Open Access
September, 1994 On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates
Luc Devroye, Laszlo Gyorfi, Adam Krzyzak, Gabor Lugosi
Ann. Statist. 22(3): 1371-1385 (September, 1994). DOI: 10.1214/aos/1176325633

Abstract

Two results are presented concerning the consistency of the $k$-nearest neighbor regression estimate. We show that all modes of convergence in $L_1$ (in probability, almost sure, complete) are equivalent if the regression variable is bounded. Under the additional conditional $k/\log n \rightarrow \infty$ we also obtain the strong universal consistency of the estimate.

Citation

Download Citation

Luc Devroye. Laszlo Gyorfi. Adam Krzyzak. Gabor Lugosi. "On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates." Ann. Statist. 22 (3) 1371 - 1385, September, 1994. https://doi.org/10.1214/aos/1176325633

Information

Published: September, 1994
First available in Project Euclid: 11 April 2007

zbMATH: 0817.62038
MathSciNet: MR1311980
Digital Object Identifier: 10.1214/aos/1176325633

Subjects:
Primary: 62G05

Keywords: consistency , nearest neighbor estimate , nonparametric estimation , regression function , strong convergence

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 3 • September, 1994
Back to Top