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HYPER MARKOV LAWS IN THE STATISTICAL ANALYSIS
OF DECOMPOSABLE GRAPHICAL MODELS

By A. P. Dawip anD S. L. LAURITZEN
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This paper introduces and investigates the notion of a hyper Markov
law, which is a probability distribution over the set of probability measures
on a multivariate space that (i) is concentrated on the set of Markov
probabilities over some decomposable graph, and (ii) satisfies certain condi-
tional independence restrictions related to that graph. A stronger version of
this hyper Markov property is also studied.

Our analysis starts by reconsidering the properties of Markov probabili-
ties, using an abstract approach which thereafter proves equally applicable
to the hyper Markov case. Next, it is shown constructively that hyper
Markov laws exist, that they appear as sampling distributions of maximum
likelihood estimators in decomposable graphical models, and also that they
form natural conjugate prior distributions for a Bayesian analysis of these
models.

As examples we construct a range of specific hyper Markov laws,
including the hyper multinomial, hyper Dirichlet and the hyper Wishart
and inverse Wishart laws. These laws occur naturally in connection with
the analysis of decomposable log-linear and covariance selection models.

1. Introduction. Recent work [Darroch, Lauritzen and Speed (1980),
Edwards and Kreiner (1983), Wermuth and Lauritzen (1983), Lauritzen (1989),
Whittaker (1990), Edwards (1990) and Wermuth and Lauritzen (1990)] has
shown the value and versatility of graphical models, namely statistical models
embodying a collection of marginal and conditional independences which may
be summarized by means of a graph. Such models combine richness in
modelling, clarity of interpretation and ease of analysis. Graphical models have
also been studied in connection with “ probabilistic expert systems’ [Lauritzen
and Spiegelhalter (1988), Pearl (1988) and Spiegelhalter, Dawid, Lauritzen and
Cowell (1993)], where they have been found to provide a powerful tool for
specifying complex multivariate distributions, and for simplifying and organiz-
ing probability calculations in them.

The underlying graph, which may be directed or undirected, or even a
combination of the two, has a node for each variable in the problem. In the
directed case, the “parent” nodes, from which edges lead into a given ““child”
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node, are taken to be the only direct influences on that child, which is thus
independent of all other possible or indirect influences, conditional on these
parents. In the undirected case, a node is taken to be independent of all others,
given its immediate neighbours.

To introduce the topic of the present paper, let us consider the particularly
simple and well-known example of such a graphical model involving two
independent discrete variables A and B with levels ¢ and j. Based upon a
multinomial sample of size n represented by a table of counts {N;;}, the
maximum likelihood estimator of the unknown probability distribution p,; is
given by

ﬁij = M+N+j/n2’

where + denotes summation over the corresponding index. As the counts are
random, the estimator p is a random distribution. The distributional law of p
is an example of what we shall term a hyper Markov law in the present paper.
This term reflects the fact that, under the assumption of independence of the
variables A and B, that is, that p;; = p,,p.;, the estimators of the marginal
distributions

{ﬁi+} = {M+/n} and {ﬁ+j} = {N+j/n}

are stochastically independent according to the law of p. Thus the Markov
property at the model level, embodied in the independence of A and B, is
reflected at the higher level represented by the law of the estimator p.

Another simple example of a hyper Markov law involves three variables X,
Y and Z following a trivariate normal distribution with mean zero and a
covariance matrix with the xyth-element o*? of its inverse equal to zero. This
is equivalent to X and Y being conditionally independent given Z. If we take a
random sample (X;,Y;,Z;), i = 1,...,n from this distribution, it holds—un-
der the given assumption—that [using the conditional independence notation
of Dawid (1979a)]

(BAx‘z’ &xzxz) 4 ( Ay-z’ &yzy-z) I &zzz’
where B,.,=YX,Z,/YZ? and 6%.,=n"YTX2? - (LX,Z)?/LZ} are the
sample estimators of the parameters of the regression (slope and residual
variance) of . X on Z and so on. This again reflects the Markov property at a
higher level.

As we shall show in the present paper, these are special instances of a
general phenomenon, extending to a large class of decomposable models, the
statistical analysis of which is particularly tractable and useful [Frydenberg
and Lauritzen (1989)].

The work on graphical models in expert systems has, for the mest part,
assumed completely specified probabilities. These might, for example, be sub-
jectively assessed by the same subject-matter expert from whom the appropri-
ate graphical structure is elicited. However, if data can be observed on the
variables in question, it should be possible to learn from these data so as to add
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to, and perhaps eventually override, the information provided by the expert.
This suggests a Bayesian approach, in which the task of the expert is to
provide the graphical structure, and a prior distribution expressing his or her
uncertainty about its numerical parameters. This approach has been studied
by Spiegelhalter and Lauritzen (1990) in the context of a directed graph. A
major purpose of the present paper is to explore the details of the Bayesian
approach, with special emphasis on the undirected case. It turns out that laws
satisfying the hyper Markov property described above prove particularly
amenable for use as prior distributions. For example, consider as before two
independent discrete variables A and B with levels i and j. One possible
prior distribution, reflecting the independence structure, would be to assume

pij = 0;m;,

where 6 = (6,) and n = (n;) are assumed to be independent and Dirichlet
distributed. The prior law of p so constructed is a hyper Markov law, indeed a
special instance of what we term the hyper Dirichlet law on this graph.

The main body of the paper begins by reconsidering a familiar area—the
definition and properties of Markov distributions over an undirected graph.
Some formal graph-theoretic notions and proofs are deferred to the Appendix.
Here and throughout the rest of the paper we restrict ourselves to the case of a
decomposable graph. This allows us to develop the theory in a way which is
thereafter immediately applicable to our major concern: Defining and investi-
gating the structure of a hyper Markov law over a family of Markov distribu-
tions. Indeed, throughout this work we emphasize the generality and ex-
tremely broad applicability of the particular methods which we use to develop
our results. This is accomplished by using a formulation based entirely on
simple properties of the relation of conditional independence—properties
which, when considered at a suitably abstract axiomatic level, can be seen to
apply to several different interpretations.

We then turn our attention to the structure of families of Markov distribu-
tions as statistical models, and in particular to the relationship between the
parametric (rather than probabilistic) model structure and the underlying
graph. Here we introduce the concept of a meta Markov model, and show that
the theory developed can be applied to yield valuable results about the sam-
pling theory of such models. We next discuss Bayesian analysis of decompos-
able models, where the concept of a strong hyper Markov law satisfying yet
stronger independence properties becomes relevant. It turns out to produce an
especially simple decomposition of the Bayesian analysis into a collection of
subanalyses for smaller problems. It also allows similar localization of the
problem of making comparisons between rival candidate models on the basis of
empirical data, using Bayesian or semi-Bayesian methods.

. Finally we illustrate our theory with detailed investigations of some impor-
tant special cases, based, respectively, on the normal mean model, the multino-
mial model and the normal dispersion model.
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2. Markov distributions.

2.1. Conditional independence. Since we shall make extensive use of prop-
erties of conditional independence, as discussed in Dawid (1979a, 1980), we
begin with a brief description of the most basic issues concerning this notion.

DerFINITION 2.1. If X,Y,Z are random variables on a probability space
(O, o7, P), we say that X is conditionally independent of Y given Z under P,
and write X 1 Y | Z [ P], if, for any measurable set A in the sample space of
X, there exists a version of the conditional probability P(X € A|Y, Z) which is
a function of Z alone.

Usually (Q, &7, P) will be fixed and P is then omitted from the notation. If
7 is trivial we say that X is independent of Y, and write Xu1Y.
The ternary relation X 1 Y | Z has the following properties.

PropErTY 1. If X 1Y |Z thenY 1 X|Z.

PropErTY 2. If X L Y |Z and U is a function of X, then U L Y| Z
Properry 3. If X 1 Y |Z and U is a function of X, then X 1 Y [(Z,U).
PrOPERTY 4. If X L Y|Z and X 1 W (Y, Z), then X 1 (W, Y)| Z.

(Note that the converse to Property 4 follows from Properties 1-3.)
Another property of the conditional independence relation is often used,
namely:

PropERTY 5. If X L Y|Z and X L Z|Y, then X 1 (Y, Z).

However Property 5 does not hold universally, but only under additional
conditions—essentially that there be no nontrivial logical relationship between
Y and Z [Dawid (1979b, 1980)]. These will hold if, for example, the joint
density of all variables is everywhere strictly positive. Property 5 is needed for
the analysis of the Markov property on arbitrary undirected graphs. We
therefore emphasize that in our development, restricting attention to decom-
posable graphs only, Property 5 is nowhere needed—all our results are conse-
quences of Properties 1-4 alone, which hold universally.

A useful generalization of the idea of conditional independence is to allow
one or both of the conditioning variables in the definition to represent a
parameter of a statistical model. This leads us to express concepts such as
sufficiency in terms of conditional independence. The above properties and all
their consequences still apply, so long as one is careful never to write a
conditional independence property in which the left-hand variable is or con-
tains a nonrandom parameter. (In particular, the symmetry property, Property
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1, is thereby greatly restricted.) However, as soon as one is willing to adopt a
Bayesian approach, and treat the parameters as random variables, even this
restriction may be lifted. :

An important point to make about Properties 1-4 is that, treated as purely
formal axioms, the apply to other relations than probabilistic conditional
independence [Pearl (1988) and Smith (1989)]. Hence any general results
which are based on these properties alone will be more widely applicable. We
shall take advantage of this in Section 4.

2.2. Definition and basic properties. Throughout this paper & will always
denote an undirected graph (V, E) which is assumed to be decomposable. See
Appendix A for this and other graph-theoretic notions. Associated with each
v € V we shall have a random variable X, taking values in a sample space Z,,.
For ACV we write X, for (X,),.,, 2, for its sample space X e aZys
X=X, and 2= 2. By a distribution over A or %, we mean a joint
distribution for X, over 2. If P is a distribution over U c V, and A, B c U,
then P, will denote the marginal distribution of X,, and P, g the collection
(labelled by xp) of conditional distributions of X, given X B = Xp.

In this section we define the Markov property for a decomposable graph,
and show that our definition is equivalent to the usual one. We develop a
number of consequences of our definition, using only the conditional indepen-
dence Properties 1-4. Many of these results are already well known. Our
purpose in proving them again is twofold.

(i) To demonstrate that all the results are indeed consequences of Proper-
ties 1-4 alone, in particular, that there is no need for any of the special
conditions such as positivity of densities which are required in the general
nondecomposable case.

(ii) To indicate their generality, so that we can to a large extent rely on the
same proofs to develop extensions to more complicated situations in later
sections.

We shall, in this section, use the notation A L B|C to denote
X, 1L Xpl X,

DeFINITION 2.2. A distribution P on V is called Markov over £ if for any
decomposition (A, B) of &

AL B|IANnB[P].

The directed version of the Markov property pertains to a directed acyclic

graph 9 with vertex set V [Lauritzen, Dawid, Larsen and Leimer (1990)]:
. DEFINITION 2.3. A distribution P onV is directed Markov over 9 if, for all

vely,

(1) ({v} U pa(v)) 1 nd(v) |pa(v) [P].
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Note. It would have been equivalent, and simpler, to write (1) as
{v} L nd(v) | pa(v). However, here and elsewhere, we wish to state definitions
and results in a form which will be useful for later generalization. This
sometimes results in a way of expressing formulae or arguments which may
appear pedantic or unnecessary for the case in hand.

Equivalent to (1) is the corresponding assertion which results on replacing
nd(v) by pr(v), where pr(v) denotes the predecessors of v in a well-numbering
of V, that is, a numbering under which each vertex is assigned a higher
number than any of its parents.

If 9 is a perfect directed version of the undirected decomposable graph &,
then the directed Markov property over 2 is the same as the undirected
Markov property over &, as shown in various generalities by Wermuth (1980),
Wermuth and Lauritzen (1983) and Kiiveri, Speed and Carlin (1984), and
restated in Section B of the Appendix, Propositions B.2 and B.6.

Markov distributions on decomposable graphs may be constructed by a
simple algorithm, as described subsequently.

Let A, B C V, and suppose we are given distributions @ and R for X, and
X, respectively. If there exists a single underlying joint distribution with
these distributions as its marginals, then @ and R must be consistent in the
following sense:

DEFINITION 2.4. We say that distributions @ over A and R over B are
consistent if they both yield the same distribution over A N B.

LEmMA 2.5. Suppose that the distributions @ over A and R over B are
consistent. Then there exists a unique distribution P over A U B such that
() P, = Q, (i) Py = R and (iii)) A L B| A n B[P].

ProorF. We construct P by specifying its margin over A to be @, and its
conditional distributions over B given A to be the same as those over B given
A N B calculated from R. [These requirements are necessary if (i)-(iii) are to
hold.] The conditional distributions in this construction are only determined
modulo a subset of 2, 5 having probability zero under R, hence also under
Q; whence all choices will lead to the identical distribution P, which is thus
uniquely determined. Then (i) and (ii) hold by construction and (ii) by the
consistency condition. O

We shall denote the set of distributions satisfying condition (iii) above by
M(A, B). We further call P, satisfying the conditions of Lemma 2.5, the
Markov combination of @ and R, and write P = @ * R. If P, @ and R have
density functions p, q and r, respectively, then we have

q(xa)7r(xp)

p(x) = 9ans(*anB) ’
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where the denominator could equally well have been written as 7, ~ p(x4 - p)-
In particular, P € M(A, B) if and only if we have

R

We extend the above construction to the case of a general decomposable
graph ¢, as follows.

Let € be the set of cliques of ¢, and suppose that we are given a pairwise
consistent collection of distributions {@.: C € ¢}, Q. being a distribution over
C. Let the cliques be perfectly numbered as (Cy, ..., C,), see Section A of the
Appendix.

The obvious attempt to define a Markov distribution P having the {Q.} as
its margins on cliques is recursively to define

(3) Pc1 = ch’
(4) PHi+1 = PHi * QCi+1'

A simple inductive argument, using (2), establishes that the distribution P

satisfying (3) and (4) has density
nf=2ps,»(xs,~)

We remark that the separators (S,) are, apart from order, the same for any
perfect numbering of the cliques. Each such separator S will be repeated v(S)
times in any sequence (S;), where v(S) is a combinatorial index, related to the
number of disconnected components of <y, g, see Darroch, Lauritzen and
Speed (1980) or Lauritzen, Speed and Vijayan (1984) for details. If we denote
by # the collection of separators incorporating »(S) repetitions of each S,
then (5) may be written as

[Mceepe(xc)

®) px) = [Mse.  ps(xs) .

THEOREM 2.6. The distribution constructed above is the unique Markov
distribution over & having the given consistent distributions as its clique
marginals.

ProoF. Proposition B.1 together with Corollary A.8 implies that, for any
Markov distribution, we must have
(7 Civy L H;1S;11,
so that (3) and (4) must hold; and clearly these together determine a unique P.
Now let 9 be a perfect directed version of « compatible with the clique
, numbering. Then the distribution so constructed is directed Markov over 9.
This follows from the fact that for any v € V, {v} U pa(v) is complete, and thus
{v} U pa(v) c C,, , for some clique C,,, where we suppose i + 1 to have been
chosen as small as possible. Then S, < pa(v) and nd(v) = pa(v) U H;. We
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can then manipulate (7) to derive
({v} U pa(v)) L nd(v) Fpa(v).

The theorem now follows from Proposition B.2. O
With an alternative formulation we have:

COROLLARY 2.7. If P is Markov over 4, then P = P, x Py for any decompo-
sition (A, B) of #.

Proor. This is a direct consequence of Theorem 2.6 and Proposition B.7.
O

Finally we have the important result.

THEOREM 2.8. If P is Markov over &, then
A1 B|S[P]

whenever S separates A from B.
Proor. See Corollary B.4. O

The property of P expressed in Theorem 2.8 is the so-called global Markov
property, which is more usual as a definition of the Markov property on &
[Speed (1979)]. Since it is clear that the global Markov property implies that of
Definition 2.2, we have thus shown that, for decomposable graphs, the two
definitions are equivalent and—importantly—this holds without restricting
the densities to be positive.

3. Hyper Markov laws.

3.1. Definition and basic properties. In the present section we introduce
various types of distribution laws for a quantity 6 which takes values in the
set M(#£) of Markov probabilities over a given undirected decomposable graph
#. Such laws occur, for example, as sampling distributions of maximum
likelihood estimators, but can also be used as prior or posterior distributions
when it is known only that the distribution of the data is Markov over .

To avoid confusion, we shall generally refer to a distribution of 6 over
M(#£) as a law for 6, and use the notation £(6) to denote the law of 6. We
shall also consider corresponding notions for directed graphs, although our
emphasis is on the undirected case. By a law over A or &, we shall mean a
law over M(#,). [We shall generally only deal with cases where ¢ is collapsi-
ble onto A, in which case ¢ € M(#,) if and only if ¢ = 6, for some 6 M(£)1]

“Also in this section, and in contrast to Section 2, we shall interpret the
notation

A 1L B|C [£]
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to mean
0, 1L 0510, [£]

under the law £ (omitted from the notation if clear from the context) for 8. We
shall make extensive use of the fact that much of the analysis of Section 2
remains meaningful under this reinterpretation.

We first note the following, where an expression of the form a = 8 means
that each of a and g is a function of the other.

LemMmaA 3.1. It holds that:
(@) IfACV, then
0 = (BA, 0V\A]A)'
(i) If € is the set of cliques of &, then
0 ={6.:Ce <}

(iii) If & is collapsible onto U C V, and (A, B) is a decomposition of &,
then

0y = (04,05).

ProoF. The assertion (i) is universally true, (ii) follows from Theorem 2.6
and (iii) from Proposition B.5 and Corollary 2.7. O

We note that, while it is always true that X, 5 = (X,, Xp), the corre-
sponding statement for 6, namely,

Oaup = (04,05)

is false in general: We can only assert, as implied by (i), that (8,,05) is
determined by 6, , 5. However, (iii) gives a sufficient condition for the converse
to be true.

It follows from (i) that given a law £ for 6, the law of 6, is determined for
any A C V. We shall denote this law by £(6,) or £,. Similarly, we use £(6,, )
or £41B to denote the induced law of 04, p- [Note that this latter is really a

JOlnt law” for the collection of dlstrlbutlons {0(-1 X5 = xp)}]
We shall need to generalize the idea of Markov combination, as follows.

DEerFINITION 3.2. We say that laws .# over A and .# over B are hypercon-
sistent if they both induce the same law over A N B.

Clearly, if .# and .#" are both induced by appropriate marginalization from
a common underlying law, they must be hyperconsistent. Note that if A N
B = J, any pair of laws is hyperconsistent.
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LemMA 3.3.  Suppose that we are given hyperconsistent laws .# over A and
W over B. Then there exists a unique law £ over A U B such that:

(i) £ is concentrated on M(A, B),
(i) £, = 4,
(iii) £5 = A4 and
Gv) 6, 1L 6510, -

Proor. By (i) and Lemma 3.1(ii), it is enough to specify a joint law for
(64, 05), ensuring that this gives probability one to the event that 6, and 6,
are consistent. By (ii), the marginal for 6, has to be .#, while, by (iii) and (iv),
the conditional law of 65 given 6, under £ must be the same as the conditional
law of 6, given 6, p under .#. This construction specifies a unique joint law
£ for (6, 05), these being automatically consistent; and hyperconsistency then
ensures that (iii) holds and thus all requirements are satisfied. O

ExaMpLE 3.4. Consider three variables I, ¢, K related as in the graph &
below

corresponding to M(#) consisting of those 6 satisfying
(8) ;5 = 0104 j0/04)4-
If we specify the laws of the marginal distributions {;;,} and {6} as
Dirichlet distributions with parameters {a;;} and {B,,}, these are hyperconsis-
tent if and only if

a,; = Bj+
in which case a law for {6; jk} exists with these marginals, and with (8) satisfied
almost surely. Note that it is not totally immediate that hyperconsistency of
the laws is enough to ensure this existence. If we further assume the law to
have

{6,;+) L (0.6} {04 }[£],
it is uniquely determined from the specified laws of the marginal distributions.

The law £ satisfying the conditions of Lemma 3.3 will be termed the hyper
Markov combination of .# and .#, and will be denoted by £ = .0/

‘We now wish, in analogy with the Markov case, to extend this construction
to build up a law over  specified only by its clique-marginals {£.: C € ¢ }. In
order to do so, we need to impose on £ a requirement parallel to the Markov
requirement on the distribution 6 of X.
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DEFINITION 3.5. A law £(6) on M(¥) is called (weak) hyper Markov over &
if for any decomposition (A, B) of &

(9 04 L 050, 5.

Nore. We remark that the condition (9) is equivalent to either of
a1 L 01045 Or 45 L 05, 410, 5. However it is truly different from the
corresponding pointwise property 0,(x,) 1 85(x5) |0, - g(x, - ) for all x. Nei-
ther of these conditions implies the other.

ExaMpLE 3.6. Another hyper Markov law which is associated with the
graph in Example 3.4 is the law of
A N;j N

ijk N.n
when {N;,} is assumed to follow a multinomial distribution with expectation
{n®;;,} with 0,,, = 6,;,6,,/6 ;.. That is, this law satisfies

(10) (B} 2 B} 1{0. ) 8D
This will be shown to hold in a more general setting for other maximum
likelihood estimators in Section 4.

If there were further restrictions on 6, for example, if I and K had the
same state space and it was known that 6,;,= 0 ;;, then we would estimate
0 as

5. = (Ivij++ N+ji)(Nkj++ N.)
Wk 4N, ;,n

which would not satisfy (10) since 6, = 6, ji for all i, j.

Because the formal properties of laws over subsets of V, with respect to
conditional independence and hyper Markov combination, are essentially iden-
tical to those of distributions over subsets of V with respect to conditional
independence and Markov combination, we are able to reuse much of the
development of Section 2 to derive parallel results for the hyper Markov case.
The key ideas and results are given below, together with any necessary
changes and comments relating to the new setting.

First let 2 be a directed acyclic graph and let 6 range over the class M(92)
of directed Markov distributions over 9.

DEeFINITION 3.7. A law £(6) on M(9) is (weak) directed hyper Markov over
9 ifforallveV

(]‘1) e(v)Upa(v) 4 0nd(v) | opa(v)'

Note that the use of {v} U pa(v) instead of v alone is essential here; the
latter would not be equivalent to the definition as given, since we do not
necessarily have 6, a0y = (6,,60,,,)). An alternative statement that is
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equivalent to the definition is

0wy pac) L Ondcwy | Opaqwy-

Once again, for any well-numbering of V, (11) is equivalent to the corre-
sponding assertion resulting on replacing Bndcw) BY Opr vy

If 9 is a perfect directed version of the undirected decomposable graph ¢
then, as we have seen, the directed Markov property over Z is the same as the
undirected Markov property over #. Correspondingly, we can show equiva-
lence of the weak directed and undirected hyper Markov properties for a law
£e M(9)=M(Z).

ProrosiTION 3.8. Let 9 be a perfect directed acyclic graph and £ its
undirected version. Then, if (11) holds, £(0) is a (wéak) hyper Markov law
over 4.

Proor. The proof is essentially the same as for Proposition B.2. The only
points that need care relate to the translation into the new context of the
statements X, = (X(y0 pary Xar) and Xp = (Xp«, X).

But these continue to hold when X is replaced by 6, the former by Lemma
3.1(3), and the latter on applying (iii) of the same lemma to the inductive
hypothesis, noting that .¢ is collapsible onto B and (B*, S) is a decomposition
of . O

The converse to Proposition 3.8 follows by direct analogy to Proposition B.5
and Proposition B.6.

Next we show that hyper Markov laws exist and can be constructed by
essentially the same algorithm as Markov distributions.

Let ¢ be the set of cliques of ¢, and suppose that we are given a pairwise
hyperconsistent collection of laws {.#,: C € ¢}, .#, being a law over C. Again
let the cliques be perfectly numbered as (C,,...,C,) and let 2 be a perfect
directed version of « compatible with the clique numbering.

A hyper Markov distribution £ over ¢ having the {.#} as its margins on
cliques must satisfy

(12) £c1 = /Cl,
(13) £Hi+1 = £Hi®°/0i+1'
THEOREM 3.9. The disiribution defined by (12) and (13) is the unique

hyper Markov law over & with the given hyperconsistent laws {.#,} over clique
marginals.

PrOOF. Again the proof parallels that of Theorem 2.6, except that addi-
tional care is needed to see that 6, ,) = (6, 05). O

We can now show the following important consequence of the hyper Markov
property.
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THEOREM 3.10. If £ is hyper Markov over ¢, then
0 L 051065 [£]

whenever S separates A from B in 4.
Proor. Follows as in Proposition B.3 and Corollary B.4. O
The hyper Markov property is preserved under collapsible marginalization:

ProrosiTiON 3.11. If £ is collapsible onto A and £ is hyper Markov over
&, then £, is hyper Markov over 4,.

Proor. Same as for Proposition B.5. O

Note that there is no hope of getting such a result for general sets A, since
the Markov property of the marginal distribution 6, itself is preserved if and
only if «# is collapsible onto A [Frydenberg (1990)].

3.2. The strong hyper Markov property. For the Bayesian analysis of
graphical models it is convenient to consider laws of 8 that have still stronger
independence properties than those expressed in Definition 3.5.

DEeFINITION 3.12. A law £(0) on M(¥#) is called strong hyper Markov over
& if for any decomposition (A, B) of &

0,4 L 0,
Note. This condition implies that £(6) is weak hyper Markov. It is strictly
stronger than the corresponding pointwise property
05, a(%p1%4) L By(x,) forall x.

Note also that we could have B = V and A complete in the definition. If we
restrict the decomposition to be proper, we get a less strong hyper Markov
property. This has also some interest, but we abstain from discussing this
further in the present paper.

PropOSITION 3.13. A law £(0) on M(#) is strong hyper Markov over & if
and only if, under £,

(14) 'u' {0A|B’0B|A10AGB}

whenever A N B is complete and separates A from B.

Here (14) expresses mutual independence, itself definable in terms of the
conditional independence relation satisfying Properties 1-4 [Dawid (1979a)].
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Proor. We can, if necessary, extend A and B to form a decomposition of
. If £0) is strong hyper Markov, 6, 5 L 05. Since 05 = (6, 5,05,,) and
0snp L 05,4, we have (14). The converse is clear. O

Many results about strong hyper Markov laws are straightforward or can be
shown by methods similar to, if not identical with, those for the weak hyper
Markov case.

DEFINITION 3.14. Alaw £ on M(9), where 2 is a directed graph, is strong
directed hyper Markov over 2 if, under £, for all v € V we have

(15) 0v|pa(v) AL ond(v)'

Again, (15) is equivalent to the corresponding assertion resulting on replac-
ing 0,4,y by 6., for a well-numbering of V. Further, (15) is equivalent to the
mutual independence of {6, ., U € V}, termed ‘“global independence” by
Spiegelhalter and Lauritzen (1990). (We do not here make any use of the
concept of ‘““local independence” discussed in that paper.)

In the strong case, the identity between the directed and undirected defini-
tions no longer holds. Instead we have the following:

PropPOSITION 3.15. Let & be a decomposable graph. Then £(0) is strong
hyper Markov over # if and only if £(0) is strong directed hyper Markov over
9 for every perfect directed version 9 of £.

Proor. That the strong hyper Markov property over & implies the strong
directed Markov property over any such 2 follows as in the proof of Proposi-
tion B.6.

For the converse let (A, B) be a decomposition of -¢. Choosing Z such that
A is ancestral in 9, the strong directed hyper Markov property over < ensures
that we have 65, L 6, and the result follows. O

Since there is only one hyper Markov law over ¢ with given clique-margi-
nal laws, whether or not this is strong hyper Markov must depend on
properties of those marginal laws. In fact we have the following:

PRrROPOSITION 3.16. Let £ be hyper Markov over 4. Then £ is strong hyper
Markov if and only if, for all cliques C of the graph < and all subsets A of C
we have

(16) Oc\aja L 04 [£].

Proor. Since in this case A is complete, (V, A) forms a decomposition of
&, so that, when £ satisfies Definition 3.12, (16) must hold. The converse
follows by close analogy to the proof of Theorem 3.9. O
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ExampLE 3.17. Consider again the three variables I,J, K related as in
Example 3.4 and Example 3.6. Since the marginal Dirichlet laws satisfy

{Oij+/0+j+} 4 {0+j+} and {0+'jk/0+j+} 4 {0+j+}:

the hyper Markov law constructed in Example 3.4 is a strong law. However
this is not the case for the law constructed in Example 3.6, since, with
b;; =0:;./0.,;., we have
éi|j = Ivij+/N+j+’

which is not independent of 4, j+=N,;,/n as né, | jé +j+ must be an integer.

There can be no result for the strong case analogous to Proposition B.3 and
therefore also not a global property as in Theorem 2.8. This can be seen from
Proposition 3.16 since, for example, if &* were the complete graph, the
strong hyper Markov property of * could only hold in the very special case
that the conditional distributions 6, |4 are independent of the marginal distri-
bution 6, for all subsets A of V. Similar to Proposition 3.11, we have the
following:

ProposiTioN 3.18. If ¢ is collapsible onto A and £(6) is strong hyper
Markov over <, then £(8,) is strong hyper Markov over <, and Oyviaja L 0,

Proor. That £(6,) is strong hyper Markov is a direct consequence of
Propositions 3.11 and 3.16. If B,,..., B, are the connected components of
V\A, then {0, v\ 5, = 05, 4} are mutually independent and independent of 6,
by Proposition 3.13. Further these determine 0yv\aja whereby the result
follows. O

4. Meta Markov models.

4.1. Definition and basic properties. In many cases it is of interest to
consider statistical models where the model is restricted further than just
through the restriction 6 € M(«). We may wish to assume, for example, that
0 is a multivariate normal distribution such as in the covariance selection
models of Dempster (1972). In general we would wish to restrict 6 to lie in
some subfamily & c M(¥).

If a law £(0) confined to P M(¥) is strong hyper Markov, then the
property 6, 1L 6, 4 for a decomposition (A, B) implies, in particular, that with
probability 1 under £(9), 6, and 65, , are variation independent, that is, any
value that can be taken by 6, is logically compatible with any value that can be
taken by 0y, 4. Similar logical relations hold in the weak hyper Markov case.
‘This leads us to consider the structure of models satisfying these logical
relations. It turns out that such models have a number of interesting statisti-
cal properties, many of which are close parallels of those already studied in the
Markov and hyper Markov cases. The notions developed are extensions of what
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Barndorft-Nielsen (1978) terms a cut: The statistic #(x) = x, is a cut if 0,
describing the marginal distribution of #(X), and 0z 4, describing the condi-
tional distribution of X given #(X), are variation independent parameters.

Formally, for U c V let &/, denote the family of all probability distribu-
tions on 2. A model & on U is a subfamily of . For A, B c U we write
P, =1{0, 0P}, and Py p=10,p 0E P). We call &, the marginal
model of & over A, and similarly &%, p the conditional model of & over A
given B.

For & a model on U C V, let ¢, x, » be parameter functions with domain
&f;;. We define the conditional range of ¢ given w = w under & to be {po P:
Pe Zand we P =w}.

DeFINITION 4.1. We say that ¢ is variation independent of x given
under @ and write ¢ % x | 0 [2]f, for any (x,w) € (x, w)° P, the conditional
range under & of ¢ given (x, 0) = (x, w) depends only on w; equivalently, if it
is the same as the conditional range of ¢ given w = w.

Another equivalent requirement, symmetric as between ¢ and y, is that,
whenever (f, w) € (¢, 0)o & and (x, w) € (x, w)o P, then (f,x,w)€E
(¢, x, w)o P. In the case that o is trivial, we write ¢ % x, meaning that the
range of values allowed for ¢ is unrestricted by specifying the value of x; or,
equivalently, that the range of (¢, x) is a product space.

The variation independence expressed by the above definition has much in
common with ordinary probabilistic independence.

LEMMA 4.2. Properties 1-4 continue to hold when 1L is replaced by .
Proor. This is straightforward to check. O

In exact parallel with the definition of a hyper Markov law, we can now
introduce the concept of a meta Markov model:

DEFINITION 4.3. A model @ over V is (weak) meta Markov with respect
to the decomposable graph  if < M(& ) and, for any decomposition (A, B)
of £, 0,160510,p [#]. The model & is strong meta Markov if 6,%0p, 4
[(Z].

We note that & is strong meta Markov if and only if X, is a cut in & for
all decompositions (A, B). It follows from Lemma 2.5 that the full model
M(#) is strong meta Markov.

When 6 has a weak or strong hyper Markov law, the support of this law is a
weak or strong meta Markov model.

“ We could similarly define the weak and strong directed meta Markov
properties, in complete analogy to Definitions 2.3 and 3.14. Again, the support
of a directed hyper Markov law is a directed meta Markov model.
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ExaMPLE 4.4. Consider a four-dimensional contingency table with vari-
ables I, J, K, L and the hierarchical log-linear model with generating class

{{1,J},{1, K},{J, K},{J,L},{K,L}},
meaning that the logarithm of the probabilities has an expansion as
log 6, = a;; + By, + Yir + 8, + &4y

The model has independence graph  as in the following picture

K

and it is clear that &+ M(¥), that is, it is a proper submodel of the full
graphical model, since no three factor interaction terms are allowed.

But this restriction makes the model strong meta Markov, since the implied
model for the marginal distribution of a clique, say 6, jr» 18 the hierarchical
model of no three factor interaction among (I, J, K), letting

lOg 0ijk = Iu‘lj + vjk + Wi
and the conditional distribution of L given these varies independently thereof

in the set having an expansion as
log 6, = log 6, = Apj B — Cigs
where c;;, is the log-normalizing constant

cir =log ) exp{A; ; + p; ),
jt

that is, effects of J and K on the level of L are additive.

To continue the analogy between hyper Markov laws and meta Markov
models, we need to define an appropriate concept of meta Markov combina-
tion. Let A, B CV, and let & and 2 be models over A and B, respectively.
We call & and 2 metaconsistent if &, 5= 2, p. In this case it may be
seen that there exists a unique submodel .%Z of M(A, B) such that Ry = P,
#p =2, and 0,10p6,, 5[ 2] In fact #= {9 € M(A, B): 6, € P, 0, € D).
We call # the meta Markov combination of & and 2.
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We now remark that all the results of Section 3 may be translated directly
into the present context, simply by replacing ‘“‘law” by “model” and “hyper”
by “meta’ throughout. The proofs use only Properties 1-4 and the concept of
hyper Markov combination, and all translate directly. In particular, we draw
attention to the following properties of meta Markov models which may be
derived in this way.

PropOSITION 4.5. Let 9 be a perfect directed acyclic graph and £ its
undirected version. Then & is weak meta Markov over 4 if and only if it is
weak directed meta Markov over 9.

& is strong meta Markov with respect to & if and only if it is strong
directed meta Markov with respect to every perfect directed version of <.

THEOREM 4.6. Let € be the set of cliques of a decomposable graph <, and
let there be given a pairwise metaconsistent collection of models {Z,: C € ¢},
P, being defined over C. Then there exists a unique model & which is meta
Markov with respect to & and which has the given models as its marginals
over the cliques.

We note that & may be constructed sequentially as a directed meta Markov

model, in which, for each node v € V, the conditional range of 6,,,,,, given
0,acs) 18 that derived from the marginal model over A = {v} U pa(v) of the
given %, for any clique C containing the complete set A.

COROLLARY 4.7. Let & be meta Markov with respect to Z. If, forall C € ¢
and all subsets A of C, X is a cut in &, then P is strong meta Markov and
conversely.

THEOREM 4.8. If & is meta Markov with respect to <, then

whenever S separates A from B.

ProPoSITION 4.9. If & is (weak or strong) meta Markov with respect to &,
and ¥ is collapsible onto A, then %, is (weak or strong) meta Markov with
respect to &,. Moreover, in the strong case 0, %0y, 4,4 (so that X, is a cut
in P).

It may be noted that Proposition 4.9 extends the result of Asmussen and
Edwards (1983) that, when # is collapsible onto A, X, is a cut in M(#).

4.2. Sampling properties for strong meta Markov models. 'We now present
a number of properties associated with the distribution of the maximum
likelihood estimator of a distribution 6 in a model &. Throughout the whole of
this section we suppose that & is strong meta Markov with respect to a
decomposable graph . Also we here apply the convention mentioned in
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subsection 2.1, that the conditional independence symbol is allowed to contain
parameters on its right-hand sides that are not random variables. So, for
example,

X 1 01(Y,(6))

expresses that the conditional distributions of X given Y only depend on 6
through (0).

LEMMA 4.10. Suppose that < is collapsible onto A. Let X™ = (X1,..., X™)
be a random sample from some 8 € P, and let 6 be the maximum likelihood
estimator of 6 € & based on X™. Then 6, is a function only of X§» =
(XL,..., X0,

Proor. The joint density of X factorises in the form

p(x™ ) = p(xén) | OA)p(x%"\)A | 2, 0V\A|A).

Since by Proposition 4.9 6, £ 0y 4,4, that is, 6, and 6y, 4, 4 are variation
independent, the two terms may be maximised separately. O

COROLLARY 4.11. The maximum likelihood estimator of 6, is the same,
whether based on X™ or on X{™.

COROLLARY 4.12. The sampling distribution of 6, is a law over M(%,)
which depends on 0 € & only through 0,.

_ Note that in symbols the result in this corollary can be expressed as
Oy L Og 410,

For certain models, the maximum likelihood estimator of 6 may possess
additional sufficiency properties, in which case further simplifications ensue.

DeriNiTION 4.13. We say that a model &, parametrised by 6, is good with
respect to ¢ if, for any complete subset C of ¢, 6, is sufficient for 6, € &,
based on X§.

Note that, if & is good, and C is complete, then 50 is in fact minimal
sufficient for § based on X{".

LEmMA 4.14. If & is good with respect to <, then éA is sufficient for
0, € Z based on X\ whenever £ is collapsible onto A.

Proor. Since, when # is collapsible onto A, &, is strong meta Markov
with respect to #,, it is enough to prove the result in the case A = V. It holds
by definition when V is complete. Otherwise, let (A, B) be a proper decomposi-
tion of ¢, and suppose that the result has been established for ¢, and 5.
Then for each of the cases K = A, B or A N B, éK is a function of X, and is
a sufficient statistic for 6, € P; based on X
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We have
(x5 16,)p(x5”165)
p(xAmB | 0AhB)

By the Fisher-Neyman factorization theorem, each of the three terms on the
right-hand side of (17) has the form

p(x’log) = a(x(”))b(éK,oK).

Hence, since 6 is determined by 6, and 05, and similarly for 6, the same form
applies when K = V. O

(17) p(x™10) =

LEmMA 4.15.  Suppose that & is good with respect to <. If & is collapsible
onto A, and C C A is complete, then

X5 1 01(bg,04c)-

ProOF. Definition 4.13 implies X" 1 6| 8,, whence

(18) X 1 01(8c,64c)
Also, from the very meaning of 0, ¢, X" L 6 1(X{", 0, ¢), so that
(19) X 01( X8, 8c,04,0).

The result follows from (18) and (19). O

We shall also need to consider a stronger sufficiency concept than that of
Definition 4.13. Recall [Lehmann and Scheffé (1950)] that a family & of
distributions for a random variable X is called boundedly complete if the
conditions (i) U is a bounded real function of X, and (ii) E(U |6) = 0 for every
0 € &, imply that U = 0 almost surely for every § € &. A function W of X is
called boundedly complete if the family &, of induced distributions for W is.
Here, however, in order to avoid confusion with the concept of a complete
subset in a graph, we shall use the term saturated instead of ‘“boundedly
complete.”

DEFINITION 4.16. We say that & is very good with respect to % if & is
good with respect to #, and OC is saturated for any complete C.

Note that, since any function of a saturated statistic is itself saturated, it is
enough to require that this condition hold for every clique C of <.

LEMMA 4.17. A sufficient condition for & to be very good is that & be weak
meta Markov, and that, for any complete set S in &, the model g form a
full exponential family.

ProoF. In this case g is sufficient and saturated in &g, and is a cut in
P, whenever S c C with C a clique of ¢ [Barndorff-Nielsen (1978)]. O
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We require a general result on saturation, extending Theorem 2 of Basu
(1955).

LEMMA 4.18.  Let &, parametrised by 0, be a family of distributions for a
random variable X. Let T, Y and S be functions of X such that T is saturated
and sufficient for P, S is sufficient based on Y, and S is a function of T. Then
Y 1 (T,0)|8S.

Proor. Let J C %/, the sample space for Y, and define
Z=P(Yed|T,0) -P(YeJI|S,0).

By sufficiency, neither term on the right-hand side depends on 6. Thus Z is a
bounded function of T, and E(Z |8) = 0 for all 6. By saturation, Z = 0 almost
surely for every 6. Since this holds for all measurable J € %/, the result
follows. O

COROLLARY 4.19. If & is very good with respect to #, and C C A where A
is complete in &, then

X 1 (6,,0)18.

A number of useful conditional independence properties enjoyed by very
good models can now be developed.

ProprosITiON 4.20. If & is very good with respect to &, and C is complete
in &, then

X 1 (6,0)16,.

Proor. The result holds if V is complete by Corollary 4.19. Suppose it
holds for all decomposable proper subgraphs of «, and let (A, B) be a proper
decomposition of . Without loss of generality, we suppose C C A. By the
Markov property of the distribution 6 of X we have X§™ 1 X§ [(X{2 5, 6),
whence

(20) X5 éB'(X,gnn)B’éAnB,O)-

Also, by assumption,

(21) _‘ X{2p L6y (éAmB’ 9).

From (20) and (21) we obtain X§* 1 65 |(8, ., ,0), whence
(22) X 1 651(8y,0).

Again by assumption,

(23) X§ 1 6,1(8c,0).

Together, (22) and (23) imply X v (4,65)1(8;,0), and the result follows
since, by sufficiency, X{* 1 6|6,. O
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PrOPOSITION 4.21. Suppose that &P is very good with respect to <. Let
(A, B) be a decomposition of <. Then

Xg (éA’ 04) (éAnB’ 0B'|A)'
Proor. From Proposition 4.20 we obtain
(24) X{Pp L (éA’oA)|(0AnB:03|A)-
Also, from the Markov property and the definition of 65 4,
X 1 (X59,04) (X525, 0p1a)>
whence
(25) X u (éA’eA)l(XXlrzB1oB|A)

Since 6, is a function of X§? 5, which in turn is a function of X ™ (24)
and (25) together yield the result. O

-

As an immediate consequence we get the main result of this section.

THEOREM 4.22. If & is very good with respect to 4, then the sampling
distribution of 6, given any 0 € P, is a (weak) hyper Markov law with respect
to Z.

Proor. From Proposition 4.21 it follows immediately that

éB L éAI(éAﬁB7 0)1

which is the hyper Markov property. O

The model in Example 4.4 is very good by Lemma 4.17, since both clique-
marginal models are hierarchical log-linear models and therefore full exponen-
tial families. Hence it follows that

(B0} & {050} {0}

As a consequence, if we set constraints to make the A and u parameters
uniquely defined, we have, for example, that

Ay LI N s
where (N} is the table of multinomial counts.

5. Hyper Markov laws for Bayesian inference. In this section we
investigate the properties of hyper Markov laws when used as prior distribu-
tiohs for the unknown distribution 6 of data X. In particular, we shall see that
the strong hyper Markov property permits considerable simplification of the
prior-to-posterior analysis.
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5.1. Complete observation. Let X denote an observation from a distribu-
tion 6 supposed to be in a meta Markov model over . If 6 is assigned the
prior law £, a joint distribution is thereby created for the pair (X, 6). We shall
exploit the following properties of this joint distribution.

ProposiTION 5.1.  If the prior law £(6) is hyper Markov over & then the
Joint distribution of (X, 0) satisfies, for any decomposition (A, B) of &,

(26) (X4,0,4) L (Xp,05)1(Xanp:0an5)-
If £(0) is strong hyper Markov, it also satisfies
(27) (Xa,04) L (XB’OB|A)|XAGB‘

Proor. Let (A, B) be a decomposition of # It follows from the very
meaning Of 0A and eBIA = eBIAnB that

(28) X, 1 03|A|9A
and
(29) Xp L(XA’OA)l(XAnB’0B|A)°

Combining (28) with the hyper Markov property 6, 1 05,4104, we obtain
the relation (X, 0,) L 05,416, 5, whence

(30) (Xa,04) L 05, 41(Xanp,04n5)-
From (29) we deduce

(Xp,04) L Xp |(XAnB’0B|A’0AnB),

which combines with (30) to give (26). The corresponding result in the strong
case is similar. O

By further conditioning with X, and X in (26) and (27) we obtain the
following:

COROLLARY 5.2. If the prior law of 0 is hyper Markov, so is the posterior
law obtained by conditioning on complete data X = x. If the prior law is strong
hyper Markouv, so is the posterior.

We note that the result extends to the case in which the data consist of a
random sample of size n from the distribution 6, since we may introduce the
observations one at a time.

Corollary 5.2 shows that the family of hyper Markov laws and the family of
strong hyper Markov laws each forms a conjugate family for the sampling
‘family M(#) of Markov models over . But strong hyper Markov laws have
the further advantage that the updating can be performed locally, as we shall
now show.
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PROPOSITION 5.3. Suppose the prior law £(8) is strong hyper Markov over
&, and let < be collapsible onto A. Then

(X4, 04) L (Xy\as 0V\A|A) | X paev a)-

Proor. Essentially the same argument as needed for Proposition 51. 0O

COROLLARY 5.4. In this case the posterior distribution of 6, based on X is
the same as that based on X,.

Proor. From Proposition 5.3 we deduce 0, L Xy 4| Xy O
As a consequence of Corollary 5.4 we have the following:

COROLLARY 5.5. If the prior law £(6) is strong hyper Markov, the posterior
law of 0 is the unique (strong) hyper Markov law £* specified by the
clique-marginal laws (£§: C € €}, where £ is the posterior distribution of
0. based on its prior law £ and the clique-specific data X; = xc. When
densities exist, w(0c | x) o (0c)p(xc | 6c)-

Thus, when using a strong hyper Markov law as prior distribution, one can
localize the calculation of the posterior and restrict attention to one clique at a
time, updating the law of its marginal distribution using as data the values
observed for the variables in that clique only. Again, this result extends to the
case that the data form a random sample from the distribution 6.

We emphasize that the corresponding result in general is false if the prior
law is only weakly hyper Markov. In that case, information about 6, can feed
in from xy\c.

There are analogous results in the strong directed hyper Markov cases
[Spiegelhalter and Lauritzen (1990)]; we omit the details. However, the weak
directed hyper Markov property is not generally preserved under sampling
from a directed Markov distribution unless the underlying directed graph is
perfect, in which case, as we have seen, the problem is identical with an
undirected one.

5.2. Marginal data distributions. Another simplification special to the
strong hyper Markov case relates to the marginal data-distribution of the
observables X (i.e., their distribution not conditioned on #). Thus we have
the following:

PROPOSITION 5.6. If the prior law of 0 is strong hyper Markov, then the
marginal distribution of X is Markov.

_Proor. Follows from Proposition 5.1. O

We note that this result will continue to apply in the case that X is a
random sample X = X™ = (X!, X?,..., X") of n observations from 6, since
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the Markov property conditional on 6 holds for X). However, after marginal-
ization over 6 the (X') will no longer be independent, but only exchangeable.
In this case the predictive distribution of X"*! given X is the expectation
of its sampling distribution # under the posterior law given X. This will
always be Markov, although changing from one observation to another.

The following proposition is a strengthening of Theorem 4.22.

PROPOSITION 5.7. Let & be very good with respect to &, and suppose that 6
is assigned a strong hyper Markov prior law over . Then if (A, B) is a
decomposition of £, in the joint distribution of 6 and 6 we have

(oB|A’0B|A) 4L (OA’GA)leAnB'

Proor. By Corollary 4.12 6, 1 05,4104 Here and in the following we
exploit that when we have estabhshed conditional independences involving
parameters 6 that are not random, these remain true for random 6, whatever
prior distributions are assigned.

Also, with a strong hyper Markov prior, 65, L 6,. We deduce
Op,a L (6,4,0,), whence

(31) 0p a4 lL((;A,(”A)“%nzz-
From Proposition 4.21,
(32) 0B|AL(0A10A)|(0A0B103|A)'

The result now follows from (31) and (32). O

CorOLLARY 5.8. Under the conditions of Proposition 5.7, the marginal law
of 6 (not conditioned on 6) is (weak) hyper Markov over #£.

An interesting consequence is the following statement establishing a kind of
converse to Corollary 5.5: Conjugate priors for strong meta Markov models
must be strong hyper Markov. Define the notion of a conjugate prior as in
Barndorff-Nielsen (1978). Then

ProposiTION 5.9. Suppose that the conditions in Lemma 4.17 hold. Let £
be a hyper Markov law such that, for any clique C, the law of 6 is a conjugate
prior distribution for the model P,. Then £ is strong hyper Markov. In
particular, the result of Corollary 5.8 applies.

Proor. This follows from Barndorff-Nielsen [(1978), page 149] which guar-
antees that, in this case, 65 L 0\ g s forany S cC. O

We further have when considering a subset A of the variables:

ProposITION 5.10. Suppose £(6) is strong hyper Markov. If  is collapsi-
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denotes the marginal distribution of X and E denotes expectation under the
law £.

Proor. (i) is immediate. For (ii), note that X, L 6y 4|84, by definition,
while 6y, 44 L 6, by Proposition 3.18. Thus 6y, 44 L (X,,8,) and so
0y\ a4 L X4 Then for any measurable set K,

P(Xya €KI1X,) =E(0y 4 a(Xvia € K1X,)l X,)

= E(0y\aja(Xva €K X4)),
which gives (i)). O

The above result also yields the same relations between the densities of P and
6 when these exist.

Again closely analogous results hold in the strong directed case, and we omit
the details.

5.8. Partial observation. When data have only been observed on a subset
of the variables, neither of the hyper Markov properties is preserved in general
under sampling. An exception is when the observed variables are of the form
X, where # is collapsible onto D. Then we have the following:

PROPOSITION 5.11. If the prior law £(6) is hyper Markov over & and & is
collapsible onto D, then the posterior law £(0 | xp) is hyper Markov over <.

Proor. Let (A, B) be a decomposition of #, and S =A N B. Define
A*=ANnD, B¥=BnD, S*=8nD (=A* n B*). We have, by definition,
X, L 60]64%, whence

Now (A*, B*) is a decomposition of ,, while by collapsibility, 6, is a
Markov distribution over ;. Hence Xp« L (X x,0)|(Xgx, 0p« g+), Whence,
since O g« is a function of 65 = (65 4, 05),

(34) XB* J.L(XA*,OA)I(Xs*,oBlA,GS).
From (33) and (34) we can argue as in the proof of Proposition 5.1 to deduce
(Xyx,04) L (Xpx,05) [ (Xgx,05),
and the result follows. O
COROLLARY 5.12. If 9 is a perfect directed acyclic graph, with D being

ancestral in 9, and the prior law £(0) is weak directed hyper Markov, then so
is the posterior law £(6 | xp).

Note that the strong hyper Markov property is not preserved under sam-
pling with partial observation. A counter example is provided by the case
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= {a, b} with Z the complete graph on V. If X, and X, are binary, then we
simply have a 2 X 2 contingency table. A Dirichlet prior law for the unknown
probabilities will be strong hyper Markov (see subsection 7.2); however it may
be checked that the posterior law based on the partial observation X, = x,
will not exhibit the strong hyper Markov requirement 6, 1 6, b

We mention that the strong directed hyper Markov property is preserved
under sampling from ancestral sets [Spiegelhalter and Lauritzen (1990)].

6. Comparison of models.

6.1. Generalities. Let x™ be observations on X™ = (X!, X2,...,X"), a
random sample from a distribution 6. We may entertain several competing
hypotheses about 6, and wish to choose between them in the light of the data.
In our context, a typical hypothesis -#, might imply that 6 is Markov with
respect to some decomposable graph « with vertex set V.

Comparing alternative models for a given set of data can, within the scope
of the present paper, be identified with comparing different graphs. In the
sampling theory framework this would involve considering likelihood ratio
statistics for a hypothesis &%+, assuming ##,, where £* is a decomposable
graph, obtained from « by deleting one or more edges. We shall not discuss
the details of this here, but mention that Frydenberg and Lauritzen (1989)
give results about the decomposition of these statistics into components, each
of which depends only on the data through certain clique marginals and
therefore can be locally computed.

If, for each such graph «, we also specify a prior law £ s for 6 over M(¥),
we obtain a specialization #, of #, asserting that 6 is distributed over
M(¥) according to the law £_. One partia.lly Bayesian approach to choosing
between the hypotheses {-#)} is to choose instead between the {#,}. Since
each &, induces a marginal data distribution for X™, the observations x™
yield marginal likelihoods for the competing {#,)}. These may then be used in
a direct likelihood comparison of the hypotheses, or, in a fully Bayesian
analysis, further combined with a prior probability for each hypothesis to yield
posterior probabilities.

Apart from the intuitively reasonable nature of such a margmal likelihood
procedure, general considerations [Dawid (1992)] indicate that it will often
have desirable sampling properties. For example, under suitable smoothness
conditions, we can expect that, as n — », the marginal likelihood ratio in
favour of 92; as against Jf will tend to infinity almost surely whenever
either 9 satisfies #, but not Ji@, or 0 satisfies &#, which is a lower-dimen-
sional submodel of #,. Under suitable further conditions on the collection
{#,} (e.g., that it is ﬁnlte and closed under intersection) this property will
imply that the marginal likelihood method will yield consistent choice of the
true model as n — «.

6.2. Compatibility. For the above analysis we need not suppose any rela-
tionship between the various laws {£_} associated with the different hypothe-
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ses {#,). Since these are over different spaces they are necessarily different.
However, in the absence of genuine competing expert views, it would seem
appropriate that these laws should be made, in some sense, as similar as
possible, so as to ensure that the marginal likelihood comparison of the {#,}
will reflect real differences in the ability of the different {-#,} to describe the
data, rather than differences relating to the incorporation of different prior
assumptions.

One way of approaching this is as follows. Let £ be a fixed law for 6 over the
space of all distributions of X. For any decomposable graph « with vertex set
V, let the law £ over M(#) be that unique law which is hyper Markov over
and which induces the same marginal law for each 6, as does £, where C
ranges over the set € of cliques of #£.

A family of laws over different decomposable graphical models which can be
constructed in this way starting from a common overall law £ will be called
compatible. Note that £ , determines a unique compatible £ if and only if
the edges of %, form a subset of those in ;. In this case, Proposition 3.16
shows that .#, will be strong hyper Markov if £, is. In particular if under
£ 04 L 0y 44 for every ACV, then every £, in the compatible family
associated with £ will be strong hyper Markov. In this case, the marginal
likelihood comparison of the various models may be simplified.

Without the above inclusion condition, it is not obvious how to choose a £,
compatible with a given £_,. One suggestion is discussed in Spiegelhalter,
Dawid, Lauritzen and Cowell (1993).

6.3. Strong hyper Markov comparisons. Let x™ be data on X, a ran-
dom sample from the distribution 6, and suppose that we wish to perform the
marginal likelihood comparison of various competing hypotheses {#,}, where
all the graphs {#} are decomposable and the associated prior laws are compati-
ble and strong hyper Markov. By Lemma A.10, it is enough to find the
marginal likelihood ratio as between two neighbouring hypotheses &, and
H#,+, where £* is obtained from « by deleting a single edge, and £_« is the
unique law over M(#£*) compatible with the law £ , over M(#).

By Lemma A.9, the deleted edge, (u, v) say, must belong to a single clique C
of . We can then form a perfect sequence (C,,C,, ..., C,) of the cliques of £,
starting from C, = C.Let H; = U/_,C;,S;,, =C,,,nH, R;,,, =C,,,\H,.
Then each S; is complete and ¢ is collapsible onto each H ;.

Now the marginal distribution P of the data under -#, is Markov, by

Proposition 5.6, and thus has joint density p of the form
k
(35) p(x™) = pc(x(cn))J_l;I2PRj|sj(x§e';) | x.(sr;))

After the edge deletion, C will not be a clique of &#*. However, since {u, v} is
not a subset of any S;, each S; remains complete in #*. It is then not hard to
see that #* is collapsible onto each H;, and to deduce that (35) continues to
hold when p is replaced by p*, the density of the marginal data distribution
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P* under #,«. Furthermore, for j > 2, pr, s %) is a function of
PCJ, = E£,(0cj)~ But by compatibility E£j(00j) =E, /*(OCJ_), whence P = ng ,
and so all terms after the first in (35) are unchanged when p is replaced by p*.
We deduce the following:

PROPOSITION 6.1. The marginal likelihood ratio for #« as against H#, is
(36) MF* 1 F) = pE(xE”) /pc(xEY),
where C is the clique of & containing the edge (u,v).

This localization of the marginal likelihood model comparison into a single
clique of ¢ is very similar to the corresponding result for maximised likeli-
hood ratio comparisons [Frydenberg and Lauritzen (1989)]. In effect the
problem reduces to deciding, on the basis of an otherwise unstructured model
for the distribution 6, of X, whether or not, under 6o, X, L X, | Xc\(y, 4

We can analyse (36) further. Let C, = C\ {v}, C, = C\ {u}, Cy = C\ {u, v}.
Then, in the marginal data distribution under #,«, X, 1 X, | X¢,- Thus

P(+L) = PE () PE(3E) /08 (8.
Moreover, each of C,, C, and C, is complete in both ¢ and %, and so, again
by compatibility, the associated data distributions over these sets are the same
under both P and P*. We thus obtain
pe,(%6))pc(E))
Pco( x};’;))pc(xé”)

Equation (37) can also be expressed as

Pujc =i | 26))
Puic (2 128))

or the corresponding equation with « and v interchanged.

Both (37) and (38) are intuitively reasonable formulae for investigating the
conditional independence of X, and X, given X, in the marginal data
distribution. We note from Proposition 5.10 that, if ¢ is the density function
corresponding to the distribution 6, then we can use p¢ (x&)) = Eg(dc (xE2)
in B7), p, e 1xE) = Egd, o (x{”1x8Y)) in (38) and similarly for the
other terms.

(37) L AFF i E) =

(38) ANZ* 1 F) =

7. Some special cases.

. 1.1. Location models. 1t is instructive to investigate the particular simple

case of models where the unknown parameter is a location parameter. Let
&= (V, E) be decomposable, and let Y = (Y,: v € V) have a fixed distribution
0, € M(&Z) over 2= X, _yZ,, where each Z; is the real line—or, more
generally, 2, could be a vector space. With any u € £ we can associate the



HYPER MARKOV LAWS 1301

distribution 6, € M(#) defined to be that of the transformed variables X =
w + Y. This yields a model & which is easily seen to be meta Markov.
When will & be strong meta Markov? If this holds we must have

0V\(v}|v i ov [‘@]

for all v € V. Now for 6 =6, € &, 6y, comprises the labelled family
(D¥: x € Z), D¥ being the conditional distribution for Xy given X, = x,
when X has distribution 6. Equivalently, D/ is the conditional distribution of
By\@y T Yy 8iven Y, = x — pu,, when Y has distribution 6,.

Now it will typically be the case that the distribution D;,) of Yy, given
Y, = y will depend on y in such a way that, for some y* and all y # y*, there
do not exist any constants Ay, for which we can obtain D, as the distribu-
tion of Ay + Yy, wWhen Yy, has distribution DJ. This will be the case,
for example, if for some u + v the conditional variance ayz of Y, givenY, =y
takes the value ay‘i only when y = y*. If this property holds, then knowledge
of the labelled family (D¥: x € £;) will enable us to determine that unique
value x* for which x* — u, = y*, and hence to determine y,. Thus u,, and
hence 6,, will be determined by 6y, ,, and hence & cannot be strong meta
Markov.

7.1.1. The meta normal model. An important exception to the above
analysis occurs when 6, is a multivariate normal distribution in M(#). For
simplicity, suppose that its dispersion matrix H is nonsingular, and specifies
all and only those conditional independences implied by the requirement
0, € M(#¢). We shall also suppose that « is connected. Without loss of
generality we take E(Y) = 0 under 6,,.

In this case we find that D} is a normal distribution with mean

-1 -1
(/‘LV\(v) - HV\(v),vhvv:u’v) + HV\(v},vhvv Xy

and dispersion independent of x. Hence in this case (D/: x € 2°) does not
determine u,, but only (uy\) = Hy\g, oo t,)- In fact it is easy to see that
this normal family is strong meta Markov. We call it the meta normal model
AN (H).

It is straightforward to see (e.g., from Lemma 4.17) that the model .Z.#(H)
is very good with respect to «#. Consequently, by Theorem 4.22 the sampling
distribution of the maximum likelihood estimator § of 8 is a weak hyper
Markov law. '

But in fact more is true. If X is a random sample from 6 = 6, € 4V (H),
the maximum likelihood estimator of u is 4 =n~'YX? X' The sampling
distribution of 4 for given u is normal with mean u and dispersion matrix
K = n"'H. Since K o H, the results below imply that this induces a strong
hyper Markev law for the sampling distribution of 6.

7.1.2. Prior laws. A prior law £ for 6 confined to & may be specified by
assigning a prior distribution to u over 2" When will £ be hyper Markov?
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Since 6, is determined by u, for any A c V, Theorem 3.10 shows that it is
necessary and sufficient that the prior distribution of u be ordinary Markov.

When will £ be strong hyper Markov? Since the support of £ would then
have to be strong meta Markov, the above analysis shows that this will not
usually be possible in a nontrivial way. However, it is possible for the meta
normal model .Z.#(H). Indeed, we can construct a multivariate normal prior
distribution for u which will induce a strong hyper Markov law £. Suppose
that the dispersion matrix K of u is positive definite. In order for £ to be even
weak hyper Markov, this must be such as to make the distribution of u
Markov over 4. Let now C be a clique of &, and take v € C, A = C \ {v}. The
strong hyper Markov property requires that 6, , L 6,, which is equivalent to
having zero correlation between (1, — H,,Hy sp,) and p, under the disper-
sion structure specified by K. This gives

K- H, HipK 4 =0,
whence
(39) K, K34 =H,\Hy;.
Letting now A = K=, T' = H™!, (39) is equivalent to
85804 = Yo' Tua-

This will hold for every v € V if and only if, for all u,v € C, §,,'8,, = v, 7,..-
In particular, since v,, # 0 for all v,u € C, the same holds for §,,. Then
8,./Ys. depends only on v, and similarly depends only on «. It easily follows
that for some a; > 0, 8,, = acvy,, for all u,v € C. Since ¢ is connected, the
overlap between cliques ensures that all the («;) must be equal. Hence we
have shown that in order for £ to be strong hyper Markov, K must be a scalar
multiple of H. It is easy to see that this condition is also sufficient. Such a
normal distribution for . may be called a hyper normal prior law with respect
to the model .Z.#(H).

Note that, since the marginal distribution of i then has dispersion matrix
K + n~'H, the law of 6 is itself strong hyper Markov when K o H.

The case that ¢ is disconnected is similar, except that now H and K are
block-diagonal, and it is necessary and sufficient that proportionality hold
within each block, the constants for different blocks being possibly different.

7.2. Multinomial models and the hyper Dirichlet law. Suppose that all the
variables (X,), .y are discrete-valued, that is, they take values in finite sets
(A),cy. The model M(#) is then a decomposable graphical log-linear model
such as described in, for example, Darroch, Lauritzen and Speed (1980). Let .#
denote the set of possible configurations of X:

SI= X Z.
veV

Then, by (6), an arbitrary distribution 6 in M(#) is determined by the
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clique marginal probability tables 6, = (6c)c < » as
]—[C e 0C ( lC)
Mg b5(is)
where ¢ is the set of cliques of ¢ and . is the system of separators in a
perfect ordering of these. Note that the same set S may appear several times

in the expression. For S = C N D where C and D are cliques, 65 can be
calculated by marginalization either from 6, or from 6.

0(i) = for.i € 7,

7.2.1. Sampling theory. Suppose now that observations
x0 = (1, x2,...,x"0)

of a random sample X = (X!, X2 ..., X"0) from the Markov distribution
are obtained. A sufficient statistic is n = (n(i)), . ,, the contingency table of
counts, with n(i) the number of observations (x”) having the particular
configuration i. Similarly let n, denote the counts n(i A) in the marginal table
#,, obtained by taking into account only the variables in A.
The maximum likelihood estimator 8 of 6 € M(#) is a Markov distribution,

with 8, = ng/n, for C € € by Corollary 4.11. Thus when all terms are
positive we have (Darroch, Lauritzen and Speed, 1980)

[Meeenc(ic)
Mge ns(is)
We shall call the sampling distribution of M = noé the hyper multinomial
law, ## (n,,0). We observe that for C € ¢, the induced distribution of
M = ne is the multinomial distribution with index n, and probabilities 6.

Since the model M(#) is very good with respect to «, we obtain from
Theorem 4.22:

noé(i) =

ProposITION 7.1. The law H## (n,,0) for in determines a hyper Markov
law for § = f/n over £.

We emphasize that this law is not strong hyper Markov, since we do not
have the independence 00\ aadl 6, for A c C € ¢. Without stretchmg lan-
guage greatly, we shall refer to #.#_(n, 6) as a hyper Markov law for 7. The
explicit expression for the density of this law was derived by Sundberg (1975).

7.2.2. Prior laws. For each clique C € ¢, let
Ao = (Ac(ic))icer,

be a given table of arbitrary positive numbers and let 2(A.) denote the
Dirichlet distribution for 6, with density

(61 A¢) @ 1‘[ 0c(ig) et

iceS
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on the set where ¥, 6.(ic) =1 and 6.(ic) > 0. We recall the following
well-known properties of the Dirichlet distribution which all follow easily from
the representation of a Dirichlet random variable 8 as 6(i) = Y(i)/X,Y(i),
where Y(i) are independent and gamma distributed with common scale and
shape parameters A(i) [although (ii) and (iii) do not seem explicit in the
literature]. See, for example, Johnson and Kotz (1972) or Wilks (1962) for
standard results.

LEMMa 7.2. If £060) = 9(A), A c Vand B = V\ A, then:

(@) £(6,) = 2(7y),
(i) 85, 4(- |i,) are all independent and distributed as D(Ag A 1ip),
(iii) 6,4 L 65, 4.

Here we are defining A,(i,) = X;.;,_; A(j), Ag A(ig|is) = AG) and so on.
It follows from (i) that the collection of specifications

£(6c) = Z(rc), Ce7

will be pairwise hyperconsistent so long as for any two cliques C and D with
C N D # & we have

(40) Ac(icnp) = o ) ) Ac(de) = o ) . Ap(Jp) =Ap(icap)-
JciJcnD=icnD Jp:JcaD=lcnD

In particular, if < is connected, LA (i) will not depend on C. Henceforth we

restrict attention to the case of a connected graph &; general graphs are easily

handled by considering their connected components separately. When (40)

holds, it is possible to find a (nonunique) A = (A(i)); . , with C marginal equal

to A¢ for all C € €. To see that this is true one can, for example, take

AG) = HCe{)‘C(i'C) '
Mg As(is)

We obtain from Theorem 3.9 that given any such hyperconsistent collection
Ay=(Ac)cco there exists a unique hyper Dirichlet law for 6, denoted by
HD(A,) or #D,(A), which is hyper Markov over ¢ and has £(6c) = 2(A¢)
for all C € €. Moreover, by (iii) and Proposition 3.16, this law is in fact strong
hyper Markov. This is also a consequence of Proposition 5.9, since by Lemma
4.17, M(#£) is very good, and the Dirichlet distributions are conjugate to the
multinomial model.

If we confine attention to 6, with prior law 2(A.), and the data n. from
the marginal table corresponding to clique C, the posterior law for 6. given n¢
will be (A + ne).

The marginal counts (n.)c <, automatically satisfy the consistency condi-
tions in (40). It then follows from Corollary 5.5 that, if the prior law of 6 was
H#D (M), then the posterior law will be #Z (A + n). The family of hyper
Dirichlet laws for 6 is thus closed under sampling from the graphical model
M(#£). We can regard A as an ‘“‘equivalent prior sample” characterizing the
prior law. The corresponding equivalent posterior sample A* is then simply
A¥=A+n.
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7.2.3. Data distributions. We also obtain a law H#.#2 (n,, A), the hyper
multinomial-Dirichlet law, defined as the marginal distribution of 7 when 6
is assigned the prior law #°Z_,(A). This will be hyper Markov by Corollary 5.8,
the induced distribution for i, = n (C € ¢) being multinomial-Dirichlet.

Consider now the marginal distribution of the full data-set X™9. This is
Markov by Proposition 5.6. Within any clique or complete set C we have

po(xg™) — B( T1 o1c),
icE€ES

where the expectation is with respect to the law 2(A;) of 6, and we are
writing 6;  for (6¢);, and so on. This gives

(A (X%,
) reot) = (133 ) 1L (35

where A* =A +nand Ay =X,_ /A,
This expression can now be used with (6) to give the full density p(x™). It
may be noted that, since

p(x"?) = E( I1 05“‘),
=4

we thereby obtain the mixed moments of 6 under its prior law #Z ().
From (41) or directly, we find that for n, = 1,

Pc =Ac/Ag.
Hence the marginal probability function for a single observation is
[eeere

)‘O(I—[S S )‘S)
(In the disconnected case we must multiply terms such as the above across the
different connected components.) The predictive distribution for X"o*! given
X0 may then be found by substituting for A in (42) its posterior version
A=A +n.

Expression (41) can also be inserted into (37) to yield the marginal likeli-
hood ratio A(£* : ). For the case of a single observation in cell j, the
formula obtained is

(42) P

A A
(43) A(Z* : £) =){—Cf—c—

Jeg e

Likewise the incremental factor inserted into A(£* : ) by the observation
of x™0*! in cell j after already obtaining data x*® summarized by the counts
n is given by expression (43), where A is replaced by A* = A + n. These
successive individual factors can be used for continuous monitoring of the
relative evidence in favour of £#* as against <.

7.3. Covariance selection and the hyper inverse Wishart law.

7.3.1. Sampling theory. Suppose that all variables are continuous and
assumed to be jointly multivariate normal with means all equal to zero and
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unknown covariance matrix 3, (here assumed positive definite). The intersec-
tion €./, of this model with M(#) is the family of covariance selection
models with respect to  [Dempster (1972) and Wermuth (1976)]. Such a
distribution is determined by the clique-marginal covariance matrices {3€:
C € ¢}, which are arbitrary subject only to the consistency requirement that
if §=CnN C* then the submatrices of 3C and of 3¢ relating to the
variables in S must be identical (with common value 3° say). When this holds,
we can show, for example, from (6) that

(44) K- ¥ [K°) - T [K°T,

Cce?¢ Se/”
where K = 37! is the concentration matrix corresponding to 3, and similarly
for K€ and KS; and [A]° is obtained from the matrix A by extending it with
zeros so as to give it the correct dimensions.

Now for C € ¢, the model (£€./,). is just the family of all zero-mean
multivariate normal distributions for X, which has the property that for
A c C, any specification of the parameters of the multivariate regression of
Xc\a on X, is compatible with any specification of the marginal distribution
for X,. Using this it is easy to see that the model €7, is strong meta Markov.
It is also very good, as again follows from Lemma 4.17.

Suppose now that we observe as data a random sample X from a
distribution in €.#, specified by 3. If S is the sum-of-products matrix formed
from X, then in the sampling distribution, £(S|3) = #(n; ). A sufficient
statistic for 3, is S¥ = {S€: C € €}, where S€ = S¢c. In clique C we have S°
sufficient and £(S€|3) = #(n;3°).

Let $ be the maximum likelihood estimator of 3 in the above covariance
selection model. The sampling distribution of 3. given 3 defines a law over
€.7,. By Theorem 4.22, this law will be weak hyper Markov. The marginal
distribution of §¢ = n3C for C € ¢ is Wishart #(n;3¢). We call the distri-
bution of § = n3 the hyper Wishart law # % ,(n;3) and note that it is not
generally strong hyper Markov unless 2 is diagonal.

ExampLE 7.3. To give an indication some of the more powerful aspects of

the theory in the present paper, we study a covariance selection model with
mean zero and graph

X3

X4
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corresponding to the inverse covariance matrix having zero entries at positions
1,3),1,4),(,5), 1,6), (2,6), (3,6) and (4, 6).

Based upon a sample of size n, the max1mum likelihood estimate of the
inverse covariance is given as

n18 1=8"1= [(5(1’2})_1]0 + [(8(2,3,5})—1]0
[(seemn "+ [(seo) ]

_[(5(2))_1]0 - [(8{5})_1]0 - [(3(2,5})‘1]0’

where as usual [A]° is obtained from A by filling up with zero entries to
obtain the correct dimension (here 6 X 6).

The maximum likelihood estimator has a hyper Wishart distribution from
which we deduce, for example, that

Sy §$6,456 | 9@
since 3 = 8@ /n,

7.3.2. Prior laws. For each clique C € &, let ®¢ be a fixed positive
definite dispersion matrix. We denote transpose by ' and the number of
elements in C by |C|. The inverse Wishart distribution is the distribution of
W~ where W= X7, X, X!, the X; being independent and multivariate nor-
mal with covariance matrix (®¢)~!. Using the parametrization of Dawid
(1981) we denote this by £ #(8; ®°), where 6 = n — |C| + 1. Clearly 3¢ has
distribution £#1(8; ®°) if and only if K€ = (3°)! has the Wishart distribu-
tion #(5 + |C| — 1; (@)1},

We recall the following well-known properties of the multivariate normal
and inverse Wishart distributions.

LEMMA 7.4. Let A be a subset of C and let B = C\ A. If
£X13) =7(0,%),
then
£(X,12) =40, EAA) and £(Xp|X,,3) = A (Tg aXa25/4)

where

3 3
2=(EAA EAB)’ Teja= SpaSAs 2pia=2pp ~ 2padasap-
BA BB

Further, if £3) = 2 7(5;®) and ® is partitioned accordingly, then:

(D) £(Za4) = IH(5; Py ).

(ii) £3p,4) = FH (6 + |Al; @y o).
@ii) £(FB|A |3p4) = ‘/V(q)BAq)AA’ Sp1a ® PiA).
(iv) EAA 4L (FB|A’ 2B|A)

For any C € ¢ a law for 6, confined to the zero-mean multivariate normal
distributions on C may be specified by assigning a distribution (which we may
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again term a law, and denote by £) to 3. It follows from (i) of Lemma 7.4 that
the collection of laws
£(2°) = 7Y (5;®°), Ce ¥

will be pairwise hyperconsistent so long as, if B ¢ C, N C,, the submatrices
@5 and @53 of ®C and BC: respectively are identical. There will then exist
a unique hyper Markov law for 3 corresponding to the marginal specifications
defined by ®° = {®€,C € ¢}, which we call the hyper inverse Wishart law
and denote by # £ ¥ (5;®%) or H#.Z W (5;®), where ® is any dispersion
matrix having ®,, = ®¢, C € £—for example, that constructed by a formula
such as (44).

Now the inverse Wishart prior distributions for 3 are conjugate to the
model .70, 3) when 3 is unrestricted. Consequently we deduce, by Proposi-
tion 5.9 (or direct from (iv) of Lemma 7.4 and Proposition 3.16):

ProposiTioN 7.5. The hyper inverse Wishart law is strong hyper Markov.

If a random sample has been observed as previously described, and the prior
law of 2 is #.##(; ®), the prior law for 3¢ is ##1(5; ®°) and the posterior
is thus Z7(8 + n; S + ®°). So the full posterior is #. 2 ¥ (5 + n; St + ®%)
or equivalently # . #%_(5 + n; S + ®), exhibiting the hyper inverse Wishart
laws as a conjugate family for the model €.,. We can now interpret @ as the
sum-of-products matrix from an equivalent prior sample of size §, and then
the corresponding posterior quantities are then ® + S and & + n.

7.3.3. Data distributions. As in the previous special cases we can intro-
duce the weak hyper Markov law corresponding to the marginal data distribu-
tion of S. This will induce a distribution for SC = Scc which is matrix F
[Dawid (1981)]. This distribution for § may be termed the hyper matrix F law
HF,n;5; ).

We turn now to the marginal distribution of the full data X™. For any
A c C we shall regard the values for X{® as arranged in a (n X |A|) matrix,
with a row for each observation and a column for each variable. It follows from
Dawid (1981) that, using the notation there introduced, for C complete, the
marginal data distribution of X{* is the matrix ¢ distribution T'(s; I, ®°),
with density [Dickey (1967)] '

T ((8 + n +ICl - 1) /2)
Te/((3 +1CI— 1)/2)

-n/2

(det @)

(45) p(x§) =mriC1/2

_ N1 —(E+n+ICl-1)/2
X [det{In + x5(@°) lxg‘)}]

Le((8+n+]Cl-1)/2)

cr\(B+ICI-1)/2
Te((3 +1CI - 1)/2) (det ®7)

(46) — 7T—n|C|/2

X [det{®C + g€} @t Hem2
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where
[,(A) a T()T(A =) T(A = 3p + 3).

The density of the overall marginal Markov distribution for X is thus given
by using the above expressions in conjunction with (6). We call this the hyper
matrix t distribution #.7(6;1,, ®%), or # T A8;1,, D).

In the case of a single observation, expressed as a column-vector x, expres-
sion (45) becomes

(det ®€) T (5(8 +ICI))
7/2CT (3(9))

Correspondingly the incremental factor appended, to expression (45) on observ-
ing X"*! = x, after already having observed X", is obtained from (47) by
substituting 6 + n for § and ® + S for ®.

We can again use expression (45) or (46) in formula (37) for the marginal
likelihood ratio comparison A(Z* : &), obtaining incremental components, if
desired, using (47) as above. Alternatively, we can use formula (38) calculating,
for example, p, c(x(” | x&) as the expectation under the prior law of the
sampling density of x{* given x{ using the formulae of Lemma 7.4. We find
that in the marginal data distribution, the conditional distribution of xm
given XV, where D = C, or C, is

X(Dn)(bl;ll)(bDu + T(‘S + p; In + X(Dn)(DBle()n)” ¢u|D)7

-1/2

] —3(3+ICD

(47) [1+2(2°)

where p = | D|. Using the appropriate variant of (45) now yields the alternative
expression for A(£* : &). We omit the details.

APPENDIX
A. Graph theory.

A.1. Notation and terminology. A graph is a pair &= (V, E), where V is
a finite set of vertices and the set of edges E is a subset of the set V X V of
ordered pairs of distinct vertices. Thus our graphs have no multiple edges and
no loops.

Edges (a, B) € E with both (a, 8) and (B, @) in E are called undirected,
whereas an edge (a, ) with its opposite (B, a) not contained inE is called
directed. If the graph has only undirected edges, it is an undirected graph and
if all edges are directed, the graph is said to be directed.

For both the directed and the undirected cases, we define a path of length
n >0 from @ to B to be a sequence a = ay,...,a, = B of distinct vertices
such that (a;_;,@;) € E forall i = 1,...,n. If there is a path from « to 8 we
. say that a leads to B and write a — B.

A subset C CV is said to be an (a, B) separator if all paths from a to B
intersect C. The subset C is said to separate A from B if it is an (e, B)
separator for every a € A, B € B.
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An n cycle is a path of length n with the modification that a = B, that is, it
begins and ends in the '‘same point. A directed acyclic graph (DAG) is a
directed graph without cycles.

For an undirected graph, we use the notation o ~ 8 to denote that there is
an edge between a and B. In this case @ and B are said to be adjacent or
neighbours. Similarly o » B denotes that this is not the case. The boundary
bd(A) of a subset A of V is the set of vertices in V' \ A that are neighbours of
vertices in A. The closure of A is cl(A) = A U bd(A).

In a directed graph @ — B denotes the presence of an edge (a, B), that is,
from « to B and « » B the absence of such an edge. If & — B, « is said to be a
parent of B and B a child of a. The set of parents of B is denoted by pa(B).
The expression pa(A) denotes the set of parents of vertices in A that are not
themselves elements of A: pa(A) = U, 4 pa(a@)\ A. The set of vertices «
such that a — B are the ancestors an(B) of 8 and thé descendants de(a) of «
are the vertices B such that a — B. The nondescendants of a are nd(a) = V\
(de(a) U {a}). A subset A is ancestral if an(B) C A for all B € A. A vertex is
terminal if it has no children.

The undirected version &= 2~ of a directed graph 2 is the graph
obtained from 2 by substituting undirected edges for directed ones. Similarly
we say that 9 is a directed version of £.

If a numbering of the vertex set V of an undirected graph ¢ is given, the
corresponding directed version 9 = & < has edges between the same vertices
a and B as the original graph #, but the edge is directed from vertices with
low numbers to those with high numbers. Clearly ¢ < is then a DAG.

If A CV is a subset of the vertex set of a graph <, it induces a subgraph
&, = (A, E,), where the edge set E, = E N A X A is obtained from £ by
keeping edges with both endpoints in A.

A graph is complete if all vertices are joined. A subset is complete if it
induces a complete subgraph. A complete subset that is maximal w.r.t. C is
called a clique.

A.2. Decompositions of graphs. Here we describe some basic features of
decompositions and decomposable graphs. The notions pertain to undirected
graphs. We refer to Lauritzen, Speed and Vijayan (1984), Golumbic (1980) and
Lauritzen (1989) for further references. The central notion is the following:

DeFiNITION A.1. A pair (A, B) of subsets of the vertex set V of an undi-
rected graph ¢ is said to form a decomposition of & if V=AU B, AN B is
complete and A N B separates A from B.

When this is the case we say that (A, B) decomposes & into the compo-
nents &, and . If the sets A and B in (A, B) are both genuine subsets of
V, the decomposition is proper. A decomposable graph is one that can be
successively decomposed into its cliques. This is stated formally as:
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DErFINITION A.2. An undirected graph is said to be decomposable if it is
complete, or if there exists a proper decompos1t10n (A, B) into decomposable
subgraphs ¢, and 3.

The definition makes sense because the decomposition is assumed to be
proper, so that both subgraphs &, and ; have fewer vertices than the
original graph ¢.

A triangulated graph is an undirected graph with the property that every
cycle of length n > 4 possesses a chord, that is, two nonconsecutive vertices
that are neighbours. A classical result, see, for example, Golumbic (1980),
states the following:

ProposITION A.3. An undirected graph is decomposable if and only if it is
triangulated.

Closely related to the notion of a decomposition is the notion of a simplicial
subset, which is a subset A that has complete boundary. When a subset is
simplicial the pair (cl(A), V\ A) is a decomposition of . A vertex «a is said to
be simplicial if the subset {a} is.

A sequence (C,, ..., C,) of complete sets in & such that for all j > 1, R; is
simplicial in ij, where

=(CIU cet UCJ), RJ=CJ\H_]—1’

is said to be perfect. H; are the histories and R; the residuals of the
sequence. A perfect numbermg of the vertices V of & is a numbering
(ay,...,a) such that

bd(aj) N {al,---’aj—1}7 J >1

are complete sets, that is, such that ({ej},...,{@,}) is a perfect sequence of
sets. A directed graph 9 is perfect if pa(a) is a complete set for all a € V.

If the sets (C,, . .., C;) form a perfect sequence and the vertices (ay, ..., ay)
are numbered with those in R, first, then those in R, and so on, then the
vertex numbering so obtained will be perfect [Leimer (1989)]. The numbering
then induces a perfect directed version 2 of 4.

The connection between perfect sequences, numberings and decomposable
graphs is contained in the following.

PropoSITION A.4. The following conditions are equivalent for an undi-
rected graph Z:

(i) The graph & admits a perfect directed version 2.
(ii) The cliques of & admit a perfect numbering.
(iii) The graph & is decomposable.
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Proor. See Golumbic (1980).
Note that a perfect numbering of the cliques can be chosen to have any clique
as C,.

A property that turns out to be extremely important in the statistical
context is that of collapsibility [Asmussen and Edwards (1983)]:

DErFINITION A.5. An undirected graph & is collapsible onto A if every
connected component B; of V\ A has complete boundary in <.

Theorem 2.3 of Asmussen and Edwards (1983) shows that this definition is
equivalent to the one they originally gave. When ¢ is collapsible onto A, B,
are all simplicial in &, so that the pairs (cl(B,), V\ B;) form a decomposition
of & for all i.

LEMMA A.6. The graph £ is collapsible onto A if and only if, for any triple
(A}, A,, S) of subsets of A,

S separates A, and A, in &, = S separates A and A,in £.
ProoF. See the proof of Corollary 2.5 in Asmussen and Edwards (1983).

Lemma A7. If (C,,...,C,) is a perfect sequence of sets with C;{ U -+ U
C, =V, then & is collapsible onto the history H; for each i.

Proor. This is Theorem 3.3 of Asmussen and Edwards (1983).
If we let S; denote the separators S;=H,;_; N C;, we further have the
following:

CoROLLARY A.8. For every i, S; separates R, from H;_, in #.

Proor. The result follows from Lemmas A.6 and A.7. O

The next two lemmas are concerned with edge removals in decomposable
graphs.

LEmMMA A.9. Let £* and & both be decomposable with the same vertex set
and with E c E*, and with £* having exactly one more edge than <. Then
this edge is contained in exactly one clique c¢* of Z*

Proor. This is Lemma 3 of Frydenberg and Lauritzen (1989).

LEMMA A.10. Let £* and & both be decomposable with the same vertex
set and with E c E*. Then there is an increasing sequence &= &, C -+ C
&, = &* of decomposable graphs that differ by exactly one edge.
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ProoF. This is Lemma 5 of Frydenberg and Lauritzen (1989).
And finally we will need:

LEMMA A.11. For S c 'V, let Z[S] be the graph with vertex set V and with
an edge joining vertices a and B if and only if either a € Sor B € S, or S
does not separate a from B in¥. Then:

(i) if & is connected then S is complete in Z[S];
(ii) if S separates A from B in &£, the same holds in Z[S];
(iii) Z[S] is decomposable.

PrOOF. Suppose first that « is connected. Then clearly S is complete in
Z[S]. If there exists a path 7 in #[S] from A to B avoiding S, then any two
consecutive vertices of 7 can be joined by a path in & avoiding S and so S
does not separate A from B in . To see that (iii) holds, consider a cycle « in
Z[8S] of length greater than or equal to 4, and « and B nonconsecutive
vertices of k. If a and B are nonadjacent in #[S], then neither isin S and S
separates « from B in & and, thus, by (i) in Z[S]. Then « provides two
distinct paths in Z[S] from a to B, each of which intersects S at distinct,
nonconsecutive vertices. Since S is complete in #[S], these vertices are
adjacent in #[S] providing a chord for «.

In the disconnected case, (ii) and (iii) follow easily from the same properties
already shown to hold within each connected component. O

B. The Markov property. Formal proofs. This section contains some
of the formal resutls and proofs behind the developments in our paper. We
have chosen to formulate the results as pertaining to the notion of Markov
distributions, whereas they really are of a quite abstract nature, so that we can
use them in other sections of the main paper. We also here use the notation
A 1L B|C todenote X, 1 Xz | X.

From the definition and Properties 1-4 of conditional independence, we
obtain the following:

ProrposITION B.1. If P is Markov over 4, then
ALB|ANB

whenever A N B is complete and separates A from B.

Proor. Each of A and B can be extended to A and B such that these
form a full decomposition with A N B = A N B. Then Property 2 applies. O

PrROPOSITION B.2. Let 9 be a perfect directed acyclic graph and ¥ its
undirected version. Then, if

(48) ({¢} U pa(v)) + nd(v) Ipa(v) [P]
holds, P is Markov over <.
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Proor. For AU B =YV, write x = (x,, xg) to denote the (obvious) fact
that any point x € 2" is determined by its projections x, and xz. We show
the result by induction on |V|, the number of vertices of . For |[V|= 1 the
statement is trivial. Suppose this implication has been established for |V| < n
and that we are dealing with the case |V| = n + 1. Let A be a terminal vertex
in 2. Then, since 9 is perfect, {A} U pa()A) is complete. Hence, if (A, B) is a
decomposition of  we may without loss of generality suppose {A} U pa(A) C A,
whence in particular A € A. Let V* = V\ {A}, &* = Zy», A* =ANV* B*=
BNnV* S=AnNB and S* =S N V* Then (A* B*) is a decomposition of
&* with A* N B* = S*. Hence, by the induction hypothesis,

(49) A* 1L B*|S*.
Also, from (48), since pa(A) € A* ¢ V* = nd()), we obtain
({A} upa(d)) 1 V¥ | A%,
whence
(50) ({A} U pa(A)) L B*| A*.
Since X, = (X(yu pacry Xar), (49) and (50) are together equivalent to
A 1L B*|S*
whence, since S* €S c A,
A1 B*|S.

If A € B we have B* = B. Otherwise Xz ~ (Xg«, Xg). In either case we
deduce A 1 B| S and the induction is established. O

ProrosiTiON B.3. If £* is a decomposable graph with the same vertex set
as &, but with larger edge set, that is, E C E*, then any distribution P which
is Markov over < is also Markov over £*.

ProorF. By Lemma A.10 it is enough to consider the case where & and £*
differ by exactly one edge, {a, 8}, say, in which case Lemma A.9 gives that this
edge is a member of exactly one clique C; of #*. Now make a perfect
numbering of the cliques of #* beginning with this particular clique and let
2* be a corresponding perfect directed version of £*. Because {«a, 8} c C,
only, it is not a subset of any of the separator sets S;. Since S, is complete and
separates R; from H; in &* for all i, the same holds in . The Markov
property over & together with Proposition B.1 now gives that P must be
directed Markov over 2%, as in the proof of Theorem 2.6. From Proposition
B.2 we obtain that P is Markov over £*. O

COROLLARY B.4. Theorem 2.8 holds.

ProoF. Suppose S = A N B separates A from B and let &* = Z[S] as
defined in Lemma A.11. Then, by this lemma, #* is decomposable and S

separates A from B in £*. Thus the theorem follows from Proposition B.3.
O
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The process of forming marginal distributions will, under certain circum-
stances, preserve the Markov property. More precisely, we have the following:

ProposITION B.5. If & is collapsible onto A and P is Markov over &, then
P, is Markov over ¥4,.

Proor. This follows immediately from Lemma A.6 and Proposition B.1.
See also the definition of collapsibility given by Asmussen and Edwards (1983).
O

The result in Proposition B.5 is strongest possible—if ¢ is not collapsible
onto A then there exists a Markov distribution P over ¢ for which P, is not
Markov over ¢, [Frydenberg (1990)].

A consequence of Proposition B.5 is the converse to Proposition B.2, relat-
ing the directed and undirected Markov properties.

PropoSITION B.6. Suppose P is Markov over & and let 2 be a perfect
directed version of <. Then P is directed Markov over 9.

Proor. First realize that a decomposable undirected graph ¢ is collapsible
onto a subset A if and only if A is ancestral in some perfect directed version
9 of #. In particular, ¢ is collapsible onto G, = {v} U nd(v) for any v € V.
Hence, if P is Markov over &, then by Proposition B.5, Pj;- is Markov over
& Since ({v} U pa(v), nd(v)) is a decomposition of e (D follows. O

Another consequence is the following alternative recursive characterization
of the Markov property.

ProposITION B.7. Let (A, B) be a decomposition of . Then P is Markov
over & if and only if:

(i) P, is Markov over &,
(ii) Py is Markov over &y and
(iii) AL BI|ANnBI[P]

Proor. If P is Markov over ¢, then (i) and (ii) follow from Proposition
B.5, while (iii) holds by definition. Conversely, suppose (i)-(iii) hold. We can
construct a perfect directed version Z, of &, and then extend the restriction
of 9, to AN B to a perfect directed version 9 of &5. Then I = 2, U Dy
will be a perfect directed version of . Since, by Proposition B.6, P, and Py
are directed Markov with respect to 2, and 9y, it easily follows from (iii) that
P is directed Markov over 2 and hence by Proposition B.2, Markov over 4.
That P = P, x P follows trivially. O
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