Translator Disclaimer
December, 1992 Inadmissibility Results for the Selected Scale Parameters
P. Vellaisamy
Ann. Statist. 20(4): 2183-2191 (December, 1992). DOI: 10.1214/aos/1176348913

Abstract

Let $X_1, X_2, \ldots, X_k$ be $k$ independent gamma random variables with different scale parameters but with a common known shape parameter. Suppose the population corresponding to the largest $X_{(1)}$ [or the smallest $X_{(k)}$] observation is selected. The problem of estimating the scale parameter $\theta_{(1)}$ [or $\theta_{(k)}$] of the selected population is considered. We derive, using the method of differential inequalities, explicit estimators that dominate the natural or the existing estimators. The improved estimators of $\theta_{(1)}$ are similar to that of DasGupta estimators for the usual simultaneous estimation problem. An implication of this result for the simultaneous estimation of the selected subset is also considered.

Citation

Download Citation

P. Vellaisamy. "Inadmissibility Results for the Selected Scale Parameters." Ann. Statist. 20 (4) 2183 - 2191, December, 1992. https://doi.org/10.1214/aos/1176348913

Information

Published: December, 1992
First available in Project Euclid: 12 April 2007

zbMATH: 0765.62012
MathSciNet: MR1193336
Digital Object Identifier: 10.1214/aos/1176348913

Subjects:
Primary: 62C15
Secondary: 62F07, 62F10

Rights: Copyright © 1992 Institute of Mathematical Statistics

JOURNAL ARTICLE
9 PAGES


SHARE
Vol.20 • No. 4 • December, 1992
Back to Top