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If n'/2[T, — 6(P)] converges weakly to the normal distribution with mean 0 and
variance o2,

Un(t = Zn,2) ~ / Un(t - (b/n) %) dieo) / Ty (¢~ (b/n)*2) d2(2/o)
~ Jp(#) + 0 (b/n)

by a Taylor expansion argument, using the fact that ® has mean 0. Thus, in
regular cases, L, — J} is order b/n in probability. Now, the difference between
J, and Jp is of order 7. In the case 3 = 1/2, the difference between oJ,, and
L, is then of order 5~1/2 + b/n in probability. The choice b = n?/3 minimizes
this order. In this case, the error L,(¢) — J,(t,P) is Op(n~1/3), though a good
second-order theory would require the error to be op(n=1/2).

We would also like to point out that the choice of b depends crucially on the
desired goal. Consider the use of L, for the purposes of estimating the bias
of T,,. Typically, 7, = n¥/2 and E(T,,) — 6(P) = a(P)/n + o(1/n). If the mean of
nl/2[T, — 6(P)] is approximated by m,, the mean of L,, then our estimate of
E(T,) — 6(P) becomes n~2m,,. But, n=1/2m,, has mean

n=Y2[E(T,) — E(T,)] = n~Y26"Y2a(P) + o ((nb)~ /).

Hence, in order to accurately estimate the bias of T),, we should at least require
b/n— 1.

In summary, the optimal choice of b is difficuit and future work will focus
on this problem. Tu (1992) has shown how jackknife values may be used ap-
propriately to obtain second-order accuracy. Basically, Tu (1992) makes use of
a normalizing transformation, and a similar approach could be applied here. A
further possibility, in case where Edgeworth expansions exist so that second-
order accuracy is obtainable, is to consider a k-fold convolution of our estimated
sampling distribution. If £ is chosen so k ~ n /b, then the new distribution has
the appropriate skewness them. Such considerations are beyond the scope of
the present work,, whose goal is to establish the broad applicability of a particu-
lar methodology. In general, the optimal choice of b and construction of suitably
defined pseudo-values will depend on the particular nature of the problem.

3. Stationary time series and homogeneous random fields.

3.1. Basic definitions. Let Z denote the integers and Z* the positive inte-
gers. Suppose {X(t), t € Z%} is arandom field in d dimensions, withd € Z*, that
is, a collection of random variables X(t) taking values in a state space S, defined
on a probability space (2, A, P) and indexed by the variable t € Z¢. The random
field { X(t)} is assumed to be homogeneous, meaning that for any set E C Z¢ and
for any point i € Z2, the joint distribution of the random variables {X(t), t € E}
is identical to the joint distribution of {X(t), t € E + i}. In the case d = 1, the
raridom field {X(t)} is just a stationary time series. For two points t = (¢1, .. .,%4)
and u = (uy, . ..,uq) in Z?, define the sup-distance in Z¢ by d(t, u) = sup; |t; — u;|,
and for two sets E, E; in Z¢, define d(Ey, E;) = inf{d(t,u): t € E;, u € E;}.
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Our goal again is to construct a confidence region for a real-valued parameter
6 = 6(P), on the basis of observing {X(t), t € E, }; E, is the rectangle consisting
of the points t = (¢1,s,...,%3) € Z% such that 1 <#, < n;, where £ =1,2,...,d,
and n = (nq,ny,...,ny). The sample size is again denoted by n, although now
n =112 n; = |Ey|, where |E| denotes the cardinality of the set E.

The random field { X(t)} will be assumed to satisfy a certain weak dependence
condition. Define a collection of strong mixing coefficients by

ax(k;li,l) =  sup  {|P(A;NAg) — P(ADP(Ay)): A; € F(E)),
E, E; cze

'El' S li’ l = 1,2,d(E1,E2) 2 k},

where F(E) is the o-algebra generated by {X(t),t € E}. A weak dependence
condition is formulated if ax(k;l1,13) is assumed to converge to 0 at some rate,
as k tends to oo, and l;,l5 either remain fixed or tend to co as well. Let ax(k)
= ax(k; 00, 00) be the usual strong mixing coefficient of Rosenblatt (1985); then
ax(k;ly,lp) < ax(k). If ax(k) — 0 as & — oo, then the random field {X(t)} is
simply said to be strong mixing.

In the case of a stationary sequence (d = 1), the condition of strong mix-
ing is rather weak and is satisfied by a whole host of interesting examples [cf.
Ibragimov and Rozanov (1978)]. There are still many examples of strong mixing
random fields in the case d > 1 [cf. Rosenblatt (1985)], for example, Gaussian
fields with continuous and positive spectral density function. However, an inter-
esting class of random fields (with d > 1), the so-called Gibbs states (Markov
field models), are not necessarily strong mixing [cf. Dobrushin (1968) for an
example], but do satisfy weak dependence conditions involving the ax(k;l1,ls)
coefficients [cf. Neaderhouser (1980), Bolthausen (1982), Zhurbenko (1986) and
Bradley (1991)].

3.2. The general theorem in the case of dependent data. As in Section 2, let
T = Tu(X(t), t € E,) and let J,(P) be the sampling distribution of 7,(T, —
6(P)). Again, the only assumption that will be needed is the following.

AssuMPTION Al. J,(P) converges weakly to a limit law J(P), as n; — oo, for
i=1,...,d.

Define Yj to be the block of size b of the consecutive data {X(t), t € Ej p n},
where j = (j1,J2,...,Jq) and E;j  y is the smaller rectangle consisting of the
points i = (iy,1s, . . .,ig) € Z% such that (j, — Dhg + 1 < i, < (ji, — Dhy + by, for
E=1,2,...,d;b=(by,...,b3), h = (hq,...,hy) are points in Z¢ that depend in
general onn and E,. The point b indicates the shape and size of rectangle E; 1, n,
and the point h indicates the amount of “overlap” between the rectangles E; p n
for neighboring i’s, that is, the size of their intersection; for example, if h = b
- there is no overlap between E; 1, and E; p, , for i#j, while if h = (1,1,...,1)
the overlap is the maximum possible. It will generally be assumed that either
h=(1,1,...,1), or that as b; — oo, h;/b; = a; € (0,1],fori =1,2,...,d.
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As before, denote b = I1% ,b; and h = TIZ. ,h;, and observe that, with E,
and n fixed, Y; is defined only for j such that 1 < j, < gz, where q;, = [(n;, —
br)/hi] + 1, and thus the total number of the Y; blocks available from the data
is ¢ = I1%_ ,q;. (The number g should be compared to the number N, in the i.i.d.

case of Section 2.)
Similarly to Section 2, let S, ; be equal to the statistic 7}, evaluated at the
data set Y;. The approximation to J,(x, P) we study is now defined by

q1 g2

(3.1) La®)=q7'Y > - Z 1{m(Sn,i — Ta) < x}.

11 112 1 ld 1

THEOREM 3.1. Assume Assumption Al and that n,/m — 0, b; — oo and
n; — oo, for i = 1,2,...,d. Also assume that II°_b;j/(nj — b;) — 0 and that
q ¥ k4~ lax(k;b,b) — 0, where ¢* = max;q;. Let x be a continuity point of
J(-,P). Then conclusions (i)~(iii) of Theorem 2.1 remain true (with n replaced
by n).

Proor. Inwhatfollows,cg,ci,co,...will denote some positive constants. As
in the proof of Theorem 2.1, to prove (i) it suffices to show that Uy(x) converges
in probability to J(x, P), where

q1 Q92

Ua)=g13 3 - Zl{ Sai = 6(P) <x}.

i1=1lig=1 ig=1

Since EUy(x) = Jp(x,P) and Jp(x,P) — J(x,P) as b; — oo, fori = 1,2,...,d
(by Assumption A), it suffices to look at Var(Uy(x)). By the homogeneity of the
random field {X(t)},

q1 . .
) =g 3 3 (1- B (- Bl)... (1- B,
i = _qll‘2 —q2 ig=—qd

where C(i) denotes the covariance between 1{7,(Sn,1 — 6(P)) < x} and
1{7'1,(‘5’n 1+i — 8(P)) < x}; note that C(i) = C(—i). Let E;, = {i € 2% |i;| <
qj,j=1,2,...,d}, and E* = {i € Z%: |i;| < [bj/h;], j = 1, 2 .,d}, where [] is
the integer part. Then Var(Uy(x)) = A* + A, where

_q_lz( Izll>( %)...(1_%>C(i)

i€ Ex
o (1_M><1_@)...(1-@_|>C(i).

Looking at A*, it is seen that it is a sum of I17_,(2[b;/h;] + 1) ~ 2b/h terms
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of order O(g~1); since

d (ro b d
o I1([252] 1)~ [los-oom
j=1

Jj=1

it follows that |A*| = O(H;?= 16i/(nj — bj)).

Now by the well-known mixing inequality for the covariance between two
bounded random variables [cf. Roussas and Ioannides (1987)], |C{)| < coax(i*A*
— b*;b,b), where i* = maxy, |iz|, b* = max; b; and A* = min, &;. Therefore,

Al <cog™ Y ax(*h* —b*;b,b)
i€ By — E*

*

q
<cig7'd Y Wk)ax(kh* —b*;b,b),
k=0b*/h*]+1

where W(k) is the cardinality of the set {i € Z%:i; =k, 0 < i; < i, j = 2,
...,d}. By a combinatorial argument it now follows that W(k) < k¢~ 1, and,
therefore,

q*
Al<ers Y k- Tax(kh* - b¥b,b).
k=[b*/h*]+1

It is obvious that by the imposed conditions both terms above converge to 0,
and hence Var(Uy(x)) — 0, which completes the proof of (i). The proof of (i) and
(iii) is now exactly analogous to the proof of Theorem 2.1. O

The conditions of Theorem 3.1 are as weak as possible. In practice, since one
gets to choose the design parameters b and h as functions of the given sample
size, a realistic set of conditions would satisfy b; — oo, with b;/n; — 0, as
n; — oo, and either h = (1,1,...,1), or that 4;/b; — a; € [0,1], fori =1,2,...,d.
In the most important case of maximum overlap between the rectangles, that
is,if h =(1,1,..., 1), the statement of the theorem simplifies and the following
corollary is true.

COROLLARY 3.1. Assume Assumption Al and that T,/ma — 0, b; — o0 and
bi/ni —» 0,asn; — oo, fori =1,2,...,d. Also set h = (1,1,...,1) and assume
that n=157_ k%~ lax(k;b,b) — 0, where n* = max; n,. Let x be a continuity point
of J(-, P). Then conclusions (i)-(iii) of Theorem 2.1 remain true (with n replaced
by n). .

REMARK 3.1. It is easy to see that if the random field is actually strong
mixing, then a sufficient weak dependence condition for Corollary 3.1 to hold is
that k%~ lax(k) — 0 as k — co. For the case d > 1, a sufficient condition is that
k%~ lax(k) converges to some finite number as 2 — oo, and for the important
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special case of a time series (d = 1), this sufficient condition boils down to
the minimal assumption that the time series is strong mixing. As a matter
of fact, Theorem 3.1 limited to the time series case is remarkably similar to
Theorem 2.1.

COROLLARY 3.2. Let d = 1. Assume Assumption Al and that Ty/ma — O,
b— oc0cand b/n — 0,asn — oco. Also let 1 < h < cob, for some cy > 0, and
assume the time series is strong mixing. Let x be a continuity point of J(-, P). Then
conclusions (i)-(iii) of Theorem 2.1 remain true [with L,(-) defined as in (3.1)].

Theorem 3.1 can also be extended to Studentized roots and general param-
eter spaces. There is an interesting extension of Theorem 3.1 that should be
mentioned. Suppose that instead of having a limit theorem where n; — oo, for
i=1,...,d,wehave a modified version of Assumption Al that reads as follows.

ASsSUMPTION Al*. J,(P) converges weakly to a limit law J(P), as n; — oo,
fori=1,...,d",andn; — Qj, forj=d*+1,...,d, where 1 < d* < d, and the
Q,’s are some fixed positive integers.

This notation allows for the case of a limit theorem where not all dimensions
n; of the sample diverge to oo; for an example of such a limit theorem in the
sample mean case, see Bradley (1992). To appreciate where such a limit theorem
might be useful in practice, consider the case d = 2, and suppose the data are
observed on a very long and thin strip on the plane; that is, suppose that ns is
small for all practical purposes, whereas n; is large.

Since the index set cannot be thought to extend arbitrarily in all dimensions,
it seems that d* is the “effective” dimension, and the setup seems equivalent to
a vector-valued random field in d* dimensions. This point of view, however, ob-
scures the fact that the probability structure is shift invariant in d dimensions,
a fact that should be used in the analysis. The following corollary addresses
this setup; its proof is analogous to the proof of Theorem 3.1.

COROLLARY 3.3. Assume Assumption Al* and that T/ — 0 b; — oo and
bi/n;i—0,asn; — oo, fori=1,2,...,d*,whereas bj - Q;and n; — Q;, forj=d*
+1,...,d. Also set h = (1,1,...,1) and assume that n= 5} k% ~lax(k;b,b)
— 0, where n* = max;.;, .. q+n; Let x be a continuity point of J(-,P). Then
conclusions (i)-(iii) of Theorem 2.1 remain true (with n replaced by n).

3.3. Variance estimation and bias reduction.

3.3.1. Variance estimation and choice of the design parameters. In this sec-
tion, denote by my’, 1 and 4(? the jth (noncentral) moments of distributions
Ly(),Ju(-,P) and J(-, P), respectively, assuming &’ and u(? exist. It follows
‘that if in the assumptions of Theorem 3.1 we include that m{? converges to u®,
then the subsampling methodology can also be used for estimating the variance

of the statistic 7%,. As a matter of fact, in the case where T, is the sample mean
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or a closely related statistic, convergence of m{) to u® can actually be proven
under stronger moment and mixing conditions.

The problem of variance estimation can yield useful insights. For example,
a most interesting question for practical applications is how to choose b and h
as functions of n. In the case of sample mean type statistics, it turns out that to
have a most accurate (from the point of view of asymptotic mean squared error)
variance estimator, one should let h = (1,1,...,1) and & ~ An?/@+2 [cf. Politis
and Romano (1992b, a)]; the constant A > 0 can, in principle, be calculated (or
estimated) given the specifics of the problem [see Kiinsch (1989) for an explicit
calculation in the sample mean example for the case d = 1].

The variance of the variance estimator m? can be shown to be of order
O(b/n), in the sample mean and related examples [cf. Politis and Romano
(1992b)], regardless of the choice of h. However, taking h = (1,1,...,1) is pre-
ferred because it decreases the variance of m by a constant factor. Intuitively,
this makes sense, since the case h = (1,1,...,1) corresponds to a maximum
overlap between the rectangles E; p p, for i such that 1 <i, <q;, k=1,...,d,
which in turn (for given b and n) maximizes g, the number of subsamples avail-
able for the data, making it equal to 1'[;?’= 1(n; —b;+1). On the other hand, taking
h;/b; — a; € [0,1] would imply that a proportion of the 1'[;1=1(ni —b; +1) avail-
able Sy, i’s are thrown away when computing the “empirical” estimate L, and
its variance.

Another insight offered by the problem of variance estimation is apparent by
comparing the i.i.d. case of Section 2 and the dependent case of Section 3. The
difference is that, whereas in the i.i.d. case (under some extra conditions) b can
be taken of the same order as n, this cannot be done in the dependent case, even
in the simplest setting of the mean. This is manifested by the fact that, as men-
tioned, the variance of the variance estimator m{ is of order O(b/n), in contrast
to the i.i.d. case where the variance of m? is of order O(1/n), independent of b.

To fix ideas, consider the sample mean. Then the variance estimator m is
asymptotically equivalent to a kernel smoothed (with Bartlett’s kernel) estima-
tor of the spectral density at the origin [Kiinsch (1989)]. It is well known [cf.
Priestley (1981)] that the bias of m is of order O(1/b), and the variance of m?
is of order O(b/n); this of course implies that consistent variance estimation
requires b — oo as well as b/n — 0.

3.3.2. Bias reduction. Since statistics calculated from time series and ran-
dom fields are often heavily biased, the subsampling methodology could be used
for bias reduction, in the same vein as the original proposition of a “jackknife”
by Quenouille (1949). To outline the method, assume that Assumption A holds
together with x{’ — u® and m{’ — uY; usually, but not always, it will be the
case that 4 = 0. Then, since L,(-) and Jy(-,P) have the same limiting dis-
tribution J(-, P) (with first moments converging as well), one can approximate
Bias(Tyn) = ETn — 0 by a rescaled version of the “empirical” bias, that is, by

B/i;s(Tn)imﬂ) = :E(Ave(Sn,i) —Th),
Tn Tn
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where Ave(Sy ;) = ¢71X#_ le 1 E:?i 15n,1; correspondingly one can form
the bias corrected estlmator

(3.2) T, = Ty, — Bias(Ty,) = (1 + ;2) T, — ?Ave(sn,i).
n

n

It is obvious that this is an asymptotic bias correction. For example, in the
simplest case where T}, is the sample mean (which is unbiased), Bias(Ty) # 0,
due to edge effects; nevertheless Bias(T,) — 0 as it should [cf. Politis and
Romano (1992a)]. In the following theorem the conditions of Theorem 3.1 are
strengthened to ensure that the bias correction suggested in (3.2) is indeed
asymptotically valid. The argument is actually most relevant when u #0,
such as in the case of an optimally smoothed spectral density estimator (see
Example 3.5.2).

THEOREM 8.2. Assume Assumption Al strengthened to include ) — pD;
assume Tp/T™ — 0, b; — o0 and n; — oo, for i = 1,2,...,d. Also assume

that I3 1b;/(n; — b)) — 0, that E|Sy, 1>+ < C and that q—lzk ke l{ax(k b,
b)}5/ o — 0, where § and C are two positive constants independent of m, Sp, 1
= Sp,1/+/Var(Sp,1) and ¢* = max; q;. Then [m{Y — | — 0 in probability.

Proor. First note that

Em{) = m(ESy,1 — ETn) = pu{’ — ug,v =P +0o(1)

and that |u{) — 4| — 0, by the (strengthened) Assumption A. Now

Var(m’) = Var iy (Ave(S,1) — Ta))
= Var 'y (Ave(Sa, 1) ~ ESn,5) ~ 76(Ta — ESa 1))
= Var 'y (Ave(Sy, 1) — ESn,1) ) +0(1),

because Var(ry(Tn — ESy,1)) — 0 as 1,/ — 0. But

_ -1 el (y B2l . (4 _ Ll
i) i3 (- 511
x Cov(Sp,1,8n,1+1)

and thus

‘Var(rb (Ave(Sp,;) — ESy, 1))‘ -1 Z Cov(Sn, 1,8n 1+1),
icE;
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where it was taken into account that Var(Sp 1) = O(1/72), and E,; was de-
fined in the proof of Theorem 3.1. Finally, by argument similar to the proof of
Theorem 3.1 and the inequality

lcov(gn,l7§n,l+i)' < 1002{ax(i*h* — b*; b’b)}a/(z"'&)

[cf. Roussas and Ioannides (1987)], it follows that Var(m{) — 0 and the theorem
is proved. O

3.4. Comparison with other resampling methods. Subsampling methodol-
ogy for dependent data has been used in the past for variance estimation
[Carlstein (1986), Rais (1992) and Politis and Romano (1992a, b, 1993a)] and is
closely related to other nonparametric resampling methods, such as the “mov-
ing blocks” jackknife and bootstrap [Kiinsch (1989), Liu and Singh (1992), Rais
and Moore (1990) and Politis and Romano (1992a)]. In the case of a stationary
strong mixing sequence (d = 1), Carlstein (1986) used m? (but only in the case
h = b). Carlstein’s idea was generalized in Politis and Romano (1993a) to a cer-
tain class of statistics of “linear” type that are not necessarily 1/n-consistent. In
addition, the important case where either 2 = 1 or /b — a € (0, 1] was studied,
and the variance estimator m? with A = 1 was shown to be more accurate than
the one with 2/b — a € (0,1]. The subsampling variance estimator m@ was
also generalized to the case of homogeneous random fields (d > 1) by Possolo
(1991), Rais (1992) and Politis and Romano (1992b).

The fact that taking 4 = 1 is preferable to taking & = b was also discussed in
Kiinsch (1989). As it turns out, the so-called “moving blocks” jackknife estimate
of the variance of 7,,T), [(/:\f. Kiinsch (1989) and Liu and Singh (1992)] is identical
to m? with & = 1. Let J,(x, P) denote the “moving blocks” bootstrap estimate
of Ju(x, P) [ef. Kiinsch (1989) and Liu and Singh (1992)]; as can be calculated,
the variance of J,(x, P) is approximately (up to an asymptotically negligible
factor) equal to m{?) with 2 = 1, and indeed J,(x, P) is very closely related to the
“empirical” L, (x).

The above discussion helps put the subsampling methodology into perspec-
tive. In the case where the limit distribution J(x, P) is normal, for example in
the case of the sample mean or related statistics (differentiable statistics or
statistics of the “linear” type), variance estimation by subsampling or “mov-
ing blocks” jackknife, and distribution estimation by subsampling or “moving
blocks” bootstrap are both applicable. The point to be made in this paper is that
distribution estimation by subsampling is actually applicable in quite more
general situations, for instance, when asymptotic normality does not hold, or
where variance estimation is not consistent.

3.5. Some examples. The examples will address some unorthodox cases; in
all standard cases of statistics from time series and random fields that possess
asymptotic distributions, for example, the sample mean, the sample autocovari-
ances and autocorrelations, estimates of the spectral and cross-spectral density,
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estimates of the coherency function and so on, the subsampling methodology
is applicable. To verify Assumption A1l in the case of the mean of a series with
long-range dependence, see Rosenblatt (1984). For the examples consider the
case of a real-valued stationary sequence (d = 1), in which case the notation
is much simpler, although all examples have immediate analogs in the ran-
dom field case. So suppose the sample {X;, ¢ = 1,...,n} is observed from the
stationary strong mixing sequence {X;, ¢t € Z}.

3.5.1. Robust statistics from time series. Suppose the first marginal of the
sequence {X;}, that is, the distribution of the random variable X7, is symmetric
and unimodal, with unknown location 6. Much of the methodology of robustness
can be applied to the case of dependent data as well [cf. Gastwirth and Rubin
(1975), Kiinsch (1984) and Martin and Yohai (1986)]. Under regularity condi-
tions, the median, the trimmed mean, the Hodges—Lehmann estimator, linear
combinations or order statistics and so on, all possess asymptotic distributions,
and hence Theorem 3.1 is directly applicable.

As an example, consider a Gaussian strong mixing sequence {X;}, satisfy-
ing Y}|R(k)] < oo, where R(k) = Cov(X1,X;.:). Then [cf. Gastwirth and Rubin
(1975)] the Hodges-Lehmann estimator, that is, the median of all pairwise
averages of the data, is asymptotically normal, with mean ¢ and variance pro-
portional to 2n~139° _ _ arcsin(R(k)/2). It is apparent that to use this asymp-
totic normal distribution to set confidence intervals for 6, the constant ¥ arcsin
(R(k)/2) should be consistently estimated which is a difficult task. To appreci-
ate the difficulty, recall that even estimating 72 ___R(k) is hard and amounts
to estimation of the spectral density function at the origin. Using Theorem 3.1
to set approximate confidence intervals for 6 bypasses this difficult
problem.

3.5.2. The spectral density function. As before, assume that YJ|R(k)| < oo
and define the spectral density function f by f(w) = (1/2m)Eg° _ R(k)e~**. Fix
apointw € [-m, 7] and consider a kernel smoothed estimator of f(w) given by
fw) = (1/2m)$%_ _,Bn(k)R(k)e~**, where R(k) = (1/n)r *X,X; 4 is the usual

sample autocovariance and ﬁn (k) is the “lag-window.” Under regularity condi-
tions [cf. Priestley (1981) and the references therein], there is a sequence 7,
corresponding to a particular choice of a sequence of lag-windows B,(-), such
that 7,,(f(w) —f(w)) has an asymptotic normal distribution. In fact, uniform con-
fidence bands for the spectral density or the spectral distribution function may
be constructed by the subsampling methodology, but requires a slight extension
of Theorem 3.1 to the case of functional parameters (as in Section 2.3 in the i.i.d.
case). One must appeal to the weak convergence of the spectral density process,
as done in Woodroofe and van Ness (1967); the required extension will appear
elsewhere. The same ideas are directly applicable in the case of homogeneous
random fields (d > 1); kernel smoothed estimators of f(w) for w € [—m,7]? are
formed in an analogous manner and are shown to be asymptotically normally
distributed under regularity conditions [cf. Rosenblatt (1985)]. Theorem 3.2 is
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especially applicable in this context and yields bias-corrected estimates with
desirable properties.

3.5.3. Nonparametric estimation of the first marginal ciistribution. Let F(.)
denote the distribution of the random variable X; and let F(x) = n~1 £7_,1{X; <
x}. Under regularity conditions [cf. Gyérfi, Héardle, Sarda and Vieu (1989)],
\/r_z(f‘(x) — F(x)) possesses a limiting normal distribution, and hence Assump-
tion A is satisfied. Furthermore, v/n(F(-) — F(-)), viewed as a random function,
converges weakly to a Gaussian process [cf. Deo (1973)]. Looking at the sup-
norm sup, |/n(F(x) — F(x))|, uniform confidence bands for the unknown distri-
bution F(.) can be set by the subsampling methodology, similarly to the i.i.d.
case of Section 2.3. The moving blocks bootstrap can also handle this problem,
though further assumptions are needed for consistency; see Naik-Nimbalkar
and Rajarshi (1994) and Buhlmann (1992).

4. Conclusion. In thispaper, we have demonstrated how the sampling dis-
tributions of normalized statistics can be estimated through the use of jackknife
pseudo-values or, equivalently, the values of the statistic computed over certain
subsets of the data. The applicability of such methods has been discussed in
complicated i.i.d. situations and in the setting of homogeneous random fields.
The viability of such methods in the context of time series and random fields is
particularly important because the distribution theory of many estimators is
quite complicated. Our results are powerful enough that the intricate problem
of constructing a confidence interval for the spectral density function, for ex-
ample, is immediate from our general results. Indeed, in all of our results, the
asymptotic justification of the method studied hinges on the simple assump-
tion of a limit distribution for the normalized statistic. Hence, the method is
applicable in quite complex settings.

Future work will focus on the higher-order asymptotic properties of these
methods, which was briefly discussed in Section 2.4. In particular, the choice of
b remains a practical and theoretical issue, in spite of our results which support
the view that the method is justified over a wide range of subsample size. As pre-
viously mentioned in Section 2.4, there are undoubtedly several possible routes
to construct second-order correct procedures in regular situations. Tu (1992)
has presented such a scheme. Outside of the i.i.d. context, very little is known
about higher-order accuracy in the nonparametric analysis of time series. Our
method immediately applies to most of the interesting statistics in time se-
ries, unlike bootstrap methods such as the moving blocks of Kiinsch (1989) and
Liu and Singh (1992) or the stationary bootstrap of Politis and Romano (1991).
Indeed, as in the ii.d. case, bootstrap methods require the weak convergence
of the statistic to be smooth as a function of the model, and the verification
of such smoothness can be challenging even in specific situations. In contrast,
" the first-order validity of our method is quite apparent in general with little
further work. Now that there exist methods that possess minimal consistency
requirements without having to invoke unrealistic model assumptions, further
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work should compare and refine these methods so that inferences can be valid
to a high degree of accuracy in a broad range of situations.
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