Abstract
Consider the model where $X_{ij}, i = 1, 2, \ldots, k, j = 1, 2, \ldots, n,$ are independent random variables distributed according to a one-parameter exponential family, with natural parameter $\theta_j$. We test $H_0: \theta_1 = \ldots = \theta_k$ versus $H_1: \theta \in \mathscr{C} - \{\theta: \theta \in H_0\},$ where $\theta = (\theta_1, \ldots, \theta_k)'$ and $\mathscr{C}$ is a cone determined by $A\theta \geq 0,$ where the rows of $A$ are contrasts with two nonzero elements. We offer a method of generating "good" tests for $H_0$ versus $H_1$. The method is to take a "good" test for $H_0$ versus $H_2:$ not $H_0,$ and apply the test to projected sample points, where the projection is onto $\mathscr{C}$. "Good" tests for $H_0$ versus $H_2$ are tests that are Schur convex. "Good" tests for $H_0$ versus $H_1$ are tests which are monotone with respect to a cone order. We demonstrate that if the test function for $H_0$ versus $H_2$ is a constant size Schur convex test, then the resulting projected test is monotone.
Citation
Arthur Cohen. J. H. B. Kemperman. H. B. Sackrowitz. "Projected Tests for Order Restricted Alternatives." Ann. Statist. 22 (3) 1539 - 1546, September, 1994. https://doi.org/10.1214/aos/1176325641
Information